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Abstract

This technical report summarized the contribution of the DADAIST project funded by the Data
Model Convergence Initiative via the Laboratory Directed Research and Development (LDRD)
investments at Pacific Northwest National Laboratory (PNNL). Specifically, we report the
development of the NeuroMANCER (Neural Modules with Adaptive Nonlinear Constraints and
Efficient Regularizations), a new open-source Scientific Machine Learning library for formulating
and solving parametric constrained optimization problems, physics-informed system
identification, and parametric optimal control problems. NeuroMANCER is using differentiable
programming to combine modern data-driven models and optimization modeling language into a
coherent algorithmic and software framework. NeuroMANCER is a Pytorch-based framework and
adopts much of its philosophy focused on research and development, rapid prototyping, and
streamlined deployment. Strong emphasis is given to extensibility, interoperability with the
PyTorch ecosystem, and quick adaptability to custom domain problems. Neuromancer repository
contains a comprehensive library of differentiable modules, including custom activation functions,
matrix factorizations, deep learning architectures, neural differential equations, differential
equation solvers, implicit layers such as iterative solvers, high-level API for symbolic expressions,
API for modeling and control of dynamical systems, and extensive set of tutorial code examples
in the form of python scripts and jupyter notebooks.
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1.0 Neuromancer Requirements

This section describes the requirements for the NeuroMANCER library.

1.1 Functional Requirements
Generally, functional requirements are expressed in the form "system must do <requirement>".

User Interface requirements
NeuroMANCER as a Scientific Machine Learning framework should provide a user-friendly
interface for formulating and instantiating differentiable programming problems for:
e parametric constrained optimization
¢ physics-infformed dynamical systems modeling
e parametric constrained optimal control
The NeuroMANCER framework should construct differentiable programs based on following
input-output specifications:
¢ Input: high-level syntax and algebraic symbolic language for defining the objectives,
constraints, and trainable components of the differentiable programming problem.
e Output:instantiated differentiable programming problem represented by Pytorch
nn.Module class.

Solvers requirements
NeuroMANCER should come with a set of solvers and meta-heuristics for hyperparameter
optimization providing an automated solution for complex differentiable programming problems.

Hard constraints guarantees requirements
NeuroMANCER should provide a set of model architectures and solution methods that can
guarantee the satisfaction of hard constraints with user-defined precision.

HPC support requirements
NeuroMANCER should provide a set of templates for dispatch, training, and analysis of the
differentiable programming problems using HPC machines such as GPU clusters.

1.2 Non-Functional Requirements
Non-functional requirements take the form "system shall be <requirement>."

User experience requirements

NeuroMANCER should be user-friendly and intuitive with emphasis on users from various
engineering domains such as mechanical, electrical, chemical, and control engineering domains.
NeuroMANCER should be a tool for easy prototyping and execution of developed programs.
NeuroMANCER should be well documented with README, user manual, code tutorials, and
docstrings compiled by pydot.

Architecture requirements

NeuroMANCER's object-oriented framework should be modular and provide a set of modeling
abstractions and templates for constructing the problems mentioned above. Each class should
come with standardized Type defined input-output specifications.

Neuromancer Requirements 1
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Interaction requirements

e Interoperability with the PyTorch ecosystem. Since NeuroMANCER is built on top of
Pytorch; its APIs shall be designed in a way to allow easy integration of third-party model
architectures implemented as Pytorch nn.Modules into NeuroMANCER's computational
graphs.

¢ Interoperability with constrained optimization frameworks such as CVXPY, Pyomo, or
CasADi needs to be developed. This will include: 1) using constrained optimization solvers
as safety filters in the online deployment of models trained in NeuroMANCER, 2)
extraction of computational graphs or constrained optimization problem formulations into
CVXPY, Pyomo, or CasADi.

¢ NeuroMANCER should also come with a base class abstraction that will allow for easy
implementation of new solvers.

Development and Maintanance requirements

NeuroMANCER shall be easily extensible with new model architectures, solvers, and features.
NeuroMANCER development shall be safe with protected branches, reviewed merge requests,
and automated pytest executions.

