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Abstract

A new viscoplastic theory for CusilABA and other braze alloys has been developed. Like
previous viscoplastic theories, this new theory uses a hyperbolic sine function of effective
stress in its kinetic equation for the inelastic strain rate. This new theory has an internal state
variable which accounts for isotropic hardening and recovery and a second-order, internal state
tensor which accounts for kinematic hardening and recovery. Unlike previous theories, the new
theory uses evolution equations for the state variables which describe competing mechanisms
of power law hardening and static recovery. The evolution equations used in the previous
theories describe competing mechanisms of linear hardening, dynamic and static recovery. The
new viscoplastic theory was implemented in several finite element codes and used in several
metal-to-ceramic brazing simulations. Two approaches for obtaining material parameters for
the new viscoplastic theory were developed.
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1 Introduction

Ceramic parts are being used more extensively in high-temperature applications due to their
superior strength and wear properties compared with metals. Alumina ceramics are also used
in a number of important high-voltage, vacuum, electronic components at Sandia National
Laboratories. However, when ceramic parts are used there is often a need to join the ceramic
part to a metal part. One of the most reliable joining methods is metal-to-ceramic brazing.
During a typical metal-to-ceramic brazing process residual stresses are generated due to the
differential thermal expansion of the ceramic, metal, and braze alloy. The residual stress level
generated during the process depends primarily on the braze joint geometry, the temperature
cool-down profile, and the response of the braze joint materials (Stephens et al., 1993). The
effects of variations in joint geometry, materials, or cool-down profile can be investigated
using finite element analyses. However, the accuracy of these analyses is critically dependent
on the validity of the constitutive theories used to describe the behavior of the braze joint
materials. In this report, we develop a new viscoplastic theory for braze alloys.

The new theory is similar to existing viscoplastic theories (Miller, 1976; Bammann, 1990;
Freed and Walker, 1993) in many respects. All of these viscoplastic theories use a hyperbolic
sine function of effective stress in their kinetic equations for the inelastic strain rate. Also, all
of these theories have an internal state variable to describe isotropic hardening and recovery
and a second-order internal state tensor to describe kinematic hardening and recovery.
However, there are two significant differences between the new theory and the existing
theories. First, in their evolution equations for the state variables, the previous viscoplastic
theories describe competing mechanisms of linear hardening, dynamic recovery, and static or
* thermal recovery. A close examination of the experimental uniaxial compression data for
CusilABA revealed that these experiments could be more accurately simulated by using
evolution equations for the state variables which described competing mechanisms of power
law hardening and static recovery. A second difference between the new theory and the
previous theories is that in the new theory the exponent of the hyperbolic sine term in the
kinetic equation for the inelastic strain rate is a function of the absolute temperature and not a
material constant.

This report begins with an experimental investigation into the behavior of an active metal braze
alloy, CusilABA (62.2Ag-36.2Cu-1.6Ti). Next, existing constitutive theories for metals are
reviewed. None of the existing constitutive theories were able to completely describe the
behavior of CusilABA over the temperature range of interest; thus, a new viscoplastic theory
for braze alloys was developed. The new viscoplastic theory was implemented in the finite
element codes JAC2D (Biffle and Blanford, 1994), and JAS3D (Blanford, 1995). Both manual
and automated processes for selecting material parameters for the new constitutive theory are
described. Next, the uniaxial compression and creep compression experiments were simulated
using the new viscoplastic theory to compare the behavior predicted by the new theory with the
experimental data for Cusil ABA and to evaluate the accuracy of the numerical implementation.
Finally, the metal-to-ceramic brazing of an alumina ceramic rod to a metal rod was simulated
using existing constitutive theories and the new viscoplastic theory to investigate the effects of
braze modeling variations on residual stress predictions.




2 Braze Alloy Behavior

A variety of braze alloys have been characterized at Sandia National Laboratories with uniax-
ial compression and creep compression experiments (Stephens et al., 1993). Results from
uniaxial compression expenments on CusilABA (62.2Ag-36.2Cu-1.6Ti) are shown in Flgure
1. These experiments were performed using a constant true strain rate of 1.65 x 104571, The
yield strength of CusilABA decreases significantly as the test temperature is increased. Fur-
thermore, the amount of strain hardening also decreases with increases in the test temperature.
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Figure 1. Uniaxial Compression Test Results - CusilABA (Stephens et al., 1993).

Typical creep compression test results for fixed temperatures of 350 °C and 650 °C are shown
in Figures 2 and 3. During these tests, the load was ramped to a prescribed value in
approximately 18 seconds and then held constant for the duration of the test. The numbers in
Figures 2 and 3 represent the applied load divided by the original cross-sectional area of the

specimen. During the 350 °C tests, the material exhibits an initial creep rate that is significantly
higher than the secondary or minimum creep rate that is reached later in the test. This dramatic
change in strain rate occurs while the sample temperature and the stress applied to the sample
are nearly constant; thus, the inelastic strain rate must depend on some other variable which is

changing during the 350 °C test. This third variable which cannot be directly measured or
controlled is an internal state variable which defines the cuirent state of the braze alloy.
Changes in the inelastic strain rate indicate that the state of the material is changing during the

350 °C creep compression tests. During the higher temperature 650 °C tests, the material
exhibits an inelastic strain rate that is nearly constant (Figure 3) which suggests that the state
of the material is not changing significantly during these elevated temperature tests.
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Figure 2. Creep Compression Test Results - CusilABA, 350 °C (Stephens et al., 1993).
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Figure 3. Creep Compression Test Results - CusilABA, 650 °C (Stephens et al., 1993).
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The secondary or minimum creep rates measured during the creep compression tests are
typically plotted as a function of true stress which is calculated from the load/displacement data
associated with the point where the minimum creep rate occurred (Figure 4). Each data point
represents one creep compression test. The data in Figure 4 clearly show that the secondary
creep rate increases with temperature at a constant stress level, and with stress at a constant
temperature. Also, the slopes of these curves tend to decrease as the temperature increases.
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Figure 4. Minimum Creep Rate Correlations - CusilABA (Stephens et al., 1993).

In summary, these experiments clearly show that at temperatures above 450 °C CusilABA
exhibits very little strain hardening during the uniaxial compression tests and creep rates that
are nearly constant during the creep compression tests. Thus, the material state is not changing

very much during these elevated temperature experiments. At temperatures below 450 °C,
CusilABA exhibits a significant amount of strain hardening during the uniaxial compression
tests, and significant changes in the creep rate during the creep compression tests. These
changes in material response indicate that the state of material is changing significantly during
these lower temperature tests. These changes in material state cannot be directly measured but
must be inferred from the changes in creep rate, etc. that can be measured. Since the material
state changes during some of the creep compression tests before the minimum creep rate is
reached, the curves shown in Figure 4 do not represent material with the same current state.
Thus, the selection of material parameters for CusilABA is more complicated than simply
finding parameters which provide the best fit to the data in Figure 4. This point will be
discussed further in Chapter 6. Numerous other braze alloys (e.g. 50 Au-50 Cu alloy, Palni,
Palco, and Cusil) qualitatively exhibit behavior similar to CusilABA.
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3  Existing Constitutive Theories

A number of constitutive theories have been developed and implemented in finite element
codes to describe the inelastic deformation of metals. This section includes a very brief review
of five different theories and a discussion of which braze alloy behaviors are captured by each
of these theories. The five constitutive theories reviewed in this section are: (1) vonMises
plasticity, (2) Power Law secondary creep, (3) Miller’s viscoplasticity, (4) Bammann’s
viscoplasticity (Sandia Damage), and (5) Freed and Walker’s viscoplasticity. A more complete
review of existing viscoplastic theories for metals is provided by Miller (1987).

