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Executive Summary 
Location-based services (LBS) use real-time locating systems (RTLS) that identify and track the 
location of objects and people using wireless technology. In the case of Wi-Fi LBS, access points 
(APs) receive signals transmitted by Wi-Fi-enabled devices like mobile phones, tablets, and 
laptops, constantly seeking Wi-Fi networks that are in range. The signal strength of the device 
received by the Wi-Fi AP can be used as a measure of proximity and, using multiple APs, the 
location of the device can be determined via trilateration. 
This project investigated the use of Wi-Fi LBS in commercial buildings to determine the energy 
and non-energy benefits of integrating building management systems with occupant location 
tracking technology. The following were the goals and objectives of this project: 

• Develop a non-proprietary, open-source algorithm to perform trilateration to predict the 
location of Wi-Fi-enabled devices. 

• Test and validate the location detection algorithm (LDA) to provide occupancy data. 
• Develop and test the communication protocol to deliver occupancy data to an open-

source platform for distributed sensing and control such as VOLTTRON. 
• Demonstrate the LDA in the field at commercial building settings. 
• Determine usability requirements to implement a cost-effective Wi-Fi RTLS in 

commercial building operations. 
• Recommend strategies and programs to promote market acceptance and penetration. 

Four field sites were recruited to evaluate the performance of the LDA for occupancy sensing. 
Three commercial office sites and one hotel agreed to participate in the field demonstrations: 

1. The Administration Building located at the Minnesota State Capitol Complex in Saint 
Paul, Minnesota 

2. ConEd’s Research and Development (R&D) offices located in their Manhattan 
headquarters in New York City  

3. The second-floor offices of Slipstream in their building located in Madison, Wisconsin  
4. The Sinclair, Autograph Collection hotel located in Fort Worth, Texas 

This project found that using Wi-Fi data collected from mobile Wi-Fi-enabled devices could 
provide real-time occupancy data. The open source LDA software application can provide 
sufficient accuracy of the headcounts to inform a rule-based approach to occupancy-measured 
HVAC operation including demand-controlled ventilation, as opposed to schedules assuming full 
occupancy. Monitored occupancy levels rarely exceeded 50% of maximum occupancy of the 
spaces and typically averaged about 20%. Calculated energy savings using occupancy-based 
supply fan operation for 25%, 50%, and 75% occupancy levels range from 22% to 8% for 
electrical energy use and 12% to 4% for heating savings. Negligible cooling savings were 
found (less than 1%). To estimate the total energy savings for all commercial buildings in the 
U.S., a weighted average of square footage was used by principal building activity using the 
electricity consumption rates from CBECS. The median energy savings from ventilation controls 
was 16.7 TWh (0.06 quads) annually and 6.9 million metric tons of CO2 emissions avoided. If 
the mobile device RSSI and MAC address data collected by the wireless network is available for 
location analytics, no further investment in occupancy sensing equipment is needed. This would 
then be a software-based retrofit that would be a cost-effective approach to building occupancy 
sensing and occupancy-monitored HVAC operation.   
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Introduction 
Location-based services (LBS) have been used successfully in a variety of applications in office, 
healthcare, retail, and hospitality buildings to track and in some cases interact with individuals. 
These services include wayfinding, asset tracking, marketing, information, and push 
notifications. Specific applications include: 

• Wayfinding in shopping malls1 and in the office,2 
• Asset tracking applications in manufacturing,3 retail,4 and healthcare5  
• Proximity marketing in stores where advertising content such as coupons or offers is 

provided wirelessly through apps to shoppers when they approach specific items and 
brands in the aisle6 

• Information provided in self-guided museum tours7,8 
• Location-based push notifications9 

LBSs use real-time locating systems (RTLS) that identify and track the location of objects and 
people through the use of wireless technology. Within the defined space, fixed reference points, 
also sometimes called beacons, readers, or access points (APs), receive signals transmitted by the 
devices or tags that the object or person is carrying. The signal strength of the device/tag to a 
specific reference point is a measure of proximity and, using multiple beacons, the location of 
the tag can be determined through trilateration. 

There are numerous RTLS technologies that can be used to perform LBS. RTLS technologies 
include Bluetooth/Bluetooth low energy (BLE) beacons, Wi-Fi, Li-Fi (visible light-based 

 
1 Mall of America October 2017. “Mall of America® mobile app integrates live navigation.” Mall of America [web 
site]. https://mallofamerica.com/press/press-releases/OCTOBER-23-2017 (accessed January 7, 2020). 
2 S. Castellanos. January 2020. “Waze for Work? Navigation Apps Come to Mazelike Offices.” Wall Street Journal 
[web site]. https://www.wsj.com/articles/waze-for-work-navigation-apps-come-to-the-office-11578398400, 
(accessed January 7, 2020). 
3 A. Reddy. April 2015. “The Growing Use of RTLS by Manufacturers.” RFID Journal [web site]. 
https://www.rfidjournal.com/articles/view?12958, (accessed January 7, 2020). 
4 C. Swedberg. 2019. “Concept Store Delivers Product Content via NFC, RFID.” RFID Journal [web site]. 
https://www.rfidjournal.com/articles/view?19118/ (accessed January 7, 2020). 
5 S. Yoo, S. Kim, E. Kim, E. Jung, K.H. Lee, and H. Hwang. 2018. “Real-time location system-based asset tracking 
in the healthcare field: lessons learned from a feasibility study.” BMC Medical Informatics and Decision Making, 
18, 80. https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-018-0656-0, (accessed January 
7, 2020). 
6 S. Mittal. June 2019. “Proximity Marketing Examples: 28 Retail Companies Nailing it with their Campaigns.” 
beaconstac blog [web blog]. https://blog.beaconstac.com/2016/02/25-retailers-nailing-it-with-their-proximity-
marketing-campaigns/ (accessed December 9, 2019). 
7 R. Chun. May 2016. “The SFMOMA's New App Will Forever Change How You Enjoy Museums.” Wired 
[website]. https://www.wired.com/2016/05/sfmoma-audio-tour-app/ (accessed December 9, 2019). 
8 S. Pau. April 2017. “Audio That Moves You: Experiments With Location-Aware Storytelling In The SFMOMA 
App.” MW17: Museums and the Web 2017 [website]. https://mw17.mwconf.org/paper/audio-that-moves-you-
experiments-with-location-aware-storytelling-in-the-sfmoma-app/, (accessed December 9, 2019). 
9 K. MacFarlane. April 2019. “18 Inspiring Location-based Push Notification Examples & Ideas.” Taplytics blog 
[web blog]. https://taplytics.com/blog/location-based-push-notification-examples-ideas/ (accessed January 16, 
2020). 
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communications), ultrawide-band (UWB), radio frequency (RF), infrared (IR), and 
electromagnetic position tracking.10, 11 Each of these technologies has their own strengths and 
weaknesses and are sometimes paired together to create a complete system. Wi-Fi LBS was the 
chosen RTLS technology for this project due to its ubiquitous installation in various building 
types and because most occupants already carry at least one Wi-Fi enabled device, thereby 
maximizing the potential sample size for this study. The following sections detail the additional 
benefits of Wi-Fi LBS.  

Wi-Fi RTLS 
Wi-Fi-enabled devices can serve as a “tag” to provide location since they constantly seek Wi-Fi 
networks that are in range. Wi-Fi APs that are in range receive the media access control (MAC) 
address and received signal strength indicator (RSSI) of each device whether that device is 
logged on to the Wi-Fi network or not (i.e., associated with the network). The MAC address is a 
hardware identification number that uniquely identifies that specific device on a network. For 
privacy, some mobile devices transmit randomized MAC addresses over time to anonymize the 
device. Randomized MAC addresses make it impossible to identify which individual is carrying 
the device, but for the purposes of this study all data about individuals will be anonymized so 
randomized MAC addresses will have no impact. The RSSI is a measure of the power level of 
the signal that is being received by the AP. For the purposes of RTLS, information already 
gathered by the existing Wi-Fi APs can be used. Once a device is within range of an AP, device 
presence and identity are immediately sensed, and location can be determined from the RSSI via 
trilateration. Occupant activity might also be inferred by the space where a Wi-Fi-enabled mobile 
device is located and/or by the movement of that mobile device around the space. 
Wi-Fi RTLS are well suited for occupant sensing in commercial buildings because: 

1. Most of the occupants will be carrying a mobile device on them or within their close 
proximity. For instance, in higher education a factor of 2–3 devices/person could be used 
to account for a student’s cell phone, laptop, and tablet/other devices.12 

2. Tracking does not require the individual to carry additional hardware (like a badge for 
RFID beacons) or to have a native app loaded on their device and connected to the 
network (like Bluetooth beacons). 

3. Wi-Fi access points engage all Wi-Fi-enabled smartphone users (iPhone or Android), 
whether they are logged onto the Wi-Fi network or not. 

Minimal additional infrastructure is required for indoor positioning since existing Wi-Fi hotspots 
(installed for the communications needs of mobile devices and computer users) provide the 
coverage that can be used for the location tracking. Increased resolution may be possible by 

 
10 Zhang, et al. 2017. “Indoor positioning tracking with magnetic field and improved particle filter.” International 
Journal of Distributed Sensor Networks. 13(11). doi:10.1177/1550147717741835. 
https://journals.sagepub.com/doi/full/10.1177/1550147717741835 
11 Trinh, et al. 2022. “Two-Dimensional Position Tracking Using Gradient Magnetic Fields.” Sensors (Basel). 
22(14):5459. doi: 10.3390/s22145459. PMID: 35891131; PMCID: PMC9321341. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321341/ 
12 B. Kult, personal communication, 2019. 
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increasing the density of Wi-Fi access points, but a usable tracking resolution can be achieved 
using the access points already installed in an existing space. 

Wi-Fi RTLS provides the following capabilities that make it a good candidate for occupant 
sensing. 

1. There is virtually no latency between the time when a new device has entered the room 
and when an updated occupancy count is calculated (as opposed to CO2 sensors). The 
frequency of the count is based on the time interval chosen to rescan the AP data. 

2. Failure rates that occur with motion sensing are avoided when the device is at rest. 
3. Wi-Fi LBS can map mobile devices across rooms and other areas of interest and trigger 

customized operating conditions. If individuals choose to opt in, Wi-Fi LBS can identify 
them and further customize their experience.  

Wi-Fi RTLS has a limited resolution for sensing the occupant’s position. Scholarly research 
generally agrees that a resolution of ±10 feet is achievable indoors. This resolution is acceptable 
when occupants reside well within a single area of interest, but presents a challenge when 
occupants reside near the edge of two or more areas, as the Wi-Fi RTLS cannot confidently 
resolve the appropriate area of the occupant. Nonetheless, this level of resolution is well matched 
to the area (500 to 3,000 square feet) typically served by a single zone in a building HVAC 
system. 

Wi-Fi Location Analytics and Occupancy Sensing 
There are commercially available Wi-Fi platforms that provide proprietary Wi-Fi location 
analytics. The two main manufacturers are Cisco with their Meraki Location Analytics13 and 
Connected Mobile Experiences (Cisco CMX) Analytics14 and HP with their Aruba Analytics and 
Location Engine (ALE).15 The Cisco and HP platforms allow their location data to be shared 
with third-parties through application programming interfaces (APIs). This data can then be 
analyzed and made available for use by building automation systems (BASs) to adjust 
occupancy-based temperature and ventilation based on the predicted locations of mobile devices 
detected by the wireless platform. 

The Canadian company Sensible Building Science (SBS)16 employs Wi-Fi LBS using the Cisco 
CMX wireless platform. This system includes applications of the latest RTLS methods to 
provide energy efficient building operation. The SBS Bridge software receives real-time Wi-Fi 
data using the location analytics provided by the Cisco CMX network platform. The collected 
Wi-Fi data from the CMX-provided APIs are: 

• The timestamp of the recording 
• The connected device’s MAC address  

 
13 Cisco Meraki, “Location Analytics” webpage. https://meraki.cisco.com/solutions/location-analytics 
14 Cisco Meraki, Cisco CMX Configuration Guide, Release 10.6.0 and Later, Chapter: The Cisco CMX Analytics 
Service. January 31, 2019. https://www.cisco.com/c/en/us/td/docs/wireless/mse/10-
6/cmx_config/b_cg_cmx106/the_cisco_cmx_analytics_service.html 
15 HPE Aruba Networking, “Location Analytics” webpage. https://www.arubanetworks.com/products/location-
services/analytics/ale/ 
16 Sensible Building Science homepage. https://sensiblebuildingscience.com/ 
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• The RSSI of the signal from the connected device 
• The MAC address of the Wi-Fi AP connected to the device  

To ensure privacy, all occupancy information is anonymized. Ideally the APs are located within 
the space to optimize location while still providing good Wi-Fi coverage.  

The only information needed for the BAS is occupant count in a defined space or zone. The 
Bridge software then sends the zone occupancy data to a gateway (produced by Chipkin 
Automation Systems) that communicates to the BAS via BACnet to control HVAC and lighting. 
This approach has been integrated in buildings with Johnson Controls, Siemens, and Delta 
Controls systems. Figure 1 shows how the data flows from the Wi-Fi APs to the BAS controls. 

Figure 1. SBS’s location analytics data flow from Wi-Fi detection to BAS. 

 
Device location and count are updated every five minutes to provide occupant presence, count, 
and location information within the building and defined HVAC zones. Figure 2 shows an 
example of a dashboard screen that the SBS system provides. 

Figure 2. SBS dashboard of Wi-Fi occupancy for automated HVAC controls 
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Originally tested in buildings on the University of British Columbia campus,17 SBS is piloting 
their environmental control systems in buildings in Canada, the United Kingdom, and the United 
States. As of 2017, SBS has used their approach in over one million square feet of commercial 
and institutional space, serving over 100,000 occupants in real-time. Preliminary results 
indicated an average annual savings of 5% in whole-building energy use and have found that 
buildings with variable occupancy and demand control ventilation (DCV) offer the greatest 
potential for savings. For example, in lecture halls with periodic classes, SBS were able to reduce 
fan runtime by 20%–40%. SBS is currently working on bridge solutions for the Cisco Meraki 
and HP Aruba ALE network platforms. 

Scheib et al. (2022) used Cisco’s DNA Spaces cloud-based location analytics to create a 
dashboard to monitor occupancy in individual buildings at New York University. Their wireless-
network-based occupancy data portal was used to adjust building schedules and reduce hours of 
occupied operation.18 Integrating the system with their BMS was beyond the scope of their 
project but they noted that issues such as cybersecurity, data validation, and algorithm reliability 
would need to be addressed. 

Project Goals and Objectives 
This DOE-funded project sought to investigate, and field validate the use of AP-based Wi-Fi 
location-based services (LBS) in commercial buildings to determine the energy and non-energy 
benefits of integrating building management systems with occupant location tracking 
technology. The following are the goals and objectives of this project: 

• Develop a non-proprietary, open-source algorithm to perform trilateration to predict the 
location of Wi-Fi-enabled devices. 

• Test and validate the location detection algorithm (LDA) to provide occupancy data. 
• Develop and test the communication protocol to deliver occupancy data to an open 

source platform for distributed sensing and control such as VOLTTRON. 
• Demonstrate the LDA in the field at commercial building settings. 
• Determine usability requirements to implement a cost-effective Wi-Fi RTLS in 

commercial building operations. 
• Recommend strategies and programs to promote market acceptance and penetration. 

The remaining sections of this report detail the results of the performed tasks. 
  

 
17 L. Corpuz-Bosshart. March 2017. “Innovative software converts Wi-Fi data into energy savings,” University of 
British Columbia News. https://news.ubc.ca/2017/03/30/innovative-software-converts-wi-fi-data-into-energy-
savings/ 
18 C. Scheib, S. Scudere-Weiss, and D. Reagan. 2022. “Existing Wireless Infrastructure Can Be a Low-Cost Path to 
Occupancy-Based Commercial Building Control.” In Proceedings of the 2020 ACEEE Summer Study on Energy 
Efficiency in Buildings 3:283–297. Washington, DC: ACEEE. 
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Development of the Wi-Fi Location Detection 
Algorithm (LDA) 
The location detection algorithm (LDA) that was developed for the project makes use of the Wi-
Fi trilateration method. This method is able to calculate the distance between a Wi-Fi enabled 
device and a Wi-Fi access point (AP) based on the strength of the received signal. A more 
powerful received signal will be closer to the AP and a fainter signal will be further away. The 
measure of the signal power level is the received signal strength indicator (RSSI) in dBm. When 
using three or more reference points, the location of the device can be pinpointed by trilateration. 

Trilateration 
Within the defined space, Wi-Fi enabled devices that the person is carrying transmit signals 
searching for Wi-Fi networks to join. The RSSI of the Wi-Fi device to a specific wireless AP 
reference point is a measure of proximity and, using multiple APs, the location of the Wi-Fi 
device can be determined through trilateration. In Figure 3 below, the three reference points 
denoted by R1, R2, and R3 each read a signal (s1, s2, and s3, respectively) from the Wi-Fi device. 
The location of the Wi-Fi device or person P is where the radial signal strengths s1, s2, and s3 
intersect.  

Figure 3. Determining Location via Trilateration 

 

The distance from each AP is calculated from the RSSI based on the Hato-Okumara model. 