Open-source requirements
NeuroMANCER shall be a free open-source repository.

Reliability

NeuroMANCER shall be reliable and robust. NeuroMANCER installation needs to be tested on
all supported operating systems. All open-source examples and tutorials need to be bug-free
and tuned, and verified on all operating systems. Open-sourced model architectures and solvers
need to provide robust convergence across datasets and hyperparameter scenarios.

1.3 User Diagram
The intended use of the library is illustrated in the use case diagram is shown in Figure 1.

List of Neuromancer actors
e Developer
e End-user
e Computing platform (CPU, GPU, HPC cluster)

List of intended use cases

¢ Execute and modify tutorial and example scripts.
Create new tutorials and example scripts.
Formulate constrained optimization problems in high level symbolic language
Construct differentiable programs of parametric optimization problems in a form of
symbolic computational graphs
Visualize computational graphs of differentiable programs
Construct AggregateLoss class.
Construct Trainer class.
Solve differentiable parametric programming programs (constrained machine learning,
constrained optimization, system identification, and control) with sampling-based
automatic differentiation

Neuromancer Requirements 2
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Evaluate and Visualize the performance of the obtained parametric solution on a given
test case (e.g., prediction accuracy of system identification task, or closed-loop control
performance of trained control policy)

Construct DataLoader with dataset.

Impement new Dataset Class.

Impement new Callback Class.

Modify Trainer class.

Dispatch distribution of experiments with specified hyperparameters (e.g., training
models on GPU cluster with hyperparameter search)

Implement new component architectures (e.g., custom neural ordinary differential
equation architectures)

Implement new solvers (e.g., Augmented Lagrangian method, or Interior point algorithm)

Expand or modify core Neuromancer library (e.g., modify forward pass method of the
Problem class)

Implement new visualization capability.

Legend

\ Neuromancer
Neuromancer library / ~~ <<exdend==»|

Expand or modify core

Create new visualization

functionality

<=extend>> - - programs with

;/ Consruct differentiable \

Execute and modify

optimization problems

Visualize computational

Development Use
Case

- . prm—— =<include==---< tutorial and example
Implement new scripts —
{ Component or Variable |---<zextends>-------5 A
Class
End Use Case
- " Formulatec constrained
el - -<<include>

(" Core Neuromancer
\_ UseCase J

{ ) N \ / graphs
{ Implement new solver | x\NeuraMANCER Classes Jo .. iecincludess---o=
— ! A Actor
Developer _ H 7& Create new application
2 ez ---=<exiendzz------- * samese> TN scripts
{ Modify Problem Class | _‘t System
— s<entends==
— ’.{ Construct \ N
- andan i valuate an isualize
==extend> BN Trainer Class i e User Association
Modify Trainer Class ’ - - :
———————— N ! %
! =TUSESEF f
- <<UsEs=> ' Extend

, - o <
Computing platform | ( Solve Differenfiable

. ;.\P.mgrammmg Proble.m /)

( Create new Dataset " tendss--»{ Construct DataLoader \,
Class creendz= \_ Class with dataset

| - =<include>>---

/% - =<includes= -

=zinclude==

Dispatch Experiments

Load new dataset

Figure 1. Neuromancer use case diagram.
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We compactly represent Neuromancer's architecture using UML Class diagram shown in Figure

2.

Variable(nn.Module)

<<torch.Optimizers>

Trainer

+T: Variable

+mT. Variable

+ keys: List(str)

+ key: sir

+ display_name: str

+ Math: Variable
+ torch.op(Variable, ...): Variable
+ Comparison: Constraint

+ unpack(int): Variable Variable

+ parame: iterable
+ defaults: dict

+add_param_group(dict): None
+ load_siate_dici(dici): None

+ state_dict()’ dict

+ step(callable): None

+ zero_grad{bool). None

+ metric: torch callable(Tensor): Tensor
+weight: float

+ unpack(List(str)): Variable, ..., Variable N1
+ show(): None
+ gradiVariable): Variable
1.7
Objective(nn.Module) Constraint(nn.Module)
+var. Variable + left: Variable