3.1 von Mises Plasticity

One of the simplest theories which has been used in brazing simulations is the von Mises
plasticity theory (Stephens et al., 1992). The effects of load history and temperature changes
on the yield strength can be captured using this simple, time-independent plasticity theory.
Also, models based on this theory can be easily integrated using the radial return algorithm.
However, this theory assumes that the inelastic deformation is instantaneous when the applied
von Mises effective stress exceeds the yield strength of the material. Thus, this theory predicts
a material response of vertical lines in the minimum strain rate vs. effective stress space
(Figure 5). A simple von Mises plasticity theory is clearly not able to adequately describe the
viscoplastic behavior of the CusilABA braze alloy.
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Figure 5. Comparison of Experimental Secondary Creep Data for CusilABA with
Behavior Predicted Using a vonMises Plasticity Theory (Solid Lines).
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3.2 Power Law Secondary Creep -

The power law secondary creep theory has been implemented in many finite element codes.
This theory has an inelastic strain rate, dm, given by

da" = %fcpn (1)

where f is a scalar function of the absolute temperature, G is the von Mises effective stress, p
is a material parameter, and n is the normalized deviatoric stress tensor which is equal to the
deviatoric stress tensor divided by the vonMises effective stress. Models based on this theory
are efficiently integrated using either an approximate analytical solution (Krieg, 1983) or a
forward Euler method with adaptive time step size selection (Stone and Morgan, 1989). A fit
of this theory to the experimental data from the creep-compression tests obtained by Stephens
et al. (1993) is shown in Figure 6. The power law secondary creep theory predicts a material
response of straight lines in the minimum strain rate vs. effective stress space. This theory
accurately describes the creep response of the material subjected to relatively low effective

stress levels at temperatures of 550, 650, and 748 °C. However, at relatively high effective
stress levels the minimum strain rate can no longer be adequately described using the power
law secondary creep theory. This failure of the power-law creep theory is commonly referred
to as “power-law breakdown”. Notice that the material response observed experimentally
approaches the behavior predicted by the von Mises plasticity theory for relatively high
effective stress levels and low temperatures.
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Figure 6. Comparison of Experimental Creep Data for CusilABA with Behavior Predicted
Using a Power Law Secondary Creep Theory (Solid Lines).
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3.3 Garofalo’s Secondary Creep Equation

Garofalo (1965) showed that the minimum or secondary creep rate exhibited by many metals
could be described using a hyperbolic sine function as follows

in _3...%c
d —2fsmh(c)n (3]

where d" is the inelastic strain rate, f is a scalar function of the absolute temperature, G is the
von Mises effective stress, p and ¢ are material parameters, and n is the normalized deviatoric
stress tensor. A fit of this equation to the experimental data from the creep compression tests
on CusilABA obtained by Stephens et al. (1993) is shown in Figure 7. Garofalo’s hyperbolic
sine equation captures both the power-law secondary creep behavior at low effective stress
levels and the power-law breakdown at higher effective stress levels. However, this equation
by itself cannot describe the primary creep which is exhibited early in the creep compression
tests or the strain-hardening exhibited during the uniaxial compression tests (Figure 1). Three
different viscoplastic theories which capture both hardening and recovery and use Garofalo’s
equation as a starting point are briefly described in the next three sections.
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Figure 7. Comparison of Experimental Creep Data for CusilABA with Behavior Predicted
Using Garofalo’s Hyperbolic sine Equation (Solid Lines).
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3.4 Miller’s Viscoplastic Theory

A viscoplastic theory for metals was developed by Miller (1976) using Garofalo’s hyperbolic
sine equation as a starting point. This theory has a kinetic equation for the inelastic strain rate,

di“, which is as follows
. p 1.5
d™ = yn = fsinh ((%) )n 3)

where 7 is the magnitude of the inelastic rate, f is a scalar function of the absolute temperature,

p is a material parameter, and D is an internal state variable. The second-order tensor n is the

normalized stress difference tensor,

s—-B
T

n-=

4

where s is the stress deviator and B is an internal state tensor which is commonly referred to as
the backstress. The magnitude of the stress difference, T, given by

T = A/%(S—B):(S—-B) (5)

The temperature dependence is described using a scalar function f which is as follows

. Cexp([(I:T(i)] : [1 " ln(%“)]) for 6 < 0

Cexp G{_g) for 0 > 0,

6)

\

where 0 is the absolute temperature, 6y, is the transition temperature between regimes in which

different deformation mechanisms with different activation energies are controlling. Evolution
of the internal state tensor, B, is given by

B = H;d" - H,fsinh(A,B)2 %)

where B is the magnitude of B. Evolution of the internal state variable, D, is given by

D = H,y-H,fsinh"(A,D”) ®)
where H, is as follows
H, = A A A2py3
Al

and C, Hy, Ay, Ay, A, and A, are material parameters. In this theory, the state variable, D, is

introduced to describe isotropic strain hardening and recovery. The state tensor, B, is
introduced to describe kinematic strain hardening and recovery.
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3.5 Bammann’s Viscoplastic Theory
The viscoplastic theory developed by Bammann (1990) was combined with a scalar damage
theory to create the Sandia Damage theory. This theory was originally developed to describe

the behavior of metals subjected to very high strain rates. Like Miller’s theory, Bammann’s
viscoplastic theory uses a hyperbolic sine function in its kinetic equation for the inelastic strain

rate. This theory has an inelastic strain rate, din, given by
din =yn = f Smh(#)n (10)

where ¥y is the magnitude of the inelastic rate, V, Y, and f are scalar functions of the absolute
temperature, T is the magnitude of the stress difference (Equation 5), k is an internal state
variable, and n is the normalized stress difference tensor given by Equation 4. With this theory,
the temperature dependence in the kinetic equation for the inelastic strain rate is represented by
the scalar functions V, Y, and f which can be written as follows

vV=C exp(—gg)
0
Y=C; exp(%) (11)
f= Csexp(—gé)
0
Evolution of the internal state tensor, B, is given by
B = hd"-[r;y+1,]BB (12)
and evolution of the internal state variable, k, is given by
K = Hy - [Ryy+R K (13)

where B is the magnitude of B, and h, ry, r,, H, Ry, and R are Arrhenius functions of the
absolute temperature, 0, similar to f

C C

rg=C, exp(——e§) Ry = C13exp(—%”) (14)
C C

el S) necom( D)

and C; through C;g¢ are material parameters.
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3.6 Freed and Walker’s Viscoplastic Theory

A coupled viscoplastic / plastic theory for metals was also developed by Freed and Walker
(1993). In the viscoplastic regime, this theory uses a hyperbolic sine function in its kinetic

equation for the inelastic strain rate, d™™, which is as follows
in .. BT
d = yn ={sinh (B)n (15)

where f is a scalar function of the absolute temperature, p is a material parameter, D is an
internal state variable, T is the magnitude of the stress difference (Equation 5), and n is again
the normalized stress difference tensor given by Equation 4. With this theory, all of the
temperature dependence is represented by a scalar function f which is identical to the function
used by Miller (Equation 6).

