
Choose an item.

PNNL-34895

Domain Aware Deep-
learning Algorithms
Integrated with Scientific-
computing Technologies
(DADAIST)
September 2023

Jan Drgona
Aaron Tuor
James Koch
Madelyn Shapiro
Ethan King
Draguna Vrabie

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Choose an item.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <https://www.ntis.gov/about>

Online ordering: http://www.ntis.gov

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/

PNNL-34895

Domain Aware Deep-learning Algorithms
Integrated with Scientific-computing
Technologies (DADAIST)

September 2023

Jan Drgona
Aaron Tuor
James Koch
Madelyn Shapiro
Ethan King
Draguna Vrabie

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-34895

Abstract ii

Abstract
This technical report summarized the contribution of the DADAIST project funded by the Data
Model Convergence Initiative via the Laboratory Directed Research and Development (LDRD)
investments at Pacific Northwest National Laboratory (PNNL). Specifically, we report the
development of the NeuroMANCER (Neural Modules with Adaptive Nonlinear Constraints and
Efficient Regularizations), a new open-source Scientific Machine Learning library for formulating
and solving parametric constrained optimization problems, physics-informed system
identification, and parametric optimal control problems. NeuroMANCER is using differentiable
programming to combine modern data-driven models and optimization modeling language into a
coherent algorithmic and software framework. NeuroMANCER is a Pytorch-based framework and
adopts much of its philosophy focused on research and development, rapid prototyping, and
streamlined deployment. Strong emphasis is given to extensibility, interoperability with the
PyTorch ecosystem, and quick adaptability to custom domain problems. Neuromancer repository
contains a comprehensive library of differentiable modules, including custom activation functions,
matrix factorizations, deep learning architectures, neural differential equations, differential
equation solvers, implicit layers such as iterative solvers, high-level API for symbolic expressions,
API for modeling and control of dynamical systems, and extensive set of tutorial code examples
in the form of python scripts and jupyter notebooks.

https://github.com/pnnl/neuromancer

PNNL-34895

Acknowledgments iii

Acknowledgments
This research was partially supported by the Data Model Convergence (DMC) and Mathematics
for Artificial Reasoning in Science (MARS) initiatives via the Laboratory Directed Research and
Development (LDRD) investments at Pacific Northwest National Laboratory (PNNL), by the U.S.
Department of Energy, through the Office of Advanced Scientific Computing Research's “Data-
Driven Decision Control for Complex Systems (DnC2S)” project, and through the Energy
Efficiency and Renewable Energy, Building Technologies Office under the “Dynamic
decarbonization through autonomous physics-centric deep learning and optimization of building
operations” and the “Advancing Market-Ready Building Energy Management by Cost-Effective
Differentiable Predictive Control” projects. PNNL is a multi-program national laboratory operated
for the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No. DE-
AC05-76RL0-1830.

PNNL-34895

Contents iv

Contents
Abstract... ii
Acknowledgments .. iii
1.0 Neuromancer Requirements .. 1

1.1 Functional Requirements ... 1
1.2 Non-Functional Requirements.. 1
1.3 User Diagram ... 2

2.0 Neuromancer Architecture and API ... 4
3.0 Neuromancer Methods and Algorithms.. 6

3.1 Learning to Solve Constrained Optimization Problems .. 6
3.2 Learning Physics-informed Neural Models of Dynamical Systems 8
3.3 Differentiable Predictive Control ... 11

Figures
Figure 1. Neuromancer use case diagram. ... 3
Figure 2. Neuromancer UML diagram. .. 4
Figure 3. Imitation learning VS end-to-end learning using Differentiable Parametric

Programming. .. 6
Figure 4. Structural priors in neural models of dynamical systems. 8
Figure 5. Conceptual DPC methodology. Simulation of the differentiable closed-

loop system dynamics in the forward pass is followed by backward pass
computing direct policy gradients for policy optimization. 12

Figure 6. Structural equivalence of DPC architecture with MPC constraints. 14

PNNL-34895

Neuromancer Requirements 1

1.0 Neuromancer Requirements
This section describes the requirements for the NeuroMANCER library.

1.1 Functional Requirements

Generally, functional requirements are expressed in the form "system must do <requirement>".