Hato-Okumara Model 
The Hato-Okumara model is a power signal-based position method defined by the equation:19 

log𝑑𝑑 = 1
10𝑛𝑛

(𝑃𝑃𝑇𝑇𝑇𝑇 − 𝑃𝑃𝑅𝑅𝑅𝑅 + 𝐺𝐺𝑇𝑇𝑇𝑇 + 𝐺𝐺𝑅𝑅𝑅𝑅 − 𝑋𝑋𝑎𝑎 + 20 log 𝜆𝜆 − 20 log  (4𝜆𝜆))    (1) 

where: 

𝑑𝑑 is the estimated distance between the transmitter (Wi-Fi router or access point) and the 
receiver (Wi-Fi-enabled device).  

 
19 A. Bose and C.H. Foh. 2007. “A practical path loss model for indoor Wi-Fi positioning enhancement.” 6th 
International Conference on Information, Communications and Signal Processing, ICICS. 
10.1109/ICICS.2007.4449717. 
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𝑃𝑃𝑇𝑇𝑇𝑇 (dBm) is the transmitted power level. For the OpenMesh APs used in this study, this is 
13 dBm. 

𝑃𝑃𝑅𝑅𝑅𝑅 (dBm) is the power level measured at the receiver or the measured RSSI. 
𝐺𝐺𝑇𝑇𝑇𝑇 (dBi) is the antenna gain of the transmitter. For the OpenMesh APs, this is 2.5 dBi.  
𝐺𝐺𝑅𝑅𝑅𝑅 (dBi) is the antenna gain of the receiver (2.5 dBi). 
λ (m) denotes wavelength of the signal and can be estimated to be 0.12m for the middle 

frequency of the 802.11b channel (2442 MHz). 
𝑋𝑋𝑎𝑎 is a normal random variable with a standard deviation of a and is in the range of 3 dB to 

20 dB, depending on the building construction and any obstacles that will reflect, diffract, 
or scatter the signal (standard deviation = ±5 dBm). 

𝑛𝑛 is a measure of the influence of obstacles like partitions, walls, and doors. For an 
unobstructed line-of-sight (LOS) path between the transmitter and receiver, 𝑛𝑛 = 2 but for 
obstructed paths, n should be between 4 and 5. 

Grouping all the defined constants into one term A, equation (1) becomes: 

log𝑑𝑑 =  1
10𝑛𝑛

(𝐴𝐴 − 𝑃𝑃𝑅𝑅𝑅𝑅)        (2) 

where A can be defined as the reference signal strength received in dBm: 

𝐴𝐴 =  𝑃𝑃𝑇𝑇𝑇𝑇 +  𝐺𝐺𝑇𝑇𝑇𝑇 +  𝐺𝐺𝑅𝑅𝑅𝑅 −  𝑋𝑋𝑎𝑎 + 20 log 𝜆𝜆 − 20 log(4𝜆𝜆)               (3) 

The distance d is therefore determined by: 

𝑑𝑑 =  10
�𝐴𝐴− 𝑃𝑃𝑅𝑅𝑅𝑅�

10𝑛𝑛          (4) 
Bose and Foh (2007) suggest that a multi-model approach be used to improve accuracy. From 
their empirical data, they split the signal propagation model into two parts based on proximity to 
the access point. At closer ranges (< 5m) they suggest a higher value for the n factor with n = 5, 
and for distances greater than 5m, n should be set to 4. In the lab environment, this distance 
corresponds to -49 dBm. So, for RSSI > -49 dBm, n = 5 and for RSSI < -49 dBm, n = 4. They 
also suggest that a multi-model approach could be used for differences between a LOS and non-
LOS environment. 

Location Detection Algorithm (LDA) 
An application was coded in JavaScript to analyze the measured signal data (RSSI and MAC 
address) collected from APs to: 

1. Identify Wi-Fi-enabled laptops and mobile devices in a space. 
2. Determine the location of each device. 
3. Correlate the device(s) to an occupant. 
4. Assign the occupant’s location to a zone in the space. 
5. Determine the headcount for the zone. 

The occupancy information from the algorithm (headcount per zone) can be used by building 
automation systems (BASs) to operate the building’s lighting and mechanical systems. The LDA 
was developed using OpenMesh Wi-Fi APs.  
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Using the MAC Address to Identify Devices 
In addition to the RSSI, the AP receives the MAC address of the Wi-Fi-enabled device sending 
the signal. The MAC address is a unique device identifier primarily assigned by the device’s 
manufacturer. The MAC address contains an OUI (Organization User Identifier) assigned to the 
manufacturer by IEEE that can be used to exclude Wi-Fi devices that will not be of value to 
occupancy sensing such as manufacturers of Wi-Fi enabled office equipment.  

Determining Device Location 
The application performs trilateration using the RSSI data measured from three or more APs and 
visually displays the results of the calculations within the floor plan of the space where the APs 
reside. Figure 4 shows a sample visualization from simulated data in a space with four APs 
locating one Wi-Fi device. 

Figure 4. Test visualization of trilateration using four APs 

 

The green squares show the location of the APs and the blue rings around each AP show the 
calculated radial distance the target device (blue circle) is from the respective AP, the distances 
calculated from the measured RSSIs. The thickness of the ring shows the probability distribution 
of the signal’s origin, which in this case is the expected measurement error, calculated as ± the 
standard deviation of RSSI readings over the specified time-period of the measurements (one 
hour in our tests). With four APs to perform the trilateration, the overlap of the four rings gives 
the likely locations, and where all the rings intersect is the likeliest location of the target. The 
value of n was the same for each AP and the space was simulated with unobstructed LOSs for 
each AP. 

The next step in the development was to test the tool using actual measured data from four APs 
located in an occupied space, in this case, two rooms in the apartment of the lead developer from 
Design.Garden. The measured data was uploaded from each AP to a remote Design.Garden 
server and the application accessed this data. To improve the location prediction, the algorithm 
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scaled the value of n for each AP based on signal strength and approximate location based on the 
location of the reference AP. A minimum of five signals received from the Wi-Fi device was 
found to provide good accuracy to calculate location. In Figure 5, the intersection of the four 
rings is shown by the most highly saturated (darkest) blue area and the location of the Wi-Fi 
device is the blue circle located at the center of that area. 

Figure 5. Trilateration visualization with autotuned scaling variable n 

 

In order to calculate the area of overlap, the algorithm uses the visualization tool that displays the 
trilateration calculations to find the areas of overlap and determine the area of greatest overlap. 
An array is created that assigns colors to individual pixels to visualize the measured signal 
strengths to each AP (the blue rings). Pixels where the rings overlap are assigned progressively 
greater saturation levels as the number of rings intersect for those pixels. From the assigned 
saturation levels of the pixels, the areas of overlap can be calculated and arrays of overlaps 
determined. The algorithm finds the array with the largest number of overlaps, then of those 
arrays, identifies the array with the largest area which is determined to be the location of the Wi-
Fi device. This empirical method is basically a computational approach equivalent to visually 
observing the “darkest” pixels on the screen showing the trilateration results on a two-
dimensional plane, as shown in Figure 3. Since one pixel represents about a centimeter in the 
visual tool, the sensing region will be defined by the expected distance resolution of the location 
algorithm rather than by pixel. For instance, a region of 64x64 pixels is about 2–3 feet, so 
filtering by swaths is more efficient and improves the algorithm’s speed. 

Filtering Devices 
Filtering Distant Devices 
The APs receive signals from Wi-Fi devices not only within the space of interest but also outside 
the space in adjacent rooms or outside of the building. Rules were developed to filter out 
extraneous signals both within and outside of the space. As described above, the MAC address 
can be used to identify signals from specific types of devices. Additional filters can be applied 
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based on proximity to the APs. Two rules were created to identify the devices to track within the 
defined space. The algorithm will only track signals that (1) are received by all the APs in the 
space and (2) pass a defined signal strength threshold. Testing found that location accuracy 
increased with the number of signals received from the Wi-Fi device, with a minimum of five 
readings to provide good accuracy. With these filters, the algorithm could be tested in the field to 
determine its ability to accurately calculate occupant count within a zone. 

Filtering Static Devices 
Given that fixed devices remain stationary, one logical approach to identify them is by 
determining their immobility. In our research, we monitored the test sites continuously. Devices 
that remained active and immobile throughout the night were deemed to be fixed. This assumes 
that mobile devices, like smartphones or laptops, would either be turned off, moved, or would 
exhibit some change in signal strength due to variations in their environmental surroundings (like 
being kept inside a bag). 

Consolidating Randomized MAC Addresses 
Traditionally, a device will broadcast its MAC address in probe requests when scanning for Wi-
Fi networks; however, to protect user privacy, many modern devices now randomize their MAC 
addresses. Given the low probability of randomized MAC addresses from two separate devices 
being equal, we can still use randomized MAC addresses to count devices in the space. 
 
An additional complication is that devices send probe requests at irregular intervals, some more 
rapidly than others, so device counts must be taken over a window of time. Consequently, a 
single device that sends multiple probe requests within a window will be counted as multiple 
devices if each probe request contains a unique, randomized MAC address. 
 
Therefore, it is necessary in this experiment to develop a method to identify and consolidate 
randomized MAC addresses of a single device. By using the estimated location of devices and a 
defined consolidation radius, we group together spatially overlapping randomized MAC 
addresses into a single device to create a 'pseudo person' for analytics and display.  
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Testing and Validation of the LDA to Provide 
Occupancy Data 
Three sites were used to perform in-situ testing and validation. Because of the pandemic, these 
sites had limited occupancy, allowing us the flexibility to place known and identifiable devices 
in the spaces to simulate occupants and target individuals who were present in the spaces. 
Occupant presence, counts, and location were verified by self-reporting, visual observation, and 
digital video footage from the temporary deployment of home security cameras.20 The three sites 
were the Design.Garden offices, the CEE Lending Center and Admin Office, and the Parallel 
Technologies’ Innovation Lab. 

Laboratory Testing 
The laboratory testing was performed at the Design.Garden offices where seven APs (OpenMesh 
OM2P) were installed and multiple Wi-Fi enabled devices were placed in stationary locations: 
initially three Google Home Smart Speakers and later an additional single Android phone. The 
LDA was developed to work with any APs that can provide the RSSI and MAC addresses they 
have received from probe requests of Wi-Fi enabled devices in the space. For development 
purposes, OpenMesh APs were used because of Design.Garden’s familiarity with these devices. 
Figure 6 shows the predicted device locations of the Google Home Smart Speakers mapped onto 
a blueprint of the space and visualized by the LDA. The green squares show the locations of the 
APs, the small circles show the actual locations of each Wi-Fi device, and the larger circles show 
the locations of the devices predicted by the algorithm. The lines connecting each set of circles 
show the distance errors of the calculations. Over five days, we collected data for this experiment 
as follows: The recurring probe requests of the Wi-Fi devices were received by our seven APs, 
which forwarded the probe requests to the ingest interface of our software, which extracted and 
stored the timestamp and RSSI.  

Figure 6. Locations of APs and Wi-Fi devices in Design.Garden offices space 

 

 
20 Blink for Home homepage. https://blinkforhome.com 
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Over five days, we collected 256,286 probe requests. These probe requests were not evenly 
distributed across devices and time; nonetheless, each AP collected at a minimum one probe 
request per 15 minutes from each device. 

Testing the Hato-Okumara Model 
Using this data, we first attempted to recreate the experiment outlined in Bose and Foh (2007), 
using their RSSI-to-Distance transformation adjusted for our equipment and with an arbitrarily 
chosen Xa of 5 dBM. The transformation operates on individual RSSIs; however, for our 
experiment we averaged the RSSI over a sampling period to mitigate noise. Using a sampling 
period of four hours, we produced transformations every 15 minutes over five days, giving us an 
array of distance guesses per sensor and device through time. Comparing our distance estimates 
to actual values showed an average error of 7.7 feet. Bose and Foh (2007) report an average error 
of 7.5 feet, hence we feel we have successfully recreated their experiment.  

Table 1. Average error (feet) of distance guesses by sensor and device 

Sensor Device 1 Device 2 Device 3 Device 4 Average 
1 17.3 5.1 5.9 7.8 9.0 
2 3.4 18.2 16.9 0.8 9.8 
3 3.4 12.3 16.2 7.4 9.8 
4 11.2 3.2 0.9 5.5 5.2 
5 16.2 5.7 3.3 13.8 9.8 
6 9.8 5.1 3.3 4.5 5.7 
7 4.8 2.8 6.7 3.3 4.4 

Average 9.4 7.5 7.6 6.2 7.7 

Testing Trilateration 
Next, we used our trilateration algorithm to transform the distance guesses into two-dimensional 
location guesses per device through time. Comparing our location guesses to actual values 
showed an average error of 10 feet. Table 2 lists the error in feet of our location guess per device 
per day. 

Table 2. Average error (feet) of location guess per device per day of the experiment 

Day Device 1 Device 2 Device 3 Device 4 Average 
5 16.3 6.8 10.1 8.2 10.4 
4 16.9 6.1 10 6.9 10.0 
3 17 6.3 7.9 8.6 10.0 
2 16.7 6.8 7.7 8.4 9.9 
1 16.4 7.2 7.8 7.1 9.6 

Average 16.66 6.64 8.7 7.84 10.0 
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These initial results confirm the viability of Wi-Fi LBS, and they nearly meet our stated goal of a 
ten feet maximum error.  

Determining the Maximum Error 
We based our stated goal of ten feet on results found in the literature regarding the one-
dimensional RSSI-to-distance transformation; however, through experimentation we discovered 
that the error in two-dimensional trilateration varied significantly with placement of devices and 
sensors. This effect is inherent to trilateration and profound enough that we could conceivably 
arrange the devices and sensors so that the error would never exceed 10 feet, even if given 
incorrect RSSI readings.  

Therefore, meeting our goal of ten feet is not enough to prove that we have successfully 
implemented a Wi-Fi LBS. Instead, to prove success we needed to show that we are significantly 
outperforming a Wi-Fi LBS with the same placement of devices and sensors that fails to 
correlate RSSI readings to location. We define the resulting error to be the failure threshold of a 
system given the same device and sensor placement.  

Finally, we define the confidence of a Wi-Fi LBS system to be the difference between 1 and the 
ratio of its location guess to its failure threshold, expressed as a percent. Confidence near 0% 
represents an inability to perform Wi-Fi LBS, while far less than 0% represents a calibration 
error.  

To calculate our failure threshold, we replaced the RSSI readings for Day 1 with randomly-
generated values then we reran our trilateration experiment. This system meets our definition of 
a failing Wi-Fi LBS — therefore, we can calculate our failure threshold as the difference 
between its location guesses versus actual values. Comparing our average error for Day 1 to our 
Failure Threshold gives our Wi-Fi LBS a confidence of 49%, with an improvement of 9.1 feet 
over the failure threshold.  

Table 3. The error, failure threshold, confidence, and error improvement of each device for Day 1 

 Device 1 Device 2 Device 3 Device 4 Average 

Error (feet) 16.4 7.2 7.8 7.1 9.6 

Failure Threshold 19.1 6.4 17.7 31.9 18.8 

Confidence 14% -13% 56% 78% 34% 

Error Reduction (feet) -2.7 0.8 -9.9 -24.7 -9.1 

Xa Tuning 
Having quantified our confidence in our Wi-Fi LBS, we looked for opportunities to improve our 
confidence by optimizing our use of the RSSI-to-distance transformation. Notably, the 
transformation includes a variable, Xa, to account for random path-based attenuation. We 
assumed Xa would be normally distributed around a non-zero mean per device and sensor pair, 
and that given the distance we could estimate this mean value over time. This estimated mean 
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could then be substituted for Xa in all future transformations to yield more accurate location 
guesses. 

Unfortunately, this method assumes the path between the sensor and device does not change over 
time, so it seems unsuitable for Wi-Fi LBS. However, we assumed that if we kept the sensor 
position static while moving the device throughout all reasonable locations, the resulting 
estimated mean, Xμ, could then be substituted for Xa regardless of device location.  
Therefore, we developed an algorithm to estimate Xa per sensor using three of our devices 
(Devices 1, 3, and 4) as reference points, representing a subset of all reasonable locations, then 
we reran our trilateration experiment for the fourth device, Device 2. Compared to our previous 
location guess for Device 2, we improved our error from 7.2 feet to 3.4 feet and improved our 
confidence from -13% to 47%. 

Table 4. The error, failure threshold, confidence, and error improvement of each device after Xa tuning 

 Device 1 Device 2 Device 3 Device 4 Average 

Error (feet) 9.3 3.4 6.7 13.7 8.3 

Failure Threshold 19.1 6.4 17.7 31.9 18.8 

Confidence 51% 47% 62% 57% 54% 

Error Reduction (feet) -9.8 -3.0 -11.0 -18.2 -10.5 

Reference Points 
This analysis suggests that the use of permanent fixed reference points will be useful not only for 
commissioning the RTLS but to maintain the accuracy of the Wi-Fi RTLS by providing a means 
to continuously calibrate the system. Inexpensive Wi-Fi devices can be placed within a space to 
serve as Wi-Fi beacons. A number of wireless, connected devices that typically exist in offices 
can also serve as stationary reference points, such as Wi-Fi enabled television displays in 
conference rooms, office equipment such as printers and copying machines, cameras, sensors, 
and the APs themselves. 

