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Abstract 
This technical report summarized the contribution of the DADAIST project funded by the Data 
Model Convergence Initiative via the Laboratory Directed Research and Development (LDRD) 
investments at Pacific Northwest National Laboratory (PNNL). Specifically, we report the 
development of the NeuroMANCER (Neural Modules with Adaptive Nonlinear Constraints and 
Efficient Regularizations), a new open-source Scientific Machine Learning library for formulating 
and solving parametric constrained optimization problems, physics-informed system 
identification, and parametric optimal control problems. NeuroMANCER is using differentiable 
programming to combine modern data-driven models and  optimization modeling language into a 
coherent algorithmic and software framework. NeuroMANCER is a Pytorch-based framework and 
adopts much of its philosophy focused on research and development, rapid prototyping, and 
streamlined deployment. Strong emphasis is given to extensibility, interoperability with the 
PyTorch ecosystem, and quick adaptability to custom domain problems. Neuromancer repository 
contains a comprehensive library of differentiable modules, including custom activation functions, 
matrix factorizations, deep learning architectures, neural differential equations, differential 
equation solvers, implicit layers such as iterative solvers, high-level API for symbolic expressions, 
API for modeling and control of dynamical systems, and extensive set of tutorial code examples 
in the form of python scripts and jupyter notebooks. 

https://github.com/pnnl/neuromancer
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1.0 Neuromancer Requirements 
This section describes the requirements for the NeuroMANCER library. 

1.1 Functional Requirements 
 
Generally, functional requirements are expressed in the form "system must do <requirement>". 
 
User Interface requirements 
NeuroMANCER as a Scientific Machine Learning framework should provide a user-friendly 
interface for formulating and instantiating differentiable programming problems for: 

• parametric constrained optimization 
• physics-informed dynamical systems modeling 
• parametric constrained optimal control 

The NeuroMANCER framework should construct differentiable programs based on following 
input-output specifications: 

• Input: high-level syntax and algebraic symbolic language for defining the objectives, 
constraints, and trainable components of the differentiable programming problem. 

• Output:Instantiated differentiable programming problem represented by Pytorch 
nn.Module class. 

 
Solvers requirements 
NeuroMANCER should come with a set of solvers and meta-heuristics for hyperparameter 
optimization providing an automated solution for complex differentiable programming problems. 
 
Hard constraints guarantees requirements 
NeuroMANCER should provide a set of model architectures and solution methods that can 
guarantee the satisfaction of hard constraints with user-defined precision. 
 
HPC support requirements 
NeuroMANCER should provide a set of templates for dispatch, training, and analysis of the 
differentiable programming problems using HPC machines such as GPU clusters. 
 

1.2 Non-Functional Requirements 
 
Non-functional requirements take the form "system shall be <requirement>." 
 
User experience requirements 
NeuroMANCER should be user-friendly and intuitive with emphasis on users from various 
engineering domains such as mechanical, electrical,  chemical, and control engineering domains. 
NeuroMANCER should be a tool for easy prototyping and execution of developed programs. 
NeuroMANCER should be well documented with README, user manual, code tutorials, and 
docstrings compiled by pydot. 
 
Architecture requirements 
NeuroMANCER's object-oriented framework should be modular and provide a set of modeling 
abstractions and templates for constructing the problems mentioned above. Each class should 
come with standardized Type defined input-output specifications. 
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Interaction requirements 

• Interoperability with the PyTorch ecosystem. Since NeuroMANCER is built on top of 
Pytorch; its APIs shall be designed in a way to allow easy integration of third-party model 
architectures implemented as Pytorch nn.Modules into NeuroMANCER's computational 
graphs. 

• Interoperability with constrained optimization frameworks such as CVXPY, Pyomo, or 
CasADi needs to be developed. This will include: 1) using constrained optimization solvers 
as safety filters in the online deployment of models trained in NeuroMANCER, 2) 
extraction of computational graphs or constrained optimization problem formulations into 
CVXPY, Pyomo, or CasADi. 

• NeuroMANCER should also come with a base class abstraction that will allow for easy 
implementation of new solvers. 

 
Development and Maintanance requirements 
NeuroMANCER shall be easily extensible with new model architectures, solvers, and features.  
NeuroMANCER development shall be safe with protected branches, reviewed merge requests, 
and automated pytest executions. 
 
Open-source requirements 
NeuroMANCER shall be a free open-source repository. 
 
