< CONF- 9210220 -~ §

PARALLEL MATRIX TRANSPOSE ALGORITHMS ON
DISTRIBUTED MEMORY CONCURRENT COMPUTERS*

Jaeyoung Choi

Department of Computer Science
University of Tennessee
107 Ayres Hall
Knoxville, TN 37996-1301

Jack Dongarra

Mathematical Sciences Section O S T 5
Engineering Physics and Mathematics Division '
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6367
AND
Department of Computer Science
University of Tennessee
107 Ayres Hall
Knoxville, TN 37996-1301

D. W. Walker

Mathematical Sciences Section
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6367

the published
aliow others to do so, for U.

purposes.”

* This work was supported in part by DARPA and ARO under contract number DAAL03-91-C-
0047, and in part by the Applied Mathematical Sciences Research Program, Office of Energy
Research, U.S. Department of Energy under contract DE-AC05-840R21400 with the Martin

Marietta Energy Systems, Inc.

DISTRIBUTION OF TH!S DOCUMENT IS UNUMITEDF

Parallel Matrix Transpose Algorithms
on Distributed Memory Concurrent Computers

Jaeyoung Choi' ,

2Mathematical Sciences Section

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Abstract

This paper describes parallel matriz transpose algo-
rithms on distributed memory concurrent processors.
We assume that the matriz is distributed over a P x Q)
processor template with a block scatiered data distri-
bution. P, @), and the block size can be arbitrary, so
the algorithms have wide applicability. The algorithms
make use of non-blocking, point-to-point communica-
tion between processors. The use of nonblocking com-
munication allows a processor to overlap the messages
that it sends to different processors, thereby avoiding
unnecessary synchronization. Combined with the ma-
triz multiplication routine, C = A - B, the algorithms
are used to compute parallel muliiplications of trans-
posed matrices, C = AT .BT, in the PUMMA package
[5]. Details of the parallel implementation of the al-
gorithms are given, and results are presented for runs
on the Intel Touchstone Delta compuier.

1 Introduction

Matrix transposition is a fundamental matrix oper-
ation of linear algebra and arises in many scientific and
engineering applications. On a uniprocessor, an algo-
rithm involving a transposed matrix may not actually
require the matrix data to be transposed in physical
memory. Instead, it may be accessed simply by ex-
changing the row and column indices. However, in a
distributed-memory multiprocessor environment, we
cannot simply interchange the global row and column
indices. Instead, the data must be physically moved
from one processor to another.

Transposition of a matrix is a redistribution of
its elements. Many researchers have considered the

Jack J. Dong.garra,1 ’2,

David W. Walker’

]Department of Computer Science

University of Tennessee at Knoxville
107 Ayres Hall
Knoxville, TN 37996-1301

problem for different architectures. In 1972, Eklundh
[7] considered the problem of directly accessing rows
or columns of a matrix when its size is larger than
the available high-speed storage. O’Leary [10] imple-
mented an algorithm for transposing an N x N matrix
on a one-dimensional systolic array. Azari, Bojanczyk
and Lee [1] developed an algorithm for transposing
an M x N matrix on an N x N mesh-connected ar-
ray processor, and Johnsson and Ho [9] presented an
algorithm for a Boolean n-cube, or hypercube.

Current advanced architecture computers possess
hierarchical memories in which accesses to data in the
upper levels of the memory hierarchy (registers, cache;
and/or local memory) are faster than those in lower
levels (shared or off-processor memory). To exploit
the power of such machines, block-partitioned algo-
rithms are preferred for dense linear algebra compu-
tations, in which operations are performed on subma-
trices, rather than individual matrix elements. In dis-
tributing matrix data over processors we therefore as-
sume a block scattered decomposition [4,6]. The block
scattered decomposition can reproduce the most com-
mon data distributions used in dense linear algebra,
as described briefly in the next section.