Placement of APs in the Space 
The algorithm also allowed us to investigate how the placement of the APs affected the accuracy 
of the device location prediction. The LDA gave us the option to select which APs would be 
used to perform the trilateration calculations. By choosing the number and locations of the APs, 
we could investigate how the relative position of the Wi-Fi devices with the APs affected the 
accuracy of the location predictions. We found that the location prediction was more accurate 
when the device was positioned within the area bound by the three or more detecting APs. If the 
device was located outside this area, the predicted location was typically a greater distance away 
from the device’s actual position. This suggests that the ideal placement for APs to provide good 
location predictions will be along the perimeter of the space being monitored. This is different 
from the typical AP placement for good Wi-Fi coverage in a space, which would place the APs 
more centrally. More central positioning of the APs also minimizes the number of APs needed to 
provide the wireless network, while a minimum of three APs is needed in a space for location 
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prediction. Placing the APs along the perimeter to provide both good Wi-Fi coverage and 
accurate location predictions would likely require additional APs to be installed than if only Wi-
Fi coverage is required. 

In-Situ Testing 
The algorithm was tested using occupancy data collected from two sites: the CEE Lending 
Center and the Parallel Technologies’ Innovation Lab. The testing performed at the 
Design.Garden office helped determine the steps needed to achieve accurate location estimates 
and occupant headcounts. The CEE Lending Center tests were performed to validate the 
algorithm for performing head counts in an office setting with some limited occupancy due to the 
pandemic. The Parallel Technologies’ test continued the validation process and allowed 
comparison of the algorithm with the location analytics performed by the Cisco Meraki system. 

CEE Lending Center and Admin Office 
The Lending Center is occupied by CEE staff who approve home improvement and energy 
efficiency loans for qualified Twin Cities residents. Loan closings also take place in the Lending 
Center. The Wi-Fi LBS approach was tested to track occupancy and flow through the space. 
Four OpenMesh APs were placed along the perimeter of the Lending Center. Data from the APs 
were uploaded to the Design.Garden database server for analysis by the LDA. Wireless battery 
powered home security cameras21 were placed within the Lending Center to create a visual 
record of occupancy in the space and to verify the calculations of the LDA. The cameras are Wi-
Fi enabled and could be used as reference points. Figure 7 shows the floor plan with the locations 
of the APs. 

Figure 7. Floor plan of the CEE Lending Center and reception area 

 

 
21 Blink Indoor Wireless Security Camera from the Amazon.com webpage. https://www.amazon.com/Blink-Indoor-
Wireless-Security-Camera/dp/B07X4BCRHB 
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Occupancy Sensing Validation  
Testing the LDA in the CEE Lending Center allowed us to determine the accuracy of the LDA to 
track motion and occupancy count compared to the information collected from the home security 
cameras. The photographic evidence also allowed us to determine the accuracy of occupant 
count based on the number and location of mobile devices (phones, tablets, and laptops) 
detected. 

Even though the pandemic greatly reduced occupancy at the CEE Lending Center, the Lending 
Center typically had one or two staff working in the office per day and there was one 
administrative staff person present at the front desk. Applicants for energy and home 
improvement loans also come to the office for closings, which take place in the small meeting 
room in the Lending Center. CEE staff who do occasionally come into the office will enter 
through the doors at the front desk and then pass to the admin offices. So, some traffic will be 
detected passing through this area. 

To improve the location prediction of the LDA, the algorithm was modified to show the 
probability distribution of the location of the signal (rather than the discrete ring that defines a 
specific estimated distance.) This is shown in Figure 8. 

Figure 8. Heat map of the predicted location of a signal in the CEE Lending Center and reception area 

 

Instead of just finding the overlap of the rings, it now looks at the overlap of the probability 
distributions of all the APs and then finds the location with the greatest overlap. This approach 
was found to provide a prediction that was at least as good as the previous approach and in some 
cases, an improvement. 
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Parallel Technologies’ Innovation Lab 
The next set of testing took place at the Parallel Technologies, Inc. (PTI)22 Innovation Lab. The 
space is used for product demonstrations, testing, and training. It has a floor area of 5,780 square 
feet and is adjacent to their warehouse and office area. The existing PTI Wi-Fi network had one 
Cisco Meraki AP placed in the lab area, two Meraki APs in the adjacent warehouse, and one 
Meraki AP in the adjacent office area. For the test, seven OpenMesh APs were placed at 
locations in the lab, warehouse, and office area. Figure 9 shows the floor plan of the Innovation 
Lab (the area denoted with the 5,780 sq. ft. floor area) and warehouse space (the area denoted 
with the 5,258 sq. ft. floor area) with the locations of the OpenMesh APs denoted by the green 
dots and the locations of the Meraki APs denoted by red circles (where three of our APs were 
also placed). 

Figure 9. Floor plan of the Parallel Technologies Innovation Lab 

 

 
22 Parallel Technologies homepage. https://www.paralleltech.com/ 

https://www.paralleltech.com/
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Since Parallel Technologies provides security system services, the Lab is also outfitted with a 
360º camera and a camera at the door to the Lab that uses video analytics to perform occupant 
counting (entering and exiting the lab). These cameras provided photographic and video 
validation of the Wi-Fi LBS results. CEE staff were able to use the recorded footage from the 
camera to compare actual occupant counts and locations with those predicted by both the LDA 
and the Meraki location analytics at the corresponding dates and times. 

Occupancy Sensing Validation  
Because of the pandemic, the office area was typically vacant with most staff working remotely. 
The Innovation Lab did have some occupant traffic with deliveries taking place there, 
technicians entering and leaving through that area, staff performing work in the lab, and some 
traffic to the adjacent warehouse.  

Two cases were performed for the validation. For the first case, two Wi-Fi-enabled devices with 
known MAC addresses (a laptop and a tablet) were placed at specific locations in the space and 
the accuracy of the LDA predictions was evaluated. The LDA consistently predicted the 
locations of the devices within our error margin of 10 ft. 

Having validated our system, we then validated the Wi-Fi LBS’ ability to detect presence by 
comparing our presence guesses to presence detected by security cameras 25 times over two 
days. The LBS detected presence 16 times (64%) and detected the correct count of people over 
13 times (52%). Because of the sparse occupancy in the space due to COVID restrictions, an 
error margin of a couple of devices would result in no occupant presence detected and greater 
percent error. 

For the second test, the LDA was used to monitor occupancy during an open house that took 
place in the Innovation Lab. On October 28, 2021, Parallel Technologies hosted a client 
appreciation event in the Innovation Lab from 2 pm to 6 pm. Approximately 80 to 100 people 
attended. CEE staff attended to document the occupant count, location, and traffic.  They also 
brought a number of Wi-Fi enabled devices with known MAC addresses. This allowed 
comparison of the LDA predictions with the devices’ known locations at various designated 
times during the event. 

First, we tested the LDA’s ability to provide headcounts of large groups of guests (with unknown 
MAC addresses). The PTI lab includes several static Wi-Fi devices, so we began by identifying 
and excluding MAC addresses seen in the days before the event, then we confirmed a zero-
device count both before and after the event. Next, we compared headcounts performed by CEE 
staff throughout the event to device counts calculated by the LDA using sampling periods of 5, 
15, 30, 120, and 240 minutes. 

As expected, we found that (1) lower sampling periods produced lower counts, at worst counting 
only 11% of the guests, whereas (2) higher sampling periods failed to acknowledge waning 
attendance, at worst counting 195% of the guests. In our opinion, a sampling period greater than 
30 minutes is too long for responsive HVAC control, while a sampling period of 5 minutes is too 
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short to count all the guests.23 Therefore, we feel that a sampling period of 15 or 30 minutes is 
best, on average counting 30% and 42% of guests, respectively. 

Figure 10. Headcount versus device counts (by sampling period) in the PTI Innovation Lab 

 
 
Adapting the LDA to Import the Cisco Meraki System Location Analytics Data 
PTI employs the Cisco Meraki Network platform for the Wi-Fi services in the office. The 
Network Administration and Management system includes the Location Analytics API that can 
export location data showing a user’s presence, how much time they spend within the Wi-Fi 
area, and their approximate signal strength from each AP. Figure 11 shows the results of the 
Meraki location analytics during a snapshot in time as displayed on the dashboard floorplan. 

Figure 11. PTI floorplan from the Meraki dashboard showing locations of detected Wi-Fi enabled devices 

 

 
23 It should be noted that per ASHRAE 90.1, periods of several hours are appropriate for averaging number of 
occupants in spaces of several thousand square feet or smaller. 
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The locations of the Meraki APs are denoted by the green inverted teardrop shapes outlined in 
dark gray. There are seven APs shown on the floorplan. The green cloud shapes show the 
location of Wi-Fi enabled devices that are connected to the PTI Wi-Fi network. The light gray 
dots are the estimated locations of the unaffiliated Wi-Fi enabled devices.  

We found that the Meraki management system provided access to the Wi-Fi data collected by 
their APs (device MAC addresses and RSSI data) and the calculated locations of each Wi-Fi 
device relative to the floor plan defined in their Location Analytics API. We adapted the LDA to 
be able to import this data, allowing us to compare the ability of the two approaches to estimate 
the locations of the detected Wi-Fi signals. Consequently, we added an additional demonstration 
site — The Sinclair, Autograph Collection hotel — to explore the relative accuracy of the two 
location sensing methods. 
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Field Demonstrations 
Four field sites were recruited to evaluate the performance of the LDA for occupancy sensing. 
Three commercial office sites and one hotel agreed to participate in the field demonstrations: 

1. The State Administration Building located at the Minnesota State Capitol Complex in 
Saint Paul, Minnesota 

2. ConEd’s Research and Development (R&D) offices located in their Manhattan 
headquarters in New York City 

3. The second-floor offices of Slipstream in their building located in Madison, Wisconsin 
4. The Sinclair, Autograph Collection hotel located in Fort Worth, Texas 

For the three office sites, we installed Open Mesh APs for Wi-Fi device detection to be used with 
the LDA. We chose Open Mesh because it fit the project's requirements (well known, has a 
presence API, and cloud-based management) and was inexpensive compared to the competition 
(Cisco Meraki and HP Aruba). Unfortunately, shortly after the decision was made and a number 
of Open Mesh Wi-Fi access points were acquired and configured, Datto purchased Open Mesh 
and began to sunset support of legacy Open Mesh hardware. Fortunately, rather than having to 
find another manufacturer and purchase a whole new set of devices, the large community of 
Open Mesh owners and enthusiasts resulted in a number of projects to create custom firmware to 
allow us to continue to use the legacy Open Mesh devices. We decided to use the approach 
offered by Plasma Cloud, one of the largest, most reputable hardware makers that supported 
Open Mesh APs. Through their onboarding program, we reprogrammed our Open Mesh APs 
with their firmware, bolstered our inventory with Plasma Cloud-branded APs, and were able to 
still maintain cloud-based management and the presence API, which was key to collecting field 
data. 

For the three office sites, we also installed a cellular router onsite to upload the data from our 
APs directly to Design.Garden’s server for processing with the LDA. Creating the cellular 
hotspot for our APs assuaged any cybersecurity concerns that the respective IT department might 
have about the project having access to the demo site’s wireless platform. Equipped with a SIM 
card, the team purchased a prepaid phone data plan with a defined monthly bandwidth per month 
for the term that the router would be in use at the site. Based on Design.Garden’s experience, 
Wi-Fi LBS can use a lot of data if there are many other Wi-Fi enabled devices in the space, 
possibly over 100 MB/day. The APs create a Wi-Fi mesh so only one of our APs needed to be 
connected to the router. Since we were only using the APs as Wi-Fi signal sensors, we disabled 
the APs’ ability to create their own Wi-Fi network and prevented any devices from mistakenly 
connecting to them. 

Measurement and verification at the three office sites were performed in the following manner. 

1. Several Android phones (up to six) were placed at known locations within each office 
space to serve as reference points to verify the accuracy of the LDA in detecting the 
mobile devices and in calculating their location. These phones were kept at those fixed 
locations throughout the testing period for each office. 

2. At recorded dates and times, a staff person logged the head count of occupants who were 
present in defined zones and spaces of the offices. This information was submitted to us 
to correlate with the measured head counts calculated by the LDA. 
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For the fourth site, the LDA was used to detect occupancy on one floor of guest rooms using the 
Wi-Fi data collected by the hotel’s Cisco Meraki wireless network. This allowed a direct 
comparison of the location detection capabilities of the LDA with the Meraki Location Analytics 
API. 

Minnesota Administration Building, Saint Paul, Minnesota 
The Wi-Fi LBS demonstration was performed in the offices of the Minnesota Department of 
Administration Materials Management and Plant Management Divisions located in the 
Administration Building at the State Capitol Complex. The three-story office building was built 
in 1967 and has a building area of 80,144 square feet. The offices of the Materials Management 
and Plant Management Divisions are located on the ground level of the building.  

Figure 12. Minnesota Admin Building, Saint Paul, MN. 

 

For their wireless network, the State uses eight Honeywell APs. For the demonstration, we 
placed eight OpenMesh APs at the same locations as the Honeywell APs to replicate the existing 
Wi-Fi coverage. All APs were placed above the tiles of the suspended ceiling. Note that any 
equipment installed in an above-ceiling plenum space must be plenum-rated or installed within a 
plenum-rated enclosure, as required by national building code. 120VAC line voltage was provided 
to power our APs. Figure 13 shows the locations of the APs on the floor plan of the offices. The 
green dots represent our OpenMesh APs and the red circles represent the locations of the 
Honeywell APs. The cellular router was placed in the suspended ceiling and connected to the AP 
shown in the southeast corner of the building (i.e., the upper right-hand corner of the floor plan and 
denoted by the cell phone strength icon). 



The Integration of Wi-Fi Location-Based Services to Optimize Energy Efficient Commercial Building Operations 
Center for Energy and Environment 

U.S. Department of Energy 
EERE Award number: DE-EE0008684 34 

Figure 13. Floor plan of the Minnesota Department of Administration Offices showing the locations of the APs 

 

Measurement and Verification 
Five Android phones were placed in the offices to serve as fixed reference points for 
measurement and verification (M&V). Their locations are denoted by the blue numbered Ps 
shown in Figure 13. During the monitoring period, the Android phone located in the storage 
room (P5) was mistakenly disconnected and discarded by an office worker. Of the four phones 
that remained in the space, only two provided signals that could be detected and analyzed by the 
LDA. Figure 14 shows the LDA-calculated locations of the two phones compared to their actual 
locations. The actual location of the phone is denoted by the smaller circle and is denoted by the 
uppercase blue P. The LDA-calculated location is shown by the larger circle and labeled by the 
lowercase blue p. The line connecting the two circles measures out the distance in feet between 
the associated circles and represents the error of the LDA location estimation. Table 5 shows the 
average error in feet of the LDA-calculated locations for each phone, ranging from 2.1 feet to 
18.2 feet. 
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Figure 14. Comparison of LDA-calculated reference point locations with actual locations at the Admin Building. 

 

Table 5. Differences in the LDA-calculated locations with the fixed reference point locations at the Admin Building. 

Phone Average Error 
(in feet) 

P1 – 

P2 – 

P3 2.1 

P4 18.2 

 
The average error of the LDA for the two fixed reference point phones was 10.1 feet with a 
standard deviation of 11.4 feet.  

Validating Space Occupancy 
Within the office space, Admin staff typically occupied three zones: assigned open office 
cubicles, private closed offices, and two meeting rooms. These three zones are shown in Figure 
15. 
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Figure 15. Occupancy zones in the Admin Building. 

 

Over about a month period from late June and into July of 2023, an Admin staffer recorded 
office occupancy in each of the three zones at five specific times. No one was assigned to any 
other workspaces in the offices. This occupancy data was then compared to the headcounts 
predicted from the Wi-Fi data by the LDA. Table 6 shows the comparison of the data. 

Table 6. Comparison of observed head counts with LDA-detected values for the Admin Building 

Date Time 

Head Count 

Total Cubicles Offices Meeting Rooms 

Actual LDA Delta Actual LDA Delta Actual LDA Delta Actual LDA Delta 

6/27/2023 2:00 PM 13 15 -2 12 13 -1 1 0 1 0 2 -2 

7/7/2023 11:50 AM 13 12 1 13 11 2 0 1 -1 0 0 0 

The LDA headcounts had good agreement for the large area of the cubicle space and this carried 
over for the headcount of the entire space. The office spaces and meeting rooms had smaller 
footprints and inaccuracies of the LDA provided poorer agreement with these spaces. 

Occupancy Patterns 

The LDA was used to determine the occupancy patterns within the Admin office over a week to 
inform the determination of an occupancy schedule for the space. An algorithm was created in 
order to define a headcount for the space based on the number of devices detected by the LDA. 
A square was circumscribed around the floorplan and the headcount was defined by the number 
of devices that the LDA determined were located within the square. Figure 16 shows locations of 
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detected Wi-Fi enabled devices on June 26, 2023 at 9:45 am. The total headcount based on 
devices detected in the perimeter of the floorplan is 22. 

Figure 16. Distribution of detected Wi-FidEnabled devices in the Minnesota Department of Administration Offices on 
June 26, 2023, at 9:45 a.m. 

 

Figure 17 shows the variation of the estimated headcounts in the space over the week beginning 
on Monday, June 26, 2023. Data was collected at 15-minute increments for the week time frame. 
Outages resulted in some gaps in the data with gaps occurring: 

• Midnight to 2:30 a.m. on Monday  
• 12:15 a.m. to 10:45 a.m. on Tuesday  
• 5:45 a.m. to 11:30 p.m. on Wednesday 
• 9:00 a.m. to 1:30 p.m. and 2:30 p.m. to 11:45 p.m. on Thursday  
• Midnight to 1:00 a.m. and 4:30 p.m. to 5:15 p.m. on Friday 
• 1:30 a.m. to 12:15 p.m. on Saturday 
• 10:45 p.m. to 11:15 p.m. on Sunday 
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Figure 17. LDA-estimated headcount over the week of June 26, 2023, in the Minnesota Department of Administration 
Offices 

 

For the entire floor (as shown in Figure 16), the average headcount for the week was 5.0 
occupants with a minimum of 0 occupants, a maximum of 31, and a standard deviation of 7.0. 
From the data collected for this week, the hours of occupancy on the floor are typically from 
about 6:30 a.m. to about 5:45 p.m.  

