UCRL-JC-123785
PREPRINT

Conf- GLoGia--I

Building a Programmable Interface for
Physics Codes Using Numeric Python

T.-Y. B. Yang
P. F. Dubois
Z. C. Motteler

This paper was prepared for submittal to the

- Fourth International Python Workshop
Livermore, CA
June 3-6, 1996

April 16, 1996

This is a preprint of a paper intended for publication in a journal or proceedihgs.
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the

permission of the author.

LLB8421# v1.0 (3/96)




DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assurnes any legal liability or responsibility for the accuracy, completeness, or usefulness

.of any information, apparatus, product, or process disclosed, or represents that its use

wouldnotinfringe privately owned rights. Reference hereinto any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute orimply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for
advertising or preduct endorsement purposes. )



 DISCLAIMER
Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.




Building a Programmable Interface for
Physics Codes Using Numeric Python

T.-Y. B. Yang, P. F. Dubois, and Z. C. Motteler

Lawrence Livermore National Laboratory

1.0 Introduction

Our goal is to create a “‘plug and play” programmable interface that gives the users flexi-
bility to run the applications in the way appropriate for their physics problems, and also
allows the code developers to query and to change, from the Python interpreter, variables
buried in the physics modules, which for speed reasons are implemented in C, C++, and
Fortran. Some of the philosophy behind such programmable applications was presented

elsewhere.! The programmable applications with Python interface, from the bottom up as
shown in Fig. 1, consists of the following four levels:

1. Compiled packages: These are source codes and libraries that already exist or are to be
written in compiled languages because of efficiency reasons, for example physics and
mathematics packages, data storage packages, graphics packages and so on.

2. Python extensions in compiled languages: These are Python extensions written mainly
in C and C++ possibly with some auxiliary routines written in other compiled languages.
These basically serve as “glue” between Python and compiled packages.

3. Program Author Scripts: These are Python modules (*.py) containing wrapper classes
and functions which are the main user interfaces that hide the implementation details and
give the users an physically intuitive and universal view of the applications. As an exam-
ple, let’s suppose there are several hydrodynamics packages, and each of which has its
own data structure for a physical quantity, say density. The wrapper classes and functions
allow the users to query and set the density in an intuitive way that does not depend on
which package is chosen.

4. User scripts: These are Python scripts that users write, using the user interfaces pro-
vided in the program author scripts. The three lower levels are organized into modules.
There may be more than one modules that serve the same function but with different
underlying implementations, e.g., two hydrodynamics modules with different algorithms.
Well implemented wrapper classes and functions in the program author scripts allow users
to do “‘plug and play” with different choices of underlying modules without major
changes in the user scripts.

April 16, 1996

P QETITI "ﬁ'\"'{"“‘ g ms N LR AR T NE L T T L e
MSTREBITION OF REEAIT IS UMD

Ble -




Py

User Scripts

(in Python)

Program Author Scripts
(wrapper classes and
functions in Python)

Python Extensions in
Compiled Languages
(glue to compiled packages)

Compiled Packages
(Physics, Data Storage,
Graphics, etc.)

Fig. 1 Organizational hierarchy of a programmable application
with Python interface.

In the following sections, we will discuss two applications, one for a physics module and
the other for a data-storage module, that are organized in the way described above. A
graphics modules that provides interface with Narcisse, a graphics package developed in
France, will be discussed in Z. C. Motteler’s paper presented in this meeting

2.0 A Physics Module

We have implemented a Python interface for a C++ application. Users can run the applica-
tion interactively at the Python prompt as follows:

>>> from hydro_class import HYDRO

>>> hyd = HYDRO()

>>> hyd.initialize()

>>> hyd.cycle()

>>> hyd.density()

>>> hyd.ncells =20

Here, the module hydro_class.py is a program author script which imports a Python exten-
sion module (hydromodule.so) and defines a Python class called HYDRO. The following
is an excerption from hydro_class.py:

from Numeric import *

import hydro

cell_list = hydro.phy_var.cell_list

April 16, 1996 2




class HYDRO:
__states__ = hydro.phy_var
v def __getatr__(self, name):
ry:
return getattr(self.__states__, name)
except AttributeError:
return getattr(hydro, na&ne)
def _ setattr__(self, name, value)
setattr(self.__states_ , name, value)
density(self):
fnc = lambda i: cell_list{i].av0()[6] -

return array(map(fnc, range(self.ncells)), ‘d’)

Notice that the object hydm. phy_var, to which the attribute __states___ is assigned, is an
instance of an object type cplus_var defined in hdyromodule.so. The purpose of this object
is to allow queries and changes of the C++ global variables to be done from the Python
interpreter. The attributes of the object hydro.phy_var (e.g., ‘cell_list’ and ‘ncells’) all cor-
respond to some global variables in the underlying C++ code.

The C++ extension module hydromodule.so is the *“glue” between Python and the com-
piled C++ source code. For each C++ function that is to be called from the Python inter-
preter, a glue-method is defined and inserted into the method table of hydromodule.so.

Query and changes of the global variables in the C++ source are handle by the object
hydro.phy_var as mentioned earlier. The getartr and setattr methods of the cplus_var
object type, of which hydro.phy_var is one and the only one instance, look up a Python
dictionary varlist to gain access of the C++ global variables. When the module Aydro is
imported, the dictionary varlist is created and filled with Python objects each contains
informations (e.g., name and address) of a particular C++ global variable.