Reliability 
NeuroMANCER shall be reliable and robust. NeuroMANCER installation needs to be tested on 
all supported operating systems. All open-source examples and tutorials need to be bug-free 
and tuned, and verified on all operating systems. Open-sourced model architectures and solvers 
need to provide robust convergence across datasets and hyperparameter scenarios. 
 

1.3 User Diagram 
 
The intended use of the library is illustrated in the use case diagram is shown in Figure 1. 
 
List of Neuromancer actors 

• Developer 
• End-user  
• Computing platform (CPU, GPU, HPC cluster) 

 
List of intended use cases 

• Execute and modify tutorial and example scripts. 
• Create new tutorials and example scripts. 
• Formulate constrained optimization problems in high level symbolic language 
• Construct differentiable programs of parametric optimization problems in a form of 

symbolic computational graphs 
• Visualize computational graphs of  differentiable programs 
• Construct AggregateLoss class. 
• Construct Trainer class. 
• Solve differentiable parametric programming programs (constrained machine learning, 

constrained optimization, system identification, and control) with sampling-based 
automatic differentiation 
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• Evaluate and Visualize the performance of the obtained parametric solution on a given 
test case (e.g., prediction accuracy of system identification task, or closed-loop control 
performance of trained control policy) 

• Construct DataLoader with dataset. 
• Impement new Dataset Class. 
• Impement new Callback Class. 
• Modify Trainer class. 
•  Dispatch distribution of experiments with specified hyperparameters (e.g., training 

models on GPU cluster with hyperparameter search) 
• Implement new component architectures (e.g., custom neural ordinary differential 

equation architectures) 
• Implement new solvers (e.g., Augmented Lagrangian method, or Interior point algorithm) 
• Expand or modify core Neuromancer library (e.g., modify forward pass method of the 

Problem class) 
• Implement new visualization capability. 

 

 
Figure 1. Neuromancer use case diagram. 
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2.0 Neuromancer Architecture and API 
Architecture  

We compactly represent Neuromancer's architecture using UML Class diagram shown in Figure 
2. 

 

 
 

Figure 2. Neuromancer UML diagram. 

API specifications of Neuromancer classes and functions can be found online at: 
https://pnnl.github.io/neuromancer/  

Neuromancer contains the following classes: 

• Trainer: Class encapsulating boilerplate PyTorch training code. Training procedure is 
somewhat extensible through methods in Callback objects associated with training and 
evaluation waypoints.Trainer is instantiated with given Problem class and Pytorch 
Dataloader classes storing Neuromancer Datasets. 

• Callback: Class for versatile behavior in the Trainer object at specified checkpoints. 
Allows the user to customize training, evaluation, and testing phases of the optimization 
algorithm.   

https://pnnl.github.io/neuromancer/
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• Logger: class for saving arguments, metrics, and artifacts (images, video) into specified 
directory. Also allows to control the verbosity of print statements during training.  

• Dataset: class compatible with neuromancer Trainer based on parent Pytorch Dataset 
class. Implements static, sequence, and graph structured datasets.  

• DataLoader: class from Pytorch combines a dataset and a sampler, and provides an 
iterable over the given dataset.  

• Problem: class is similar in spirit to a nn.Sequential module. However, by concatenating 
input and output dictionaries for each component class we can represent arbitrary 
directed acyclic computation graphs. Problem class represents complete differentiable 
constrained optimization problem with scalar valued training metric suitable for gradient-
based optimization via backpropagation algorithm.  

• AggregateLoss: abstract class for calculating constraints, objectives, and aggregate 
loss values suitable for automatic differentiation via backpropagation algorithm. 
Implements different loss aggregation methods such as: Penalty Method, Barrier 
Method, or Augmented Lagrangian methodm.  

• Variable class is an abstraction that allows for the definition of constraints and 
objectives with some nice syntactic sugar. When a Variable object is called given a 
dictionary a pytorch tensor is returned, and when a Variable object is subjected to a 
comparison operator a Constraint is returned. Mathematical operators return Variables 
which will instantiate and perform the sequence of mathematical operations.  

• Node abstract class allows to wrap arbitrary nn.Modules in Pytorch into symbolic 
representation of the computational graph. Component is mapping input keys onto 
output keys representing symbolic variables of the computational graph whose forward 
pass is defined by Pytorch nn.Module. 

• Constraint is a class constructed by a composition of Variable objects using 
comparative infix operators, '<', '>', '==', '<=', '>=' and '*' to weight loss component and 
'\wedge' to determine l-norm of constraint violation in determining loss. A Constraint has 
the intuitive syntax for defining constraints of optimization problems via Variable objects. 