In this paper, the parallel matrix transpose algo-
rithms are presented based on the block scattered de-
composition. The algorithms are implemented on the
Intel Touchstone Delta computer. The communica-
tion schemes of the algorithms are determined by the
greatest common divisor (GC D) of the number of rows
and columns (P and Q) of the processor template. If
P and @ are relatively prime, the matrix transpose
algorithm involves complete exchange communication.
This is called all-to-all personalized communication,
in which each of N, = P - Q) processors is required to
send distinct subblocks to each of the remaining N, —1

processors, and receive distinct subblocks from each of
them. Bokhari and Berryman [2] have developed bi-
nary exchange and quadrant exchange algorithms on
a circuit switched mesh, where P and @) are powers
of 2. The complete exchange communication in vur
transpose algorithms arises for any processor configu-
ration, and is not limited to the case where P and @
are powers of 2. We implemented the complicated two-
dimensional complete exchange communication prob-
lem by generalizing the one-dimensional complete ex-
change communication based on direct point-to-point
communication. Details are discussed in Section 3.1.

We have presented the Parallel Universal Matrix
Multiplication Algorithms (PUMMA) in [5] for per-
forming C < aop(A) - op(B) + 8 C, where op(X) =
X or X7, based on the block scattered decompo-
sition. One of the cases in the PUMMA package,
C < o AT . BT 4 3C, is implemented in two steps
(T<aB-A; C<« TT + 8C). The second step in-
volves parallel matrix transposition. The performance
of this algorithm for evaluating C = AT - B7 is com-
pared with the algorithm for evaluating C = A - B
on the Intel Delta machine in Section 4.

2 Design Issues

The way in which an algorithm’s data are dis-

tributed over the processors of a concurrent computer
has a major impact on the load balance and communi-
cation characteristics of the concurrent algorithm, and
hence largely determines its performance and scalabil-
ity. The block scattered decomposition provides a sim-
ple, yet general-purpose way of distributing a block-
partitioned matrix on distributed memory concurrent
computers. In the block scattered decomposition, de-
scribed in detail in [4,6], an M x N matrix is parti-
tioned into blocks of size r x s, and blocks separated
by a fixed stride in the column and row directions are
assigned to the same processor. If the stride in the
column and row directions is P and ¢ blocks respec-
tively, then we require that P - @ equal the number of
processors, N,. Thus, it is useful to imagine the pro-
cessors arranged as a P x mesh, or template. The
processor at position (p,q) (0 <p< P,0<¢< Q)in
the template is assigned the blocks indexed by,

(p+i-Pg+j-Q), (1)

where i = 0,...,[(My —p—1)/P|,j=0,...,[(Ns —
¢ —1)/@Q], and M x N, is the size in blocks of the
matrix (M, = [M/r], Ny = [N/s]).

Blocks are scattered in this way so that good load
balance can be maintained in parallel algorithms, such

(a) block distribution over template

I Y
| rfn

(b) LCM block distribution
Figure 1: A matrix with 6 x 6 blocks is distributed over
a 2 x 3 processor template. (a) Each shaded and un-
shaded area represents different templates. The num-
bered squares represent blocks of elements, and the
number indicates at which location in the processor
template the block is stored — all blocks labeled with
the same number are stored in the same processor.
The slanted numbers, on the left and on the top of
the matrix, represent indices of row block and column
block, respectively. (b) The matrix has 1 x 1 LCM
blocks. Blocks belong to the same processor if the rel-
ative locations of blocks are the same in each square
LCM block. The definition of the LCM block is de-
fined in the text.

as LU factorization [3,6]. The nonscattered decompo-
sition (or pure block distribution) is just a special case
of the scattered decomposition in which the block size
is given by r = [M/P] and s = {N/Q]. A purely
scattered decomposition (or two-dimensional wrapped
distribution) is another special case in which the block
size is given by r = s = 1.

If P and @ are relatively prime, the matrix trans-
pose algorithm involves a two-dimensional complete
exchange communication, where each of N, proces-
sors is required to send distinct subblocks to each of
the remaining N, — 1 processors, and receive distinct
subblocks from each of them. We implemented the
complicated two-dimensional complete exchange algo-
rithm by generalizing the one-dimensional complete
exchange algorithm.

3 Matrix Transpose Algorithms

We assume that a matrix is distributed over a two-
dimensional processor mesh, or template, so that in
general each processor has several blocks of the matrix
as shown in Figure 1 (a), where a matrix with 6 x 6
blocks is distributed over a 2 x 3 template. Denot-
ing the least common multiple of P and @ by LC M,
we refer to a square of LCM x LCM blocks as an
LCM block. Thus, the matrix may be viewed as a
1 x 1 array of LC'M blocks, as shown in Figure 1 (b).