The Python objects that are stored in the dictionary varlist are of the ‘derived types’ of a
particular type called var_item. The following is how the var_item type is defined:
typedef struct {

PyObject *(*getattr) (PyObject *self);

int (*setattr)(PyObject *self, PyObject *v);
} Var_att_type;

#define VAR_HEAD\\
PyObject_HEAD\
void *address; \
Var_att_type *var_type; \

char *comments; \

typedef struct {

April 16, 1996 3




P

VAR_HEAD
} var_itemobject;

We have taken the liberty to use the term ‘derived types’ in the same sense as calling all
the Python object types ‘derived types’ of the PyObject type, since pointers to other object
types can always be casted into (*PyObject) and be treated as such. Notice that each
‘derived type’ of var_item type has a unique var_type member. This allow the getattr and
setattr methods of the cplus_var object type to dispatch their jobs without knowing the
exact type of the object they retrieve from the dictionary varlist.

An example of ‘derived types’ of var_item type is array_item defined as:

typedef struct {
VAR_HEAD
char array_type;

} array_itemobject;

When creating a new array_item object for a C++ global array, the address member of the
array_item object points to a new PyArray object. Created by calling the function
PyArray_FromDimsAndData of the Array module, the data member of the new PyArray
object points to the address of the global C++ array that we desire to query and change
from the Python interpreter. For the getattr method of the cplus_var object type to cor-
rectly dispatch its job, var_type.getattr member of a array_item object points to a function
which returns the PyArray object pointed to by the array_item object’s address member.

Another example of ‘derived types’ of var_item type is scalar_item whose address mem-
ber stores the address of a scalar global variable of type int, double or float. The
var_type.setattr member of a scalar_item object points to a function which change the
value of the global variable pointed to by the scalar_item object’s address member, so that

>>> hyd.ncells = 20

changes the value of the global int variable ‘ncells’ to 20, instead of re-pointing the
‘ncells’ attribute of ‘hyd’ to a Python integer of value 20.

We have also implemented a shadow object type for C++ classes in order to gain access to
the public member functions of C++ classes. There are also ‘derived types’ of var_item
type for global C++ pointer variables pointing to instances and arrays of instances of C++
classes. When the name of a global pointer variable associated with a C++ object is
evoked from the Python interpreter, a shadow object corresponding to the C++ object is
returned. The attribute ceil_list of hydro.phy_var is an instance of such types, corresponding
to an array of C++ objects. The implementation of the method dernsity, shown on page 3,
makes use of cell_list.

All the above are done in a non-intrusive way, that is the C++ source code is not aware of
the existences of all the levels above it. This allows our users to run the application either
in the Python mode or in a stand-alone mode.

April 16, 1996 ‘ 4




3.0 A Data-Storage Module

PDB is a portable scientific-data-management system?®> created as part of the PACT
project by Stewart Brown and his group at LLNL. A Python extension has been written
and linked with the PACT libraries to store and retrieve data in the PDB format from the
Python interpreter. In terms of the levels shown in Fig. 1, the compiled-package level con-
sists of the PACT libraries, the Python-extension level is a C extension, pypdbmodule.so,
and the program-author-script level consists of two Python modules, PR.py and PW.py, for
reading and writing, respectively, PDB files.

The C extension pypdbmodule.so is mainly a “‘glue” between Python and the PACT
libraries. The module defines two new object types PDBYfile and pseudostruct and has
methods to open a PDB file and create a PDBfile object associated with the file. The PDB-
file type has attributes typically expected of a file object such as read, write, and close. In
addition, it has methods for the directory structure in the PDB file.

The pseudostruct type is implemented so that when a C-struct stored in a PDB file is
retrieved its members are accessible to the Python interpreter. When an application is fully
integrated into PACT, an arbitrary C-struct can be stored with pointer-following done by
the library. This, however, requires that the retrieving packages have intimate informa-
tions about the C-struct, for the members of the C-struct can be pointers pointing to other
C-structs. For the purposes of general usage, such capability is not fully implemented in
pypdbmodule.so.

The PR.py module defines a Python class PR which is a wrapper class for PDBfile objects
created for data retrieval. When an instance X of PR class is created in association with a
readable PDB file, the variables stored in the file can be regarded as attributes of the
instance X. When a variable, say ¥, is first referred to by the Python command ‘X.Y”, the
variable Y is retrieved from the PDB file as a Python object and is stored in X’s dictionary
besides being returned to the Python interpreter. Subsequent occurrences of the command
‘X.Y’ return the variable from X’s dictionary instead of the PDB file.

The PW.py module defines a Python class PW which is a wrapper class for PDBfile objects
created for writing data to a PDB file. For an instance X of PW class associated with a
PDB file opened for writing, the first appearance of a Python assignment to an attribute of
X, say Yin X.Y=2, causes an integer variable named Y with value 2 to be stored into the
PDB file. Subsequent assignments to X.Y in the same directory have no effect other than
causing a warning. Assignments to other types which are acceptable to the PDB file work
in the same way.

4.0 Summary

With its portability, ease to add built-in functions and objects in C, and fast array facility
among many other features, Python, as our experiences showed, oroved to be an excellent
language for creating programmable scientific applications. In addition to the two modules
presented here, there are also other progresses at LLNL in using Python. For example,

April 16, 1996 5




v

Python interfaces are being developed for at least three graphics packages, and Python
interpreter and applications have been built on distributed platforms such as meiko and
Cray T3D. Much more works still need to be done, and we will report our further progress
in the future workshops.

Acknowledgments

The work described here was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-
48.

References

1. Paul F. Dubois, “Making Applications Programmable,” comput. in Phys. 8 (1), 70
(1994).

2. S. A. Brown et. al., “Software for Portable Scientific Data Management,” Comput. in
Phys. 7 (3), 304 (1993).

3. S. A. Brown et. al., “Creating and Using PDB Files,”” Comput. in Phys. 9 (2), 173
(1995).

April 16, 1996 6