+ right: Variable
+ comparator: nn.Module
+weight: float

+ gradiDict{str: Tensor}, str): Tensor

=<<Aggregateloss>>(nn.Module)

11

+ objective: List(Variable)
+ constraint: List(Constraint)

+ calculate_objectives(Dict{str: Tensor})
Dict{str: Tensor}

+ calculate_constraints(Dict{str: Tensor})
Dict{str: Tensor}

xor__(int): Constraint
mul__(float): Constraint
rmul__(float): Constraint
grad(Dict{str: Tensor}, sir): Tensor

-
-
+
-

0.

[

+epochs:

+madel: Problem

+ oplimizer: torch. Optimizer
+train_data’ torch.DataLoader
+dev_data: torch.Dataloader
+fesi_data: torch.DataLoader
+ callback: Callback

+logger: Logger

+ current_epoch: int
+ train_metric: str

+ dev_metric: sir
+test_metric: str

+ eval_metric: str

+ patience: int
+warmup:

int

int > —

+ device: torch.Device
+ best_model: torch. StateDict

+train(): Problem
+ fest(Problem): Dict{str: Tensor}

!

Problem{nn.Module)

+nodes: List{Mode, System]
+ loss: AggregateLoss

+ forward(Dict{str: Tensor}): Dict{str: Tensor}
+ step(Dict{str: Tensor}): Dici{str: Tensor}
+ show(): None

.

System{nn.Module}

Node{nn.Module)

+ callable: torch callable(Tensor): Tensor
+ input_keys: List[str]

+ output_keys: Lisi[str]

+name: str

<

+ nodes: list{Node]

+input_keys: List[str]

+ putput_keys: List[str]

+nstep_key: str

+nsteps: int

+init: callable(Dict{str: Tensor}): Dici{str- Tensor}
+name: str

<<Callback=>>

+ begin_{rain(Trainer): None

+ begin_epoch(Trainer, Dict: {str, Tensor}): None
+ begin_eval(Trainer, Dict: {str, Tensor}): None
+ end_batch(Trainer, Dict: {sir, Tensor})- None

+ end_eval(Trainer, Dict: {str, Tensor}). None
+end_epoch(Trainer, Dict: {str, Tensor}): None
+ end_train{Trainer, Dict {sfr, Tensor}): None

+ begin_test(Trainer): None

+ end_test(Trainer, Dict: {str, Tensor}): None

Logger

+savedir: str
+ sidout: List[str]

+log_parameters(): None

+ log_weights(nn.Module). None
+log_metrics(Dict{str: Tensor}, step=int)
+log_artifacts(Dict{str: Object}): None

torch.Dataloader

+ dataset: Dataset

+ batch_size: int

+ shuffle: int

+ num_workers: int

+ pin_memory: bool

+ drop_last: bool

+ timeout: float

+ sampler: Union[torch.Sampler, Iterable]
+ generator: torch.Generator
+ pin_memory_device: sir

+ prefetch_factor: int

+ collate_fn: Callable

+_get_iterator(): torch._BaseDataLoaderiter
+ __iter__(): torch._BaseDataLoaderlter
+__len_ () int

1.

<<torch.Dataset>>

+ forward(Dict{str: Tensor}): Dict{str: Tensor}

+ forward(Dictistr: Tensor}): Dict{str: Tensor}
+ init(Dicl{str: Tensor}): Dict{sir: Tensor}
+show(): None

+__getitem__(]
+_len__() int
+ __add__(Dataset): Dataset

t): typing. TypeVar

Figure 2. Neuromancer UML diagram.

API specifications of Neuromancer classes and functions can be found online at:
https://pnnl.github.io/neuromancer/

Neuromancer contains the following classes:

e Trainer: Class encapsulating boilerplate PyTorch training code. Training procedure is
somewhat extensible through methods in Callback objects associated with training and
evaluation waypoints.Trainer is instantiated with given Problem class and Pytorch
Dataloader classes storing Neuromancer Datasets.