Al
(a) matrix transpose from matrix point-of-view
0 31 425

0 03 1 4 2 5 0]
o By 2 P, | P,
i Hi 2
4 BEabiad transpose ¢
1 1

H H H B b
: 3 a s 3 PZips

" 5

A’l‘
(b) matrix transpose from processor point-of-view

Figure 2: An example of matrix transpose for a block
scattered decomposition, when P = 2, @@ = 3, and
My = Ny =86.

The concept of the LCM block was introduced in [5],
and is very useful for implementing algorithms that
use a block scattered data distribution. Blocks belong
to the same processor if their relative locations are
the same in each square LCM block. An algorithm
may be developed for the first LCM block, and then
it can be directly applied to the other LCM blocks,
which all have the same structure and the same data
distribution as the first LCM block. That is, when
an operation is executed on a block of the first LCM
block, the same operation can be done simultaneously
on other blocks, which have the same relative location
in each LC'M block.

We now describe parallel matrix transpose algo-
rithms. A matrix A, distributed over a P x @ pro-
cessor template, has M, x N; blocks and each block
consists of 7 X s elements, where r and s are arbitrary.
Figure 2 (a) shows an example of a matrix transpose
on a 2 x 3 template. If A is transposed, the trans-
posed matrix A7 is distributed over the same P x @
template, and it has N, x M; blocks and each block
has s x r elements. The elements of each block remain
in the same block, but may be in a different proces-
sor, and each block is itself transposed. Figure 2 (b)
shows the same example from the processor point-of-
view. If P and @ are relatively prime, as shown in
the figure, blocks in the first processor P, are scat-
tered to all processors. As shown in Figure 3, which
is the same example on a 3 x 3 square template, the
blocks in each processor are not dispersed, but they

transpose

(a) matrix transpose from matrix point-of-view
0 31 425

transpose

T W Ao

0
3
1
4
2
5

Al
(b) matrix transpose from processor point-of-view

Figure 3: An example of matrix transpose for a block
scattered decomposition, when P = 3, @ = 3, and
My = Ny = 6.

are moved as one entity to a different processor. As
shown in Figure 3, which 1s the same example on a 3x 3
square template, the blocks in each processor are not
dispersed, but they are moved as one entity to a dif-
ferent processor. Parallel matrix transpose algorithms
for the block scattered data distribution have several
communication patterns determined by the greatest
common divisor (GCD) of P and Q.

3.1 P and @ : relatively prime

We start with the simple case where P and @ are
relatively prime, i. e. GCD = 1. In this case blocks
in Py are scattered to all processors after being lo-
cally transposed as shown in Figure 2 (b). This case
involves the two-dimensional complete exchange com-
munication. That is, every processor needs to com-
municates with every other processor. The complete
exchange problem is implemented by direct communi-
cation between sender and receiver.

Figure 4 shows the pseudocode
from the processor point-of-view, where P({p,q} rep-
resents PyvoD(p,P),MOD(q,Q) in the processor template.
Processor P(p,q) (0 < p < P and 0 < ¢ < Q) starts
to transpose blocks whose transposed blocks belong to
itself. Then it deals with blocks whose transposition
are in processors in the same column of the template
(P{p—1i,q),0 < i< P). The processor sends blocks to
its top neighbor, P(p— 1, ¢}, and receives blocks from
its bottom neighbor, P(p + 1,¢). Before sending the
blocks, it is necessary to copy the blocks to be sent

DOJ=0,Q—1
DOI=0,P-1
[Copy all blocks of A required by
P{p+1,9q~J)toT1]
[Send T1 to P(p+1,¢g—J)]
[Receive T2 from P{p—I,q+ J)]
[Copy T2 to C]
END DO
END DO

Figure 4: A parallel matrix transpose algorithm from
the processor point-of-view, when P and @ are rela-
tively prime. P(p,q) represents Prop(p,P),MOD(¢,Q) -
Processor P, ; (0 < p< P and 0 < ¢ < (J) communi-
cates with P(p+1,q— J) to send, and P{p— 1,9+ J)
to receive based on point-to-point communication.

mmto a contiguous message buffer. Next it sends blocks
to the next top processor, P{p — 2,¢), and receives
blocks from the next bottom processor, P{p+ 2, ¢).

After it completes its operations with the processors
in the same column, it sends blocks to the processors
to the left in the template (P{p—1i,¢—1),0 <i < P),
and receives blocks from the processors to the right
(P{p+1,q+1)). All operations are completed in P x
@ = LCM steps.