For this theory, the back stress, B, is taken to be the sum of two individual back stresses as
follows

B = B, +B, (16)

where By is the short range back stress and By is the long range back stress. The evolution
equations for the second-order back stress tensors have the following form

B, = 2Hd"-RyB, (17)
and
B, = 2H,d"-RYB, (18)

where H, R, Hj, and R; are material parameters. The evolution of the internal state variable,
D, is given by

D-D
") (19)

. P
D = H2'Y—Af81nh (—-—8—6—

where Hy, A, p, 9, and C are material parameters, and Dy represents a reference or minimum
value for state variable D.

When the applied von Mises effective stress difference exceeds the yield strength of the
material, a time-independent, plasticity theory is used to describe the material behavior. In this
regime the inelastic deformation is instantaneous and chosen to satisfy the consistency
condition for the stress state to remain on the yield surface. Thus, this theory predicts a
viscoplastic response for low effective stress levels and a time-independent plastic response for
high effective stress levels.
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3.7 Review of the Existing Viscoplastic Theories

The three viscoplastic theories presented in the previous sections are similar in several respects.
All of these theories use a hyperbolic sine function in their kinetic equations for the inelastic
strain rate, Equations 3, 10, and 15. Also, all of these theories have an internal state variable
which accounts for isotropic hardening / recovery, and a second-order internal state tensor
which accounts for kinematic hardening / recovery. However, there are some significant
differences between these theories.

In Miller’s and Freed and Walker’s kinetic equations for the inelastic strain rate, Equations 3
and 15, the hyperbolic sine function is raised to a power p, but in Bammann’s kinetic equation
the hyperbolic sine function is not raised to a power. Material parameter p depends on the
controlling deformation mechanism and is used to define the slope of the inelastic strain rate
curves (Figure 7) in the power-law secondary creep regime. Without the exponent p, it will not
be possible to match the slope of the braze alloy data in the power-law secondary creep regime.

In Miller’s and Freed and Walker’s kinetic equations for the inelastic strain rate, Equations 3
and 15, the state variable which accounts for isotropic strain hardening, D, is in the
denominator of the hyperbolic sine term’s argument but in Bammann’s theory, Equation 10,
the state variable which accounts for isotropic strain hardening, k, is in the numerator. The
significance of this difference is illustrated by the following example. When CusilABA was
compressed at room temperature to a total strain of 0.16, its yield strength increased 260 MPa
(Figure 1) which could be captured with Bammann’s theory by allowing state variable k to
evolve to a value of 260 MPa during this test. Increases in state variable k will cause all of the
inelastic strain rate curves to be shifted the same amount (Figure 8). This implies that if we
strain-harden the material at room temperature, the predicted yield strength at every
temperature will increase by the same amount. It is unlikely that changes in material state
generated during the room temperature uniaxial compression test would cause the material’s

yield strength at 748°C to isotropically increase by 260 MPa. In Freed and Walker’s theory,
the internal state variable D is used to describe the increase in the isotropic yield strength of a
material. For example, when CusilABA was compressed at room temperature to a total strain
of 0.16, its yield strength increased by a factor of 2.18 from 220 MPa to 480 MPa (Figure 1)
which could be captured by allowing state variable D to increase by a factor of 2.18 during this
test. Increases in state variable D will cause all of the inelastic strain rate curves to have their
stress values scaled by a factor of D /D, (Figure 9). This implies that if we strain-harden the

material at room temperature and increase its strength by a factor of 2.18, then the material’s
yield strength at all temperatures will also increase by a factor of 2.18. Again, it is unlikely that
the yield strength of the material at elevated temperatures is actually affected this much by
changes in material state. One way to avoid this difficulty would be to simply multiply the
isotropic state variables k or D by some function of temperature in the kinetic equation for the
inelastic strain rate, Equations 3, 10 or 15. However, additional experiments are needed to fully
quantify the effects that changes in material state have on the curves shown in Figure 4.

A new viscoplastic theory which overcomes the shortcomings of the existing viscoplastic

theories and more accurately describes the behavior of CusilABA is described in the next
section.
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4 A New Viscoplastic Theory for Braze Alloys

The new viscoplastic theory developed in this section is significantly influenced by the theories
developed by Miller, Bammann, and Freed and Walker. This new theory uses a kinetic

equation for the inelastic strain rate, di", with the following form

U T PO 3
d = 2'yn =5 f sinh (ocD)n (20)

where 7y is the magnitude of the inelastic rate, f, p, and o are functions of the absolute
temperature, D is an internal state variable, n is the normalized stress difference tensor which
is given by,

(21)

where s is the stress deviator, B is the state tensor which accounts for kinematic hardening, and
7 is a scalar measure of the stress difference magnitude

o [

Competing non-linear hardening and thermal recovery mechanisms are captured by the
evolution equations for the internal state variable D and the internal state tensor B. Evolution
of the internal state variable D is given by

. A

b= —1 __A(D-D, 23)

(D-D,)"

where D, A;, A,, and A3 are material parameters. Evolution of the second-order state tensor
B is given by
. A"

e

where Ay, As, and Ag are material parameters and b is the magnitude of B as follows

b= [zB:B (25)
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Like existing theories, the new theory uses a hyperbolic sine function in its kinetic equation for
the inelastic strain rate to capture both power law secondary creep and power-law breakdown.
Also, both the existing and the new theories have an internal state variable which accounts for
isotropic hardening and recovery, and an internal state tensor which accounts for kinematic
hardening and recovery. However, there are some significant differences between the new
theory and the existing viscoplastic theories.

In their evolution equations for the state variables, the previous viscoplastic theories described
competing mechanisms of linear hardening, and nonlinear static recovery (Equations 7, 8, and
19) or competing mechanisms of linear hardening, dynamic recovery, and static recovery
(Equations 12 and 13). A close examination of the experimental uniaxial compression data for
CusilABA revealed that these experiments could be more accurately simulated by using
evolutions equations for the state variables which described competing mechanisms of power
law hardening and static recovery. Thus, the evolution Equations 23 and 24 were used in the
new viscoplastic theory for braze alloys. With these new equations, the combined effects of
linear hardening and dynamic recovery (mechanisms which depend on the inelastic rate) are
being described by a single power law hardening term. The only justification for using the
power law hardening term is that it simply provided a better fit to the experimental braze data.