¢ Callback: Class for versatile behavior in the Trainer object at specified checkpoints.
Allows the user to customize training, evaluation, and testing phases of the optimization

algorithm.

Neuromancer Architecture and API



https://pnnl.github.io/neuromancer/

PNNL-34895

e Logger: class for saving arguments, metrics, and artifacts (images, video) into specified
directory. Also allows to control the verbosity of print statements during training.

o Dataset: class compatible with neuromancer Trainer based on parent Pytorch Dataset
class. Implements static, sequence, and graph structured datasets.

o DatalLoader: class from Pytorch combines a dataset and a sampler, and provides an
iterable over the given dataset.

e Problem: class is similar in spirit to a nn.Sequential module. However, by concatenating
input and output dictionaries for each component class we can represent arbitrary
directed acyclic computation graphs. Problem class represents complete differentiable
constrained optimization problem with scalar valued training metric suitable for gradient-
based optimization via backpropagation algorithm.

e AggregatelLoss: abstract class for calculating constraints, objectives, and aggregate
loss values suitable for automatic differentiation via backpropagation algorithm.
Implements different loss aggregation methods such as: Penalty Method, Barrier
Method, or Augmented Lagrangian methodm.

e Variable class is an abstraction that allows for the definition of constraints and
objectives with some nice syntactic sugar. When a Variable object is called given a
dictionary a pytorch tensor is returned, and when a Variable object is subjected to a
comparison operator a Constraint is returned. Mathematical operators return Variables
which will instantiate and perform the sequence of mathematical operations.

e Node abstract class allows to wrap arbitrary nn.Modules in Pytorch into symbolic
representation of the computational graph. Component is mapping input keys onto
output keys representing symbolic variables of the computational graph whose forward
pass is defined by Pytorch nn.Module.

¢ Constraint is a class constructed by a composition of Variable objects using
comparative infix operators, '<', '>', '==", '<=' '>=' and "' to weight loss component and
"\wedge' to determine I-norm of constraint violation in determining loss. A Constraint has
the intuitive syntax for defining constraints of optimization problems via Variable objects.

¢ Objective is a class constructed via neuromancer Variable object and given metric with

forward pass that evaluates metric as torch function on Variable values. Objective allows
to create Loss function terms directly from instantiated Variables.

Neuromancer Architecture and API 5
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3.0 Neuromancer Methods and Algorithms
This section documents differentiable programming methods and algorithms for solution of: 1)

parametric constrained optimization problems, 2) physics-constrained system identification
problems, and 3) parametric optimal control problems.

3.1 Learning to Solve Constrained Optimization Problems

https://qithub.com/pnnl/neuromancer/tree/master/examples/parametric programming

Learning Solutions to Constrained Optimization Problems is a set of methods that use machine
learning to learn the solutions (explicit solvers) to optimization problems. Constrained optimization
problems where the solution x depends on the varying problem parameters ¢ are
called parametric programming problems. Neuromancer allows you to formulate and solve a
broad class of parametric optimization problems via the Differentiable Programming
(DP) paradigm. Hence, we call the approach Differentiable Parametric Programming (DPP).
Specifically, Neuromancer allows you to use automatic differentiation (AD) in PyTorch to compute
the sensitivities of such constrained optimization problems w.r.t. their parameters. This allows you
to leverage gradient-based optimizers (e.g., stochastic gradient descent) to obtain approximate
solutions to constrained parametric programming problems via for semi-supervised offline
learning. The main advantage of this offline DPP-based solution compared to classical
optimization solvers (e.g., IPOPT) is faster online evaluation, often obtaining orders of magnitude
speedups.

