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Abstract 
 

We report on the progress achieved during a 2-year Laboratory Directed Research and Development 
(LDRD) project titled “Graph Analytics for CEBAF Operations”. The objective of this project is to leverage 
deep learning on graph representations of CEBAF’s injector beamline in order to create a tool for improving 
the efficiency of beam tuning tasks [1]. Specifically, we use graphs to represent the injector beamline at any 
arbitrary date and time and invoke a graph neural network (GNN) to extract a low-dimensional, informative 
representation that can be visualized in two-dimensions. By analyzing years of operational data from the 
CEBAF archiver, good and bad regions of parameter space can be identified. The goal is to exercise this 
framework as a real-time tool to aid beam tuning, which represents the dominant source of machine 
downtime.  

 
Background 
 

With access to information-rich data sources, an increase in compute power, and the availability 
of user-friendly, open source software, the field of artificial intelligence (AI) – and deep learning 
in particular – is making revolutionary impacts in a variety of fields and sectors. Arguably, the 
biggest advances in deep learning are applications for natural language processing and computer 
vision. The data for each of these domains (i.e. text and images) can each be considered a type of 
graph. For example, text can be represented by a line graph where a word is related to its 
predecessor and successor, while images are a regular 2D grid of pixel values. 
 

In general, however, graphs are used to describe more complex relationships between entities. 
Examples include social, economic, communication, citation, and transportation networks, disease 
pathways, knowledge graphs and even molecules, among many others. In recent years, the field of 
network, or graph, analytics has been supplemented with the tools of deep learning. Specifically, 
a graph neural network (GNN) provides a framework for defining deep neural networks on 
arbitrary graph data. This has been an area of intense research and development in the last five 
years [2, 3, 4, 5]. To our knowledge, using a graph representation approach to better understand 
accelerator beamlines, with specific application for beam tuning, has never been done before and 
therefore represents a novel area of research with potential for significant benefit to CEBAF 
operations. 
 
Motivation 
 

Enormous efforts are expended creating high-fidelity simulations of accelerator beamlines. 
While these simulations provide guidance on how to set up a beamline, there always exists a gap 
between the simulated ideal and the real-world implementation. Bridging that gap often requires a 
laborious and time-consuming process known as beam tuning. This project develops a data-driven 
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approach to beam tuning in CEBAF that leverages deep learning over structured data (graphs) with 
the goal of reducing the effort and time required for this task. 
 

The fundamental idea behind this proposal is to express the state of CEBAF beamline as a 
graph, find a suitable low-dimensional embedding such that the result can be visualized, and to 
leverage that framework for more efficient beam tuning. This process is illustrated in Fig. 1. 
Specifically, the goal is to construct a graph for the state of the CEBAF injector beamline at any 
arbitrary date and time, apply a suitable whole-graph embedding, and visualize low-dimensional 
representations. Providing an associated category label for each embedding (i.e. “good” setup or 
“bad” setup) would allow the identification of optimal regions of parameter space. In this way we 
provide a principled, data-driven approach to beam tuning in CEBAF that leverages deep learning 
over structured data.  
 

 
 

FIGURE 1: Illustration of whole-graph embedding. The goal is to find a low-dimension vector 
representation of a graph that preserves as much information as possible. The color of each 
graph/vector/marker denotes a unique CEBAF injector configuration, for example. 

 
What makes this project novel is how we propose to use deep learning over this high-dimensional 

structured data to visualize what is happening in a low-dimensional latent space, and to utilize it 
as a tool for beam tuning. An illustration of how this might work is shown in Fig. 2. We first begin 
by embedding months – or even years – of historical injector setups and use a trained deep learning 
model to embed them in a two-dimensional space (Fig. 2, left). Next, by mining the archiver and 
labeling several of the setups we can map out the “good” and “bad” regions in parameter space 
(Fig. 2, middle). Lastly, we can track in real-time how an injector setup is moving through this 
latent space during beam tuning, with the benefit of seeing if changes are moving the system closer 
or further from regions marked by “good” setups. Furthermore, data collection is ongoing and 
passive, and it does not require investment in additional diagnostics and equipment. 
 