User Interface requirements
NeuroMANCER as a Scientific Machine Learning framework should provide a user-friendly
interface for formulating and instantiating differentiable programming problems for:

• parametric constrained optimization
• physics-informed dynamical systems modeling
• parametric constrained optimal control

The NeuroMANCER framework should construct differentiable programs based on following
input-output specifications:

• Input: high-level syntax and algebraic symbolic language for defining the objectives,
constraints, and trainable components of the differentiable programming problem.

• Output:Instantiated differentiable programming problem represented by Pytorch
nn.Module class.

Solvers requirements
NeuroMANCER should come with a set of solvers and meta-heuristics for hyperparameter
optimization providing an automated solution for complex differentiable programming problems.

Hard constraints guarantees requirements
NeuroMANCER should provide a set of model architectures and solution methods that can
guarantee the satisfaction of hard constraints with user-defined precision.

HPC support requirements
NeuroMANCER should provide a set of templates for dispatch, training, and analysis of the
differentiable programming problems using HPC machines such as GPU clusters.

1.2 Non-Functional Requirements

Non-functional requirements take the form "system shall be <requirement>."

User experience requirements
NeuroMANCER should be user-friendly and intuitive with emphasis on users from various
engineering domains such as mechanical, electrical, chemical, and control engineering domains.
NeuroMANCER should be a tool for easy prototyping and execution of developed programs.
NeuroMANCER should be well documented with README, user manual, code tutorials, and
docstrings compiled by pydot.

Architecture requirements
NeuroMANCER's object-oriented framework should be modular and provide a set of modeling
abstractions and templates for constructing the problems mentioned above. Each class should
come with standardized Type defined input-output specifications.

PNNL-34895

Neuromancer Requirements 2

Interaction requirements

• Interoperability with the PyTorch ecosystem. Since NeuroMANCER is built on top of
Pytorch; its APIs shall be designed in a way to allow easy integration of third-party model
architectures implemented as Pytorch nn.Modules into NeuroMANCER's computational
graphs.

• Interoperability with constrained optimization frameworks such as CVXPY, Pyomo, or
CasADi needs to be developed. This will include: 1) using constrained optimization solvers
as safety filters in the online deployment of models trained in NeuroMANCER, 2)
extraction of computational graphs or constrained optimization problem formulations into
CVXPY, Pyomo, or CasADi.

• NeuroMANCER should also come with a base class abstraction that will allow for easy
implementation of new solvers.

Development and Maintanance requirements
NeuroMANCER shall be easily extensible with new model architectures, solvers, and features.
NeuroMANCER development shall be safe with protected branches, reviewed merge requests,
and automated pytest executions.

Open-source requirements
NeuroMANCER shall be a free open-source repository.

Reliability
NeuroMANCER shall be reliable and robust. NeuroMANCER installation needs to be tested on
all supported operating systems. All open-source examples and tutorials need to be bug-free
and tuned, and verified on all operating systems. Open-sourced model architectures and solvers
need to provide robust convergence across datasets and hyperparameter scenarios.

1.3 User Diagram

The intended use of the library is illustrated in the use case diagram is shown in Figure 1.

List of Neuromancer actors

• Developer
• End-user
• Computing platform (CPU, GPU, HPC cluster)

List of intended use cases

• Execute and modify tutorial and example scripts.
• Create new tutorials and example scripts.
• Formulate constrained optimization problems in high level symbolic language
• Construct differentiable programs of parametric optimization problems in a form of

symbolic computational graphs
• Visualize computational graphs of differentiable programs
• Construct AggregateLoss class.
• Construct Trainer class.
• Solve differentiable parametric programming programs (constrained machine learning,

constrained optimization, system identification, and control) with sampling-based
automatic differentiation

PNNL-34895

Neuromancer Requirements 3

• Evaluate and Visualize the performance of the obtained parametric solution on a given
test case (e.g., prediction accuracy of system identification task, or closed-loop control
performance of trained control policy)

• Construct DataLoader with dataset.
• Impement new Dataset Class.
• Impement new Callback Class.
• Modify Trainer class.
• Dispatch distribution of experiments with specified hyperparameters (e.g., training

models on GPU cluster with hyperparameter search)
• Implement new component architectures (e.g., custom neural ordinary differential

equation architectures)
• Implement new solvers (e.g., Augmented Lagrangian method, or Interior point algorithm)
• Expand or modify core Neuromancer library (e.g., modify forward pass method of the

Problem class)
• Implement new visualization capability.