We interpret the algorithm from the matrix point-
of-view. In the first LCM block, the above algorithm
performs the operation by transposing one (wrapped)
diagonal blocks at one step. The first step of the algo-
rithm in Figure 4 requires no explicit communication.
It corresponds to an in-place transpose of the diagonal
blocks of A (A(%,)) (See Fig. 5(a)). Then every P di-
agonal blocks of A (A(%, j), MOD(j — i, P) = 0) (See
Fig. 5(b)) are transposed in the first outer loop (J = 0)
of Figure 4. In the next outer loop (J = 1), the next
P diagonal blocks (A(Z,), MOD(j — ¢, P) = 1) are
transposed. In Figures 5 (c¢) and (d), Py (P(0,0))
sends blocks to Py (P(0,2)), and receives from P,
(P(0,1)), where Py, P; and P, are in the same row.
Then P, sends blocks to Ps (P(1,2)), and receives
from P, (P(1,1}), and so on. The pseudocode for the
algorithm from the matrix point-of-view is shown in
Figure 6. Processors need to determine a diagonal
block of A (A(Z,7),MOD(j — i, LCM) = K) which
they start to transpose in the outer J loop in order to
communicate with other processors in the same row
of the template. The three lines before the inner DO-

H

=
ST
=
3

S

I«

S

|

(a)

]

(c) fourth

[2]

K]
YA 53 B

(¢) second diagonal (A(ij), MODG-LLCM)=2) () fifth diagoan] (A(ij), MOD(-LLCM)=5)

Figure 5: Snapshots of matrix transposition when
P=2 0 =3and My = Ny = 6. The small slanted
number in the upper left corner in each block repre-
sents processor identification number. One wrapped
block diagonal is transposed in each step. The darkly
shaded area represents blocks to be shifted, and lightly
shaded area stands for their transpositions.

loop compute the value of K.
3.2 P and @ : not relatively prime

In the previous section, we have investigated the
case when P and () are relatively prime, which involves
complete exchange communication. In this section we
consider the case of GCD > 1. The former algorithm
is a special case (GC'D = 1) of this algorithm.

Figure 7 shows an example of transposing a 12 x
12 matrix on a 4 x 6 template from the processor
point-of-view. Each processor has its own 3 x 2
(= LCM/P x LCM/Q) array of blocks. The pro-
cessors can transpose the matrix with 6 (= LCM/P -

DOJ=0,Q-1
K=17J
WHILE (MOD(K, P) # 0)
DO K = MOD(K + @,LCM) END DO
DOI=0,P-1
[Copy every (K : Ny : LCM)-th wrapped
diagonal blocks in P, ; to T1]
[Move T1 from P, 4 to P{p+1,9—J)]
[Copy the received T1 to C]
K = MOD(K + Q, LCM)
END DO
END DO

Figure 6: A parallel matrix transpose algorithm from
the matrix point-of-view, when P and @ are rela-
tively prime. One diagonal block is transposed at one
step. The ‘While’ statement should be executed until
MOD(K, P) becomes 0. (start : limit : intv) repre-
sents values of z, where @ = start+intv-y,y =0,1,--,
and z can’t exceed limit.

LCM/Q = LCM/GCD) communications steps. A
processor P(p, q) starts to communicate with P (5, §),
where $ and § are computed from p and ¢ (details
are explained later of this section). Once P(p,q) is
determined, it communicates with other processors,
whose vertical and horizontal intervals are GCD from
P{($,§). The two loops of the algorithm in Figure 4
are changed from @ and P to LCM/P and LCM/Q.
The pseudocode of the algorithm is shown in Figure 8.

Figure 9 shows two snapshots of the same exam-
ple, from the matrix point-of-view, to transpose the
zeroth and the first diagonal blocks of A (A(%,j),
MOD(j — i, LCM) = 0and 1, respectively.) The pro-

06t 7 2839 410851

o 2002

[/} 0§ B R

4 4 I 1 2 P'z 4

8 8

! 7 fi G i

§ s BelB2{BglBolBigl H
9 8

2 2

6 1Byl Bial Bial By 6 ERL 16l B
10 18

3 3

7 Bio Pogl Bosi Pt By 7§ Puol B Bo it Bhol B
11 “l 11 i Fq

Figure 7: A matrix transpose example on a 4 x 6 tem-
plate.