The maximum occupancy of the space can be inferred from the number of cubicles, offices, and 
meeting rooms’ chairs shown in the floor plan. Table 7 shows an estimate of the maximum 
occupancy of the Admin Department space. 

Table 7. Maximum occupancy of the Minnesota Department of Administration Offices 

Sites Cubicles Offices Meeting 
rooms 

Maximum 
Occupancy 

Admin 27 5 36 68 

Comparing the headcount values from Figure 19 with the maximum occupancy shown above, the 
office occupancy approaches about 46% at its highest level of occupancy but typically not more 
than 30% occupancy (typically about 10–20 people with a maximum of about 30 people). 

Consolidated Edison Building, New York City, New York 
The Manhattan headquarters of ConEd are located in the Consolidated Edison Building at 4 
Irving Place, a historic landmark building constructed in 1911 by Consolidated Gas, predecessor 
of Consolidated Edison. It is a 26-story building originally built in 1911 and is a New York City 
designated landmark.  
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Figure 18. The Consolidated Edison Building at 4 Irving Place, New York City, NY 

 

The Wi-Fi LBS testing was performed in the offices of ConEd’s Research and Development 
(R&D) department and located on the building’s 22nd floor. This space was selected because: 1) 
the space is surrounded by condos, apartments, and commercial spaces, representing a busy 
downtown mix-use zone, 2) it can be assumed that each apartment and office space has their own 
Wi-Fi, offering an opportunity to test robustness of the LBS algorithm in presence of wi-fi and 
mobile device interference, and 3) the historical building space is ideal for LBS technology in 
that minimal infrastructure changes are needed to adopt the usage of LBS. The offices are served 
by five APs to provide their office Wi-Fi. The locations of these APs are denoted by the red 
circles on the floorplan in Figure 19. A total of eight OpenMesh APs were installed in the space 
for the Wi-Fi LBS occupancy sensing demonstration and are denoted by the green-filled circles.  
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Figure 19. ConEd Manhattan R&D Offices floor plan with the locations of the APs 

 

The placement of the cellular router is shown by the cell phone signal strength icon and is 
located near P3. 

There were a few non-ideal conditions that the experiment had to contend with from the 
placement of the OpenMesh APs. Originally these APs were to be placed at the same locations 
as the ConEd APs but because of to power source availability, the OpenMesh APs had to be 
placed on top of desk spaces. As a result, these APs would be more prone to directional signal 
attenuation due to office furniture and people traffic. Ideally, the APs would have been installed 
on the ceiling where line of sight from AP to device is more likely. Multi-path interference 
caused by reflections of the signal from mobile devices is another type of interference that would 
subtract or add to the signal as received by the APs, contributing to additional error.     

Measurement and Verification 
Six Android phones were used as fixed reference points at the ConEd site and were placed at 
locations throughout the offices of the R&D department. Figure 19 shows the reference point 
locations (denoted by the blue numbered Ps) and the comparison of the LDA-calculated 
locations of the phones with their actual locations is shown in Figure 20. The actual locations are 
indicated by the smaller circles and labeled with the uppercase blue Ps, while the corresponding 
estimated locations are shown by the larger connected circle and labeled with the lower-case ps. 
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Figure 20. Comparison of LDA-calculated reference point locations with actual locations at the ConEd R&D offices 

 

The error (in feet) between the LDA-calculated locations is shown in Table 8. 

Table 8. Differences in the LDA-calculated locations with the fixed reference point locations at the ConEd R&D offices 

Phone Average Error 
(in feet) 

P1 43.1 

P2 5.6 

P3 15.8 

P4 33.9 

P5 43.1 

P6 21.4 

The error in the LDA location predictions range from 5.6 feet to 43.1 feet, with an average error 
for all reference points of 27.2 feet and a standard variation of 15.4 feet. 

Validating Space Occupancy 
Three zones could be defined within the ConEd R&D department office space: the open office 
cubicle space, meeting room 1 which is used for small groups and/or privacy calls, and meeting 
room 2 which is used for larger meetings with audio–visual (AV) equipment for remote video 
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conferencing. Figure 21 shows the locations of the three zones on the ConEd R&D office floor 
plan. 

Figure 21. Occupancy zones in the ConEd R&D department office space 

 

As with the Minnesota Admin Building site, our contact in the ConEd R&D department agreed 
to record head counts on select dates and times to allow us to compare with the LDA-calculated 
headcounts. The results of the comparison are shown in Table 9. 

Table 9. Comparison of observed headcounts with LDA-detected values for the ConEd R&D offices 

Date Time 

Head Count 

Total Cubicles Meeting 
Room 1 Meeting Room 2 

Actual LDA Delta LDA LDA Actual LDA Delta 

8/17/2023 11 a.m.– 
12:30 p.m. 15 16 -1 13 1 15 2 13 

8/22/2023 12:30 p.m.– 
5:00 p.m. 11 16 -5 14 1 11 1 10 

8/23/2023 8:30 a.m.– 
5:30 p.m. 10 18 -8 15 0 10 3 7 

For the total space, averaging the deltas in head count for the three time periods shows that the 
LDA overpredicted occupancy by 4.7 people. Given the location prediction errors observed with 
the Android phone fixed reference points, it is not surprising that the LDA had difficulty in 
accurately determining the headcount in the smaller Meeting Room 2 space and that the LDA 
located many devices in the larger cubicle space.  
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Occupancy Patterns 

Figure 22 shows the locations of the Wi-Fi enabled devices in the offices of the R&D department 
in the ConEd building that were identified by the LDA at 10:30 a.m. on August 25, 2023. The 
seven devices detected are used as the occupancy headcount for this time period.   

Figure 22. Distribution of detected Wi-Fi enabled sevices in the R&D department for the ConEd building on August 
25, 2023, at 10:30 a.m. 

 

Figure 23 shows how the estimated occupancy (collected every 15 minutes) varied in the offices 
over the week beginning on Sunday, August 20, 2023. Unfortunately, outages in the data 
collection were experienced during the week. These outages occurred: 

• 8:45 a.m. to 11:30 am and 8 p.m. to 10:45 p.m. on Monday 
• 12:45 a.m. to 1:15 a.m., 6:30 a.m. to 7:30 a.m., 8:15 a.m. to 10:30 a.m., 2:30 p.m. to 3:30 

p.m., and 6:45 p.m. to 9:00 p.m. on Tuesday  
• 1:30 a.m. to 2:15 a.m., 6:45 a.m. to 2:45 p.m., and 4:00 p.m. to 4:30 p.m. on Wednesday 
• 2:30 a.m. to 7:45 a.m. on Friday 
• 5:00 a.m. to 7:45 a.m. and 10:15 a.m. to 5:30 p.m. on Saturday 

There were no outages on Sunday or Thursday. 
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Figure 23. LDA-estimated headcount over the week of August 20, 2023, in the ConEd Offices 

 

The average estimated headcount for the week was 2.2 occupants with a minimum of 0 
occupants, a maximum of 23, and a standard deviation of 3.6. Based on the data collected for this 
week, the hours of occupancy on the floor are from about 5:30 am to 5:30 pm.  

Based on the number of cubicles and meeting rooms’ chairs shown in the floor plan, Table 10 
shows an estimate of the maximum occupancy of the ConEd R&D space. 

Table 10. Maximum occupancy of the ConEd R&D offices 

Sites Cubicles Offices Meeting 
rooms 

Maximum 
Occupancy 

ConEd 28 0 22 50 

Using the calculated headcounts from the LDA, occupancy of the offices approaches 50% at its 
highest level of occupancy but typically not more than 20% occupancy. Feedback from ConEd 
staff found these findings are consistent with they observed. Because staff are often out in the 
field or traveling, a typical slow week would see occupancy in the range of five to eight while a 
major meeting would see office occupancy around 25. August is typically a popular month for 
staff to take vacations before school starts, so occupancy can be expected to be lower than usual 
during this time. 

Slipstream Offices, Madison, Wisconsin 
The Slipstream Wisconsin offices are located in a two-story office building in Madison, 
Wisconsin.  
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Figure 24. The Slipstream offices, Madison, WI 

 

The testing was performed in their second-floor offices where five Ubiquiti UAP-AC-Pro APs 
support their Wi-Fi network. We placed eight of our OpenMesh APs in the space, five at the 
same locations as the Ubiquiti APs and another three provide additional coverage to evaluate the 
accuracy of the trilateration calculations of the LDA. The floorplan of these offices is shown in 
Figure 25. The green dots denote the AP locations and red circles show the locations of the five 
Slipstream APs. Our APs received power via PoE with cables running back to a PoE network 
switch in their server room. The cellular router was placed in the Slipstream second-floor server 
room and is denoted by the cell phone strength icon in the bottom left corner of the floor plan. 

Figure 25. Floor plan of the Slipstream offices showing the locations of the APs 

 

The Ubiquiti APs and Wi-Fi system do not store the MAC addresses and RSSI data that they 
receive, so they cannot be used for comparison with the OpenMesh AP data or the Wi-Fi LBS 
occupancy sensing. 
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Measurement and Verification 
Four Android phones were placed at fixed locations throughout the second floor of the 
Slipstream offices for the M&V of the LDA. The reference point locations (indicated by the 
numbered Ps) are shown in Figure 25. Signals from three of the four Android phone fixed 
reference points were collected by the LDA and the locations of those three phones were 
calculated. Figure 26 shows the comparison of the LDA-calculated locations of the phones with 
their actual locations. The actual location of the phone is denoted by small circle and the upper-
case blue P, and its corresponding LDA-calculated location is the larger connected circle, labeled 
with the lower-case blue p.  

Figure 26. Comparison of LDA-calculated reference point locations with actual locations at the Slipstream offices 

 

The average errors (in feet) of the LDA-calculated locations for each reference point are shown 
in Table 11, ranging from 5.5 feet to 8.0 feet. 

Table 11. Differences in the LDA-calculated locations with the fixed reference point locations at the Slipstream offices 

Phone Average Error 
(in feet) 

P1 5.5 

P2 7.7 

P3 8.0 

P4 – 

The average error of the LDA for all of the reference points was 7.1 feet with a standard 
deviation of 1.4 feet. 
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Validating Space Occupancy 
Two zones were defined for the second floor of the Slipstream office building. One zone was the 
open cubicle space that housed Slipstream’s research department and the second zone was their 
meeting room. These two zones are identified in Figure 27 below. 

Figure 27. Occupancy zones in the Slipstream Madison Headquarters 

 

In addition to having a staff person record headcounts in each of the zones at certain dates and 
times, we also investigated the use of computer vision to record occupancy. For our first test, we 
placed a laptop and an external USB camera in the meeting room to identify occupants and 
algorithmically perform headcounts.  

Initial Computer Vision Testing in the Meeting Room 
A simple custom Python-based computer vision software application was developed by 
Slipstream, which applied the latest technological improvements in artificial intelligence and 
machine learning algorithms called YOLO version 7 to perform object detection and recognition. 
This enabled the computer to identify and categorize objects within an image or video stream. In 
the Slipstream meeting room, a computer vision routine was integrated into the existing 
VOLTTRON IoT platform onsite to log the people, laptop, and cell phone counts which are 
standard object detection classes of YOLO version 7. Figure 28 shows an example of the output 
from the computer vision routine of the laptop placed in the Slipstream meeting room. 
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Figure 28. Computer vision interface of a staff meeting at Slipstream 

 

Notice that in addition to the number of people in the line of sight of the laptop camera, 
computer vision was also able to identify and count cell phones, computer mice, laptops, chairs, 
cups, and bottles. In this way, computer vision provided an additional means to document the 
occupancy of the meeting room zone. Figure 29 displays the computer vision data being 
classified in real time which is then integrated via IoT to the existing Slipstream VOLTTRON 
platform that harnesses a time series database and a Grafana dashboard. The YOLO version 7 
application does not log data but only classifies objects in real time. An external application logs 
the data so that the historical data can be studied with a visualization tool like a Grafana 
dashboard. 
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Figure 29. Computer vision output of a staff meeting at Slipstream on Grafana dashboard 

 

Enhanced Computer Vision Approach for the Meeting Room and Cubicle Space 
Based on the success of using computer vision in the meeting room, Slipstream expanded the 
effort by harnessing additional computer vision techniques with the latest version of YOLO 
(version 8), running on an Edge AI Device equipped with NVIDIA Jetson Orin™ Nano GPU 
technology. Ace IoT24 was brought in to further develop this technology. Slipstream's original 
conceptualized computer vision technology could only handle a single camera at approximately 
1 frame per second (FPS). The Ace IoT app achieved an impressive 10 FPS. The app supports 
asynchronous processing of multiple cameras simultaneously and allows more general 
deployment within a building through the use of temporary IP cameras or existing security 
camera systems. Within the Slipstream space, IP cameras were strategically installed in each 
zone to allow asynchronous processing of multiple video feeds simultaneously by the NVIDIA 
AI edge device. This enabled the compilation of results, which were compared to the 
performance of LDA. Figure 30 to Figure 32 show the device recognition displayed on Ace 
IoT’s computer vision web browser dashboard for three of the cameras temporarily deployed in 
Slipstream’s meeting room and cubicle office space. The YOLOv8 computer vision app 
developed by Ace IoT is available at the free open-source GitHub repository.25  

 
24 Ace IoT Solutions homepage. https://aceiotsolutions.com/ 
25 Ace IoT Solutions YoloOcc VOLTTRON™ Agent GitHub webpage. https://github.com/ACE-IoT-
Solutions/volttron-yolo-occupancy 
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Figure 30. Web camera 2 showing the meeting room 

 

Figure 31. Web camera 1 showing the office cubicle space 
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Figure 32. Web camera 3 showing the office cubicle space (SE corner) 

 

Table 12 compares the observed head counts with the head counts calculated by the LDA during 
the same recording dates and times. 

Table 12. Comparison of observed head counts with LDA-detected values for the Slipstream offices 

Date Time 

Head Count 

Total Cubicles Meeting Room 

Actual LDA Delta Actual LDA Delta Actual LDA Delta 

9/20/2023 10:30 
a.m. 5 8 -3 0 6 -6 5 2 3 

9/26/2023 1:45 
p.m. 0 13 -13 0 11 -11 0 2 -2 

9/27/2023 10:45 
a.m. 1 5 -4 1 5 -4 0 0 0 

9/28/2023 10:25 
p.m. 9 11 -2 0 6 -6 9 5 4 

9/28/2023 2:15 
p.m. 5 8 -3 5 6 -1 0 2 -2 

The average difference between the head count calculated by the LDA and the actual occupancy 
is 5.0 people for the total space, 5.6 people for the cubicles zone, and 0.6 people for the meeting 
room zone.  
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Occupancy Patterns 

Figure 33 shows the locations of the Wi-Fi enabled devices that were identified by the LDA at 
9:30 a.m. on September 26, 2023, on the second floor of the building. The 20 devices detected 
are used as the occupancy headcount for this time.   

Figure 33. Distribution of detected Wi-Fi enabled devices on the second floor of the Slipstream building on September 
26, 2023, at 9:30 am 

 

For the week beginning on Monday, September 25, 2023, headcounts were collected every 15 
minutes. Figure 34 shows how the calculated occupancy varied in the Slipstream second floor 
space over the seven days, from Monday to Sunday. 
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Figure 34. LDA-estimated headcount over the week of September 25, 2023, in the Slipstream offices 

 

The average estimated headcount for the week was 3.9 occupants with a minimum of 0 
occupants, a maximum of 28, and a standard deviation of 5.1. Given that during non-work hours 
the LDA is often detecting one device, we can assume that this device is typically left in the 
office and should not be a sign of occupancy. There were two periods of outages when no data 
was collected, on Monday from 11:15 a.m. to 12:15 p.m. and on Thursday from 2:45 p.m. to 
3:30 p.m. Based on the data collected for this week, the following hours of occupancy on the 
floor is presented in Table 13.  

Table 13. Hours of occupancy of the second floor of the Slipstream offices for the week of September 25, 2023 

Day Occupancy 

Monday 5:30 a.m. – 4:45 p.m. 

Tuesday 5:45 a.m. – 5:30 p.m. 

Wednesday 5:45 a.m. – 6:00 p.m. 

Thursday 5:45 a.m. – 7:00 p.m. 

Friday 5:45 a.m. – 4:45 p.m. 

Saturday 8:30 a.m. – 1:00 p.m. 

Sunday 12:45 p.m. – 1:30 p.m. 

By counting the available seating shown in the floorplan of the space, the maximum occupancy 
of the second floor of the Slipstream building is shown in Table 14. 
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Table 14. Maximum occupancy of the Slipstream second floor offices 

Sites Cubicles Offices Meeting 
rooms 

Maximum 
Occupancy 

Slipstream 75 8 17 100 

From the headcount results shown in Figure 19, typical occupancy in the space is around 10% of 
the maximum occupancy and the greatest utilization of the space is about 25% of the maximum 
occupancy. Feedback from Slipstream staff confirmed that the headcount numbers obtained from 
the LDA reflected their observed occupancy levels for the space.  

