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e Goals

* Distribution and Wetting
- MEME
- Lithium Distribution
= Loop setup
= |nitial tests
= Capped Distributor
- Stream Formation
- Velocity measurements

* Vapor Shielding
- DIFFER experiments
- ZAPDOS-CRANE Model

 Helium retention and low recycling operation

« Summary and Conclusions

 §
ILLINOIS
CPMI cpmi.illinois.ed Nuclear, Plasma &

Center for Plasma-Material Interactions Radiological Engineering
EEEEEEEEEEEEEEEEEEEEEEEEEEEE




Goals
 Single effect experiments being undertaken by UIUC

* Liquid lithium loop and wetting of surfaces
- Development of loading systems

EM pumps for loop

Flow velocity

Wetting of surfaces

Distribution design

* Vapor Shielding in the presence of impurities
- Performed on MAGNUM-PSI
- Helium
- Neon

* If there was time
- Compatibility testing of different materials
- Helium and hydrogen retention and pumping by lithium
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Mock-up Entry Module in EAST (MEME): Flowing liquid lithium
wetting experiments

1 m3 cubed volume: Base pressure ~1078 torr _
g 50 cm circular flange: 9 flanges for

front-on plate diagnostics (CCD, IR
cameras)

T e T * P ’

Lithium loader:
equipped with
load lock to allow
for reloading
under vacuum.
Reservoir volume [

PFC: modularly designed components
allow for easy swap out. Attached to
TA for easy maintenance/installation

1650 cm3
1 m stroke
transfer arm
:7';; “'- v :,‘ g :; ’ , ‘ .y ’—'i' 4 ~
TA attachment: allows for rotation of PFC. il
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1 m3 cubed volume: Base pressure ~10~2 torr

e —_— et ) \
—_— Ny b
5 / K 7 N
N V¢ 3 _ N

50 cm circular flange: 9 flanges for
front-on plate diagnostics (CCD, IR
cameras)

Lithium loader:
equipped with
load lock to allow
for reloading
under vacuum.
Reservoir volume
1650 cm3

PFC: modularly designed components
allow for easy swap out. Attached to
TA for easy maintenance/installation
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1 m stroke
transfer arm

AR LI ™
TA attachment: allows for rotation of PFC.
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1 m3 cubed volume: Base pressure ~10~8 torr
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50 cm circular flange: 9 flanges for
front-on plate diagnostics (CCD, IR
cameras)

Lithium loader:
equipped with
load lock to allow
for reloading
under vacuum.
Reservoir volume
1650 cm3

PFC: modularly designed components
allow for easy swap out. Attached to
TA for easy maintenance/installation

1 m stroke
transfer arm

, A V,':.‘ ,e' N ', l' .
TA attachment: allows for rotation of PFC.
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Lithium Distribution: Loop Setup

Properties:
- Base pressure: ~9x1078 Torr
- Chamber Pressure molten lithium: ~9x10~7 Torr

Added second EM pump
- Pumping requirements higher than expected
- Lack of wetting in pipes
= Max achievable temperature 270°C
- Possible impurities within lithium
- Current required to drive flow:
= Pumpl: 129 Amps
= Pump2: 100 Amps

Plate angled at 13°
- Maximum allowed by current design

60cm

Internal
300g lithium loaded into an argon environment Reservoir EM pump 1

- Purity maintained by load lock
Diagnostics: w |
- 7TCson loop Li Flow

- 6 TCson plate
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Lithium Distribution: Initial Tests

* Initial test produced a lithium droplet above the distributor
- No wetting to distributor
- Assumed lithium was wicking on bottom surface of cap
= 5mm gap between surface and base of plate

- Second test ran with a cooler plate temperature (220°C)
- Below lithium wetting to subdue wetting

» Second test produced similar behavior
- Lithium already wetted to bottom surface?
- Flow driven due to gravity to large?