PARDO K =1,GCD
g= MOD(q - D, GCD)
p=MOD(p+g, P); § = MOD(q — ¢,Q)
DO J=0,LCM/P-1
DOI=0,LCM/Q-1
[Copy all blocks of A to T1
required by Pis41xGeD,j-IxGCD) |
[Send T1 to Pyrxcep,j-ixcepy |
[Receive T2 from Pi_1xGcp,g+IxGeD)]
[Copy T2 to C]
END DO
END DO
END PARDO

Figure 8: A modified matrix transpose algorithm
from the processor point-of-view. Operations of GC D
groups of processors are overlapped.

[Aa
I?i'l barlL L

mm;m X195 1E: I l
T G 1 R Rl 5

sl

T
Wy u: g il A

B K H

CRELELELELLL
-

I

H

(a) LCM Blcok

Figure 9: A snapshot of matrix transposition for trans-
posing the first wrapped block diagonals, when P = 4,
Q = 6 and My = Ny = 12. In this example, transpos-
ing of even numbered wrapped block diagonals can be
overlapped with that of odd numbered.

Figure 10: Matrix transposition when P = @ =
GCD = 3. Processors transpose 3 (= GCD) diag-
onal blocks at one step, so that the transposition is
done in one step.

PARDO K =1,GCD
g = MOD(q — p, GCD)
p=MOD(p+g, P); § =MOD(q — ¢,Q)
DO J =0, LCM/P -1
K=J
WHILE (MOD(K — g, P) # 0)
DO K = MOD(K + Q,LCM) END DO
DO I=0,L0M/Q—1
[Copy every (K : N : LCM)-th diagonal
blocks in P({p, g} to T1]
[Move T1 from P{p,q) to
Pp+IxGCD,Gg—J x GCD)]
[Copy the received T1 to C]
K = MOD(K + Q, LCM)
END DO
END DO
END PARDO

Figure 11: A modified matrix transpose algorithm
from matrix point-of-view. GCD diagonal blocks are
transposed simultaneously.

cessors which have the blocks to send out are shaded at
the bottom. In the example, only P-Q / GC D proces-
sors are involved in block communication in each step.
Processors are split into GCD groups of processors,
and a processor P(p, q) belongs to a group g if it has
the same value of g = MOD(q — p, GCD). Processors
in a group ¢ send and receive their blocks to other pro-
cessors in another group ¢' = MOD(GCD - g, GCD).
The operations of each group can be overlapped.

The problem is interpreted from the matrix point-
of-view. In general, for transposing the k-th diagonal
block of A (A(%,j), MOD(j — ¢, LCM) = k), a group
of processors gr = MOD(k, GCD) send the blocks to
another group g, = MOD(GCD — ¢, GCD). Since
the operations are overlapped over different groups of
processors, processors transpose GC D diagonal blocks
simultaneously. So, the matrix can be transposed with
LCM/GCD steps. For the extreme case of P = Q =
GCD = 3 as shown in Figure 10, processors transpose
3 (= GCD) diagonal blocks at one step. That is,
the transposition is done in one step. A processor
P{p,q) exchanges data with processor P{q,p}. The
pseudocode of the algorithm from the matrix point-
of-view is shown in Figure 11. The code includes the

case of GCD = 1.

96 processors 64 processors 48 processors

Px@Q Time Px@ Time PxQ Time

6x16 0404 4x16 0596 4x12 0.652
8x12 0330 8x8 0572 6x8 0.546
12x8 0307 16x4 0475 8x6 0527
16x6 0.381 12x4 0.547

Table 1: Dependence of performance on template con-
figuration for fixed number of processors (M = N =
2400, Unit:second).

4 Results

In this section we present performance results of
the parallel matrix transpose algorithms on the Intel
Touchstone Delta computer. The performance of the
transpose algorithms cannot be represented in float-
ing point operations per second (flops), since there is
no multiplications or additions in the transpose al-
gorithms. The algorithms are combined with a ma-
trix multiplication routine in the PUMMA to com-
pute C = a AT .-BT + 8C in twosteps (T < aB-A;
C <« TT + BC). We assume that « = 1 and 8 = 0
in our test. The performance of AT - BT is compared
with that of A - B.