Four of the Android phones were placed on the first floor to determine the extent that the LDA 
detected Wi-Fi signals from the floor below. Only one of the phones was detected by the APs on 
the second floor of the building and the phone that was detected was placed in an area near the 
stairway that was open between the two floors. Otherwise, it could be assumed that there was 
sufficient shielding between the floors that the data collected by the second floor APs was 
indicative of the second-floor occupancy. 

BAS Integration of LDA Occupancy Data 
The team assessed how the data from the LDA could be integrated into the existing building 
automation system (BAS) to control the ventilation to particular HVAC zones. Specifically, the 
team was interested in augmenting existing occupancy sensors, such as occupancy sensors for 
BAS or lighting, with the LDA data to toggle the status of a zone served by a variable air volume 
(VAV) box between the "occupied" and "unoccupied" states, or an “occupied-standby” sequence 
as defined by ASHRAE 62.1 version 2022.26 

Integrating LDA data into a BAS at a site is feasible if the BAS has the capability to make HTTP 
requests to a cloud-based API and if the IT department permits internet access for the BAS. It's 
important to note that traditional operations technology (OT) systems, such as BAS, were 
initially designed to function independently without relying on IoT connectivity. When 
considering such integration, it is important to determine whether the BAS has logic in place to 
handle an occupied-standby sequence and can depend on a cloud API. Additionally, it is crucial 
to plan for contingencies in case of internet connectivity loss, including the implementation of 
default values within the BAS. 

It is worth mentioning that the skillset required for IoT HTTP protocol data communication is 
not typically found among BAS contractors and field technicians who predominantly work with 
BACnet communications integrated into BAS software configuration tools. Therefore, 
integrating a cloud-based API into a BAS system may require expertise beyond the traditional 
HVAC controls contracting industry skillset. This expertise might be found among master 
systems integrators (MSI) or specialists in IoT technologies. In summary, while the logic and 
sequencing aspects of BAS integration are manageable, the challenge lies in data ingestion, 

 
26 ASHRAE. ANSI/ASHRAE Standard 62.1-2022, Ventilation and Acceptable Indoor Air Quality. Atlanta, GA. 
https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2 
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particularly if the BAS lacks API compatibility or if the OT technician's skillset does not 
encompass working with APIs and handling JSON payloads. 

We investigated the BAS integration of the LDA headcount data at two of the demonstration 
sites. At the Slipstream site, we were permitted access to their BAS and were able to develop and 
test an approach to integrate LDA data directly into their BAS within the VOLTTRON 
environment. At the Minnesota Admin Building site, for security reasons, the State Capitol 
buildings operation and IT departments were reluctant to provide us access to their Honeywell 
BAS but tasked us with outlining potential approaches for integrating occupancy data into their 
Honeywell system for their future consideration. 

Slipstream VOLTTRON BAS Integration 
VOLTTRON27 is implemented on the Trane BAS installed at Slipstream’s Madison offices as an 
IoT integration mostly via LAN using BACnet/IP protocol. VOLTTRON is an open-source 
distributed control and sensing software platform intended for IoT projects in buildings. It is an 
ideal platform for us to integrate our Wi-Fi LBS occupancy data and test its use with building 
operation. 

VOLTTRON 
Pacific Northwest National Laboratory (PNNL) was funded by DOE to develop the 
VOLTTRON platform and PNNL currently maintains it. VOLTTRON is Linux-based and 
developed in Python, and the VOLTTRON framework facilitates IoT functionality by enabling 
data logging to the cloud, if desired. It supports commonly used communication building 
automation and IoT protocols including BACnet, MODBUS, DNP3, REST, MQTT, and 
OpenADR (automated demand response). VOLTTRON has a host environment with core 
platform services that can be used to facilitate third-party integration. These services include 
ZeroMQ or RabbitMQ, which acts as a message bus that allows for data exchange between 
multi-platform VOLTTRON connections or a single machine VOLTTRON deployment that can 
act as a gateway device. The BACnet driver for the VOLTTRON framework is built on an open 
source Python-based library called BACpypes, which allows for the interaction via BACnet with 
the building systems. VOLTTRON only supports direct BACnet “writes” or commands to the 
BAS as a method of control via remote procedure call (RPC) to the VOLTTRON framework 
actuator agent. At the moment the VOLTTRON framework does not support discoverable read-
only BACnet objects where BAS side logic (implemented by a controls contractor) could be 
utilized for the control of HVAC based on occupancy information provided by the LDA 
algorithm. The VOLTTRON driver framework also includes APIs for ChargePoint, Ecobee, 
IEEE 2030.5, Obix, The Energy Detective (TED), postgresQL database, Mongo database, Influx 
database, and a variety of weather APIs. Figure 35 shows a schematic of the VOLTTRON 
platform. 

 
27 VOLTTRON home page, https://volttron.org/ 
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Figure 35. Schematic of the VOLTTRON platform 

 
 

The Information Exchange Bus is the central location where data/information comes in and is 
published. VOLTTRON was originally developed as a platform to create a low-cost “software 
only” BAS for small- and medium sized commercial buildings but it can also be used as a data-
bridge or gateway to a commercially-available BAS. 

Occupancy Data Integration with VOLTTRON 
The occupant data calculated by the LDA is provided to Slipstream’s VOLTTRON 
implementation running along the perimeter of the building via a RESTful API call over the 
Internet to the Design.Garden server in the cloud. The Slipstream queries the Design.Garden 
server using a JSON API in the form of a queryable URL route that includes inputs/outputs (such 
as time range, building ID, zone ID, and predicted headcount/occupancy data). The app then 
transforms the headcount data into a VOLTTRON instance that is seamlessly integrated into the 
Slipstream SQL/Grafana system. VOLTTRON uses the occupancy data passed by the JSON 
object to guide HVAC operation in the defined zone in a custom VOLTTRON agent, which can 
be used to control the HVAC system via BACnet protocol. The Slipstream office HVAC system 
is a variable air volume (VAV) air handling unit system (AHU) that consists of a mixture of 
Trane and JCI field level devices controlling individual HVAC zones. 

Within the edge environment, the VOLTTRON agent plays a crucial role in managing data 
ingestion through the Design.Garden API. It leverages a customized Python-based sequence for 
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HVAC control, incorporating variations of ASHRAE 62.1 and 90.1,28 specifically focusing on 
the occupied standby mode. It is worth noting that the prevailing mechanical code in Wisconsin 
follows the ASHRAE 2013 version of 62.1, which lacks the occupied standby provision found in 
the 2022 version. However, Slipstream has successfully demonstrated the potential for IoT 
integration, enabling near real-time updates of occupancy counts in zones with occupied standby 
sequences. The Python-based sequence operates by computing a 62.1 ventilation requirement for 
the HVAC system, based on a rolling average of occupancy data recorded at one-minute 
intervals, followed by a five-minute rolling average. This requirement encompasses CFM per 
square foot of the zone and a CFM per person requirement. Notably, the occupied standby 
features include minor adjustments to the VAV box air damper, typically 1%, if the zone 
temperature falls within ±2 degrees of the setpoint, with the aim of achieving the calculated 
ventilation setpoint, as illustrated in Figure 36 below. 

Figure 36. VOLTTRON agent at work adjusting the HVAC system VAV box zone 

 
 
It is essential to exercise caution when developing sequences of operations to implement 
occupied standby and thoroughly investigate the limitations of the building automation system 
(BAS) hardware. An illustrative case can be found at the Slipstream office, where JCI-branded 
VAV boxes present a unique challenge. These VAV boxes do not allow for direct alteration of 
the air flow ventilation setpoint through BACnet communication. Consequently, the 
VOLTTRON agent must take control and override the air damper to achieve the desired air flow 
setpoint. Furthermore, Trane VAVs introduce their own set of constraints. They transmit data in 
metric units via BACnet, necessitating unit conversion. While adjustments can be made to the 
airflow setpoint, the air damper command remains unmodifiable, requiring distinct control logic 
for these two devices to reach the desired outcome. 

Additional considerations may need to account for ASHRAE 62.1 airflow requirements. This 
becomes particularly relevant if real-time calculations of the air handling unit's percentage of 

 
28 ASHRAE. Standard 90.1-2022—Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings. 
Atlanta, GA. https://www.ashrae.org/technical-resources/bookstore/standard-90-1 
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outside air are essential. The process is relatively straightforward when an AHU is equipped with 
an outdoor airflow measuring station (AFMS). However, in cases like the Slipstream office 
where no AFMS is available, determining the percentage of outside air introduced into the 
building relies on a combination of AHU mixing, return and outside air temperature sensors, and 
totalized VAV box air flow readings. This calculation can significantly influence the 62.1 
ventilation requirement, particularly when the AHU predominantly operates in an economizer 
cooling mode with nearly 100% outside air or in a minimum outside air mode, typically 
associated with heating or mechanical cooling. 

Opportunities for Occupancy-Based Building Ventilation  

Figure 37 shows the building occupancy schedule programmed into the Slipstream BAS. 

Figure 37. Slipstream BAS building schedule 

 

A comparison of the building occupancy schedule programmed into the Slipstream BAS with the 
occupied time detected by the LDA is shown in Table 15. 

Table 15. Comparison of LDA-detected occupancy with the BAS-programmed occupancy schedule 

Day 
Occupancy 

LDA-Detected BAS Schedule 

Monday 5:30 a.m. – 4:45 p.m. 5:00 a.m. – 6:00 p.m. 

Tuesday 5:45 a.m. – 5:30 p.m. 5:00 a.m. – 6:00 p.m. 

Wednesday 5:45 a.m. – 6:00 p.m. 5:00 a.m. – 6:00 p.m. 

Thursday 5:45 a.m. – 7:00 p.m. 5:00 a.m. – 6:00 p.m. 
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Friday 5:45 a.m. – 4:45 p.m. 5:00 a.m. – 6:00 p.m. 

Saturday 8:30 a.m. – 1:00 p.m. 7:00 a.m. – 3:00 p.m. 

Sunday 12:45 p.m. – 1:30 p.m. 8:00 a.m. – 3:00 p.m. 

The headcount data obtained from Wi-Fi LBS could be used to create a more accurate BAS 
occupancy schedule that would result in some energy savings. 

Proposed Minnesota Administration Building Honeywell BAS Integration 
The Administration Building at the State Capitol complex uses a Honeywell Enterprise Building 
Integrator (EBI) BAS that supports both a top-down and a bottom-up approach for integrating 
the data from the LDA. The top-down approach requires that the application layer of the BAS, in 
this case, the Honeywell EBI, requests data from the LDA periodically via the LDA API. The 
LDA would return the data (headcount by zone) in the form of a text file, which the application 
layer would use to update an internal database table. Based on the values in this database table, 
the EBI would use its automation engine to send the appropriate messages to the VAV 
controllers on the network. While it is technically possible, it is currently not typical for the 
Administration Building staff to use the EBI automation engine to carry out specific low-level 
actions like controlling VAV boxes. The bottom-up approach would make use of a BACnet 
interface card to request JSON data from the LDA via HTTP, then translate it into BACnet 
messages to send directly to the plant controllers on the VAV boxes. For this approach, the 
interface card is extra hardware that would essentially duplicate a function that the application 
layer could perform, so it is a better fit for systems with less capable application layers.  

General Steps for BAS Integration 

In general, to perform this data integration, the BAS should be able to initiate an HTTP GET 
request to a cloud-based API, enabling it to retrieve a JSON payload containing occupancy data. 
In cases where the BAS operates in an edge environment or within an operations technology 
(OT) LAN, it will become necessary to incorporate a BACnet IoT gateway to work around the 
BAS's limitations. For instance, a software engineer can leverage open-source Python-based 
BACnet stacks to develop a BACnet server. This server can then interact with the cloud-based 
API to obtain the JSON data representing the Wi-Fi occupancy data, subsequently translating it 
into discoverable BACnet AnalogValue points for integration into the BAS. Historically, BASs 
and OT in general, have traditionally functioned as closed-loop systems, intended to operate 
independently of IoT connectivity. This paradigm can pose a significant challenge to OT, 
particularly for OT technicians who may not possess proficiency in the HTTP protocol or 
interfacing with cloud-based APIs. However, as OT continues to evolve, the need for these skills 
may become more prevalent.  
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The Sinclair Hotel, Fort Worth, Texas 
The Sinclair29 is a Marriott Autograph Collection luxury hotel in Fort Worth, TX built in 1929. 
Sinclair Holdings LLC remodeled the 16-floor office building into a DC-powered, 164-room 
hotel in 2019.  

Figure 38. The Sinclair Hotel in Fort Worth, TX 

 

The hotel’s wireless platform is provided by a Cisco Meraki system with its location analytics 
capabilities. At this demonstration site, occupancy sensing was tested on a representative floor 
containing guest rooms. Figure 39 shows the floorplan for a typical floor of guest rooms with the 
locations of the APs. The green dots represent AP locations.  

 
29 Sinclair Hotel homepage. https://www.thesinclairhotel.com/  

https://www.thesinclairhotel.com/
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Figure 39. Floor plan for a typical floor of The Sinclair, Autograph Collection guest rooms with the AP locations 

 

As with the other demonstration sites, Android phones were placed in each of the guest rooms to 
provide fixed reference points to test the accuracy of the location detection calculations of the 
LDA. On the twelfth floor of the hotel, the phones were placed in the locked cabinets of the 
guest rooms where the phones could be powered by the PoE network switches secured in the 
cabinets. The cabinets were located in the guest rooms’ closets. For this site, rather than 
installing our own APs, we were able to use the MAC addresses and RSSI signals collected by 
the hotel’s Cisco wireless network. With this data, we used the LDA to calculate the locations of 
the phones. Because we had access to the Meraki Location Analytics API of the hotel’s wireless 
network, we also collected the locations of the phones as calculated by the Meraki system. 
Knowing the actual locations of the phones, we could compare the relative accuracies of the two 
location detection algorithms. 

Comparison of the LDA with the Meraki Location Analytics API 

Of the twelve phones that were distributed throughout the hotel guest room floor, the Meraki 
wireless network detected the phones in six of the guest rooms: 1201, 1203, 1207, 1211, 1212, 
and 1214. Figure 40 shows the calculated locations of the six phones from the LDA compared to 
the phones’ actual locations. 
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Figure 40. Comparison of LDA-calculated reference point locations with actual locations at the Sinclair Hotel 

 

In comparison, Figure 41 shows the phones’ locations calculated by the Meraki API. 

Figure 41. Comparison of Meraki Location Analytics API-calculated reference point locations with actual locations at 
the Sinclair Hotel 

 

A more direct comparison of the location accuracy of the two algorithms is provided by Table 
16, which shows the error in feet of the algorithm’s location calculation with the corresponding 
phones’ actual locations. 
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Table 16. Differences in the LDA-calculated and Meraki Location Analytics API-calculated locations with the fixed 
reference points at the Sinclair Hotel 

Room Phone 
Error (in feet) 

LDA Meraki Delta 

1201 P1 25.4 24.1 -1.3 

1202 P2 – – – 

1203 P3 4.4 18.9 14.6 

1204 P4 – – – 

1205 P5 – – – 

1206 P6 – – – 

1207 P7 13.9 22.8 8.9 

1209 P9 – – – 

1211 P11 27.0 21.7 -5.2 

1212 P12 10.5 17.9 7.5 

1213 P13 – – – 

1214 P14 14.3 26.9 12.6 

 
The average error for the LDA calculated locations was 15.9 feet, ranging from 4.4 feet to 27.0 
feet and with a standard deviation of 8.7 feet. The Meraki API calculated locations had an 
average error of 22.1 feet, ranging from 17.9 feet to 26.9 feet and with a standard deviation of 
3.3 feet. The average difference in accuracy of the location predictions of the two algorithms was 
6.2 feet with the Meraki algorithm showing greater error for four of the six phones. Notice also 
that the LDA placed all the phones within the perimeter of the building. 

Occupancy Patterns 

Figure 42 shows the comparison of the occupancy patterns on the twelfth floor of the Sinclair 
Hotel determined by the LDA and the Meraki API over the week of April 6, 2023. The estimated 
headcounts are derived from the Wi-Fi enabled devices that were detected by each of the 
location detection algorithms. 
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Figure 42. Comparison of the LDA and Meraki headcounts over the week of April 6, 2023, on the 12th floor of the 
Sinclair Hotel 

 

Table 17 compares the statistics or aggregate functions of the week-long data sets from the two 
algorithms. 

Table 17. Statistics/aggregate functions of the LDA and Meraki headcount datasets for the week of April 6, 2023 

 
LDA Meraki 

Mean 27.5 20.1 

Min 5 2 

Max 63 49 

Std Dev 11.2 8.4 

Median 27 20 

Mode 38 22 

 
As described previously, the headcounts were determined by counting the number of devices 
located within a box drawn around the floorplan. Based on the data that we collected and 
analyzed, we found that the LDA has a higher tendency to place devices near the APs and inside 
the perimeter of the space while the Meraki API has a higher tendency to put devices anywhere 
inside/outside of the floorplan. Thus, based on the way that we determine headcount, it is 
expected that the LDA will typically have a higher headcount than the Meraki API. This is not 
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evidence that one approach is necessarily more accurate than the other in calculating headcount 
since there are many other variables to consider such as whether devices are being detected that 
may be located on floors above or below the floor we are interested in.  
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Occupant Surveys 
Three surveys were distributed among workers in large office environments to understand how 
they perceived their office environment and the role it plays in their jobs, as well as to inform 
technological developments in occupancy tracking using Wi-Fi data. The first survey was 
performed in 2019 at the beginning of the project while the remaining surveys were performed at 
the end of the project in 2023. These last two surveys also allowed us to understand the impact of 
the COVID-19 pandemic on remote work trends and office environment trends.  