» Capped distributor to attempt to force lithium to wet to posts

Lithium f Droplet  pistributor

- . ormation
L| InﬂOW W|CkS Cap’s

bottom

w / surface
| Plate at 320°C Plate at 220°C
I
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Lithium Distribution: Capped Distributor

Capped Distributor produced flow upon plate
- Sustained flow down middle of plate for ~30mins
- TCs on loop highlighted lithium recirculation

Initial flow on the right edge of the plate
- Initial blockage in distributor from previous runs
- Wetted the right-hand wall

However, still appears distributor isn’t wetting
- Lithium running along distributor top and dropping onto
plate
= Gap of 2mm between post and cap
- No post-mortem of distributor yet

Plan to machine wedge piece to fill gap between cap and
POSts
- Suppress lithium flow and lead to build-up in distributor
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Frame by Frame of Stream Formation

lows I|th|um to |

rﬁ.al m \S|6\Mr | PN

Increasing time and 2"d pump current
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Results of the Flowing Liquid Lithium Loop in MEME

* Need to fix a design feature in the plate distributor.

- A gap between the posts and plate allows the Li to flow
down the plate rather than wick into the posts.

- See an initial flow of Li down the edge of plate and
good wetting

- Thing flow.

- See the big bulk, laminar flow, more indicative of what
IS seen probably in the loop itself.

* Plate at 13.5° from the normal
« 15 cm length
« With 100 A into the EM pump get a velocity of

v=1m/s

- Still analysis of results being done and new distributor
to be tested next week to try for full wetting.
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Power Dissipation in Li Vapor Shielding Experiments

Lithium
Vapor
Cloud

MAGNUM
PROBE HEAD

Plasma
Surface
Interactions
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Background

* Li vapor shielding experiments performed on
MAGNUM PSI have shown that when in vapor
shielding regime:

- A'locking temperature is attained

- Around 750 °C — 800 °C attained at about 6.0
MWm-2

- Holds at least up to 20.0 MWm-2

* The picture on the right shows 15 — 20 MWm-2
shots on solid (red) and Li (black) targets

 The incident heat flux is therefore reduced by a
certain amount which equilibrates to yield that
locking temperature
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Calorimetry Data from MAGNUM-PSI Shots

- Steady state calorimetry data clearly shows the effect of Li vapor shielding for increasing plasma power
- At low enough powers, there’s no noticeable difference between the solid and Li target profiles

- Once the heat flux is high enough, the vapor shielding effect starts to be felt

10 Plasma source current of 150A 10 Plasma source current of 170A 10 Plasma source current of 190A
— Dummy target — [Dummy target
— Li target: pure H2 plasma — Li target: pure H2 plasma
— Li target: with Ne — Lj target: with Ne
81 — Li target: with He 81 — Li target: with He 81
T8 T8 T8
£ £ £
= = =
= = =
o 49 o 4 o 4
21 s rl e Cummy target
—— Li target: pure H2 plasma
— Lj target: with Ne
— Li target: with He
0 0-+— - - T ' T —= 0= ' ' T ' T T
0 50 100 130 200 230 200 0 50 100 130 200 250 3200
Time [5] Time [s]
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Contributing Factors

* The plasma heat flux to the target is
Increasingly reduced until it saturates at
some equilibrium, translating into the
observed surface locking temperature

A couple of factors contribute to the heat
dissipation:

- The Li evaporative heat flux

- The Li vapor cloud itself, radiating power
away from the target via plasma chemistry

o=V [N —

Center for Plasma-Material Interactions

Radiated power
=]

Incident plasma
heat flux

Li vapor
cloud
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Modeling Q;;”

* The evaporative Li particle flux J;; can be
modeled from existing data and empirical
relations as:

_ 1
J1i(Toury) = 7759 + A1 - Tourf—C
1+ e( S )
* Ty, IS the Li surface temperature and A, ¢ and S

are fitting parameters

- The evaporative heat flux is Q;; is obtained

from J;;, the Li heat of vaporization h; and
Avogadro’s number N, as:

vap hLi X ]Li

Li N,

o=V [N —

Center for Plasma-Material Interactions

Lithium evaporative heat flux vs. Te,s
Within existing data range

— ermpirical relation 1 F
1 === empirical relation 2 ,f
-4 adopted relation
*~——eo— . P . .
400 450 500 550 600 650 700 750 800
Tsurf [ ’ C]
Extrapolating to higher temperatures
T
= empirical relation 1 :I
| =ms gmpirical relation 2 f’
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/
4
r
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Total Power Dissipation