Imitation Learning vs Differentiable Parametric Programming

Recent years have seen a rich literature of deep learning (DL) models for solving the constrained
optimization problems on real-world tasks such as power grid, traffic, or wireless system
optimization. Earlier attempts simply adopt imitation learning (i.e., supervised learning) to train
function approximators via a minimization of the prediction error using labeled data of pre-
computed solutions using iterative solvers (i.e. IPOPT). Unfortunately, these models can hardly
perform well on unseen data as the outputs are not trained to satisfy physical constraints, leading
to infeasible solutions. To address the feasibility issues, existing methods have been imposing
constraints on the output space of deep learning models for a subsequent differentiation using
AD tools. These differentiable programming-based methods, also called end-to-end learning with
constraints or learning to optimize, directly consider the original objectives and constraints in the
DL training process without the need of expert labeled data. The following figure conceptually
demonstrated the difference between supervised imitation learning and unsupervised
Differentiable Parametric Programming (DPP) which solution is obtained by differentiating the
objectives and constraints of the parametric optimization problem.

Imitation Learning Differentiable Parametric Programming
Nearal Netusilk 1 or, Constrained Deep Learning, End-to-end NN
. #1112
minz||x — x|z Neural Network
£ - T min fop;(x,¢§) st h(x, &) =0, g(x,§) <0
S— ¢ ? I I
ground truth x

Figure 3. Imitation learning VS end-to-end learning using Differentiable Parametric
Programming.

Neuromancer Methods and Algorithms 6
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DPP problem formulation
A generic formulation of the DPP is given in the form of a parametric optimization problem:

me

min Lob; = min — ;f(xﬁ) (1a)
s.t.og(x', €) <0, h(x', &) =0, (1b)
x' =mwg(€'), € €3, Vie N (1c)

Where = represents the sampled dataset, and 5' represents i-th batch of the sampled problem data. The
vector x' represents optimized variables that minimize the loss function while satisfying a set of inequality
and equality constraints ((L1})). The map mg(&") is given by a deep neural network parametrized by © and
represents the parametric solution of the DPP problem.

There are several ways in which we can enforce the constraints satisfaction while learning the
solution m_0O(§) of the differentiable constrained optimization problem (1). The simplest approach
is to penalize the constraints violations by augmenting the loss function L (1a) with the penalty
loss function given as:

m

. > (QqlIReLU(g(x". £"))]]: + QulIb(x". €")]l2) (2)
=1

m 4=

Ecun =

Where I denotes the norm type and @4, @ being the corresponding weight factors. The overall loss then
becomes [’penulty = [-"ubj + Econ-

DPP problem solution

The main advantage of having a differentiable objective function and constraints in the DPP
problem formulation (1) is that it allows us to use automatic differentiation to directly compute the
gradients of the parametric solution map m_0(§). In particular, by representing the problem (1) as
a computational graph and leveraging the chain rule, we can directly compute the gradients of
the loss function L w.r.t. the solution map weights © as follows:

OLobi(%,8)  OLeon(x,€)  OLobi(%,8) Ox  ILeon(x,§) Ox
v(;)ﬁpena.lty - - am

— 3
00 00 ox 00 ox 00 (3)

Where % represent partial derivatives of the neural network solution map w.r.t. its weights that are typically
being computed in deep learning applications via backpropagation. The advantage of having gradients ()
is that it allows us to use scalable stochastic gradient optimization algorithms such as AdamW [1] to solve
the corresponding DPP problem (1) by direct offline optimization of the neural network. In practice, we can

compute the gradient of the DPP problem by using antomatic differentiation frameworks such as Pytorch [2].

The gradient-based solution of the DPP problem is summarized in the following Algorithm:

Neuromancer Methods and Algorithms 7
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Algorithm 1 Differentiable Parametric Programming Algorithm.

1: input training dataset = of sampled problem parameters.

2: input differentiable solution map architecture mg (&) parametrized by ©.