Each survey had about 400 respondents and they worked in three markets corresponding to the 
locations of the three office demonstration sites: Minneapolis/St. Paul, Madison/Milwaukee, and 
New York, with responses equally distributed between locations in both time periods. 
Respondents worked for organizations with at least 50 employees at their office location and 
held full-time positions (92–93%) in a variety of roles, with the highest proportion in 
management, director, or supervisory roles (37–39%) or administrative, office support, or 
assistant roles (24-27%). Women had slightly higher representation in the responses (58–60%) 
compared to men (40–42%), and age was distributed across groups, from 18 to 55+. 

Technology and Location Sensing 
Nearly all workers (98%) reported having some type of access to Wi-Fi in their workplace, 
which varied between building-wide, business-wide, office-specific, or public/guest access. With 
regard to the use of Wi-Fi enabled technologies, nearly all workers (96%) reported carrying a 
smart phone during their workday. 17% carry more than one smartphone, and 67% of 2023 
survey respondents said they carry one laptop during their workday, significantly higher than the 
44% of respondents in the 2019 survey. Smart watch use also increased from 19% in 2019 to 
34% in 2023. On average, workers reported having 2.6 devices that use Wi-Fi, down from an 
average of 3.6 devices in 2020. The average number of devices that use Bluetooth (1.4) and 
cellular data (1.5) were consistent with 2019 survey results. Assuming that all these devices are 
Wi-Fi enabled, we would expect that the Wi-Fi LBS approach to occupancy sensing would 
overpredict the headcount by about 160% or so (on average, 2.6 Wi-Fi-enabled devices per 
office worker). 
Related to devices provided by employers, we continue to see a decrease in telephones (65%) 
and desktop computers (54%) and an increase in laptops (61%) as compared to the 2019 survey 
results (79% telephones, 62% desktops, and 48% laptops). This might be expected as the 
workforce has transitioned from individuals having fixed workspaces to requiring mobility to 
support remote work. 

The 2019 survey found that about a third of the respondents turn off their Wi-Fi or Bluetooth 
while in the office and about 10% turn off their phones while at work. The 2023 survey found 
that fewer workers took steps to limit Wi-Fi and Bluetooth access to their mobile devices while 
at work, and a larger percentage said they are not bothered by Wi-Fi and Bluetooth access (50% 
for Wi-Fi and 65% for Bluetooth). In 2023, only 25% said they turn off Wi-Fi and 9% turn on 
airplane mode to limit Wi-Fi. Even fewer 2023 respondents said they turn Bluetooth off (18%) or 
turn off their phone (7%) to limit Bluetooth access. This trend is encouraging for Wi-Fi location 
tracking applications because greater use of Wi-Fi will increase the utility of Wi-Fi locating 
applications. 
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In the 2019 survey we asked the respondents if they were aware of location sensing apps in retail 
stores, malls, and museums and 28% said that they currently use them, 29% would use them if 
they were aware of them, 17% weren’t interested, 15% would avoid using them, and the 
remaining 11% weren’t sure. They were then asked if they would like their workplace to use 
location sensing for greater individual comfort, improved working conditions, and greater safety 
and security, and 61% said yes, 23% said no, and the remaining 16% didn’t care. The 
respondents’ main concern about location sensing at work was privacy, while they were 
interested in location sensing for temperature and lighting control. The survey also found that 
about a third of the respondents turn off their Wi-Fi or Bluetooth while in the office and about 
10% turn off their phones while at work.  

Only 19% of workers said they currently use apps with location sensing in public spaces for 
help, directions, information, etc., but nearly half (43%) said they would use them if they were 
aware they existed. Only 6% specified that they would avoid these apps, and 33% said they 
didn’t care or weren’t sure. Those younger than 55 were more likely to use location sensing apps, 
while those 55 or older were more likely to avoid using them. 
63% of workers said they think location sensing in the office could be valuable, compared to 
24% who thought it would not be valuable or too intrusive. The location sensing functions 
people were most interested in were assistance with navigating the building and the ability to 
adjust lighting and temperature for both personal comfort and conservation of energy resources. 
Some were also interested in security features, such as limiting access to building spaces or 
providing security assistance; locating items and people in the office; and monitoring employee 
presence and performance. 
Related to location sensing in the office, workers were most concerned with potential invasions 
of privacy or the intrusiveness of being monitored. People worried that sensing data could be 
compromised or misused and were skeptical about the anonymity of tracking. They were 
uncomfortable with the idea that employers could use employee movement and activity data as a 
management tool. Some people also noted possible technical problems and the cost implications 
of implementing a location sensing system. 

Workplace Comfort 
The responses from both the 2019 and 2023 surveys found that personal temperature and 
temperature control received the lowest ratings in terms of satisfaction for staff working in both 
their individual workspaces and the office’s conference rooms/common areas. When workers 
were not satisfied with temperature levels in both individual workspaces and conference 
rooms/common areas, the most frequently reported problem was that the temperature was too 
cool. The second most frequently reported problem with the temperature was that it was 
inconsistent throughout the day. Workers with low satisfaction with their workplace environment 
were more likely to desire greater control over their environment, while those who were highly 
satisfied did not express a greater desire for environmental control. Male respondents were more 
likely to be satisfied with office environments than female respondents. When dissatisfied with 
space temperature, women were more likely to say it was too cool while men were more likely to 
say their office temperature was too warm.  
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When workers were not satisfied with lighting levels in individual workspaces, the most 
frequently reported problem was that lighting was too bright. In conference rooms and common 
areas, lighting problems were reported as being too bright or inconsistent throughout the day. 

The workplace physical environment was rated as having a lower impact on overall job 
satisfaction in 2023 than in 2019 (59% vs. 65%). This may have been the result of a change in 
occupancy patterns post-COVID-19. 

Occupancy Patterns 
After going through a couple years of remote working due to COVID-19, the workforce has been 
returning to the workplace, but hybrid working has become accepted practice. This was 
confirmed by our survey results. In 2019 workers reported spending and average of 38.1 hours 
per week working in an employer office location and 7.0 hours working away from the office. In 
2023, workers reported spending an average of 33.3 hours per week in the office and 9.6 hours 
away from the office. The proportion of people working from home or an alternate location at 
least some of the time significantly increased, from 77% to 91% between 2019 and 2023. The 
proportion of people spending time at an office location other than their home office significantly 
decreased to 16% in 2023 from 34% in 2019. In 2023, an average of 23% of work was reported 
as being done remotely, equating to just over one day per week spent remotely and nearly four 
days in an office.  

In the past year, 19% of workers reported their time spent working remotely decreased and 10% 
said it increased. Only 11% anticipated a decrease in remote work in the next year and 13% 
anticipated an increase. About three-fourths of workers anticipated that their level of remote 
work will remain the same in the next year. Respondents under 45 years old reported a 
significantly higher number of hours working in an office location than respondents older than 
45. If we can infer age with level within the organization, this suggests that upper management 
enjoyed greater flexibility with remote working, while there was a greater emphasis on having 
lower-level workers performing their duties in the office. It is also interesting to note that 
younger respondents were more likely to expect an increase in remote work in the future, either 
reflecting an expected trend toward more hybrid work or an expected promotion within the 
organization. 

Interestingly, there was regional variation in attitudes towards remote work. Respondents in New 
York were most likely to anticipate a decrease in remote work in the next year, support employer 
mandates to return to the office, have a permanent employer office location available to them, 
and want to work 100% in the office. (While not stated in the study, this could be because of 
more limited personal space at home in this area.) Respondents in Minneapolis/St. Paul were 
most strongly opposed to return to office mandates and most likely to view remote work as a 
benefit when considering employers and to change jobs if forced to return fully to the office.  

With a large majority seeing no change in their remote work time between last year and the 
upcoming year, a full return to office work for most employees is not expected in the near future, 
though more than half of surveyed workers (55%) stated their employer is actively trying to 
bring people back to office locations. About a quarter (27%) said their employers are not. 
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It will be worth keeping an eye on the commercial real estate market to see whether commercial 
office vacancy rates return to pre-pandemic levels and whether remote and hybrid work will 
trigger a rethink of office space design and utilization.  

Emerging Technologies 
Residential technologies influence the technologies adopted in the workplace. Smart home 
technologies are increasing in maturity and adoption. During the pandemic, many remote 
employees worked in home offices and spent more time interacting with their smart home 
devices than pre-pandemic. It could be speculated that employees who interacted with their smart 
homes to control their personal environments might expect access to similar amenities in the 
workplace.  

In order to explore the role smart devices and emerging artificial intelligence (AI) technology 
might play in the workplace, the 2023 survey included questions that weren’t asked in 2019. 
There was familiarity with and use of voice-based digital assistants, and 79% of respondents 
reported having used them. Of those who have used voice-based digital assistants, half (51%) 
said they use them at least daily, and another 26% use them weekly. Those 55 and older were 
least likely to have used a voice-based digital assistant. 

When asked if they would be interested in using a voice-based digital assistant to control their 
workspace environment, submit a comfort complaint, or file a work order, 41% of workers said 
yes and 24% were not sure, while 35% said they would not. Those who said they would like 
greater control over their comfort in their personal workspace were also much more likely to be 
interested in using voice-based digital assistant for that control. Based on the responses, it seems 
likely that additional education is needed to teach office workers about how voice-based digital 
assistants could be used to control their workplace environment.  

OpenAI’s ChatGPT, a chatbot based on a large language model (LLM), made its public debut on 
November 30, 2022, and at the time became the fastest-growing consumer software application 
in history. ChatGPT quickly captured the public’s attention. AI, particularly generative AI, 
became a hot topic in 2023 and was predicted by the media to be the most influential new 
technology since the internet. In anticipation of future AI capabilities for controlling and 
interacting with buildings, 2023 survey respondents were asked about their experiences and 
attitudes toward AI technologies.  

Nearly half of workers (49%) said they have not used an AI chatbot. In addition, of those that 
had used a chatbot, 27% said they have never used one for their work. ChatGPT was the most 
popular AI chatbot, with 36% of workers saying they had used it. Only 19% of those who have 
used a chatbot, use it for work on at least a daily basis. Weekly and monthly use were more 
common. Workers aged 25–44 were more likely to have tried AI tools than those older and 
younger. Those 18–24 years old were more likely to have tried ChatGPT, and those 45 and older 
were more likely to not have tried any AI chatbots. Men were more likely to have tried ChatGPT 
(and any chatbot) than women. 

There was mixed agreement with statements of interest in learning about and using AI, with 
mean scores around 5.0 on a scale of 1=Totally Disagree to 10=Totally Agree and 22%–34% in 
the top three agreement responses. 22% agreed that AI can be used to improve their office 
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environment and work experience and would love a tool that used AI to adjust a room to their 
comfort needs. Workers generally disagreed that AI is a fad that will fade in the coming years. 
Men were more interested in learning about AI than women. Those in offices of larger size were 
both more likely to have used AI tools and more interested in learning about them. 

When asked if they would be interested in using an AI chatbot to control their workspace 
environment, submit a comfort complain, or file a work order, 39% of workers said yes and 32% 
were not sure, while 29% said they would not. Those who expressed interest had a positive 
sentiment toward AI, generally, and saw benefits for convenience, efficiency, and comfort in 
allowing AI to control their environment. Those who were unsure expressed familiarity with how 
they adjust their environment themselves and a need for more information and understanding of 
allowing AI to do that, especially related to data privacy and more specific functionality. Those 
who said they are not interested in AI controlling their environment expressed their general 
reluctance and skepticism toward AI and preference for human interaction and manual control. 
They feel they are self-sufficient and autonomous, and AI is unnecessary for their work or office 
environment. 

Prospective adopters of AI chatbot technology tended to be strong adopters of technology in 
general. Those who have used AI chatbots are more likely to have various types of personal and 
company-provided electronic devices in their workspace. They also said they have about twice as 
many devices that use Bluetooth or cellular capabilities than those who have not used chatbots. 
There was not a significant difference in the number of Wi-Fi enabled devices, but those who 
have used chatbots were more likely to say they have turned off the Wi-Fi on their devices while 
in the office and leave wireless devices at work when they are away. Those who said they would 
like greater control over their comfort in their personal workspace were also much more likely to 
be interested in using an AI chatbot for that control. 

While the percentage of those who were interested in voice-based digital assistance is similar to 
those interested in using an AI chatbot for workplace control, a higher percentage said they 
would not be interested in using a voice-based digital assistant than an AI chatbot for these 
purposes at work. The reasons people were interested in using a voice-based digital assistant 
were similar to the benefits seen in using AI, with the addition of it being a hands-free option for 
controlling the environment. These people were especially excited and eager to implement this 
technology they are already familiar with in their work settings. Those who were unsure of or not 
interested in using voice-based digital assistants at work shared very similar problems and 
concerns as those expressed with using AI to control their work environments.  

As voice-based digital assistants and AI chatbots mature, we can anticipate that adoption will 
increase and employees will become more aware of their ability to interact with their 
workplaces. Additional education and experience with these tools will help drive adoption for 
intelligent buildings.   
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Discussion 
In this section, we cover in more complete detail the work we performed in this project and the 
results obtained in the field demonstrations and surveys. 

Wi-Fi Enabled Device Detection 
A number of issues concerning Wi-Fi device detection were encountered during the site 
demonstrations. These involve the wireless network’s APs not being able to detect some of the 
Android phones used for fixed reference points s in the collected data due to outages. There are 
three sources for these problems: 

• The Wi-Fi device that emits the signal 
• The APs and wireless network that receives the signal 
• System outages 

Wi-Fi Device Signal 

The two primary issues with the Wi-Fi device sending out a signal are the frequency at which the 
device is searching (or pinging) for a wireless network and the strength at which the signal is 
sent out. According to Meraki’s Location Analytics documentation,30 the frequency of probe 
requests varies based on the device's state: about once a minute when asleep and 10–15 times per 
minute when in standby, and a device might not send probe requests when already associated 
with an AP. Additionally, we assume that the frequency also varies greatly among different 
operating systems and installed applications (for example, an active app on a smartphone can 
cause it to probe more frequently, even when the device is in a sleep state). 

AP Receiver 

We noted limitations in some of the APs' ability to read signals, including issues related to signal 
obstruction, multipath interference, antenna orientation, and distance from devices. This was 
particularly evident in environments with complex layouts or where APs were not ideally 
positioned. 

System Outages 

Occasional server outages and internet connectivity issues led to gaps in the collected data. The 
ingest server at Design.Garden that receives and stores data was unable to consistently keep up 
with the increasing number of APs and would occasionally require manual intervention to 
continue collecting data. We also observed that some offices would occasionally stop sending 
data for periods of time, leaving us to assume they lost internet connectivity. 

 
30 Cisco Meraki, “Location Analytics, Location Data Collection” webpage. 
https://documentation.meraki.com/MR/Monitoring_and_Reporting/Location_Analytics#Location_Data_Collection 
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Device Location Accuracy 
The accuracy of device location varied significantly across different environments. Factors such 
as antenna orientation, physical obstructions within the space, and inherent limitations of the Wi-
Fi LBS technology influenced the accuracy of our Location Detection Algorithm (LDA). 
Instances occurred in which the algorithm failed to correlate RSSI readings to location 
accurately, leading to significant errors in device positioning. This was exemplified in our tests at 
the Sinclair Hotel, where devices were often incorrectly located. 

Our initial expectation for the Location Detection Algorithm (LDA) was that the error in 
translating RSSI to distance would be less than 10 feet, a benchmark derived from literature on 
Wi-Fi RSSI-to-distance transformations and confirmed in our laboratory testing. However, the 
complexity and variability of commercial building environments meant that we did not have 
complete control over the placement of APs, leading to situations where the RSSI was often 
translated to distance with a larger error than anticipated. This deviation from our expected 
accuracy necessitated an adaptation of our LDA, as described in our section regarding in-situ 
testing for occupancy sensing validation. 

Wi-Fi LDA Failure 
As discussed, Wi-Fi LBS requires a correlation between a device’s distance from a sensor and 
the RSSI. However, in our field demonstrations we observed several instances where there 
simply was no discernible correlation. In these instances, the LDA cannot be used to confidently 
determine the location of the device. 

For example, the device labeled P11 in the Sinclair was placed in room 1211, but was often 
calculated by our LDA to be across the hall in room 1203. Looking at the RSSI of each sensor 
averaged over one hour, we determined the issue: sensors across the hall were reporting strong 
RSSIs. In our “Xa Tuning” section, we have demonstrated how we can account for this by 
calculating an estimated mean, Xμ, but this is inapplicable when a monotonic RSSI-to-distance 
transformation, where RSSI increases with decreasing distance, cannot be reasonably inferred. 

Each row in Table 18 shows the actual distance between the phones P3 and P11 to an AP, 
(identified by its MAC address), along with the RSSI. To illustrate the issue, we’ve highlighted 
the closest phone and strongest symbol in each row. Note that we should expect to see the closest 
phone providing the strongest signal (both highlighted numbers in one row should belong to the 
same phone, P3 or P11); however, instead we see the opposite, that the RSSI is consistently 
stronger for the furthest phone.  