 
 

FIGURE 2: An example of a 2D visualization where each marker represents a low-dimensional 
embedding of a complex graph (left), the result of associating a label for the goodness of the setup 
in CEBAF (middle), and using the results to guide beam tuning in a control room setting (right). 
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Method 
 

Developing the workflow constituted the majority effort for the first year of the project. At a 
high level, we are pre-training a deep learning model on a large set of unlabeled data using a 
technique called self-supervised learning (SSL). Methods for self-supervised learning try to learn 
as much as possible from the data alone, so a model can be fine-tuned for a specific downstream 
classification task. In this way we can take advantage of years of operational data stored in the 
archiver without having to do the laborious and expensive task of hand labeling the data. We 
implement a graph neural network to learn rich feature vectors for each graph. A special class of 
loss function, known as contrastive loss, is implemented which maximizes agreement between 
latent representations from similar graph pairs (“positive pairs”) while minimizing agreement from 
unlike pairs (“negative pairs”). We then fine-tune the model on the downstream task of classifying 
good and bad setups using a smaller, labeled dataset. A high-level view of this workflow is 
illustrated in Fig. 3. Finally, a dimensionality reduction technique like principal component 
analysis (PCA) or UMAP [6] is used to visualize the results. It should be noted that this same basic 
workflow is being leveraged to produce state-of-the-art results in natural language processing and 
also in vision tasks. 
 

 
 

FIGURE 3: Schematic showing the workflow starting from pre-training a model on unlabeled data 
using contrastive learning (top) and then fine-tuning the model on a smaller set of labeled data using 
supervised learning (bottom). Figure modified from Ref. [7]. 

 
Beamline-to-Graph 
 

To make the idea of representing a beamline as a graph more concrete, consider the following 
example shown in Fig. 4. The (fictitious) beamline consists of several element types (beam current 
monitor (BCM), beam position monitor (BPM), quadrupole, solenoid, corrector) which are 
mapped to nodes. Each node type has a unique set of features; quadrupoles, correctors, and 
solenoids have a single value corresponding to their field strength, a BCM reports measured beam 
current, and a BPM has two features which correspond to the horizontal and vertical beam position 
readings. It should be noted that in addition to scalar quantities, features can include other 
information-rich data sources, including but not limited to, text and/or images. For instance, a 
graph might contain a node that represents a beamline viewer with one its features being the image 
recorded by the diagnostic. The resulting graph for this simple example is a heterogeneous, 
directed graph. It is heterogeneous because it consists of nodes of different type and is directed 
because the edges have a sense of direction. A user-defined “window” defines the edges. In this 
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example a window of 2 is used which means each setting element/node is connected to the two 
setting elements/nodes immediately downstream and any reading nodes in between. A setting node 
is one in which the operator can modify the setpoint and is used for routine beam tuning tasks. In 
this example these would include the magnetic elements (quadrupole, solenoid, corrector). 
Reading nodes, on the other hand, are passive readbacks and represent diagnostics in the beamline 
(BPM, BCM). The edges are directed, since in this non-recirculating beamline topology, an 
element cannot affect anything upstream of itself. Depending on the downstream task and the 
beamline, other graph representations will benefit from a different window size. Though not 
explicitly shown in this example, using a graph framework allows global beamline parameters to 
be incorporated as well. For instance, a “master node” that has connections to each node in the 
graph could contain readings from temperature sensors in the beamline enclosure, outdoor 
temperature and humidity, date and time, and/or electronic log entries, among other things.  
 

 
 

FIGURE 4: Illustration depicting an arbitrary accelerator beamline (top) and one possible way to 
construct a corresponding graph representation (bottom). Here the nodes represent individual 
elements, the node features correspond to appropriate element parameters, a user-specified window 
of 2 elements (see text for details) defines edges between nodes. The edges are directed to capture 
the fact that an element cannot influence upstream elements of the beamline. 

 
Injector Beamline 
 

For the purpose of the LDRD, we are focusing on the CEBAF injector. Specifically, we consider 
the beamline starting with MFA0I03 (s = 6.65 m) and extending to the 2 kW insertable dump (s = 
101.58 m). Recent upgrades have modified the first several meters of the beamline, and in order 
to leverage historical data that predates those changes, we omit the region upstream of MFA0I03 
from consideration. The injector beamline is appealing for a variety of reasons: 
 

• manageable size: dealing with an entire pass of CEBAF for this proof-of-concept 
work would be daunting, however the injector is a manageable size both physically 
(approximately 95 m of beamline) and in the number of process variables (PVs). 

• lots of beam tuning: because the formation and evolution of the beam at low energy 
is so critical to performance, the injector represents a region where a lot of beam 
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tuning happens, which translates to varied data, and is a necessary component for 
training models. 

• diversity of beamline components: the injector contains a variety of elements, 
including warm and cold radio-frequency (RF) cavities, correctors, solenoids, 
dipoles, quadrupoles, as well as many diagnostics such as BPMs, BCMs, vacuum 
readbacks and beam loss monitors (BLM). 

• suited for beam studies: because the injector can be operated even when other 
portions of the machine are down, it makes it ideally suited for maximizing 
dedicated beam studies opportunities.  