A variety of deformation mechanisms are activated at different temperatures during a brazing
process. Each of these deformation mechanisms will be associated with different activation
energies and different values for material parameter p. Miller (1976) and Freed and Walker
(1993) account for changes in activation energy by modifying their Arrhenius function of
temperature f with an extra temperature-dependent term (Equation 6). In the new viscoplastic
theory, variations in the controlling deformation mechanism are accounted for by simply
allowing f and p to be user prescribed functions of temperature.

Finally, in the new theory the state variable D is scaled by a function of the absolute
temperature, 0/(0), in the kinetic equation for the inelastic strain rate, Equation 20. The
introduction of this scalar function allows us to vary with temperature the effects of change in
the isotropic state on the inelastic rate.

The new viscoplastic theory was implemented in the finite element codes JAC2D (Biffle and
Blanford, 1994), and JAS3D (Blanford, 1995). Material parameter names used in these
implementations are described in Appendix A. The state of the material is defined by the state
scalar D and state tensor B. In the current implementation, the model assumes that the material
is initially fully recovered and state tensor B is initially equal to the null tensor, and state scalar
D is initialized to a value equal to 1.001 times D, to prevent division by zero in Equation 23.
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5 Numerical Integration of the New Theory

The Power-Law Secondary Creep theory in JAC2D (Stone and Morgan, 1989) is currently
integrated using a forward Euler algorithm with adaptive time step size selection which was
originally developed by Zienkiewicz and Cormeau (1974). Zienkiewicz and Cormeau decided
to use an inexpensive forward Euler algorithm because the step size is often limited by stability
constraints and not accuracy. Since the forward Euler algorithm with adaptive time step size
selection works well for the power law creep theory, we decided to initially use this same simple
algorithm for the new viscoplastic theory. For this algorithm to remain stable with the new
viscoplastic theory, the time step, At, must be chosen such that

At< 20D 26)
. P-lr g T
3 Gfp sinh (al—) )COSh (@)

where G is the shear modulus, f, p, and o are material parameters used in the kinetic equation
for the inelastic strain rate, Equation 20, T is a measure of the stress difference as given by
Equation 22, and D is the internal state variable. The following additional checks are also made
to ensure that the step size is small enough to accurately integrate the evolution equations for
the state variable D and the state tensor B

28D, At

At [—— (27)
|Dz - Dll

At [22PeA% 28)
[6,- b

where 0 is a measure of the allowable error and in the current implementation is given a value
of 1.0x 10’3, D, is the reference value for the internal state variable D, AtP is the size of the

and

previous step, D, is the time rate of change of the state variable at the end of the previous
step, and D is the time rate of change of the state variable at the beginning of the previous
step, b, is the time rate of change of the magnitude of the state tensor B at the end of the

previous step, and b; is the time rate of change of the magnitude of the state tensor B at the

beginning of the previous step. Notice that the critical time step size is inversely related to the
change in the state variable rates. In other words, Equations 27 and 28 ensure the accuracy of
the forward Euler integration by limiting the allowable change in the state variable rates to a
very small value. During most of the finite element simulations, the smallest critical time step
is given by the stability criterion, Equation 26. The full development of Equations 26 through
28 is given in Appendix B. Alternate integration algorithms which may be more efficient than
the forward Euler algorithm are currently being investigated.
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6 Selection of Viscoplastic Material Parameters for CusilABA

The selection of material parameters for viscoplastic theories can be very difficult because the
state of the material cannot be directly measured and it is often changing during even the
simplest uniaxial and creep compression experiments. In this chapter, two different processes
for selecting material parameters for the new viscoplastic theory are presented. The first
process is entirely manual and the second process is automated and uses the Levenberg
Marquardt Nonlinear Least Squares Algorithm (More, 1978).

Material parameters for the new viscoplastic theory were initially obtained using the following
manual process. Standard uniaxial compression and creep compression experiments were
performed by Stephens et al. (1993). A minimum creep rate versus stress plot was then
generated from the experimental data (Figure 4). From the minimum creep rate plot, the stress
level associated with the initiation of power-law breakdown was estimated to be approximately
50 MPa (Figure 6). This stress level was used as the initial estimate for material parameter D,

Young’s modulus and Poisson’s ratio for a 67Ag-33Cu braze alloy were obtained by Gieske
(1990) from longitudinal and shear stress wave velocity measurements. Since, CusilABA has
a composition very similar to the 67Ag-33Cu alloy, it is also expected to have very similar
elastic properties. Thus, the elastic properties measured by Gieske were used as estimates for
the elastic properties of CusilABA. Young’s modulus for CusilABA could also be estimated
by measuring the initial slope of the stress-strain curve generated during the uniaxial
compression experiments. However, the slope of this curve is very sensitive to the stiffness of
the load frame/fixture system and often does not provide a good estimate for Young’s modulus.

The next step was to obtain values for material parameters f and p which define the inelastic
strain rate associated with a given stress level and internal state. This step is difficult because
the internal state of the material cannot be directly measured and the internal state variables, D
and B, change during many of the creep compression and uniaxial compression experiments.

For example, during the 250°C uniaxial compression test (Figure 1), the material exhibits a
significant amount of strain-hardening which means that the state of the material is changing

during this experiment. Also, during the 250°C and 350°C creep compression experiments the
material exhibits an initial inelastic strain (creep) rate that is significantly higher than the steady
state creep rate; thus, the state of the material is also changing significantly during these
experiments and causing the creep rate to decrease.

During the creep compression experiments, the steady state or minimum creep rate is recorded
along with the corresponding true stress and inelastic strain. If we assume that the recovery is
negligible during these constant temperature experiments, A, = 0, then Equation 23 indicates

that the current state, D, is only a function of the initial state and the inelastic strain. Results
from the uniaxial compression tests are used to generate current state, D, estimates from
inelastic strain measurements with the following process. If we assume that: (1) o is equal to
1.0, (2) changes in state are purely isotropic, i.e. B =0, (3) D has an initial value equal to D,

and (4) the inelastic rate, v, is constant during the uniaxial compression experiments when the
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braze is strain hardening and the material state is changing, then the following estimate for the
state of the material, D, during a uniaxial compression experiment can be obtained from Eq. 20

D
2 = 2 (29)
c o,

where D, is the initial value for the internal state variable (50 MPa), ¢ is the current stress, ©,,
is the stress associated with the point at which the material state begins to change and is

assumed to be equal to the yield strength of the material. For example, during the 250 °C
uniaxial compression test (Figure 1), the braze exhibits an initial yield strength of 188 MPa and
strain hardens to a stress level of 423 MPa at the end of the test when the total true strain is 0.16
and the inelastic strain is approximately 0.155. The stress level changes by a factor of 2.25
during this test, and Equation 29 indicates that the material state is also expected to change by

a factor of 2.25 from 50 MPa to 112.5 MPa during this test. Thus, during a 250 °C creep
compression experiment in which the inelastic strain associated with the steady state creep rate
is 0.155, the example result indicates that the corresponding estimate for the current value of
state variable D is 112.5 MPa.