Table 18. Comparison of distances of Android phones P3 and P11 from APs at Sinclair Hotel 

AP MAC 
P3 P11 

RSSI 
(DBm) 

Actual Distance 
(ft) 

RSSI 
(DBm) 

Actual Distance 
(ft) 

e0:cb:bc:47:6e:fd -23 8.4 -13 49.3 

e0:cb:bc:47:6c:aa -23 15.5 -4 58.3 
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e0:cb:bc:47:78:2b -11 18.8 -3 48.1 

e0:cb:bc:47:db:5e -26 19.6 -16 37.6 

e0:cb:bc:bd:1d:5d -20 24.4 -11 31.3 

e0:cb:bc:47:da:eb -5 33.9 -14 25.6 

e0:cb:bc:47:ce:b6 -7 35.9 -11 22.5 

e0:cb:bc:47:cf:e7 -8 56.7 -34 11.9 

 
Unfortunately, our ability to troubleshoot this issue was limited given that this only occurred 
during our field demonstrations, where we lacked the ability to rapidly review and test the 
system. Therefore, we did not identify the cause of this issue during this project. Instead, we can 
offer the following notes: 

• We can’t simply assume that obstructions or faulty hardware caused these discrepancies 
because neither easily explains why some Access Points received very strong signals. 

• This issue was most profound at the Hotel Sinclair, which used Meraki access points, but 
we also encountered this issue for some reference devices at the offices of ConEd’s R&D 
department and at Slipstream, which used Open Mesh access points connected to Plasma 
Cloud. 

• Mislabeled access points or reference devices would exhibit a similar symptom; however, 
we worked with staff at each site to confirm all device positions. 

Occupancy Detection 
Our project aimed to correlate the number of detected Wi-Fi enabled devices to actual 
headcounts. Survey results indicated that occupants typically carry multiple Wi-Fi-enabled 
devices, leading to the expectation that the number of detected devices would exceed the actual 
headcount. However, our findings showed a good correlation between the detected number of 
devices and the actual headcount, suggesting the effectiveness of our filtering and consolidation 
methods for MAC addresses (cf. the section on Filtering Devices). 

In addition to the initial occupancy detection efforts, our second test at the Parallel Technologies 
Innovation Lab provided further insights. During this test, the LDA was employed to monitor 
occupancy during an open house event, a setting significantly different from the regular office 
environment due to the large and fluctuating number of attendees, who may have been moving 
about more than typical office workers sitting in a single location for most of the time.  

During the event, headcounts performed by staff were compared against device counts calculated 
by the LDA using varying sampling periods. Interestingly, we found that shorter sampling 
periods tended to undercount the guests, while longer periods failed to accurately reflect changes 
in attendance, such as when guests began to leave. This discrepancy highlighted the importance 
of choosing an optimal sampling period that balances responsiveness with accuracy. We 
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concluded that a sampling period between 15 to 30 minutes struck the best balance, correctly 
accounting for approximately 30% to 42% of guests, respectively. 

Commissioning 
Differences between lab test results (errors of less than 10’ with Xa turning) and field 
demonstrations (errors ranging from 2’ to 43’ with an average for all the sites of about 18’ and a 
standard deviation of 13’) underscored the need for careful commissioning and calibration of the 
LDA in each unique environment. This process includes fine-tuning parameters such as the Xa 
value in the Hato-Okumara model, which accounts for signal attenuation due to environmental 
factors such as walls, furniture, and other obstructions. Having fixed reference points such as the 
Android phones used at the demonstration sites or fixed office equipment like Wi-Fi enabled 
printers, copiers, and displays could allow for ongoing commissioning of the space. 

Cybersecurity Considerations 
The IT departments of all of the field sites were interested in the Wi-Fi LBS technology that we 
were studying but were reluctant to allow us access to their wireless network and APs. Their 
concern was that the technology used for occupancy load detection via Wi-Fi APs can expose 
vulnerabilities both in the building and over the internet related to local network, man-in-the-
middle, and server attacks.  

• Local network attacks involve the intruder gaining access to the Wi-Fi network inside the 
building to exploit or manipulate the data. 

• Man in the middle attacks could manipulate data sent from the APs during transmission 
to the cloud for processing and/or manipulate data sent to the IoT system in the building 
that uses the processed occupant load data to operate the HVAC system. The use of TLS 
on API endpoints provides encryption of the data across the web and the use of common 
API authentication techniques secures the endpoints themselves.  

• Server attacks involve a hacker gaining access to data sent by the Wi-Fi APs to the cloud-
based database. Personal data such as the MAC addresses of smartphones could be 
retrieved if a hacker gained access. A one-way hash function could be used to store and 
protect personal information on the server after the AP has sent the data via the web to 
the cloud. 

Furthermore, the end device that uses the occupant load data to adjust setpoints on the HVAC 
system is susceptible to corrupt data, whether the data is manipulated or incorrectly reported. To 
protect HVAC equipment from unwanted equipment cycling that can lead to premature wear, the 
IoT or BAS could be protected to respond to the occupant load information on allowable percent 
change per hour. 

This project demonstrated the communications pathway that the LDA receives the data of the 
Wi-Fi devices detected by the APs and sends the headcount data to the BAS. This can all be 
done behind the firewall set in place by the IT department. This should allay any concerns that 
this functionality will introduce additional cybersecurity vulnerabilities beyond those that are 
currently being defended against.  
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Potential Energy Savings from Occupancy-Based Ventilation 
Rates  
A proprietary calculator designed for use with commercial HVAC programs at the Center for 
Energy and Environment was modified to measure the impact of adjusting building ventilation 
rates based on actual occupancy. While this calculator is less robust than an energy model using 
EnergyPlus, for example, it has the advantage of easily allowing isolation and control of the 
supply fan for parametric studies of relative energy use.  

The calculator assumes a simple RTU that has only time schedule and thermostatic control. For 
these systems, the two factors that have the greatest impact on energy consumption are the 
temperature set points(s) and the occupancy status of the space. Higher setpoint temperatures 
require more heating and less cooling. When the space is unoccupied, if the RTU supply fan is 
set to auto, it operates only when needed to distribute heating or cooling—otherwise it is off, 
saving fan energy. When the space is occupied, the supply fan is always on at full power, as 
required for 100% occupancy (the basis of design). This is the attribute that was varied for our 
analysis. Rather than being always on, the fan speed was regulated based on the ventilation 
requirements for the level of occupancy. 

For this analysis, the characteristics of the four sites were normalized to a 5,000 square foot area. 
The system heating and cooling capacities were determined by the design temperatures for each 
location. Based on our observations in this study, we rarely saw space occupancy greater than 
75% of the design level, and frequently observed occupancy of 25% or less. Table 19 shows the 
range of savings using technical potential that represents the maximum amount of energy use 
that could be theoretically displaced by an efficiency measure.31 The conservative savings 
estimate shown in the table is based on half of all buildings implementing controls that average 
75% occupancy and the rest making no change; the aggressive savings estimate is based on half 
of all buildings implementing controls that average 75% occupancy, one quarter implementing 
controls that average 50% and one quarter implementing controls that average 25% occupancy. 

Table 19. Estimated energy savings based on technical potential 

 Total EUI Heating EUI Ventilation EUI % Total 
Savings 

% Heating 
Savings 

% Ventilation 
Savings 

Conservative 
Scenario 64.7 19.7 12.4 1.4% 2.0% 4.0% 

Aggressive 
Scenario 62.5 18.7 11.2 4.8% 7.0% 13.3% 

 
31 EPA (U.S. Environmental Protection Agency). 2007. Guide for Conducting Energy Efficiency Potential Studies. 
Washington, DC: EPA. http://www.epa.gov/cleanenergy/documents/suca/potential_guide.pdf. 
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These calculations assume that the supply fan operates at full power when it is on. Fans are now 
available with multiple operating speeds or fully modulating motors; these could produce even 
larger savings, but the controls would be more complex. Appendix A provides a more complete 
description of this analysis.  

Impact of COVID-19 on Office Occupancy 
The COVID-19 pandemic had a major impact on this project when office staff began working 
remotely and occupancy in buildings (and at our field sites) was negligible. In addition to the 
delays this caused to our project, we also encountered low and variable occupancy once the 
offices in our field study began to reopen. A few years removed from the pandemic, remote 
working continues to be practiced even though businesses are encouraging a return to the office. 
Many companies have required staff to work in the office for at least a few days of the week. 
Given this trend, adjusting building ventilation rates based on actual occupancy should be a 
practice that is promoted. The failure to have this measure in place during COVID was an 
opportunity lost. 

Program Recommendations for Implementing Wi-Fi LBS 

A number of opportunities are available to encourage the operation of building HVAC systems 
based on actual occupancy and, specifically, the use of Wi-Fi LBS. Utility provider incentive 
programs that focus on retro-commissioning (RCx) and monitoring-based commissioning (MBx) 
could expand their offerings to include a Wi-Fi LBS energy saving/management program. These 
programs should be encouraged to use MBx and analytics to continuously verify the 
effectiveness of the LBS Wi-Fi strategy by monitoring and documenting reductions in building 
fuel consumption over time. Incentives would be beneficial for both contractors and building 
owners to participate. A number of stakeholders would also need to be enlisted and trained to 
promote effective adoption. This includes: 

• Engaging consulting firms or contractors regarding task allocation for setting up LBS 
platforms or systems to optimize building energy use. 

• Requiring architectural/engineering (A/E) consulting firms to perform HVAC design 
calculations incorporating variations in occupancy as part of the system setup. 

• Training IoT contractors to implement wireless networks that effectively deliver LBS 
occupancy detection along with good Wi-Fi coverage.  

• Educating local engineering consultants in commissioning the LBS systems to ensure the 
proper functionality and integration of the LBS system. 

Future Work 
Based on the results of this project, there are a number of follow-up research topics that are 
worth exploring. While it was found that locating mobile devices like smartphones provides a 
good way to sense occupancy, the inability of the LDA to accurately and consistently determine 
the locations of these mobile devices is still the major limitation of the approach. Given the use 
of dedicated apps to provide accurate RTLS for applications in retail stores and museums, 
investigation of these approaches should be considered to determine if the limitations of the LDA 
can be overcome or whether these apps make use of other mobile device signals such as 
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Bluetooth or GPS. These dedicated apps require the user to download the app, open the app, and 
log the device into the wireless network. This might be expected for employees but would 
require benefits for other occupants to incentivize use of the app. More accurate location of 
occupants could allow finer control of lighting, plug loads, and space conditioning/personal 
comfort, as well as non-energy benefits such as greater building security and safety and open 
office workplace customization. Use of dedicated apps could result in additional privacy 
concerns that would need to be confronted. 

The onsite field demonstrations showed the quantity and placement of the APs for the LDA to 
provide good results. If this approach is to gain wider adoption, a commissioning approach that 
can be performed by in-house IT staff is needed. Since the APs will be used to provide both 
wireless network coverage and occupancy sensing, a greater number of APs will be required and 
the LDA would also need to be tuned for greater location accuracy using fixed reference Wi-Fi 
beacons to account for obstructions within the space. An ongoing commissioning of the LDA 
with the fixed reference points would be desirable. 

Real-time occupancy sensing will require the development of HVAC design algorithms that 
building operators can implement to provide more accurate occupancy-required ventilation, 
heating, and cooling.  
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Conclusions 
This project found that using Wi-Fi data collected from mobile Wi-Fi enabled devices can 
provide reasonable real-time occupant presence and count data. Using actual detection of 
occupant presence would improve on the inefficiencies produced by predefined occupancy 
schedules which can result in elevated energy use and comfort issues. Despite the uncertainty in 
the LDA’s headcount estimate due to occupants carrying multiple Wi-Fi enabled devices and the 
ability of the APs to consistently detect the mobile devices’ Wi-Fi signals, the headcount 
numbers were found to reflect the actual occupancies of the spaces monitored. The average 
typical occupancy for the three sites (Minnesota Admin Building, ConEd R&D Office, and 
Slipstream second floor offices) was about 20% of the maximum occupancy of the sites (ranging 
from 10% to 30%). The average highest occupancy detected was about 40% (ranging from 25% 
to 46%). Using ventilation rates based on real-time occupancy rates for demand-controlled 
ventilation as opposed to schedules assuming full occupancy would provide significant 
opportunities for energy savings. For building-wide or floor-wide HVAC system operation, 
headcount estimates provided by the LDA could best be applied by using a rule-based approach 
to occupancy-based ventilation. Table 20 shows the calculated electrical and heating energy 
savings using occupancy-based supply fan operation for 25%, 50%, and 75% occupancy levels. 
As described in Appendix A, these results were obtained from simulations of office buildings 
located in the cities where the monitored building sites were located. 

Table 20. Energy savings based on occupancy-based supply fan operation 

Actual 
Occupancy (vs. 

Design) 

Electrical 
Energy Savings 

Heating 
Energy Savings 

25% 22% ± 2% 12% ± 3% 

50% 15% ± 2% 8% ± 2% 

75% 8% ± 1% 4% ± 1% 

Negligible cooling savings were found (less than 1%). To estimate the total energy savings for 
all commercial buildings in the U.S., a weighted average of square footage was used by principal 
building activity using the electricity consumption rates from CBECS. The median energy 
savings from ventilation controls was 16.7 TWh annually and 6.9 million metric tons of CO2 
emissions avoided. If the mobile device RSSI and MAC address data collected by the APs of the 
wireless network is available for location analytics, no further investment in occupancy sensing 
equipment is needed. This would then be a software-based retrofit that would be a cost-effective 
approach to building occupancy sensing and occupancy-monitored HVAC operation.  
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Appendix A – Estimating Energy Savings Potential 
A proprietary calculator designed for use with commercial HVAC programs at Center for Energy 
and Environment was modified to measure the impact of adjusting building ventilation rates 
based on actual occupancy. This tool was originally developed to calculate energy use of a 
rooftop unit (RTU) using standard engineering algorithms for energy consumption based on 
building heating and cooling loads. Hourly energy use is calculated using TMY3 data for 
outdoor temperature, setpoints for the indoor temperature and the building’s balance point. The 
building load curve defines the capacity of the heating or cooling system based on the design 
temperature for the location. The hourly energy required for heating, cooling, and ventilation is 
summed to obtain the total annual energy use. While this calculator is less robust than an energy 
model using EnergyPlus, for example, it has the advantage of easily allowing isolation and 
control of the supply fan for parametric studies of relative energy use.  

The calculator assumes a simple RTU that has only time schedule and thermostatic control. For 
these systems, the two factors with the greatest impact on energy consumption are the 
temperature set point(s) and the occupancy status of the space. Higher setpoint temperatures 
require more heating and less cooling. When the space is unoccupied, if the RTU supply fan is 
set to auto, it operates only when needed to distribute heating or cooling—otherwise it is off, 
saving fan energy. When the space is occupied, the supply fan is always on at full power, as 
required for 100% occupancy (the basis of design). This is the attribute that was varied for our 
analysis: rather than being always on, the fan speed was regulated based on the ventilation 
requirements for the level of occupancy. 

For this project the characteristics of the four sites were normalized to a 5,000 square foot area. 
The system heating and cooling capacities were determined by the design temperatures for each 
location. These in turn define a building load curve, such as that shown in Figure 43 (for the St. 
Paul location), which is the starting basis for the calculations.  

Figure 43 shows the building load curve using the St. Paul design temperatures. The values in the 
boxes are the heating (-143,416 Btu/h) and cooling (76,802 Btu/h) loads at the design 
temperatures. The load is for the building shell only; it excludes ventilation. 
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Figure 43. Building load profile using St. Paul design temperatures 

 

The heating and cooling energy for the building load is: 

 ((System Capacity / efficiency) * (OAT - TBalance) / (TDesign - TBalance)) * (% Capacity at Design) 

where:  

OAT = Outside air temperature and  
TBalance = Building balance point temperature. 

The building performance curve is generated by adding ventilation to the building load. This is 
shown in Figure 44. The total heating or cooling required at design is increased by a factor of 
about 2 compared to the load of the building shell. The increase is required to meet the additional 
load required for conditioning outside air (‘fresh air”) based on ASHRAE 90.1, Energy Efficiency 
Standard for Sites and Buildings Except Low-Rise Residential Buildings, as shown in Figure 44. 

There are two causes of the increase in energy for ventilation energy .Energy is required for the 
supply fan whenever it distributes and circulates air. The electric energy required to operate the 
supply fan (SF) is: 

((Occupied hours) + (Unoccupied hours * (OAT - TBalance) / (TDesign - TBalance))) * SF power 

SF power is measured in kilowatts and the fan only operates for long enough to meet the 
building heating or cooling load during unoccupied hours. When the space is occupied the SF 
uses full power continuously. This will be changed by the occupancy control discussed below. 

In addition, heating or cooling energy is required to condition the outside air brought into the 
space. The additional heating or cooling energy required for the outside air is: 

SA cfm * min OA% * |RAT – OAT| * 1.085 

where RAT = Room air temperature and |RAT-OAT| is always a positive number, 
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SA cfm = the supply air flow rate (cubic feet/minute (cfm)), and 
Min OA% is the percentage of outside air that is mixed with the returning air.  

Figure 44. Building performance curve with ventilation added to the building load 

 
 

Building performance curves showing the impact of conditioning outside air (blue line) 
compared to no outside air (dashed green line). The gray line is the total load. 

The TMY3 for each of the four project sites (St. Paul, MN; Madison, WI; Manhattan, NY; Fort 
Worth, TX) is used with the design temperatures shown in Table 21. 

