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To avoid the dependency of spacecraft optimal control problem solutions 0 S T '
on the choice of attitude coordinates, a universal attitude penalty function

g() is presented. This function will return the same penalty for a given atti-

tude regardless of the choice of attitude coordinates used to describe this

attitude. The only singularities the g(} function might encounter are solely

due to the choice of attitude coordinates.

A second attitude penalty function is presented which depends on the
modified Rodriguez parameters. This penalty function is simpler than the
g() function, but is also globally non-singular and is simpler to implement
in most applications.

INTRODUCTION

A solution of a spacecraft optimal control problem, whose cost function relies on an attitude
description, usually depends on the choice of attitude coordinates used. A problem could be
solved using 3-2-1 Euler angles or using classical Rodriguez parameters and yield two different
“optimal” solutions, unless the performance index in invariant with respect to the attitude coordi-
nate choice. Another problem arising with many attitude coordinates is that they have no sense of
when a body has tumbled beyond 180° from the reference attitude. In many such cases it would
_be easier (i.e. cost less) to let the body complete the revolution than to force it to reverse the rota-
tion and return to the desired attitude. ' ' ’

This paper develops a universal attitude penalty function g() whose value is independent of the
attitude coordinates chosen to represent it. Furthermore, this function will achieve its maximum
value only when a principal rotation of £180° from the target state is performed. This will impli-
citly permit the g() function to sense the shortest rotational distance back to the reference state.

An attitude penalty function which depends on the Modified Rodriguez Parameters (MRP)
will also be presented. These recently discovered MRPs!® are a non-singular three-parameter set
which can describe any three-dimensional attitude. This MRP penalty function is simpler than the
attitude coordinate independent g() function, but retains the useful property of avoiding lengthy
principal rotations of more than +180°.
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PROBLEM STATEMENT

Optimal Control Problem

Most spacecraft optimal attitude control problems have a cost function J which depends on the
control effort, the body angular velocity and the attitude. Let & be the control torque vector, ® be
the body angular velocity vector and 1} be a generic attitude coordinate vector in the following

general cost function.
_l - 1 _T ~ 1 i - T = ~T D=~
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The weights Ky and K3 are scalars, the weights K, K, and R are 3x3 matrices. The space-
craft equations of motion are given in Eq. (2,3) below, where the function f(7}) , obtained from
kinematic analysis, returns a matrix depended on the choice of attitude coordinates. The equations
of motion are

1 =f71)® 2)
SO=-[DIS0+17 3)
The matrix 3 is the spacecraft inertia matrix. The tilde matrix is the cross-product operator
[0 - o
@)= 3 O -0 4)
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The Hamiltonian H for this system is
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The costate equations are given by
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For unbounded control torque # , the optimality condition dH/9diz = 0 leads to the following
optimal control torque

i=-R1371A, (8)

The transversality conditions for a free final state are

Ri) =50 () = 2K 35 (1) ©

Ralty) = o2 (1) = Kat(ly) 10)




Given good estimates of initial conditions, this nonlinear optimal control problem can be
solved using various standard techniques.

Attitude Coordinates

Attitude coordinates define the rotational orientation of a body relative to some reference
frame. Just as there are a number of different coordinates to describe translation (cartesian, cylin-
drical, spherical), there are an infinite number of different ways to described an attitude. Common
examples are the Euler angles, the classical Rodriguez parameters and the Euler parameters (qua-
ternions). Describing a rotation differs though from describing a translation. The largest differ-
ence between two rotations corresponds to a principal rotation of +180°, a finite value. Whereas
the difference in two positions can can grow to infinity.

All minimal three-coordinate attitude representations contain a singularity. This is a specific
attitude at which the coordinates are not defined. This singularity can be avoided by using the
Euler parameters at the cost of adding another coordinate. This redundant set has an equality con-
straint which states that the attitude vector must always have unit magnitude. Therefore, if Euler
parameters are used in a simple optimal control problem without any constraints, an equality con-
straint is automatically added.