Figure 1. Neuromancer use case diagram.

PNNL-34895

Neuromancer Architecture and API 4

2.0 Neuromancer Architecture and API
Architecture

We compactly represent Neuromancer's architecture using UML Class diagram shown in Figure
2.

Figure 2. Neuromancer UML diagram.

API specifications of Neuromancer classes and functions can be found online at:
https://pnnl.github.io/neuromancer/

Neuromancer contains the following classes:

• Trainer: Class encapsulating boilerplate PyTorch training code. Training procedure is
somewhat extensible through methods in Callback objects associated with training and
evaluation waypoints.Trainer is instantiated with given Problem class and Pytorch
Dataloader classes storing Neuromancer Datasets.

• Callback: Class for versatile behavior in the Trainer object at specified checkpoints.
Allows the user to customize training, evaluation, and testing phases of the optimization
algorithm.

https://pnnl.github.io/neuromancer/

PNNL-34895

Neuromancer Architecture and API 5

• Logger: class for saving arguments, metrics, and artifacts (images, video) into specified
directory. Also allows to control the verbosity of print statements during training.

• Dataset: class compatible with neuromancer Trainer based on parent Pytorch Dataset
class. Implements static, sequence, and graph structured datasets.

• DataLoader: class from Pytorch combines a dataset and a sampler, and provides an
iterable over the given dataset.

• Problem: class is similar in spirit to a nn.Sequential module. However, by concatenating
input and output dictionaries for each component class we can represent arbitrary
directed acyclic computation graphs. Problem class represents complete differentiable
constrained optimization problem with scalar valued training metric suitable for gradient-
based optimization via backpropagation algorithm.

• AggregateLoss: abstract class for calculating constraints, objectives, and aggregate
loss values suitable for automatic differentiation via backpropagation algorithm.
Implements different loss aggregation methods such as: Penalty Method, Barrier
Method, or Augmented Lagrangian methodm.

• Variable class is an abstraction that allows for the definition of constraints and
objectives with some nice syntactic sugar. When a Variable object is called given a
dictionary a pytorch tensor is returned, and when a Variable object is subjected to a
comparison operator a Constraint is returned. Mathematical operators return Variables
which will instantiate and perform the sequence of mathematical operations.

• Node abstract class allows to wrap arbitrary nn.Modules in Pytorch into symbolic
representation of the computational graph. Component is mapping input keys onto
output keys representing symbolic variables of the computational graph whose forward
pass is defined by Pytorch nn.Module.

• Constraint is a class constructed by a composition of Variable objects using
comparative infix operators, '<', '>', '==', '<=', '>=' and '*' to weight loss component and
'\wedge' to determine l-norm of constraint violation in determining loss. A Constraint has
the intuitive syntax for defining constraints of optimization problems via Variable objects.

• Objective is a class constructed via neuromancer Variable object and given metric with
forward pass that evaluates metric as torch function on Variable values. Objective allows
to create Loss function terms directly from instantiated Variables.

PNNL-34895

Neuromancer Methods and Algorithms 6

3.0 Neuromancer Methods and Algorithms
This section documents differentiable programming methods and algorithms for solution of: 1)
parametric constrained optimization problems, 2) physics-constrained system identification
problems, and 3) parametric optimal control problems.