Table 21. TMY3 design temperatures 

Location Heating design temperature Cooling design temperature 

St Paul, MN -13.4°F 91°F 

Madison, WI -12.3°F 93.1°F 

Manhattan, NY  12.6°F 92.2°F 

Fort Worth, TX  18.8°F 100.3°F 

 

Location-Specific Inputs  
The inputs used for a 5,000 square foot office occupied 60 hours/week at each location are listed 
below in Table 22. The heating and cooling system capacity values were determined by the 
building load model using the design temperatures in Table 21. The fan power values are based 
on a database of approximately 2,000 RTUs installed on commercial buildings. The flow rate of 
400 CFM/ton of cooling capacity is an industry standard. The outside air percentage is based on 
ASHRAE 90.1 requirements for a 5,000 square foot space with 45 occupants (110 square feet 
per occupant). 
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Table 22. Location-specific inputs for the energy savings calculations. 

 
City 

Notes 
Minneapolis Madison NYC Fort Worth 

Rated heating 
input (btu/hr.) 120,000 115,000 75,000 65,000 from load 

modeling 

Rated cooling 
capacity (tons) 6.0 6.3 6.2 7.4 

from load 
modeling and field 

data 

Cooling eff 
(EER) 10.2 10.2 10.2 10.2 Field data 

Condensing fan 
power (Amps) 
208 V, single 
phase 

1.9 1.9 1.9 3.0 Field data 

Supply fan 
power (Amps) 
208V, three 
phase 

5.5 5.5 5.5 7.0 Field data 

Flow rate 2,400 2,520 2,480 2,960 400 CFM/ton 

Min vent rate 22% 21% 21% 18% ASHRAE 90.1 
requirements 

ASHRAE Ventilation Requirements 
The ASHRAE Standard 62.1 has often been cited as a reason that the supply fan must run at full 
speed during all occupied hours.32 However, this is not required by the standard; rather the 
supply of outside air must meet a minimum value that adds two values together, one proportional 
to the total area of the space (essentially a baseline minimum) and a variable term proportional to 
the number of occupants in the space. Section 62.1 states, “The design outdoor airflow required 
in the breathing zone of the occupiable space or spaces, Vbz” is determined by this equation: 

Vbz = RaAz + RpPz 

where: 

Rp the “People Outdoor Air Rate,” is the airflow rate per person, 5 cfm for office spaces, 
Pz is the population of the zone, 
Ra the “Area Outdoor Air Rate,” is the required minimum for the building area, 0.06 cfm/ft2 

for offices, and 

 
32 ASHRAE. ANSI/ASHRAE Standard 62.1-2022, Ventilation and Acceptable Indoor Air Quality. Atlanta, GA, 
2022. 
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Az is the building area in square feet. 

Table 23 shows the ventilation rate at full occupancy for a range of office densities (based on 
square feet per occupant). 

Table 23. Full occupancy ventilation rates for various office densities 

Square feet per 
worker 

Building Area, 
Sq ft, Az 

Occupants 
(design), Pz 

RaAz 
Area based 

cfm 

RpPz 
Occupancy 
based cfm 

Vbz 
Total cfm 

100 5,000 50 300 250 550 

150 5,000 33 300 167 467 

200 5,000 25 300 125 425 

250 5,000 20 300 100 400 

300 5,000 17 300 83 383 

350 5,000 14 300 71 371 

400 5,000 13 300 63 363 

This table illustrates the potential for saving energy with control of the fan operation based on 
actual occupancy, which our study found to be as small as 20% of the design. The offices we 
studied had an average of 112 ft.2 per person with a range from 73 to 170. In a previous study of 
28 Minnesota office spaces we observed an average of 285 ft.2 per person. Figure 45 shows the 
ventilation required as a function of the actual space occupancy for two offices, one with 110 
ft.2/person (this study) and one with 285 ft.2/person. While the larger area per person may be 
more representative of typical office spaces, this as-built value may be much less dense than the 
original building designs, which are reflected in the plans for the spaces in the current project. 
CBECS 2018 records an average of 507 ft.2 /person in office buildings overall, but that includes 
all spaces in the building (common areas such as lobbies, basements, etc., not just active office 
space).  

Figure 45. Comparison of outside air requirements by space occupancy 
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Analysis of Energy Savings  
The calculator was augmented to look at the impact of changing the supply fan run time, and 
thus ventilation, as occupancy varies. The ASHRAE ventilation requirements were incorporated 
by this, changing the Occupied Hours term in the equation for fan power to Effective Occupied 
Hours: 

((Effective Occupied hours)+(Unoccupied hours*(OAT - TBalance)/(TDesign - TBalance))) * SF power 

where for each hour,  

Effective Occupied hour = RaAz + RpPz*(Pz actual / Pz design) 

The impact on heating and cooling is incorporated by adjusting the outside air supply, SA, from 
the fixed value specified under design conditions with the ventilation required for the actual 
number of occupants:  

RaAz + Rp Pz actual * (RAT - OAT) * 1.085 

where: 

SA cfm * min OA% is replaced by (Vbz = RaAz + RpPz actual) using observed population instead 
of design population, for Pz. 

Section 6.2.5 of the ASHRAE standard addresses Design for Varying Operating Conditions, 
including specifying the time duration to use when occupancy fluctuates during the day with this 
relationship: 

T(hrs)= 3 * (volume of the zone in cu. ft.) / (Vbz). 

For this study, these times range from 3.5 hours for the “high density” office at design to 5.8 
hours for the low-density office at 50% actual occupancy. For this analysis we used a constant 
occupancy rate for each day as short-term variations were observed over much shorter periods 
(often less than an hour), but daily averages were much more stable. 

Table 24 shows the electrical energy savings, as a percentage of total annual energy use without 
the occupancy control, for the supply fan at each of the four locations. The occupancy 
percentages are based on the observations in this project; the 50% and 75% values are higher 
than any of our observations but are added assuming that the low levels observed were largely 
due to the impact of COVID-19 and reduced occupancy levels (although there are indications 
that offices may take many years to return to pre-COVID densities). 
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Table 24. Electrical energy savings based on occupancy-based supply fan operation 

Actual 
Occupancy (vs. 

Design) 
St Paul, MN Madison, WI Manhattan, NY Ft. Worth, TX 

Average and 
Standard 
Deviation 

15% 25% 26% 27% 21% 25% ± 3% 

21% 23% 25% 25% 20% 23% ± 2% 

25% 22% 23% 24% 19% 22% ± 2% 

50% 15% 16% 16% 13% 15% ± 2% 

75% 8% 8% 8% 7% 8% ± 1% 

Table 25 shows that smaller savings were also found for heating, due to the reduced volume of 
outside air requiring heating to the indoor setpoint temperature. 

Table 25. Heating energy savings based on occupancy-based supply fan operation 

Actual 
Occupancy (vs. 

Design) 
St Paul, MN Madison, WI Manhattan, NY Ft. Worth, TX 

Average and 
Standard 
Deviation 

15% 10% 11% 16% 18% 13% ± 4% 

21% 9% 10% 15% 16% 13% ± 3% 

25% 9% 9% 14% 16% 12% ± 3% 

50% 6% 6% 9% 10% 8% ± 2% 

75% 3% 3% 5% 5% 4% ± 1% 

Negligible cooling savings were found (less than 1%). 

Results from Modeling with Scout and EnergyPlusTM 

This section summarizes the modeling using DOE’s tools that was performed in the first part of 
this project.33 The report describes the results of a feasibility analysis of Wi-Fi LBS to provide 
the necessary information and accuracy to perform occupancy sensing for energy efficient 
building operation. Energy modeling was performed to define the necessary benchmarks that 
were then used for assessing the successful application of Wi-Fi LBS to building operations. 

The Scout tool was used for estimating the energy and carbon impacts of various energy 
conservation measures (ECMs) on the U.S. residential and commercial building sectors34 and 

 
33 “Energy Savings Analysis of the Use of Wi-Fi Location-Based Services (LBS) for Occupancy Sensing.”  
Sui, Di, and Shen, Lester. DE-EE000008684 Deliverable 2.2.1 Energy Savings Analysis Report, January 2020. 
34 https://scout.energy.gov/ 
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EnergyPlus™ whole building energy simulation program.35 Scout was used to calculate the 
national energy savings potential and EnergyPlus™ simulations were performed to model the 
energy savings potential for specific reference building types. 

Energy savings were calculated for each group of measures using the DOE reference building 
models36 as the baselines. Current energy codes were used in the simulations. The energy 
savings were calculated using reference models based on ASHRAE 90.1-2016. To model the 
impact of each group of measures, the key simulation parameters were updated based on the 
level of controls. These parameters include: occupancy schedules, temperature control schedules, 
temperature setpoint schedules, ventilation schedules, fan schedules, lighting schedules and 
power densities, and plug load schedules.  

The EnergyPlus simulations predicted total average savings for the five commercial building 
types (Small, Medium and Large Office Buildings, Primary and Secondary Schools) from 11% 
to 34% with an average savings of 21% for a total of 1.34 Quads when applied to all commercial 
buildings using Scout. The average savings by end use from the simulations are combined with 
the most recent CBECS data in Table 26 to estimate energy savings potential by end use. 

Table 26. Potential Savings in Trillion Btu by End Use 

End Use LBS Savings Office All buildings 

Space Heating 30% 98 650 

Cooling 23% 19 135 

Ventilation 15% 32 109 

Water Heating    

Lighting 42% 55 298 

Cooking    

Refrigeration    

Office Equipment 16% 2 8 

Computing 16% 14 43 

Other 9% 17 97 

Total 20% 236 1,341 

 
35 https://energyplus.net/ 
36 https://www.energy.gov/eere/buildings/commercial-reference-buildings 
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The reductions in carbon emissions associated with these savings are and carbon savings 
by fuel for office buildings and all commercial buildings. The annual emissions savings potential 
for all commercial buildings is 108 million metric tons of CO2 shown in Table 27. 

Table 27. Potential carbon dioxide emission reductions from LBS controls, Millions of metric tons by energy source37 

Building Type Electricity (Site) Natural Gas Fuel Oil District 
Energy 

Total Emissions 
Reduction 

Office Buildings  15.8   3.9   0.3   0.1   20.0  

All Buildings  74.4   25.7   6.8   0.6   107.5  

Estimating Energy Savings Potential from Ventilation Control 
As an alternative to the Energy Plus/Scout simulation approach, we also calculated the impact of 
broad implementation of occupancy-based control of ventilation based on the actual sites in this 
study to estimate the Technical potential. Technical potential represents, in theory, the maximum 
amount of energy use that could be displaced by an efficiency measure.38 The most recent 
Commercial Buildings Energy Consumption Survey (EIA, 2018, CBECS) includes this 
information on office buildings in the U.S., as shown in Table 28. 

Table 28. Average of selected energy end use for office buildings39 

Building 
Activity 

Total 
building 

space 
(millions 

of ft.2) 

Total 
kBtu/ft.2 

Heating 
kBtu/ft.2 

Cooling 
kBtu/ft.2 

Ventilation 
kBtu/ft.2 

% Total 
Energy for 
Ventilation 

% 
Electricity 

for 
Ventilation 

Office 16,662 65.6 20.1 5.1 12.9 20% 28% 

All Comm 
Buildings 96,423 71.6 25.0 7.0 8.0 11% 19% 

 

Using these values with our findings, Table 29 shows the range of savings based on the technical 
potential. The conservative savings estimate shown in the table is based on half of all buildings 
implementing controls that average 75% occupancy and the rest making no change; the 
aggressive savings estimate is based on half of all buildings implementing controls that average 
75% occupancy, one quarter implementing controls that average 50%, and one quarter 
implementing controls that average 25% occupancy. 

 
37 Portfolio Manager Greenhouse Gas Emissions August 2023, accessed February 22, 2024, 
portfoliomanager.energystar.gov/pdf/reference/Emissions.pdf 
38 Center for Energy and Environment, Optimal Energy, and Seventhwave. Minnesota Energy Efficiency Potential 
Study: 2020–2029. Minnesota Department of Commerce, Division of Energy Resources, 2018. 
https://mn.gov/commerce-stat/pdfs/mn-energy-efficiency-potential-study.pdf 
39 U.S. EIA CBECS webpage.https://www.eia.gov/consumption/commercial/pba/office.php 
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Table 29. Estimated energy savings based on technical potential 

 Total EUI Heating EUI Ventilation EUI % Total 
Savings 

% Heating 
Savings 

% Ventilation 
Savings 

Conservative 
Scenario 64.7 19.7 12.4 1.4% 2.0% 4.0% 

Aggressive 
Scenario 62.5 18.7 11.2 4.8% 7.0% 13.3% 

These calculations assume that the supply fan operates at full power when it is on, while fans are 
now available with multiple operating speeds or fully modulating motors. These could produce 
even larger savings, but the controls would be more complex. 

To estimate the energy savings for all buildings, a weighted average of square footage was used 
by principal building activity using the electricity consumption rates from CBECS Table E.5 
with the relevant columns reproduced in Table 30. The PBA Savings Factor is an estimate of the 
savings potential of Wi-Fi Location Based Services in the building type. This is a rough 
approximation based on the expected occupancy level of the buildings, the stability/variability of 
occupancy over the occupied hours, the number of occupied hours per week (the only time 
savings will be realized) and the likelihood that building systems could use this control system. 
 

Table 30. Electricity consumption (in kWh) by end use, 2018 (CBECS Table E5, Release date: December 2022) 

 Total electricity consumption 
(billion kWh) 

 

Total Space 
heating Cooling Ventilation 

PBA 
Savings 
Factor 

Vent 
kWh 

(billion) 

All buildings 1,196 70 170 213  168 

Principal building activity  79%  

Education 128 7 26 19 50% 9.5 

Food sales 54 2 2 4 50% 2.0 

Food Service 61 4 7 7 75% 5.3 

Healthcare 96 2 10 29  - 

     Inpatient 65 1 8 19 50% 9.5 

     Outpatient 31 1 2 10 75% 7.5 
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Lodging 100 7 12 25 75% 18.8 

Mercantile 180 12 21 34   

     Retail (other than mall) 71 3 9 18 100% 18 

     Enclosed and strip malls 109 9 12 16 100% 61 

Office 227 13 23 63 100% 63 

Public assembly 87 8 28 8 75% 6 

Public order and safety 21 1 4 3 50% 1.5 

Religious worship 27 2 6 5 100% 5 

Service 45 3 7 5 50% 2.5 

Warehouse and storage 95 6 15 7 25% 1.8 

Other 70 2 8 5 25% 1.3 

Vacant 5 (*) 1 (*) 0%  

With these values, the electrical savings are estimated in Table 31 for all buildings in GWh, and 
the CO2 savings in millions of metric tons.40 The median energy savings from ventilation 
controls alone is 16.7 TWh annually and 6.9 million metric tons of CO2 emissions avoided, 
which is consistent with the simulation results using Scout and EnergyPlus for all end uses. 

Table 31. Total Energy Savings and Emissions Reductions from Ventilation Controls 

Building Activity 

Controllable 
Ventilation 

Energy 
(TWh) 

Low 
Savings 
(TWh) 

Median 
Savings 
(TWh) 

High 
Savings 
(TWh) 

Low CO2 
Savings 

(megatonnes) 

Median CO2 
Savings 

(megatonnes) 

High CO2 
Savings 

(megatonnes) 

All Commercial 
Buildings 168 7.8 16.7 26.1 3.2 6.9 10.8 

  

 
40 US Average emissions values published for 2022 by the EPA in eGRID, were 373.3 metric tons per GWh for all 
electric generation. Starting with 1,196 TWh of total electricity used in commercial buildings, and 213 TWh for 
ventilation, reducing to 79% for the likely penetration of the measure. 
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Appendix B – Links to Code 
The software that was developed for this project is open-source and available free to the public 
via the GitHub platform. Table 32 lists the software packages with a description of each and the 
GitHub link where it can be downloaded. 

Table 32. Open source software developed by this project 

Software Description Link 

Wi-Fi Location-
Based Services 
(LBS) 
Calculation 
Demo 

This project demonstrates a Wi-Fi 
Location-Based Services (LBS) 
system, providing a platform to 
visualize and calculate wireless 
signal-based location tracking 
within a defined area (like an 
office). It utilizes various 
technologies including JavaScript, 
Konva.js for canvas-based 
rendering, and jQuery for DOM 
manipulations. 

https://github.com/DesignGarden/WiFi-
LDA 

YoloOcc 
VOLTTRON 
Agent 

This project provides an Eclipse 
VOLTTRON™ Agent for 
determining occupancy count of a 
space using the YoloV8 Model 
and nVidia CUDA acceleration. 
The model will also run on CPU 
resources, but will be considerably 
slower. The application was tested 
on a Jetson Nano 8GB Developer 
Kit, where it delivered frame rates 
of 10–15 FPS, or 10–15 different 
camera feeds at 1 FPS. The 
camera interface was designed for 
Hikvision DS-2CD2185FWD-I 
8MP cameras, but should work 
with any camera that supports a 
simple JPEG snapshot URL. The 
interface was also designed to be 
easily extensible for other 
authentication methods. 

https://github.com/ACE-IoT-
Solutions/volttron-yolo-occupancy 

 

https://github.com/DesignGarden/WiFi-LDA
https://github.com/DesignGarden/WiFi-LDA
https://github.com/ACE-IoT-Solutions/volttron-yolo-occupancy
https://github.com/ACE-IoT-Solutions/volttron-yolo-occupancy
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