 The total heat dissipation, accounting for plasma chemistry, can be found by solving a heat diffusion
model and correcting the heat flux by AQ to achieve the observed locking temperature. This gives

T _
AQ(Tsurf) =A-Tgur+B- [1 + erf( e “)] +C

Om

« With A, B, C, x and o, fitting parameters

Uncorrected and corrected heat fluxes Surface temperature of Li film

187 o Q —Q)EF 1400] =+ W!th uncorrected Q
—— () — A e With Q) — AQ
16-
14 - 1200
o212 —_
= 8]
—_ o -
=P L 1000
s 5
o =~
800 -
E_
4- 600
2.5 5.0 7.5 10.0 12.5 150 17.5 20.0 2.5 5.0 7.5 10.0 125 150 17.5 20.0
Plasma heat flux [MW/m?] Incident plasma heat flux [MW/m?]
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Special Case and Considered Reactions

Taking one of the experimental shots from MAGNUM-PSI with a plasma current of 170 A we have:
- Q = 6.0 MWm2 on a solid target
- Q =~ 4.0 MWm2on a Li target
- Li locking temperature of Ty,,.r =~ 650 °C

This results in dissipation of 1.5 MWm-=2 or AQ = 265 W (from the surface area of the used samples)
divided in:

- QP =45W

- 220 W from plasma chemistry

Excitation and ionization of Li atoms are accounted for as the most plausible dissipation mechanisms
Inside the vapor cloud
- These reactions are driven by collisions with electrons

Rate coefficients are obtained via integrating the cross-section over a Maxwellian

2F
k _LG(E) Ey(E)dE

With o the cross-section, u., the reduced mass and y(E) the Maxwellian distribution

I
CPMI cpmi.Minole.ed ILLINOIS

: ‘ Nuclear, Plasma &
Center for Plasma-Material Interactions Radiological Engineering

EEEEEEEEEEEEEEEEEEEEEEEEEEEE




Obtained k [m3s]

Li excitation cross-sections
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Dissipation per atom

* The power loss per Li atoms can be found for a certain electron energy via
Poss = k[mgs_l] "N [m_g] - AE[eV]

* For the MAGNUM-PSI experiments, the electrons were around 1.2 eV, which
leads to the following table

Excitation power loss lonization power loss
Reaction Ploss [MeV/s] Reaction Ploss [MeV /s]
e+ Li(2s) — e+ Li(2p) 73.6914 e+ Li(2s) — LiT + 2e 0.7229
e+ Li(2s) — e+ Li(3s) 4.4306 e+ Li(2p) — LiT™ + 2e 7.8615
e+ Li(2s) — e+ Li(3p) 2.1462 e+ Li(3s) — LiT + 2e 56.4405
e+ Li(2s) — e+ Li(3d) 2.9500 e+ Li(3p) — LiT + 2e 111.1002

e+ Li(2d) — Lit +2e  118.9097
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Main Dissipation Mechanism

* The obtained power loss per Li atom suggests that the power dissipation is mainly
achieved by

- Excitation of ground state Li atoms
- lonization of excited Li atoms

« However, the de-excitation reaction rates are much higher than the excitation ones for
the experimental plasma parameters

I Excitation rate coefficients Jpa— De-excitation rate coefficients
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Helium Pumping by Lithium in HIDRA

 HIDRA
- R,=0.72m Distance from Shipra = 5.400 m?
- r=0.19m the plasma edge Viipra = 0.513 m3
- a=0.1m (D = a— 0.045m) Vo jasma = 0.142 m?

 HIDRAIs a “dirty machine”

- Du?: to HIDRA’s design, we cannot bake the machine, we do discharge cleaning, however it still in not
perfect.