In particular this paper will use the very elegant set of recently developed Modified Rodriguez
Parameters (MRP) with their “shadow" counterpanl’3’4. They are a non-singular, minimal coordi-
nate representation of rigid body attitudes with several useful attributes. They can be defined as a
transformation from the Euler parameters as

B -
0,—-1+B0 i=1,23 (11)
or in terms of the principal rotating axis € and the principal rotating angle ¢ as
G=2¢-tan¢/4 12)

Like the Euler parameters, the modified Rodrigues parameters are not unique. A second set of _
modified Rodrigues parameters, called the “shadow” set, can be used to avoid the singularity at the
cost of a discontinuity at a switching point. The transformation between the “original” and “shad-

ow” sets of MRPs is 1

o; =-0;/6'6 i=123 13)

Keep in mind that the choice in distinguishing “original” and “shadow” set is purely arbitrary.
both sets describe the same physical orientation. In this study the switching condition was chosen
to be 676 = 1. This causes the magnitude of the orientation vector to be bounded between
0 <6 <1 and the principal rotation angle to be restricted between —180° < ¢ <+ 180° . Note
that this combined set of “original” and “shadow” parameters implicitly “knows” the shortest way
back to the originl. Principal rotations of more than 180° are typically avoided.

The differential kinematic equations of motion in terms of the modified Rodrigues parameters
are given below 126 The equation only contains second order polynomial nonlinearities in G .
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Eg. (14) holds for both the “original” and the “shadow” set. This means that the derivative is
well defined even at the switching point. The direction cosine matrix in terms of the modified Ro-
drigues parameters is 1.2.6

4(0? -03-03)+2? 8010, +403Z 86103 —40,Z
C(@)=————5| 80102-463Z  4(- 0% +03 ~03) +3? 80,03 +461Z 15)
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In Ref. 1 it was shown that the MRP are a particular subset of a larger class of minimal atti-
tude parameters called the Stereographic Parameters (SP). All these SP have a corresponding
“shadow set” which can usually be used to avoid a singularity. However, these general SP allow
the singularity to be chosen to occur at any particular principal rotation angle or about any particu-
lar principal rotation axis and angle.

UNIVERSAL ATTITUDE PENALTY FUNCTION

A scalar attitude penalty function is sought which is independent of the choice of attitude co-
ordinates. This allows for a universal solution to many spacecraft optimal control problems. We
introduce the following positive measure of attitude displacement from a reference orientation.

$UC) =7 (3 trace(CD) € K (16)

Such a penalty function is given in Eq. (16) in terms of a proper orthogonal rotation matrix
[C]. This rotation matrix is the most fundamental way to describe a rotation; unfortunately, also
the most redundant. If there is no rotational displacement, the [C] matrix is the identity matrix and
g(IC]) = 0. The largest difference between two attitudes is a principal rotation of £180°. In this
case the [C] matrix is a diagonal matrix with two entries being -1 and one being +1. In this case
g([C]) = 1. Therefore the g() function is bounded for all possible motion between

0<g()<1 a7

This penalty function can be written explicitly in terms of the principal rotation angle ¢ as

s(9) =sin(2) 1)

This description makes the bound in Eq. (17) very easy to understand. The attitude cost is the
highest only if the body is turned +180° from the reference state.

The g() function is plotted relative to the principal rotation angle ¢ in Figure 1. Using this
type of attitude penalty function will typically avoid lengthy rotations. It intrinsically lowers the
cost once the attitude has moved beyond £180°,
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Figure 1: Illustration of the Universal Attitude Penalty Function g()

The advantage of defining the g() function initially in terms of the [C] matrix is that this rota-
tion matrix can be parameterized by any attitude coordinates and thus making it universally valid
for any choice of attitude coordinates. The following are some sample parameterizations. Let B
be an Euler parameter vector, then

8(3)=%(3+B?+B%+B§) (19)
and
‘2%“-‘%[0 Br B2 Bsl” (20)

The Euler parameters are a non-singular once-redundant set of attitude coordinates. Their
drawback . for optimization problens is that the redundancy introduces an additional equality con-
straint onr the attitude vector. This redundancy also requires care to avoid other numerical prob-
lems when inverting some sets of equations.