3.1 Learning to Solve Constrained Optimization Problems

https://github.com/pnnl/neuromancer/tree/master/examples/parametric_programming

Learning Solutions to Constrained Optimization Problems is a set of methods that use machine
learning to learn the solutions (explicit solvers) to optimization problems. Constrained optimization
problems where the solution x depends on the varying problem parameters ξ are
called parametric programming problems. Neuromancer allows you to formulate and solve a
broad class of parametric optimization problems via the Differentiable Programming
(DP) paradigm. Hence, we call the approach Differentiable Parametric Programming (DPP).
Specifically, Neuromancer allows you to use automatic differentiation (AD) in PyTorch to compute
the sensitivities of such constrained optimization problems w.r.t. their parameters. This allows you
to leverage gradient-based optimizers (e.g., stochastic gradient descent) to obtain approximate
solutions to constrained parametric programming problems via for semi-supervised offline
learning. The main advantage of this offline DPP-based solution compared to classical
optimization solvers (e.g., IPOPT) is faster online evaluation, often obtaining orders of magnitude
speedups.

Imitation Learning vs Differentiable Parametric Programming

Recent years have seen a rich literature of deep learning (DL) models for solving the constrained
optimization problems on real-world tasks such as power grid, traffic, or wireless system
optimization. Earlier attempts simply adopt imitation learning (i.e., supervised learning) to train
function approximators via a minimization of the prediction error using labeled data of pre-
computed solutions using iterative solvers (i.e. IPOPT). Unfortunately, these models can hardly
perform well on unseen data as the outputs are not trained to satisfy physical constraints, leading
to infeasible solutions. To address the feasibility issues, existing methods have been imposing
constraints on the output space of deep learning models for a subsequent differentiation using
AD tools. These differentiable programming-based methods, also called end-to-end learning with
constraints or learning to optimize, directly consider the original objectives and constraints in the
DL training process without the need of expert labeled data. The following figure conceptually
demonstrated the difference between supervised imitation learning and unsupervised
Differentiable Parametric Programming (DPP) which solution is obtained by differentiating the
objectives and constraints of the parametric optimization problem.

Figure 3. Imitation learning VS end-to-end learning using Differentiable Parametric

Programming.

https://github.com/pnnl/neuromancer/tree/master/examples/parametric_programming
https://en.wikipedia.org/wiki/Parametric_programming
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/Differentiable_programming

PNNL-34895

Neuromancer Methods and Algorithms 7

DPP problem formulation

A generic formulation of the DPP is given in the form of a parametric optimization problem:

There are several ways in which we can enforce the constraints satisfaction while learning the
solution π_Θ(ξ) of the differentiable constrained optimization problem (1). The simplest approach
is to penalize the constraints violations by augmenting the loss function L (1a) with the penalty
loss function given as:

DPP problem solution

The main advantage of having a differentiable objective function and constraints in the DPP
problem formulation (1) is that it allows us to use automatic differentiation to directly compute the
gradients of the parametric solution map π_Θ(ξ). In particular, by representing the problem (1) as
a computational graph and leveraging the chain rule, we can directly compute the gradients of
the loss function L w.r.t. the solution map weights Θ as follows:

The gradient-based solution of the DPP problem is summarized in the following Algorithm:

https://github.com/pnnl/neuromancer/blob/master/neuromancer/loss.py#L102
https://github.com/pnnl/neuromancer/blob/master/neuromancer/loss.py#L102

PNNL-34895

Neuromancer Methods and Algorithms 8

Related literature

• A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019
• F. Fioretto, et al., Predicting AC Optimal Power Flows: Combining Deep Learning and

Lagrangian Dual Methods, 2019
• S. Gould, et al., Deep Declarative Networks: A New Hope, 2020
• P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021
• J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021
• M. Li, et al., Learning to Solve Optimization Problems with Hard Linear Constraints, 2022
• R. Sambharya, et al., End-to-End Learning to Warm-Start for Real-Time Quadratic

Optimization, 2022

3.2 Learning Physics-informed Neural Models of Dynamical Systems

https://github.com/pnnl/neuromancer/tree/master/examples/system_identification

Differentiable models such as Neural ordinary differential equations (NODEs) or neural state
space models (NSSMs) represent a class of black box models that can incorporate prior physical
knowledge into their architectures and loss functions. Examples include structural assumption on
the computational graph inspired by domain application, or structure of the weight matrices of
NSSM models, or networked NODE architecture illustrated in Figure 4. Differentiability of NODEs
and NSSMs allows us to leverage gradient-based optimization algorithms for learning the
unknown parameters of these structured digital twin models from observational data of the real
system.