= Base pressure 5 —9x10-7 torr

= Main impurities will be air and water vapor (plus some hydrocarbons) on the SS surface of the vessel.
- This means that the impurity atoms/elements are hydrogen and oxygen due to water vapor

= H,—-656 nm

= O —-777nm

= Other lines too

« What will be shown here are helium experiments
- Helium is flowing at a constant rate throughout the discharge.
= Range of flow rates 0.50 — 1.00 sccm

= The MFC has been calibrated to helium (this was done at the factory, in
fact it has 10 separate calibrated gas settings, including H, and D,)

- This means that in this case Ehe Feeyeling atom is helium!
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() - Full Range Gauge
[ - SRS RGA100

A - Spectrometer
B - Langmuir Probe

‘ - Camera

Schematic top view of HIDRA showing
LEEX’s diagnostics. RGA’s are positioned
on the upper E-ports and spectrometers are
positioned on the lower E-ports. Other
diagnostics and pumps are connected to
other HIDRA ports.
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The heater and sample holder |}
configuration for the (a) Zeus
shots and (b) LEEX campaign

ILLINOIS
U.S. LMPFC Program - UIUC Nuclear, Plasma & 24

Radiological Engineering
uuuuuuuuuuuuuuuuuuuuuuuuuu



Up to an 85% drop reduction in recycling

Shot Comparison: Normalized Pressure Data

— * Three different diagnostics
—Contro!

~ b=25mm \ - Pressure

ostzam - RGA’s

- Spectroscopy
All show the same behavior

We know now that this is a real effect

Arbitrary Units (a.u.)
i
\‘,\
® ® ®

This re-confirms that what we saw in the “Zeus” shots and

% 100 200 500 100 00 a0 LERE is a real effect!
Time(s)
Normalized RGA Comparison: Helium (M/Q=4) 2 RGA, Pressure, and Spectroscopy (He 706nm): D=25mm
2 : | T T [ I —RGA
—Control = s Prosstife 10*
——D=0mm g ——Spec He 706nm
D=25mm o
- o e o
;i 2 10° £
® ‘ o o)
= &}
£ g 102 &
0.5 I | g 0.5
S
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e’
| | 0 l 10
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HIDRA was Opened up for Cleaning, Equipment Upgrades and Installatlon

'» | ° Lithium Follows the Magnetic Field
\# - Lines, Does not go “Everywhere”!

~ » Addition of a Wall Heater for
Desorption Experiments. This is to
show if the Helium is Being Trapped
at the Wall

« Material Analysis Tool (HIDRA-
MAT) Also received an Upgrade.

- Beautiful first plasma after cleaning. 'A
 Can see new HIDRA-MAT head at edge
(a)

TC Channel

Ceramic nuts Gap to minimjze
for isolation t heat transfer tc cap

(
'-O
R

[ Support Rod
Base

TC Junction
(inside sample)

Tungsten Sample

4\"‘ -
. Kapton to secure TC

Support Prong
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Retention Mechanism: Helium Retention at the Walls by co-deposition

[7] H. Kleine, M. Eckhardt, and D. Fick, Surf. Sci.
329,71 (1995).

[8] H. Sugai et al., J. Nucl. Mater. 222, 254 (1995).

[91 A. R. M. lasir and K. D. Hammond, Comput.
Mater. Sci. 204, (2022).
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Regular He wall

Interaction

Regular Li wall

interaction[14.1]
Li Li Li
Li Li Li

He trapped in Lil6]

Stainless Steel

\
L.

Literature suggests
that helium can
cluster at vacancy and
interstitial sites in the
lithium lattice
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Summary and Conclusions

CPMI
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Flowing liquid lithium loop is now in operation at UIUC

Flow measurements of around 1 m/s have been measured and wetting experiments are
currently underway.

- Distributor design using posts and a “pachinko” style method being tested.

- Surface designs will also be tested.

From the analysis, it is therefore found that the main dissipation channel inside the Li
vapor cloud is the excitation of the ground state Li atoms

- This is true for lower electron temperatures

- Higher T, will naturally add to the contribution of ionization reactions as excited species live longer

From the observed size of Li vapor cloud in the experiments and the expected dissipation
of 220 W, a Li density can be inferred with n;; ~ 1.0545 x 10° m3

Helium retention with lithium has been observed in HIDRA with Lin operation
- Low recycling regime
- Plasma temperature increased form ~25 eV to over 50 eV
- This seems to back-up FLIRE results from 2005

Note on the Future of the program
- Continues surface wetting
- New LM material corrosion
- Vapor cloud in toroidal conditions
- Hydrogen and helium pumping and retention

cpmi.illinois.edu
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