Another popular attitude coordinate set is the classical Rodriguez parameter vector § . It para-
meterizes the g() function as

_1 §g
== 21
8(q) 21+33 (21)
and
dg g 1
et 22)
9 2(1+37g)

These coordinates are a minimal three coordinate set and don’t have any problems with redun-
dancies. However, like most three-parameters sets, they contain a singular orientation. The classi-
cal Rodriguez parameters go singular for any principal rotation of £180°. If it is apriori known




that no such rotations will be encountered, this choice for attitude coordinates does allow for a
large range of possible rotations.

Probably the most popular choice of attitude coordinates are any one of the 12 sets of Euler
angles. Let the (6, 0;,05) vector be the set of 3-1-3 Euler angles. They would parameterize the
g() function as

g(8) = :11- (3-(1 ﬂ—cosez)cos(el 4+63) —cosBy) - (23)

and

3 (1 +cosB,)sin(B; + 63)
98 _ Z [sinezcos(el +03)+ sinGz} 24)
09 (1 +cos;)sin(0; + 63)

The advantage of the Euler angles is that they are easy to visualize, especially for small angles.
However, any attitude description with Euler angles is never more than 90° away from a singular-
ity. This makes these coordinates difficult to use for large arbitrary rotations. Further, the kine-
matic equations for the Euler angles are in terms of trigonometric functions, making them more
computationally intensive than having only polynomial equations.

A very attractive attitude description are the modified Rodrigues parameters. They parameter-
ize the g() function as

6]
(6)=4 25
8 (1+“76)2 @
and
g .. 1—6T6]
=2 =86 ———— (26)
95 ((1+6Tc‘5)3

The MRPs are a minimal attitude descriptionr which is also non-singular when combined with
their “shadow set.” They are well suited to describe any large and/or arbitrary rotation while their
equations retain a simple polynomial form.

The g() attitude penalty function could be parameterized by any other attitude coordinate de-
scription. Egs. (19,21,23,25) all return the same penalty for a given attitude error. This effectively
removes the dependency of the optimal control solution on the choice of attitude coordinates.
However, the optimal costate vector A; will depend on the attitude coordinates used. Eq. (6) and
(9) both depend on the partial derivative of g() with respect to the particular attitude coordinates.

ATTITUDE PENALTY FUNCTION USING MRP

While the universal attitude penalty function g() has some very appealing properties, it is usu-
ally more complicated than just using the standard sum squared of the attitude coordinates typi-
cally seen as an optimal control performance measure. Using the simpler attitude penalty function

§(6)=06"6 1)




where & is a MRP vector, retains all properties of the g() defined in Eq. (15), except being uni-
versal with respect to attitude coordinate choice. By switching between “original” and “shadow”
MRP on the 676 = 1 surface, the attitude penalties in Eq. (27) also bounded within [0,1]. Using
Eq. (12) the penalty function can be written in terms of the principal rotation angle ¢ as

3(0) = () (8)
The &() function is plotted relative to the principal rotation angle ¢ in Figure 2 below. Note
that like the universal attitude penalty function g(), the maximum attitude penalty is also attained

at a principal rotation of +180°.
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Figure 2: Hlustration of the attitude penalty function g()

By using the MRPs, this penalty function is globally non-singular using a minimal attitude co-
ordinate description. The non-singularity comes at the price of having the switching condition de-
fined in Eq. (13). However, both & and & are well defined for both the original and the “shadow”
parameters. By choosing the switching surface 676 = 1 Eq. (13) gets simplified to

& =-6 (29)
and the derivative of the “shadow” trajectory at the switching point is
& =5+2[@]6 (30)

Observe from Eq. (30) that for pure single axis rotations & simply equals &° onthe switching
surface. Since the derivatives of the costates depend on the attitude coordinates, they will also
have a discontinuity as the attitude vector is switched. Using Egs. (14) and (18), the costate diffe-
rential equations can be written in terms of the MRP as

7\1——K16+%(66)—6)—Coc‘57—1-663)& €3))
- . 1{1-8"6, . __7\s =1 _[Gmla-1 A
Ay =-Ky0—5|———1-[6]+53" |A; - (3[&] - [Sw])37' A2 (32)




RESULTS

Universal Attitude Penalty Function

To illustrate the use of the universal attitude penalty function, a simple one-dimensional opti-
mal control problem is considered. The spacecraft initial conditions are ¢(0) = 165° and ®(0) =
80°/s. Since there is a large positive initial angular velocity, it would make intuitive sense to let
body complete the revolution and then bring it to rest. If only the square of the angle ¢ were used
as the attitude penalty function, such a maneuver would not be possible. Rotating past 180° would
yield an ever increasing attitude penalty. Thanks to the properties of the g() function however, the
attitude penalty will get reduced automatically after rotating through 180°.