Figure 4. Structural priors in neural models of dynamical systems.

System Identification Problem

https://arxiv.org/abs/1910.12430
https://arxiv.org/abs/1909.10461
https://arxiv.org/abs/1909.10461
https://arxiv.org/abs/1909.04866
https://arxiv.org/abs/2104.12225
https://arxiv.org/abs/2103.16378
https://arxiv.org/abs/2208.10611
https://arxiv.org/abs/2212.08260
https://arxiv.org/abs/2212.08260
https://github.com/pnnl/neuromancer/tree/master/examples/system_identification

PNNL-34895

Neuromancer Methods and Algorithms 9

Consider the non-autonomous partially observable nonlinear dynamical system:

We assume access to a limited set of system measurements in the form of tuples, each of which
corresponds to the input-output pairs along sampled trajectories with temporal gap ∆. That is, we
form a dataset:

where i = 1, 2, . . . , n represents up to n different batches of input-output trajectories with N -step
time horizon length. The primary objective of the physics-constrained system identification is to
construct structured digital twin models and learn their unknown parameters from the provided
observation data to provide accurate and robust long-term prediction capabilities.

Our recent development work in Neuromancer has given us the capability to learn dynamical
systems of the form:

where x(t) is the time-varying state of the considered system, u(t) are system control inputs, and
f is the state transition dynamics. This modeling strategy can be thought of as an equivalent
method to Neural Ordinary Differential Equations1, whereby an ODE of the above forms is fit to
data with a universal function approximator (e.g. deep neural network) acting as the state
transition dynamics. To train an appropriate RHS, Chen et al. utilize a continuous form of the
adjoint equation; itself solved with an ODESolver. Instead, we choose to utilize the
autodifferentiation properties of PyTorch to build differentiable canonical ODE integrators.

We wish to test the capability of this methodology in a variety of situations and configurations. Of
particular interest is the predictive capability of this class of methods compared with Neural State
Space Models and other traditional “black-box” modeling techniques.

Before moving on, it is important to note that there are two dominant neural ODE packages freely
available. The first is DiffEqFlux.jl developed and maintained by SciML within the Julia ecosystem.
The second is torchdyn which lives within the PyTorch ecosystem. Both packages are well-
documented and have become established in application-based research literature.

System Identification Solution

The primary learning objective is to minimize the mean squared error, Ly, between predicted
values and the ground truth measurements for the N -step prediction horizon:

https://github.com/pnnl/neuromancer/tree/b4d76eb07269314eb0fc42e814045a74c6b698b2/examples/system_identification#user-content-fn-1-625e06aa30e0b7289763f100ceab5f94

PNNL-34895

Neuromancer Methods and Algorithms 10

The system identification objective (11) can be augmented with various kind of physics-informed
soft constraints. In the following we enumerate a few examples. First, we apply inequality
constraints on output predictions during training in order to promote the boundedness and
convergence of our dynamical models:

To promote continuous trajectories of our dynamics models, we optionally apply a state smoothing
loss which minimizes the mean squared error between successive predicted states:

We include constraints penalties as additional terms to the optimization objective 14, and further
define coefficients, Q∗ as hyperparameters to scale each term in the multi-objective loss function

The physics-constrained system identification training with differentiable digital twin models is
summarized in the following Algorithm:

Related literature

• James Koch, Zhao Chen, Aaron Tuor, Jan Drgona, Draguna Vrabie, Structural
Inference of Networked Dynamical Systems with Universal Differential Equations,
arXiv:2207.04962, (2022)

PNNL-34895

Neuromancer Methods and Algorithms 11

• Drgoňa, J., Tuor, A. R., Chandan, V., & Vrabie, D. L., Physics-constrained deep
learning of multi-zone building thermal dynamics. Energy and Buildings, 243,
110992, (2021)

• E. Skomski, S. Vasisht, C. Wight, A. Tuor, J. Drgoňa and D. Vrabie, "Constrained
Block Nonlinear Neural Dynamical Models," 2021 American Control Conference
(ACC), 2021, pp. 3993-4000, doi: 10.23919/ACC50511.2021.9482930.