Values for true stress, inelastic strain rate, and corresponding estimated values for the internal
state, D, are given in Table 1. Note that the state of the material, D, is expected to increase
significantly more during the low temperature experiments than during the high temperature
experiments.

Values for material parameters p and f were then obtained by taking the natural log of terms in
Equation 20 as follows

In(y) = 1n(f)+p1n(sinh(aiD)) (30)

Data given in Table 1 was then plotted and simple linear regression was used to obtain material
parameters p and f (Figure 10). Material parameters p and f are plotted as functions of
temperature in Figures 11 and 12. These plots clearly show a dramatic change in the materials
response at the transition temperature which is approximately one-half the liquidus
temperature for the braze alloy. Above the transition temperature, material parameter p has a
value near 2 which suggests that the controlling deformation mechanism is grain boundary
sliding (Sherby and Burke, 1968), and a simple Arrhenius fit can be used for f. Below the
transition temperature, the deformation mechanism is changing to obstacle-controlled
dislocation glide (Freed and Walker, 1993), and the value for p dramatically increases. Since
the activation energies associated with different deformation mechanisms are not equal, a
single Arrhenius fit for f over the entire temperature range is not appropriate.
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Table 1. Material Data for CusilABA.

' ra 11.1e1astic True Str - Esti
Test Type? Tem(%eC ; ture S tl‘alI(lsEi)lte _y (Mi a)ess D (fzpn:)late
uc 20 1.12x10 217.00 50.0
CcC 250 9.57¢-8 310.32 100.3
cC 250 2.98e-7 345.13 104.3
ccC 250 9.40e-7 390.86 1125
UC 250 1.12e-4 188.0 50.0
cC 350 2.07e-7 143.96 759
cC 350 7.53e-7 188.86 80.9
CcC 350 2.67e-6 229.94 83.8
cC 450 1.78e-6 59.23 66.5
cC 450 7.60e-6 103.47 66.5
CcC 450 4.79e-5 155.57 66.5
ucC 450 1.26e4 150.0 50.0
CcC 550 7.17e-7 7.55 52.5
CcC 550 2.01e-6 1245 52.5
CC 550 1.35e-5 29.90 525
CcC 550 8.94e-5 60.87 525
cC 650 7.56e-7 1.51 50.0
cC 650 1.83e-6 2.88 50.0
CcC 650 5.59e-5 14.51 50.0
ucC 650 1.65e-4 228 50.0
cC 748 1.21e-5 1.10 50.0
cC 748 1.14e-4 420 50.0
cC 748 3.31e4 8.53 50.0

8- UC = Uniaxial Compression, CC = Creep Compression
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Finally, we need to select the material parameters, A; and Az, which govern the evolution of

the internal state variable, D. If the room temperature stress-strain curve exhibits linear
hardening then a hardening exponent, A3, near zero should be used. If the stress-strain curves

are more rounded in the inelastic regime, then an A3 with a value greater than zero should be
used (Figure 13). For CusilABA an A of 1.3 was selected. Values for A; can then be selected

to fit the slopes of the stress-strain curves in the inelastic regime. The effect of various
selections for A, is shown in Figure 14.

The material parameters obtained using the manual data fitting process are summarized in
Table 2. This table shows that, as expected, many of the material parameters are temperature
dependent. At this time, we have made no attempt to identify functions of temperature which
provide the best fit to the material parameter data. In the numerical simulations, when material
is subjected to a temperature that is not listed in Table 2, material parameter estimates are
automatically obtained from a simple linear interpolation from the tabulated data. Note that
values for the natural log of f are given in Table 2 in place of values for f because for this
material parameter, linear interpolation was performed on the tabulated In(f) data and f was
subsequently computed from the resulting value. This is analogous to fitting the data in Figure
12 with piecewise linear segments.
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Table 2. Material Parameters for CusilABA - Manual Fitting Process

Temperature (°C) 20 250 350 450 550 650 748
Elastic Modulus (MPa) | 93.6x10° | 83.9x10% | 81.0x10° | 77.8x10° | 73.5x10° | 67.4x10° | 59.1x10°
Poisson’s Ratio 0.363 0.371 0.373 0.375 0.381 0.389 0.402
Flow Rate - In(f)? -69.00 -42.50 -18.89 -13.26 -10.11 -7.30 512
Sinh Exponent - p 16.43 10.67 2952 1.906 2.098 1.994 1.620
Isotropic Hardening - A; | 37.0x103 | 37.0x10® | 25.0x10° | 600.0 300.0 0.0 0.0
(MPaA3+1)
Isotropic Recovery - Ay 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1/(MPa sec)
Isotropic Exponent - Ag 1.30
Kinematic Hardening - A4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Kinematic Recovery - A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1/(MPa sec)
Kinematic Exponent - Ag 0.0
Flow Stress - D, (MPa) 50.0

2 £ has units of (s71).

Other researchers have used a variety optimization tools to obtain material parameters for
complex viscoplastic material models (Senseny and Fossum; 1995; Lathrop, 1994). The next
step in this investigation was to determine if the fit to the experimental CusilABA data could
be improved by using an automated process which minimized the error in a least squares
sense. The nonlinear least squares fit to the experimental data was obtained using the Leven-
berg and Marquardt Nonlinear Least Squares Algorithm (More, 1978) which was coupled to a
driver subroutine that exercised the constitutive model and generated uniaxial compression
and creep compression response predictions for any prescribed set of material parameters.
Material parameters obtained from the manual fitting process were used as initial estimates
for the automated fitting process. During the automated fitting process, the elastic parameters
were not allowed to vary. Two different sets of material parameters which generated nearly
identical fits to the creep compression and uniaxial compression data are shown in Tables 3
and 4. The parameters in Table 3 indicate that the hardening and recovery is purely isotropic
and the parameters in Table 4 indicate that the hardening and recovery is purely kinematic.
Thus, these results indicate that it is not possible to obtain a unique set of material parameters
from the experimental data that is currently available. Additional experiments will be needed
to determine how much of the hardening and recovery is isotropic and how much is
kinematic.
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Table 3. Material Parameters for CusilABA - Isotropic Hardening / Recovery

Temperature (°C) 20 250 350 450 550 650 748
Elastic Modulus (MPa) | 93.6x10% | 83.9x10° | 81.0x10® | 77.8x10% | 73.5x10% | 67.4x10® | 59.1x103
Poisson’s Ratio 0.363 0.371 0.373 0.375 0.381 0.389 0.402
Flow Rate - In(f) -59.89 -56.61 2023 -13.88 -10.32 -1.65 -5.79
Sinh Exponent - p 24.00 22.50 5.303 2.589 1.941 1.691 1.256
Tso. Hardening - Ay 1.25x10% | 8.19x10° | 5.00x10° | 3.00x10* | 89.1 22.5 0.0
MPa"3*)