Matrix elements are generated uniformly on the
interval [—1,1] in double precision. Conversions be-
tween measured runtimes and performance in gi-
gaflops (Gflops) are made assuming an operation
count of 2M N L for the multiplication of a M x L by
a L x N matrix. In our test examples, all processors
have the same number of blocks so there is no load im-
balance. The algorithms were implemented with force
type communication [8].

First, we considered how, for a fixed number of pro-
cessors N, = P x (), performance depends on the
configuration of the processor template. Some typi-
cal results are presented in Table 1 for a fixed number
of processors. In the test, the block size is fixed at
5 x 5 elements. It may be seen that the template con-
figuration does have some effect on performance. The
performance difference is between 19 and 24 %. For
rectangular templates with different aspect ratios, the
algorithm prefers those with small ¢ to those with
small P. On the Delta, communication speed along
vertical links seems faster than along horizontal links.

Figures 12 and 13 show the performance of the rou-
tines on 15 x 16 (GCD = 1, i.e., P and Q are rela-
tively prime), and 16 x 16 (P = @ = GCD = 18)
templates, respectively. In all cases the block size is

4800 6000 7200
Matrix Size, M

T T T
0 1200 2400 3600

Figure 12: Performance comparison of A - B and
AT . BT on 15 x 16 template. (P = 15,Q = 16,
and GCD =1). C < AT . BT is implemented in two
steps, T < B - A, and then C < T7T.

0.0

1 I H
0 1600 3200 4800 6400 8000

Matrix Size, M
Figure 13: Performance comparison of A -B and AT .
B7 on 16 x 16 template. (P = Q = GCD = 16).

fixed at 5 x 5 elements. The solid and the dashed lines
show the performance of AT . BT and A - B, respec-
tively. The difference of the two lines shows the loss
of performance due to matrix transposition.

The transposed multiplication routine shows good
performance relative to matrix multiplication. The
loss of performance due to the matrix transpose rou-
tine is about 2 or 3 %. The transpose routine has

excellent performance if P and @ are relatively prime.
In other cases (GCD > 2), network congestion may
degrade the performance of the routine.

Table 2 shows how the block size affects the perfor-
mance of the algorithms. It includes three cases of the
block size, two extreme cases — the smallest and largest

P x @ Matrix Size Block Size Time
1 x 1 1.280

12x 16 4800 x4800 5 x 5 0.893
100 x 100 0.882

1 x 1 1.484

14x 16 5600x5600 5 x 5 1.193
50 x 50 1.161

1 x 1 1.740

15 x 16 6000 x 6000 5 x 5 1.437
25x25 1.426

1 x 1 1.967

16 x16 6400 x6400 5 x 5 1.967
400 x 400 1.967

Table 2: Dependence of performance on block size.

Px @ MatrixSize A-B (%) AT.BT (%)
1x1 500 x 500 36.70(100.0) 35.04(100.0)
12x 16 6720 x 6720 32.09 (87.4) 31.64 (90.3)
14 x 16 6720 x 6720 32.52 (88.6) 32.11 (91.6)
15x 16 7200 x 7200 32.78 (89.3) 32.43 (92.6)
16 x 16 8000 x 8000 31.22 (85.1) 30.38 (86.7)

Table 3: Performance per node in Mflops.

Block

size is fixed to 5 x 5 elements. 1 x 1 template gives
performance of assembly-coded matrix multiplication.
Numbers in parentheses represent efficiency compared
with the performance on 1 processor.

possible block sizes — and 5 x 5 block of elements. If
P = @, processors directly copy all blocks at once, so
block size does not affect the performance. For the
case of the smallest block size {1 x 1 element) when
P # @, processors make a copy element by element,
so it takes a little more time to make a copy. The
routines with the smallest block sizes are slower than
those with the largest possible block sizes by between
15% and 31%. This difference is negligible, compared
with the total elapsed time of the matrix multiplica-
tion.

Performance per node is shown in Table 3. The 1x1
template gives the performance of the assembly-coded
level 3 BLAS matrix multiplication routine for the two
cases A - B and AT - BT. Processors have about 85%
efficiency for A-B, and 87% for AT -BT if P = Q = 16.
The routines perform better on templates for which
P # @. Processors achieve about 89%, and 93% of
efficiency for each case if P and (Q are relatively prime.

5 Conclusions and Remarks

We have presented parallel matrix transpose -algo-
rithms based on the block scattered decomposition.
The algorithms have good performance for arbitrary
processor configurations on the Intel Delta computer.