• Skomski, E., Drgoňa, J., & Tuor, A. (2021, May). Automating Discovery of Physics-
Informed Neural State Space Models via Learning and Evolution. In Learning for
Dynamics and Control (pp. 980-991). PMLR.

• Tuor, A., Drgona, J., & Vrabie, D. (2020). Constrained neural ordinary differential
equations with stability guarantees. arXiv preprint arXiv:2004.10883.

3.3 Differentiable Predictive Control

https://github.com/pnnl/neuromancer/tree/master/examples/control

Differentiable predictive control (DPC) method represents a flagship capability of the
Neuromancer library. DPC allows us to learn control policy parameters directly by
backpropagating model predictive control (MPC) objective function and constraints through the
differentiable model of a dynamical system. Instances of a differentiable model include ordinary
differential equations (ODEs), including neural ODEs, universal differential equations (UDEs),
or neural state space models (SSMs).

The conceptual methodology shown in the figures below consists of two main steps. In the first
step, we perform system identification by learning the unknown parameters of differentiable digital
twins. In the second step, we close the loop by combining the digital twin models with control
policy, parametrized by neural networks, obtaining a differentiable closed-loop dynamics model.
This closed-loop model now allows us to use automatic differentiation (AD) to solve the parametric
optimal control problem by computing the sensitivities of objective functions and constraints to
changing problem parameters such as initial conditions, boundary conditions, and parametric
control tasks such as time-varying reference tracking.

https://github.com/pnnl/neuromancer/tree/master/examples/control
https://arxiv.org/abs/2004.11184
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/2001.04385
https://ieeexplore.ieee.org/abstract/document/9482930

PNNL-34895

Neuromancer Methods and Algorithms 12

Figure 5. Conceptual DPC methodology. Simulation of the differentiable closed-loop system

dynamics in the forward pass is followed by backward pass computing direct policy
gradients for policy optimization.

DPC problem formulation

Formally we can formulate the DPC problem as a following parametric optimal control problem:

PNNL-34895

Neuromancer Methods and Algorithms 13

DPC problem solution

The main advantage of having a differentiable closed-loop dynamics model, control objective
function, and constraints in the DPC problem formulation is that it allows us to use automatic
differentiation (backpropagation through time) to directly compute the policy gradient. In particular,
by representing the problem (15) as a computational graph and leveraging the chain rule, we can
directly compute the gradients of the loss function w.r.t. the policy parameters W as follows:

The DPC policy optimization algorithm is summarized in the following figure. The differentiable
system dynamics model is required to instantiate the computational graph of the DPC problem
The policy gradients ∇L are obtained by differentiating the DPC loss function L over the distribution
of initial state conditions and problem parameters sampled from the given training datasets X and
Ξ, respectively. The computed policy gradients now allow us to perform direct policy optimization
via a gradient-based optimizer O. Thus the presented procedure introduces a generic approach
for data-driven solution of model-based parametric optimal control problem (15) with constrained
neural control policies.

PNNL-34895

Neuromancer Methods and Algorithms 14

From a reinforcement learning (RL) perspective, the DPC loss L can be seen as a reward function,
with ∇L representing a deterministic policy gradient. The main difference compared with actor-
critic RL algorithms is that in DPC the reward function is fully parametrized by a closed-loop
system dynamics model, control objective, and constraints penalties. The model-based approach
avoids approximation errors in reward functions making DPC more sample efficient than model-
free RL algorithms.