The cost weights used were K, =3, K, =5, K3 = 6, K, = 10 and R = 20. This weights will
force the optimization to not only minimize the end states, but also penalize the torque and state
variations to get there. The inertia was set to 1 kgmz. The optimal control problem was solved nu-
merically using a gradient algorithm with 1500 integration steps. The MRP were used as attitude
coordinates. However, the attitude output in Figure 1 was transformed back into the principal rota-
tion angle for easier visualization.

time [s]

Figure 1: Optimal states using the g() function

The optimal solution found did indeed let the spacecraft rotate on past 180° and slowed it
down when it completed the revolution. The angular velocity also gets smoothly reduced as the
body slowly comes to a halt at ¢ = 0°.

The costate equations are shown in Figure 2. Since the MRP with their “shadow counterparts”
were used as attitude parameters, the attitude has a discontinuity as the spacecraft rotates through
the 180° heading. Since g() is universal, there is no discontinuity at the switching points where
676 = 1. Since the derivative of the costate A; depends of the partial derivative of g() with re-
spect to the attitude parameters, it too will have a discontinuity when the MRP are switched. The
resulting corner in A; is clearly visible in Figure 2. Since the costate A, is independent of the
choice of attitude coordinates, it does not display any corner during the MRP switching.
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Figure 2: Optimal Costates using the g() function

The optimal control torque is shown in Figure 3. Note that the torque is always negative in this
case. This means the control is only “braking” the system and never speeding it up in another di-
rection, making the control effort more efficient.
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Figure 3: Optimal Control Torque and Attitude Penalty Function

The time history of the universal attitude penalty function g() is also shown in Figure 4. Since
; the initial angle is very close to 180°, the initial attitude penalty is almost 1. As the maneuver is
completed the attitude penalty quickly drops to around zero. Recall that g() is only a portion of the
performance index of Eq. (1).

MRP Attitude Penalty Function

This optimization problem used the same spacecraft with identical initial states as the previous
simulation. This time the attitude penalty function defined in Eq. (26) was used. Only the weights
K, and K, were changed to 2 and 1 respectively (since the attitude penalty function has changed),
to make the maneuvers qualitatively similar.

The optimal states obtained using the MRP attitude penalty function g() are shown in Figure
4. This cost function also allowed the spacecraft to complete the revolution rather than making it
reverse its angular velocity. The optimal states for this simulation are only qualitatively compar-
able to the ones from the previous simulation since a different attitude penalty function and
weights were used.
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Figure 4: Optimal States using the () function

The optiinal costates are shown in Figure5. Note that the time history of A; differs consider-
ably from the previous simulation.
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Figure 5: Optimal Costates using the g() function

 The 6ptimal control and the optimal attitude pénalty function $() are shown in Figure 6. The '
control torque is also only used to brake the system, never to speed it up.
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Figure 6: Optimal Control Torque and Attitude Penalty Function
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Note the difference in the attitude penalty function around the 180° heading. This penalty
function reaches its maximum much more sharply than did the g() function.
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CONCLUSION

A universal attitude penalty function g() was presented which allows for optimal spacecraft
control solutions which do not depend on the choice of attitude parameters. This penalty function
is non-singular. Nevertheless, depending on what attitude coordinates are used to describe g(), the
parameterization of g() could contain some singular attitudes. However, either the Euler parame-
ters or the MRP could be used to provide a non-singular description. The g() function also has an-
other useful property in that it doesn’t penalize rotation past 180°.

A second attitude penalty function was presented that depended on the use of the MRP. This
non-universal function is of simpler form that the g() function, but retains the most useful attrib-
utes. It is also globally non-singular and doesn’t penalize rotations through 180°.
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