3: input differentiable constrained optimization objective f(x, €) and constraints g(x,€) <0, h(x,£) =0
4: input DPP loss function aggregator L enalty

5: input optimizer Q

6: differentiate DPP loss Lpcnaly to obtain the parameter gradients Ve Lpenalty of the solution map 7o (§)
7: learn solution map wg(&") parametrized by © via optimizer @ using gradient VoL penalty

8 return trained parametric solution 7g(&)

Related literature

e A. Agrawal, et al., Differentiable Convex Optimization Layers, 2019

F. Fioretto, et al., Predicting AC Optimal Power Flows: Combining Deep Learning and
Lagrangian Dual Methods, 2019

S. Gould, et al., Deep Declarative Networks: A New Hope, 2020

P. Donti, et al., DC3: A learning method for optimization with hard constraints, 2021

J. Kotary, et al., End-to-End Constrained Optimization Learning: A Survey, 2021

M. Li, et al., Learning to Solve Optimization Problems with Hard Linear Constraints, 2022

R. Sambharya, et al., End-to-End Learning to Warm-Start for Real-Time Quadratic
Optimization, 2022

3.2 Learning Physics-informed Neural Models of Dynamical Systems

https://qithub.com/pnnl/neuromancer/tree/master/examples/system identification

Differentiable models such as Neural ordinary differential equations (NODEs) or neural state
space models (NSSMs) represent a class of black box models that can incorporate prior physical
knowledge into their architectures and loss functions. Examples include structural assumption on
the computational graph inspired by domain application, or structure of the weight matrices of
NSSM models, or networked NODE architecture illustrated in Figure 4. Differentiability of NODEs
and NSSMs allows us to leverage gradient-based optimization algorithms for learning the
unknown parameters of these structured digital twin models from observational data of the real
system.

[ S dax; — A; i

Y [ —== NNy (%;;61) +zAi.iNN2(xiv %j;6;) e i —
[ [ 1 4] dt o]

- @jifnii g

P O

f AN // \ -

i " v

/

Figure 4. Structural priors in neural models of dynamical systems.

System Identification Problem
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Consider the non-autonomous partially observable nonlinear dynamical system:

S X(0) = £(x(t), u(t)), (4a)

y(t) = g(x(1)). (4b)
X(tn) = X0, ll(tn) = Uy (4()

where y(t) € R™ are measured outputs, and u(t) € R™ represents controllable inputs or measured distur-
bances affecting the system dynamics.

We assume access to a limited set of system measurements in the form of tuples, each of which
corresponds to the input-output pairs along sampled trajectories with temporal gap A. That is, we
form a dataset:

S ={u”.yi"). Ay a) ) Ay v a) b (5)

wherei=1,2,...,nrepresents up to n different batches of input-output trajectories with N -step
time horizon length. The primary objective of the physics-constrained system identification is to
construct structured digital twin models and learn their unknown parameters from the provided
observation data to provide accurate and robust long-term prediction capabilities.

Our recent development work in Neuromancer has given us the capability to learn dynamical
systems of the form:

where x(t) is the time-varying state of the considered system, u(t) are system control inputs, and
f is the state transition dynamics. This modeling strategy can be thought of as an equivalent
method to Neural Ordinary Differential Equations1, whereby an ODE of the above forms is fit to
data with a universal function approximator (e.g. deep neural network) acting as the state
transition dynamics. To train an appropriate RHS, Chen et al. utilize a continuous form of the
adjoint equation; itself solved with an ODESolver. Instead, we choose to utilize the
autodifferentiation properties of PyTorch to build differentiable canonical ODE integrators.

We wish to test the capability of this methodology in a variety of situations and configurations. Of
particular interest is the predictive capability of this class of methods compared with Neural State
Space Models and other traditional “black-box” modeling techniques.

Before moving on, it is important to note that there are two dominant neural ODE packages freely
available. The first is DiffEqFlux.jl developed and maintained by SciML within the Julia ecosystem.
The second is torchdyn which lives within the PyTorch ecosystem. Both packages are well-
documented and have become established in application-based research literature.

System Identification Solution

The primary learning objective is to minimize the mean squared error, Ly, between predicted
values and the ground truth measurements for the N -step prediction horizon:
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Ly= > ()"’f(/j fyﬁf})z (11)

where n,, is the dimension of the observations y; and predictions y, and n is the number of N-step long
training trajectories.