Iso. Recovery - Ay 0.0 1.00x10° | 1.22x107 | 2.07x10°% | 1.66x103 | 2.87x103 | 5.00x103
1/(MPa sec)

Iso. Exponent - A3 1.746

Kin. Hardening - A4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(ma)AGi'l

Kin. Recovery - A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1/(QMPa sec)

Kin. Exponent - Ag 0.0

Flow Stress - D, (MPa) 50.0

Table 4. Material Parameters for CusilABA - Kinematic Hardening / Recovery

Temperature (°C) 20 250 350 450 550 650 748
Elastic Modulus (MPa) | 93.6x10° | 83.9x10> | 81.0x10° | 77.8x10% | 73.5x10% | 67.4x10® | 59.1x103
Poisson’s Ratio 0.363 0.371 0.373 0.375 0.381 0.389 0.402
Flow Rate - In(f) -59.89 -56.61 -20.23 -13.88 -10.32 -7.65 -5.79
Sinh Exponent - p 24.00 22.50 5.303 2.589 1.941 1.691 1.256
Iso. Hardenin§ -A, 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MPaA3+)
Iso. Recovery - Ay 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1/(MPa sec)
Iso. Exponent - Ag 0.0
Kin. Hardening - A, | 21.6x10% | 12.3x10° | 3.78x10% | 7.62x10° | 100.0 50.0 0.0
Kin. Recovery - As 0.0 2.18x108 | 1.57x107 | 6.71x105 | 2.00x10* | 6.00x10* | 1.80x10°3
1/(MPa sec)
Kin. Exponent - Ag 1.746
Flow Stress - D, (MPa) 50.0
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7  Simulation of Material Characterization Tests for CusilABA

The next step in this investigation was to simulate the material characterization tests using the
new viscoplastic constitutive theory which was implemented in JAC2D (Biffle and Blanford,
1994), and JAS3D (Blanford, 1995). These simulations were performed using JAC2D, the
material parameters in Tables 2, 3 or 4, and the axisymmetric finite element models shown in
Figure 15. The uniaxial compression tests were simulated by subjecting the model shown in

Figure 15a to a constant true strain rate of 1.65 x 107 571 for 976 seconds by simply displacing
the top end of the model at a prescribed variable rate. The constant-load, creep compression
tests were simulated by ramping the applied pressure on the loading block in Figure 15b up to
a prescribed value and then holding it constant for a prescribed amount of time. The loading
block was needed for this simulation because the applied load was prescribed during the creep
compression tests and not the true axial stress in the rod which changes during the experiment
and simulation. Axial compressive stress-strain curves generated by the uniaxial compression
simulations are shown in Figures 16, 17 and 18 for material parameters from Tables 2, 3 and

4, respectively. »
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(a.) Uniaxial Compression Test (b.) Creep Compression Test

Figure 15. Axisymmetric Finite Element Models Used to Simulate the Uniaxial and Creep
Compression Experiments.
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Figure 16. Uniaxial Compression Simulations Compared with Experiments on CusilABA,
Material Parameters from Manual Fitting Process - Table 2.
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Figure 17. Uniaxial Compression Simulations Compared with Experiments on CusilABA,
Simulations Performed Using Isotropic Hardening / Recovery - Table 3.
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Figure 18. Uniaxial Compression Simulations Compared with Experiments on CusilABA,
Simulations Performed Using Kinematic Hardening / Recovery - Table 4.

The results from these simulations match the experimental uniaxial compression test results
reasonably well. The fits obtained using the nonlinear least squares process are not
significantly better than the fits obtained using the manual process. The automated fits to the
experimental data were improved when the elastic parameters were allowed to vary; however,
unreasonably low values were then obtained for Young’s modulus. This probably occurred
because the load frame and/or fixtures used in the uniaxial compression experiments were not
stiff enough to generate accurate elastic stress strain data. These results also indicate that the
experimental data can be fit by assuming that the hardening and recovery is either entirely
isotropic or entirely kinematic. An equally good fit could also be obtained by using a
combination of isotropic and kinematic hardening. Thus, it currently will not be possible to
obtain a unique set of material parameters which generate a good fit to the existing
experimental data.

In the next simulation, the room-temperature uniaxial compression model (Figure 15a) was
subjected to uniaxial compression followed by uniaxial tension. Results from this simulation
(Figure 19) showed that, as expected, the cyclic response predicted using the isotropic
hardening / recovery parameters is significantly different that the response predicted using the
kinematic hardening / recovery parameters. Thus, cyclic uniaxial experiments could be used to
determine the relative amounts of isotropic and kinematic hardening and recovery.
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Figure 19. Simulations of a Room-Temperature, Cyclic Uniaxial Test with Material
Parameters from Tables 3 and 4.

The final series of material characterization experiments were performed using the creep
compression model shown in Figure 15b and the isotropic material parameters given in Table
3. During these analyses, the load was ramped to a prescribed value in approximately 18
seconds and then held constant for the duration of the simulation. Results from simulations for
a variety of temperatures and applied loads are shown in Figures 20 through 25. The numbers
in these figures represent the engineering stress (applied load divided by the original cross-
sectional area of the braze alloy specimen). These results show that the model is able to
accurately describe the response of the material during the creep compression experiments.
Creep compression simulations with the kinematic material parameters given in Table 4
generated very similar results.
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Figure 20. Creep Compression Simulations Compared with Experiments at 250 °C.
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Figure 21. Creep Compression Simulations Compared with Experiments at 350 °C.
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8 Numerical Simulation of Metal-to-Ceramic Brazing

Finally, the brazing of an alumina ceramic rod to a Kovar rod was simulated using the finite
element model shown in Figure 26. The CusilABA braze layer was modeled using: (1) the new
viscoplastic theory, (2) a temperature-dependent vonMises plasticity theory, and (3) a power
law secondary creep theory to investigate the effects of braze modeling variations on the
residual stress predictions. In all of these simulations, the braze layer is initially uniform and
the effects of base metal dissolution into the braze joint on the braze microstructure are not
considered. The alumina ceramic and the Kovar were modeled as linear elastic materials.
Material parameters used in these simulations are summarized in Tables 2 through 6. In all of
these simulations, the assembly was initially stress free and at the solidus temperature for the

braze (780 °C). The model was cooled to room temperature in one hour. The stresses generated
by the differential thermal expansion of alumina ceramic and Kovar were investigated. In the
first series of simulations, the thermal expansion coefficient for the materials was assumed to
remain constant from the solidus temperature down to room temperature (Figure 27). Constant
thermal expansion coefficients were used so the effects of braze model variations could be
investigated without having the complications caused by using temperature-dependent thermal
expansion coefficients.