DPC problem architecture

The forward pass of the DPC computational graph is conceptually equivalent with a single
shooting formulation of the model predictive control (MPC) problem. The resulting structural
equivalence of the constraints of classical implicit MPC in a dense form with DPC is illustrated in
the following figure. Similarly, to MPC, in the open-loop rollouts, the explicit DPC policy generates
future control action trajectories over N-step prediction horizon given the feedback from the
system dynamics model. Then for the closed-loop deployment, we adopt the receding horizon
control (RHC) strategy by applying only the first-time step of the computed control action.

Figure 6. Structural equivalence of DPC architecture with MPC constraints.

Related literature

PNNL-34895

Neuromancer Methods and Algorithms 15

[1] Drgona, J., Tuor, A., & Vrabie, D., Learning Constrained Adaptive Differentiable Predictive
Control Policies With Guarantees, arXiv preprint arXiv:2004.11184, 2020

[2] Drgona, Jan, et al. "Differentiable Predictive Control: An MPC Alternative for Unknown
Nonlinear Systems using Constrained Deep Learning." Journal of Process Control Volume 116,
August 2022, Pages 80-92

[3] Drgoňa, J., Tuor, A., Skomski, E., Vasisht, S., & Vrabie, D. Deep Learning Explicit Differentiable
Predictive Control Laws for Buildings. IFAC-PapersOnLine, 54(6), 14-19., 2021

[4] Ján Drgoňa, Sayak Mukherjee, Aaron Tuor, Mahantesh Halappanavar, Draguna Vrabie,
Learning Stochastic Parametric Differentiable Predictive Control Policies, IFAC-PapersOnLine,
Volume 55, Issue 25, 2022, Pages 121-126, ISSN 2405-8963

[5] Sayak Mukherjee, Ján Drgoňa, Aaron Tuor, Mahantesh Halappanavar, Draguna Vrabie, Neural
Lyapunov Differentiable Predictive Control, IEEE Conference on Decision and Control Conference
2022

[6] Wenceslao Shaw Cortez, Jan Drgona, Aaron Tuor, Mahantesh Halappanavar, Draguna Vrabie,
Differentiable Predictive Control with Safety Guarantees: A Control Barrier Function Approach,
IEEE Conference on Decision and Control Conference 2022

[7] Ethan King, Jan Drgona, Aaron Tuor, Shrirang Abhyankar, Craig Bakker, Arnab Bhattacharya,
Draguna Vrabie, Koopman-based Differentiable Predictive Control for the Dynamics-Aware
Economic Dispatch Problem, American Control Conference (ACC) 2022

https://arxiv.org/abs/2004.11184
https://arxiv.org/abs/2004.11184
https://www.sciencedirect.com/science/article/pii/S0959152422000981
https://www.sciencedirect.com/science/article/pii/S0959152422000981
https://www.sciencedirect.com/science/article/pii/S0959152422000981
https://www.sciencedirect.com/science/article/pii/S2405896321012933
https://www.sciencedirect.com/science/article/pii/S2405896321012933
https://www.sciencedirect.com/science/article/pii/S2405896322015877
https://www.sciencedirect.com/science/article/pii/S2405896322015877
https://www.sciencedirect.com/science/article/pii/S2405896322015877
https://ieeexplore.ieee.org/document/9992386/
https://ieeexplore.ieee.org/document/9992386/
https://ieeexplore.ieee.org/document/9992386/
https://ieeexplore.ieee.org/document/9993146
https://ieeexplore.ieee.org/document/9993146
https://ieeexplore.ieee.org/document/9993146
https://ieeexplore.ieee.org/document/9867379
https://ieeexplore.ieee.org/document/9867379
https://ieeexplore.ieee.org/document/9867379

PNNL-34895

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

	Abstract
	Acknowledgments
	Contents
	Figures
	1.0 Neuromancer Requirements
	1.1 Functional Requirements
	1.2 Non-Functional Requirements
	1.3 User Diagram

	2.0 Neuromancer Architecture and API
	3.0 Neuromancer Methods and Algorithms
	3.1 Learning to Solve Constrained Optimization Problems
	3.2 Learning Physics-informed Neural Models of Dynamical Systems
	3.3 Differentiable Predictive Control