The system identification objective (11) can be augmented with various kind of physics-informed
soft constraints. In the following we enumerate a few examples. First, we apply inequality
constraints on output predictions during training in order to promote the boundedness and
convergence of our dynamical models:

s = max(0, -y +y) (12a)
s¥ = max(0,§ — ) (12Dh)
won _ LN %
Lo = o ;(si +s7) (12¢)

To promote continuous trajectories of our dynamics models, we optionally apply a state smoothing
loss which minimizes the mean squared error between successive predicted states:

N—1 n,

ﬁ(i:}(; — l 7’?} Z Z - XH—I (16)

T ot=1 i=1

We include constraints penalties as additional terms to the optimization objective 14, and further
define coefficients, Q* as hyperparameters to scale each term in the multi-objective loss function

L QJE + (2(]1 d], + QLUIICLO]I (17)

The physics-constrained system identification training with differentiable digital twin models is
summarized in the following Algorithm:

Algorithm 2 Physics-constrained system ID algorithm with differentiable models.

input training dataset S (3) of sampled input output trajectories.

input differentiable digital twin model architecture M, e.g. @), (1), (13), parametrized by 0.
input System ID loss £ (17)

input optimizer O

differentiate System ID loss £ to obtain the parameter gradients V£ of the system models M
6: learn system dynamics model M parametrized by 6 via optimizer @ using gradient VgL

7. return trained system dynamics model M

gk w N

Related literature

o James Koch, Zhao Chen, Aaron Tuor, Jan Drgona, Draguna Vrabie, Structural
Inference of Networked Dynamical Systems with Universal Differential Equations,
arXiv:2207.04962, (2022)
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learning of multi-zone building thermal dynamics. Energy and Buildings, 243,
110992, (2021)

o E. Skomski, S. Vasisht, C. Wight, A. Tuor, J. Drgona and D. Vrabie, "Constrained
Block Nonlinear Neural Dynamical Models," 2021 American Control Conference
(ACC), 2021, pp. 3993-4000, doi: 10.23919/ACC50511.2021.9482930.

o Skomski, E., Drgona, J., & Tuor, A. (2021, May). Automating Discovery of Physics-
Informed Neural State Space Models via Learning and Evolution. In Learning for
Dynamics and Control (pp. 980-991). PMLR.

e Tuor, A, Drgona, J., & Vrabie, D. (2020). Constrained neural ordinary differential
equations with stability guarantees. arXiv preprint arXiv:2004.10883.

3.3 Differentiable Predictive Control

https://qithub.com/pnnl/neuromancer/tree/master/examples/control

Differentiable predictive control (DPC) method represents a flagship capability of the
Neuromancer library. DPC allows us to learn control policy parameters directly by
backpropagating model predictive control (MPC) objective function and constraints through the
differentiable model of a dynamical system. Instances of a differentiable model include ordinary
differential equations (ODEs), including neural ODEs, universal differential equations (UDEs),
or neural state space models (SSMs).

The conceptual methodology shown in the figures below consists of two main steps. In the first
step, we perform system identification by learning the unknown parameters of differentiable digital
twins. In the second step, we close the loop by combining the digital twin models with control
policy, parametrized by neural networks, obtaining a differentiable closed-loop dynamics model.
This closed-loop model now allows us to use automatic differentiation (AD) to solve the parametric
optimal control problem by computing the sensitivities of objective functions and constraints to
changing problem parameters such as initial conditions, boundary conditions, and parametric
control tasks such as time-varying reference tracking.
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Differentiable Predictive Control
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Figure 5. Conceptual DPC methodology. Simulation of the differentiable closed-loop system
dynamics in the forward pass is followed by backward pass computing direct policy
gradients for policy optimization.
DPC problem formulation

Formally we can formulate the DPC problem as a following parametric optimal control problem:
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m N-1
n‘lj‘lfnm ; ;0 (EMPC(X};- U'A rL) + pa-(h(XZ;~, Phj},)) + pu(.g(uim Pgi.,))) (15a)
st.oxh o= f(xi,ul), ke N (15b)
uj = mw(x}, &) (15¢)
xp e XCR"™ (15d)
52 = {r;l Phi‘- pgi;} EECR™ (15e)