• Objective is a class constructed via neuromancer Variable object and given metric with 
forward pass that evaluates metric as torch function on Variable values. Objective allows 
to create Loss function terms directly from instantiated Variables.  
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3.0 Neuromancer Methods and Algorithms 
This section documents differentiable programming methods and  algorithms for solution of: 1) 
parametric constrained optimization problems, 2) physics-constrained system identification 
problems, and 3) parametric optimal control problems. 

3.1 Learning to Solve Constrained Optimization Problems 

https://github.com/pnnl/neuromancer/tree/master/examples/parametric_programming  

Learning Solutions to Constrained Optimization Problems is a set of methods that use machine 
learning to learn the solutions (explicit solvers) to optimization problems. Constrained optimization 
problems where the solution x depends on the varying problem parameters ξ are 
called parametric programming problems. Neuromancer allows you to formulate and solve a 
broad class of parametric optimization problems via the Differentiable Programming 
(DP) paradigm. Hence, we call the approach Differentiable Parametric Programming (DPP). 
Specifically, Neuromancer allows you to use automatic differentiation (AD) in PyTorch to compute 
the sensitivities of such constrained optimization problems w.r.t. their parameters. This allows you 
to leverage gradient-based optimizers (e.g., stochastic gradient descent) to obtain approximate 
solutions to constrained parametric programming problems via for semi-supervised offline 
learning. The main advantage of this offline DPP-based solution compared to classical 
optimization solvers (e.g., IPOPT) is faster online evaluation, often obtaining orders of magnitude 
speedups. 

Imitation Learning vs Differentiable Parametric Programming 

Recent years have seen a rich literature of deep learning (DL) models for solving the constrained 
optimization problems on real-world tasks such as power grid, traffic, or wireless system 
optimization. Earlier attempts simply adopt imitation learning (i.e., supervised learning) to train 
function approximators via a minimization of the prediction error using labeled data of pre-
computed solutions using iterative solvers (i.e. IPOPT). Unfortunately, these models can hardly 
perform well on unseen data as the outputs are not trained to satisfy physical constraints, leading 
to infeasible solutions. To address the feasibility issues, existing methods have been imposing 
constraints on the output space of deep learning models for a subsequent differentiation using 
AD tools. These differentiable programming-based methods, also called end-to-end learning with 
constraints or learning to optimize, directly consider the original objectives and constraints in the 
DL training process without the need of expert labeled data. The following figure conceptually 
demonstrated the difference between supervised imitation learning and unsupervised 
Differentiable Parametric Programming (DPP) which solution is obtained by differentiating the 
objectives and constraints of the parametric optimization problem. 

 
Figure 3. Imitation learning VS end-to-end learning using Differentiable Parametric 

Programming. 

https://github.com/pnnl/neuromancer/tree/master/examples/parametric_programming
https://en.wikipedia.org/wiki/Parametric_programming
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/Differentiable_programming
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DPP problem formulation 

A generic formulation of the DPP is given in the form of a parametric optimization problem: 

 

There are several ways in which we can enforce the constraints satisfaction while learning the 
solution π_Θ(ξ) of the differentiable constrained optimization problem (1). The simplest approach 
is to penalize the constraints violations by augmenting the loss function L (1a) with the penalty 
loss function given as:  

 

DPP problem solution 

The main advantage of having a differentiable objective function and constraints in the DPP 
problem formulation (1) is that it allows us to use automatic differentiation to directly compute the 
gradients of the parametric solution map π_Θ(ξ). In particular, by representing the problem (1) as 
a computational graph and leveraging the chain rule, we can directly compute the gradients of 
the loss function L w.r.t. the solution map weights Θ as follows: 

 

The gradient-based solution of the DPP problem is summarized in the following Algorithm: 

https://github.com/pnnl/neuromancer/blob/master/neuromancer/loss.py#L102
https://github.com/pnnl/neuromancer/blob/master/neuromancer/loss.py#L102
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Related literature 

• A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019 
• F. Fioretto, et al., Predicting AC Optimal Power Flows: Combining Deep Learning and 

Lagrangian Dual Methods, 2019 
• S. Gould, et al., Deep Declarative Networks: A New Hope, 2020 
• P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021 
• J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021 
• M. Li, et al., Learning to Solve Optimization Problems with Hard Linear Constraints, 2022 
• R. Sambharya, et al., End-to-End Learning to Warm-Start for Real-Time Quadratic 