If P and @ are relatively prime, the transpose rou-
tine involves complete exchange communication on a
two-dimensional template. We have approached this
complicated problem with a direct point-to-point com-
munication scheme (see Section 2). When P and @) are
not relatively prime (GCD > 1), the processors’ op-
erations are overlapped over different groups, so that
only LCM/GCD communications are required.

In our Fortran implementation, we assume that the
first dimension of the matrix may be different from
the number of rows of the matrix in a processor. Even
when P = (), the processor needs to copy blocks of A
to a communication buffer before sending, and copy
the received buffer to blocks of C after receiving.

The parallel matrix transpose algorithms have been
combined with matrix multiplication routines. The
integrated routines comprise a general-purpose ma-
trix multiplication package, called PUMMA [5], for
MIMD message-passing computers. The package has
good performance for a wide range of decomposition
parameters, that is, its performance depends weakly
on processor configuration and block size.

The PUMMA package is currently available only for
double precision real data, but will be implemented in
the near future for other data types, i.e., single preci-
sion real and complex, and double precision complex.
To obtain a copy of the software and a description of
how to use it, send the message “send pumma from
misc” to netlibQornl.gov.

Acknowledgments

The authors would like to thank Eduardo
D’Azevedo at ORNL for his helpful suggestions to im-
prove the quality of the paper. This research was per-
formed in part using the Intel Touchstone Delta Sys-
tem operated by the California Institute of Technology
on behalf of the Concurrent Supercomputing Consor-
tium. Access to this facility was provided through the
Center for Research on Parallel Computing.

References

[1] N. G. Azari, A. W. Bojanczyk, and S.-Y. Lee, Syn-
chronous and Asynchronous Algorithms for Matriz
Transposition on MCAP, SPIE Vol. 975, Advanced

Algorithms and Architecture for Signal Processing
111, pp.277-288, 1988.

[2] S. H. Bokhari and H. Berryman, Complete Ez-
change on a Clircuit Switched Mesh, Proceedings
of the 1992 Scalable High Performance Comput-
ing Conference, IEEE Press, pp.300-306, 1992.

[3] J. Choi, J. J. Dongarra, R. Pozo, and D. W.
Walker, ScaLAPACK: A Scalable Linear Alge-
bra Library for Distributed Memory Concurrent
Computers, Proceedings of Fourth Symposium
on the Frontiers of Massively Parallel Computa-
tion (McLean, Virginia), IEEE Computer Society
Press, Los Alamitos, California, October 19-21,
pp.120-127, 1992.

[4] J. Choi, J. J. Dongarra, and D. W. Walker,
The Design of Scalable Software Libraries for Dis-
tributed Memory Concurrent Computers, Proceed-
ings of Environment and Tools for Parallel Scien-
tific Computing Workshop, (Saint Hilaire du Tou-
vet, France), Elsevier Science Publishers, Septem-
ber 7-8, pp.3-15, 1992.

[5] J. Choi, J. J. Dongarra, and D. W. Walker,
PUMMA : Parallel Universal Matriz Multiplica-
tion Algerithms on Distributed Memory Concur-
rent Computers, Technical Report TM-12252, Oak
Ridge National Laboratory, Mathematical Sci-
ences Section, August, 1993.

[6] J. J. Dongarra, R. van de Geijn, and D. Walker,
A look at Scalable Linear Algebra Libraries, Pro-
ceedings of the 1992 Scalable High Performance
Computing Conference, IEEE Press, pp.372-379,
1992.

[7] 3. O. Eklundh, A Fast Computer Method for Ma-
triz Transposing, IEEE Transactions on Comput-
ers, Volume 21, pp.801-803, 1972.

[8] Intel Corporation, Touchstone Delta Fortran Calls
Reference Manual, April, 1991.

[9] S. L. Johnsson and C.-T. Ho, Algorithms for
Matriz Transposition on Boolean N-cube Config-
ured Ensemble Architecture, SIAM J. Matrix Anal.
Appl, Volume 9, No 3, pp.419-454, July, 1988.

[10] D. P. O’Leary, Systolic Arrays for Matriz Trans-
pose and Other Reorderings, IEEE Transactions
on Computers, Volume 36, pp.117-122, January,
1987.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, -or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opintons of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.