The DPC loss function is composed of the parametric MPC objective fype(Xg, Uk, r) : R Tutme s Roand
penalties of parametric constraints p,(h(xg, Pny) : R™ 2 — R, and Pulg(ug, Pg,)) R stmes — R. The
MPC objective fype(Xk, ug, ry) is a differentiable function representing the control performance metric such
as the following reference tracking with control action minimization in the quadratic form:

14MPC<X/§- uk:-rk;) — ka: - rk”?g,. + ||uk||?2u (16)

with reference states ry, and Ha||?2 = a”Qa the weighted squared 2-norm. The control parameters & are sam-
pled from the synthetically generated training dataset =, where m represents the total number of parametric
scenario samples, and 7 denotes the index of the sample.

DPC problem solution

The main advantage of having a differentiable closed-loop dynamics model, control objective
function, and constraints in the DPC problem formulation is that it allows us to use automatic
differentiation (backpropagation through time) to directly compute the policy gradient. In particular,
by representing the problem (15) as a computational graph and leveraging the chain rule, we can
directly compute the gradients of the loss function w.r.t. the policy parameters W as follows:

()éMPC(x- u, I‘) ()p;,;(f?,(x, ph)) (')pu(g(u. pg))

Vwhoee = =0 T 5w " ow
(')éMpc(x.u.r)éLx du PHMype(x, 1, 1) Ou (17)
Ix ou OW du OW
Opz(h(x,pn)) O0x du  Opu(g(u,pg)) du
Ix Ju OW du OW

Where ;—‘V:, represent partial derivatives of the neural policy outputs w.r.t. its weights that are typically

being computed in deep learning applications via backpropagation. The advantage of having gradients )
is that it allows us to use scalable stochastic gradient optimization algorithms such as AdamW [1] to solve the
corresponding parametric optimal control problem ) by direct offline optimization of the neural control
policy. In practice, we can compute the gradient of the DPC problem by using automatic differentiation
frameworks such as Pytorch [2].

The DPC policy optimization algorithm is summarized in the following figure. The differentiable
system dynamics model is required to instantiate the computational graph of the DPC problem
The policy gradients VL are obtained by differentiating the DPC loss function L over the distribution
of initial state conditions and problem parameters sampled from the given training datasets X and
=, respectively. The computed policy gradients now allow us to perform direct policy optimization
via a gradient-based optimizer O. Thus the presented procedure introduces a generic approach
for data-driven solution of model-based parametric optimal control problem (15) with constrained
neural control policies.
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Algorithm 3 DPC policy optimization.

input training datasets of sampled initial conditions X and problem parameters =
input differentiable digital twin model

input DPC loss Lppc

input optimizer O

differentiate DPC loss Lppc to obtain the policy gradient Vw Lppc

6: learn policy mw via optimizer @ using gradient Vv Lppc

7. return optimized policy Tw

A

From a reinforcement learning (RL) perspective, the DPC loss L can be seen as a reward function,
with VL representing a deterministic policy gradient. The main difference compared with actor-
critic RL algorithms is that in DPC the reward function is fully parametrized by a closed-loop
system dynamics model, control objective, and constraints penalties. The model-based approach
avoids approximation errors in reward functions making DPC more sample efficient than model-
free RL algorithms.

DPC problem architecture

The forward pass of the DPC computational graph is conceptually equivalent with a single
shooting formulation of the model predictive control (MPC) problem. The resulting structural
equivalence of the constraints of classical implicit MPC in a dense form with DPC is illustrated in
the following figure. Similarly, to MPC, in the open-loop rollouts, the explicit DPC policy generates
future control action trajectories over N-step prediction horizon given the feedback from the
system dynamics model. Then for the closed-loop deployment, we adopt the receding horizon
control (RHC) strategy by applying only the first-time step of the computed control action.

( , — ) 4 , , o A
Online Implicit MPC Differentiable Predictive Control
- -
- [ U] - - Q0 0 0 -
- 0 Q@ 0 - 0 - B —|—5 0 Q 0 0 -LL
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Figure 6. Structural equivalence of DPC architecture with MPC constraints.
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