Optimization, 2022 

3.2 Learning Physics-informed Neural Models of Dynamical Systems 

https://github.com/pnnl/neuromancer/tree/master/examples/system_identification  

Differentiable models such as Neural ordinary differential equations (NODEs) or neural state 
space models (NSSMs) represent a class of black box models that can incorporate prior physical 
knowledge into their architectures and loss functions. Examples include structural assumption on 
the computational graph inspired by domain application, or structure of the weight matrices of 
NSSM models, or networked NODE architecture illustrated in Figure 4. Differentiability of NODEs 
and NSSMs allows us to leverage gradient-based optimization algorithms for learning the 
unknown parameters of these structured digital twin models from observational data of the real 
system. 

  
Figure 4. Structural priors in neural models of dynamical systems. 

System Identification Problem 

https://arxiv.org/abs/1910.12430
https://arxiv.org/abs/1909.10461
https://arxiv.org/abs/1909.10461
https://arxiv.org/abs/1909.04866
https://arxiv.org/abs/2104.12225
https://arxiv.org/abs/2103.16378
https://arxiv.org/abs/2208.10611
https://arxiv.org/abs/2212.08260
https://arxiv.org/abs/2212.08260
https://github.com/pnnl/neuromancer/tree/master/examples/system_identification
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Consider the non-autonomous partially observable nonlinear dynamical system: 

 

We assume access to a limited set of system measurements in the form of tuples, each of which 
corresponds to the input-output pairs along sampled trajectories with temporal gap ∆. That is, we 
form a dataset: 

 

where i = 1, 2, . . . , n represents up to n different batches of input-output trajectories with N -step 
time horizon length. The primary objective of the physics-constrained system identification is to 
construct structured digital twin models and learn their unknown parameters from the provided 
observation data to provide accurate and robust long-term prediction capabilities. 

Our recent development work in Neuromancer has given us the capability to learn dynamical 
systems of the form: 

 

where x(t) is the time-varying state of the considered system, u(t) are system control inputs, and 
f is the state transition dynamics. This modeling strategy can be thought of as an equivalent 
method to Neural Ordinary Differential Equations1, whereby an ODE of the above forms is fit to 
data with a universal function approximator (e.g. deep neural network) acting as the state 
transition dynamics. To train an appropriate RHS, Chen et al. utilize a continuous form of the 
adjoint equation; itself solved with an ODESolver. Instead, we choose to utilize the 
autodifferentiation properties of PyTorch to build differentiable canonical ODE integrators. 

We wish to test the capability of this methodology in a variety of situations and configurations. Of 
particular interest is the predictive capability of this class of methods compared with Neural State 
Space Models and other traditional “black-box” modeling techniques. 

Before moving on, it is important to note that there are two dominant neural ODE packages freely 
available. The first is DiffEqFlux.jl developed and maintained by SciML within the Julia ecosystem. 
The second is torchdyn which lives within the PyTorch ecosystem. Both packages are well-
documented and have become established in application-based research literature. 

System Identification Solution 

The primary learning objective is to minimize the mean squared error, Ly, between predicted 
values and the ground truth measurements for the N -step prediction horizon: 

https://github.com/pnnl/neuromancer/tree/b4d76eb07269314eb0fc42e814045a74c6b698b2/examples/system_identification#user-content-fn-1-625e06aa30e0b7289763f100ceab5f94
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The system identification objective (11) can be augmented with various kind of physics-informed 
soft constraints. In the following we enumerate a few examples. First, we apply inequality 
constraints on output predictions during training in order to promote the boundedness and 
convergence of our dynamical models: 

 

To promote continuous trajectories of our dynamics models, we optionally apply a state smoothing 
loss which minimizes the mean squared error between successive predicted states: 

 

We include constraints penalties as additional terms to the optimization objective 14, and further 
define coefficients, Q∗ as hyperparameters to scale each term in the multi-objective loss function 

 

The physics-constrained system identification training with differentiable digital twin models is 
summarized in the following Algorithm: 

 

Related literature 

• James Koch, Zhao Chen, Aaron Tuor, Jan Drgona, Draguna Vrabie, Structural 
Inference of Networked Dynamical Systems with Universal Differential Equations, 
arXiv:2207.04962, (2022) 
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• Drgoňa, J., Tuor, A. R., Chandan, V., & Vrabie, D. L., Physics-constrained deep 
learning of multi-zone building thermal dynamics. Energy and Buildings, 243, 
110992, (2021) 

• E. Skomski, S. Vasisht, C. Wight, A. Tuor, J. Drgoňa and D. Vrabie, "Constrained 
Block Nonlinear Neural Dynamical Models," 2021 American Control Conference 
(ACC), 2021, pp. 3993-4000, doi: 10.23919/ACC50511.2021.9482930. 