@

lg——— Kovar

O Alumina Ceramic

O

55557557

Figure 26. Axisymmetric Finite Element Model of an Alumina Ceramic Rod Brazed to a
Kovar Rod with CusilABA.
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Table 5. Material Parameters for CusilABA (vonMises Plasticity and Power Law Creep)

Tem(fi,%;‘t“’e 20 250 350 450 550 650 748
CusilABA - von Mises Plasticity
Elastic Modulus | 93.6x10% | 83.9x10% | 81.0x10° | 77.8x10° | 73.5x10° | 67.4x10° | 59.1x10°
(MPa)
Poisson’s Ratio 0.363 0.371 0.373 0.375 0.381 0.389 0.402
Yield Stress (MPa) | 330.0 290.0 250.0 200.0 75.0 22.8 10.0
Hard. Modulus 1050.0 900.0 500.0 0.0 0.0 0.0 0.0
(MPa)
CusilABA - Power Law Creep
Elastic Modulus | 93.6x10% | 83.9x103 | 81.0x10® | 77.8x10° | 73.5x103 | 67.4x10° | 59.1x10°
(MPa)
Poisson’s Ratio 0.363 0.371 0.373 0.375 0.381 0.389 0.402
Creep Constant 99.388x10°
Stress Exponent 2.05
Thermal Constant | 24.308x10°

Table 6. Material Parameters for Kovar and Alumina Ceramic

Elastic Poisson’s
Material Modulus Ratio
(MPa)
Kovar 137.9x103 0.317
Alumina 303.4x10° 0.220
Ceramic
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Figure 27. Linearized Thermal Expansion Properties of the Braze Joint Materials Used to
Generate the Results Shown in Figures 28 through 30.

Results from these simulations indicated that when the new viscoplastic theory was used a
maximum tensile stress of 79.5 MPa was generated in the alumina ceramic in Element 600 near
the outer surface of the rod and near the braze joint (Figure 28). The stress distributions
generated when the braze was modeled using the other constitutive theories was very similar
to that shown in Figure 28. The maximum principal stress histories in Element 600 generated
using the various constitutive theories for the braze layer are shown in Figure 29. These results
indicate that the predicted maximum principal stress is largest when the power law creep theory
is used for the braze. The stress histories generated using the power law creep theory and the
new viscoplastic theory are very similar when the braze alloy is at an elevated temperature;
however, at low temperatures the predictions generated by these theories diverge and the new
viscoplastic theory tends to follow a slope that is similar to the slope generated with the
vonMises plasticity theory. Results obtained using the new viscoplastic theory and material
parameters from Tables 2, 3, and 4 are compared in Figure 30. The predictions generated using
the new viscoplastic theory with the various material parameters are very similar. Thus, for this
problem, the results are not very sensitive to the process used for material parameter selection
or the assumptions made about whether the hardening / recovery is isotropic or kinematic.

The next series of simulations were performed using the actual thermal expansion properties
of the braze joint materials (Figure 31). Note that the thermal expansion coefficient for both the
Kovar and the alumina ceramic tends to increase with temperature. Our assumption in the
previous analyses that the thermal expansion coefficient for the materials was constant over the
temperature range of interest was not very accurate.
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Figure 28. Maximum Principal Stress Distribution Generated in the Alumina Ceramic
and Kovar Using Linearized Thermal Expansion of Joint Materials.
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Figure 29. Effect of Braze Modeling Variations on the Maximum Principal Stress History
for Element 600 - Linearized Thermal Expansion of Joint Materials.
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Results from the simulations with the new viscoplastic theory indicated that a maximum tensile
stress of only 51.8 MPa would be generated in the alumina ceramic during the brazing
simulation at a time of 1800 seconds (Figure 32). At room temperature, the residual maximum
tensile stress in the ceramic is only 16.2 MPa. The maximum principal stress history at Element
600 generated using the various constitutive theories for the braze layer are shown in Figure
33. These results indicate that the predicted maximum principal stress is largest when the
vonMises plasticity theory is used for the braze. The stress histories generated using the power
law creep theory and the new viscoplastic theories are very similar early in the simulation when
the braze alloy is at a relatively high temperature; however at low temperature the predictions
generated by these theories diverge. Results obtained using the new viscoplastic theory and
material parameters from Tables 2, 3, and 4 are compared in Figure 34. The material parameter
variations did have a small effect on the stress history prediction. A comparison of these
analyses (Figures 33 and 34) with the previous analyses (Figures 29 and 30) indicates that the
variations in the thermal contraction history had a very significant effect on the predictions and
that accurate descriptions of the thermal contraction history are essential. In simulations of
Kovar to alumina ceramic brazing with a eutectic Ag-Cu braze alloy, Stephens et al. (1992)
also found that the predicted maximum tensile stress in the ceramic would be lower when the
braze alloy was simulated using a viscoplastic theory in place of a von Mises plasticity theory.
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Figure 32. Maximum Principal Stress Distribution Generated in the Alumina Ceramic
and Kovar Using Actual Thermal Expansion of Joint Materials.
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Figure 33. Effect of Braze Modeling Variations on the Maximum Principal Stress History
for Element 600 - Actual Thermal Expansion of Joint Materials.
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9 Summary and Future Work

A new viscoplastic theory for braze alloys has been developed. Like previous viscoplastic
theories, this new theory uses a hyperbolic sine function of effective stress in its kinetic
equation for the inelastic strain rate. This new theory has an internal state variable to account
for isotropic hardening and recovery and a second-order, internal state tensor to account for
kinematic hardening and recovery. Unlike previous theories, the new theory uses evolution
equations for the state variables which describe competing mechanisms of power law
hardening and static recovery.

The new viscoplastic theory was implemented in the finite element codes: JAC2D (Biffle and
Blanford, 1994), and JAS3D (Blanford, 1995). Uniaxial compression and creep compression
tests on CusilABA were then simulated to compare the behavior predicted by the new theory
with the experimental data and to ensure that the numerical implementation of the model was
accurate. Finally, the metal-to-ceramic brazing of an alumina ceramic rod to a metal rod with
CusilABA was simulated using existing constitutive theories and the new viscoplastic theory
for the braze layer to investigate the effects of braze modeling variations on the results. As
expected, the braze modeling variations were shown to have a significant effect on the residual
stress predictions.

A logical next step for this research would be to perform a series of carefully instrumented
metal-to-ceramic brazing experiments in which the deformations and strains generated during
a brazing process are measured. Concurrently, numerical simulations of these experiments
could be performed and stress and deformation history predictions could be generated. Results
from these simulations could then be compared with the experimental results to evaluate the
validity of our new viscoplastic theory for braze alloys.

Dissolution of material from a metal substrate can have a significant effect on the mechanical
behavior of a braze alloy. The current model does not account for the effects of compositional
gradients or solid solution strengthening, i.e., alloying due to base metal dissolution into the
braze joint. These effects should be studied for both single and multi-phase braze alloys and
included in future braze models.