• Skomski, E., Drgoňa, J., & Tuor, A. (2021, May). Automating Discovery of Physics-
Informed Neural State Space Models via Learning and Evolution. In Learning for 
Dynamics and Control (pp. 980-991). PMLR. 

• Tuor, A., Drgona, J., & Vrabie, D. (2020). Constrained neural ordinary differential 
equations with stability guarantees. arXiv preprint arXiv:2004.10883. 

3.3 Differentiable Predictive Control 

https://github.com/pnnl/neuromancer/tree/master/examples/control 

Differentiable predictive control (DPC) method represents a flagship capability of the 
Neuromancer library. DPC allows us to learn control policy parameters directly by 
backpropagating model predictive control (MPC) objective function and constraints through the 
differentiable model of a dynamical system. Instances of a differentiable model include ordinary 
differential equations (ODEs), including neural ODEs, universal differential equations (UDEs), 
or neural state space models (SSMs). 

The conceptual methodology shown in the figures below consists of two main steps. In the first 
step, we perform system identification by learning the unknown parameters of differentiable digital 
twins. In the second step, we close the loop by combining the digital twin models with control 
policy, parametrized by neural networks, obtaining a differentiable closed-loop dynamics model. 
This closed-loop model now allows us to use automatic differentiation (AD) to solve the parametric 
optimal control problem by computing the sensitivities of objective functions and constraints to 
changing problem parameters such as initial conditions, boundary conditions, and parametric 
control tasks such as time-varying reference tracking. 

https://github.com/pnnl/neuromancer/tree/master/examples/control
https://arxiv.org/abs/2004.11184
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2001.04385
https://ieeexplore.ieee.org/abstract/document/9482930
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Figure 5. Conceptual DPC methodology. Simulation of the differentiable closed-loop system 

dynamics in the forward pass is followed by backward pass computing direct policy 
gradients for policy optimization. 

DPC problem formulation 

Formally we can formulate the DPC problem as a following parametric optimal control problem: 
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DPC problem solution 

The main advantage of having a differentiable closed-loop dynamics model, control objective 
function, and constraints in the DPC problem formulation is that it allows us to use automatic 
differentiation (backpropagation through time) to directly compute the policy gradient. In particular, 
by representing the problem (15) as a computational graph and leveraging the chain rule, we can 
directly compute the gradients of the loss function w.r.t. the policy parameters W as follows: 

 

The DPC policy optimization algorithm is summarized in the following figure. The differentiable 
system dynamics model is required to instantiate the computational graph of the DPC problem 
The policy gradients ∇L are obtained by differentiating the DPC loss function L over the distribution 
of initial state conditions and problem parameters sampled from the given training datasets X and 
Ξ, respectively. The computed policy gradients now allow us to perform direct policy optimization 
via a gradient-based optimizer O. Thus the presented procedure introduces a generic approach 
for data-driven solution of model-based parametric optimal control problem (15) with constrained 
neural control policies. 
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From a reinforcement learning (RL) perspective, the DPC loss L can be seen as a reward function, 
with ∇L representing a deterministic policy gradient. The main difference compared with actor-
critic RL algorithms is that in DPC the reward function is fully parametrized by a closed-loop 
system dynamics model, control objective, and constraints penalties. The model-based approach 
avoids approximation errors in reward functions making DPC more sample efficient than model-
free RL algorithms. 

DPC problem architecture 

The forward pass of the DPC computational graph is conceptually equivalent with a single 
shooting formulation of the model predictive control (MPC) problem. The resulting structural 
equivalence of the constraints of classical implicit MPC in a dense form with DPC is illustrated in 
the following figure. Similarly, to MPC, in the open-loop rollouts, the explicit DPC policy generates 
future control action trajectories over N-step prediction horizon given the feedback from the 
system dynamics model. Then for the closed-loop deployment, we adopt the receding horizon 
control (RHC) strategy by applying only the first-time step of the computed control action. 

 
Figure 6. Structural equivalence of DPC architecture with MPC constraints. 

Related literature 
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