The selection of appropriate material parameters for all internal state variable, viscoplastic
theories is difficult because during even simple uniaxial compression and creep compression
tests the state of the material is continuously changing. In this investigation, two approaches
were used to obtain material parameters, a manual approach which used many simplifying
assumptions and an automated approach which used a nonlinear least squares algorithm
developed by Levenberg and Marquardt (More, 1978). Other researchers have used similar
automated approaches (Senseny and Fossum, 1995; Lathrop, 1994). With the automated
approach, material parameters were obtained by numerically simulating uniaxial compression
and creep compression experiments and obtaining parameters which provide the best fit using
nonlinear least squares. In the future, other optimization tools could be used to: (1) determine
if parameters can be uniquely obtained from the existing test data, (2) help identify which
additional tests are needed to obtain a unique set of material parameters, or (3) help identify
constitutive theory variables which are dependent or are not important.
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Finally, the viscoplastic theories presented in this report, including the new theory, are difficult
to integrate due to the mathematical stiffness of the associated differential equations. An
evaluation of various numerical integration algorithms currently used for viscoplastic
constitutive theories revealed that a forward Euler algorithm with adaptive time step size
selection can be used to integrate these viscoplastic theories. Unfortunately, this simple
algorithm may be computationally expensive in some regimes. Specifically, when the inelastic
strain rates become large, such as for plasticity, the resulting critical time steps become very
small. Alternate algorithms which deserve further investigation include: (1) asymptotic
integration algorithms proposed by Freed, Yao and Walker (1992), and (2) a new integration
algorithm proposed by Nemat- Nasser and Li (1994).
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Appendix A - Material Parameter Names Used in JAC2D and JAS3D

In JAC2D, the new viscoplastic material model is Material Type 8: Viscoplastic Braze

Table Al. Material Parameters Used in the JAC2D Implementation

Material Parameter Description
Shear Modulus Shear Modulus

Bulk Modulus Bulk Modulus

Flow Rate Natural Log of Parameter f in Equation 20
Sinh Exponent Parameter p in Equation 20
Alpha Parameter o in Equation 20
Isotropic Hardening Parameter A; in Equation 23
Isotropic Recovery Parameter A, in Equation 23
Kinematic Hardening | Parameter A, in Equation 24
Kinematic Recovery Parameter As in Equation 24
Flow Stress Parameter D, in Equation 23
Isotropic Exponent Parameter Az in Equation 23
Kinematic Exponent Parameter Ag in Equation 24

Table A2. State Variables Used in the JAC2D Implementation

State Variable Name Description

EPX1 State tensor component - By,

EPX2 State tensor component - By,

EPX3 State tensor component - B,,

EPX4 State tensor component - B,y

EPXS5 State variable - D

EPX6 Accumulated Inelastic Strain

EPX7 Inelastic Strain Rate -y

EPX8 Subincrement Count - Inside Constitutive Model
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In JAS3D, the new viscoplastic material model is Material Type 3: Viscoplastic

Table A3. Material Parameters Used in the JAS3D Implementation

Material Parameter Description

Shear Modulus Shear Modulus

Bulk Modulus Bulk Modulus

Flow Rate Natural Log of Parameter f in Equation 20
Sinh Exponent Parameter p in Equation 20

Alpha Parameter o, in Equation 20

Isotropic Hardening Parameter A; in Equation 23

Isotropic Recovery Parameter A, in Equation 23

Kinematic Hardening | Parameter A4 in Equation 24

Kinematic Recovery

Parameter A in Equation 24

Flow Stress Parameter D, in Equation 23

Isotropic Exponent Parameter Az in Equation 23

Kinematic Exponent Parameter A4 in Equation 24

Shear Function Number of the Function which Prescribes the
Temperature Dependence of the Shear Modulus

Bulk Function ““ Bulk Modulus

Rate Function ‘““ Natural Log of Parameter f in Equation 20

Exponent Function ‘““ Parameter p in Equation 20

Alpha Function ‘““Parameter o in Equation 20

Thard Function ““ Parameter A; in Equation 23

Irec Function ““Parameter A, in Equation 23

Khard Function ‘““ Parameter A4 in Equation 24

Krec Function ““Parameter As in Equation 24
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Table A4. State Variables Used in the JAS3D Implementation

State Variable Name Description
SVBXX State tensor component - B,
SVBYY State tensor component - By,
SVBZZ State tensor component - B,
SVBXY State tensor component - By,
SVBYZ State tensor component - By,
SVBZX State tensor component - B¢

SvC State variable - D

EQPS Accumulated Inelastic Strain
EQDOT Inelastic Strain Rate

COUNT Subincrement Count - Inside Constitutive Model
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Appendix B - Development of Critical Time Step Size Criteria

Integration of the Kinetic Equation for the Inelastic Strain Rate, Equation 20:

Zienkiewicz and Cormeau (1974) developed the following general stability criterion for the
integration of a viscoplastic theory with the forward Euler algorithm

2
<<
Ats 3GfP'

where At is the critical time step size, G is the shear modulus, and f and ® are taken from the
kinetic equation for the inelastic strain rate

Y = £(0)@(0)

For the new viscoplastic theory for braze alloys

@ = sinh [
= sinh (75

By taking the derivative of @ with respect to T and making appropriate substitutions, the
following expression, Equation 26, is obtained for the critical time step size

20D

At<
3Gfosinh” [ cosh( %
pS ((XD)COS (QD)

Integration of the Evolution Equations for the State Variables, Equations 23 and 24:

A Taylor series expansion of D(x) is given as follows (Thomas, 1969):

Dn(a)

D(t) = D(a) + D'(a)(t—a) + =5~

(n)
2 DY (a) n
(t-a) '+ - - +T(t-—a) +R,

where D’(a) is the first derivative of D with respect to the independent variable t, and R, is
the remainder or a measure of the error and is given by

t n
R, a) = [£=X D" Pixyax

a
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For forward Euler integration, n is equal to one and only the first term in the Taylor series
expansion is used in the integration. Thus, the remainder or a measure of the error for this
numerical integration is given by

t

R,(t,a) = J’ (t;lx)D“(x)dx

a

If we assume that D’’(x) is approximately equal to D’’(a), the value at the beginning of the
time step, then the above equation generates the following estimate for the error

2
Error = R((t,a) = -A%—D"(a)

Since we only have information at the beginning of the new step, an estimate for D’’(a) is
given by

D'(a)-D'(a—At,)

Atp

D"(a) =

where At; is the size of the previous time step and D’(a-Aty) is the first derivative of D at the

beginning of the previous time step. The following equation is then obtained from combining
the above equations and setting the allowable error equal to 8Dy, a small fraction of Dy

: At D'(a)-D'(a—-At)
8D, = 7( At, )

This equation can be rearranged to obtain the following criterion for the critical time step size

28DyAt,,

A= | P@-Da-A)

The allowable step size is less than or equal to this critical step size as shown in Equation 27.
A similar development was used to generate Equation 28.
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