• The injector is unidirectional and therefore simpler to study than the main 
accelerator ring where recirculation complicates the notion of upstream and 
downstream directionality. 

 
ced2graph Software 
 

In practice, creating a graph as outlined previously requires mining data from several CEBAF 
databases. Given a date and time stamp, a beamline is defined from the CEBAF Element Database 
(CED) [8]. Secondly, node features are populated by loading appropriate control system process 
variables (PVs) stored in the MySQL Archiver (Mya) [9]. Each setting nodes is connected to n 
downstream setting nodes and any reading node in between, where n is set by the user (edges never 
originate on reading nodes, they only end). The data is then written to four files, which together 
constitute all the information needed to construct the graph [10]. For additional details on the file 
format see Appendix A. As discussed previously, nodes in the graph are broadly divided into 
setting and reading nodes. For the injector beamline the nodes and their associated features are: 
 

• settings 
o corrector: (magnetic field strength, current) 
o dipole: (magnetic field strength, current) 
o quadrupole: (magnetic field strength, current) 
o solenoid: (magnetic field strength, current) 
o RF cavity: (phase, gradient, gang phase) 

• readings 
o beam loss monitor: (current) 
o beam position monitor: (horizontal position, vertical position, wire sum) 
o beam current monitor: (current) 
o vacuum readback: (pressure) 

 
By way of example, a single graph that represents the state of the injector is comprised of 11 

different node types, 206 total nodes, 296 node features, and 409 edges (for n = 2). 
 
Graph Embedding 
 

In our framework, we leverage a GNN to generate graph embeddings of the injector beamline. 
Due to the heterogeneity of nodes (i.e. nodes can have different length feature vectors according 
to their type), we model each injector configuration as a heterogeneous graph. The model first 
utilizes a linear layer for each node type so that the input node features of differing node types are 
transformed into vectors of the same hidden size. Then the model processes these hidden vectors 
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via standard graph attention network (GAT) layers to generate output embeddings of specified 
output size [11]. This has been implemented using the PyTorch Geometric library [12]. The latest 
code is available at: https://github.com/SongW-SW/cebaf-graph-analyze (note, at present the 
repository is private and only allows access to members of the project). Below we discuss the 
details of how the GNN is leveraged to train a model using self-supervision and also in a supervised 
way. 
 
Self-Supervised Learning 
 

Self-supervision generates a supervisory signal from the data itself, thereby avoiding the 
laborious task of hand labeling. The motivation is that a model pre-trained on a large body of 
unlabeled data will learn robust embeddings that can more easily be fine-tuned with a small labeled 
dataset in the standard supervised way. Below we highlight the main steps of this workflow and 
which is illustrated in Fig. 5. 
 

• A graph, G1, is chosen at random and one of three graph augmentations is applied 
to create a corrupted version of the graph. The user specifies which augmentation 
should be used. They are:  

o node masking: randomly removes a percentage of graph nodes (default 
value is set to 30%) 

o edge removal: randomly removes a percentage of graph edges (default value 
is set to 20%) 

o feature shuffling: within each node type, all features are randomly shuffled 
• A linear layer is applied to each node type to transform feature vectors into the same 

size so we can treat the graph as homogeneous. For the results in this note, the 
hidden and output size is 128. 

• A GAT layer is used to aggregate information from a node’s neighbors. As the 
name suggests, self-attention is used so rather than each node contributing 
uniformly, the model learns the neighbors which are more important and weights 
them differently during aggregation. Unless otherwise noted, the results reported 
use 3 GAT layers with a single attention head. 

• The loss function follows the implementation from Ref. [13]. First, the similarity 
score is computed between a random node representation of the corrupted graph 
and the representation of the entire, uncorrupted graph. A second similarity score 
is computed between a random node representation of the uncorrupted graph and 
the representation of the entire, uncorrupted graph. A cross-entropy loss is used to 
maximize agreement between latent representations from similar graph pairs while 
minimizing agreement from unlike pairs. 

• Training is performed with mini-batches of 5 graphs using the Adam optimizer with 
the learning rate set to 5E-03. 

 

https://github.com/SongW-SW/cebaf-graph-analyze
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FIGURE 5: Illustration of the workflow for training a model with self-supervised learning. One of 
three graph augmentation strategies are used to create a corrupted version of a graph, G1. The 
similarity score is computed between a random node representation of the corrupted graph and the 
representation of the entire, uncorrupted graph (left). A separate similarity score is computed 
between a random node representation of the uncorrupted graph and the representation of the entire, 
uncorrupted graph (right). Cross-entropy loss is used to maximize agreement between latent 
representations from similar graph pairs (“logits_pos”) while minimizing agreement from unlike 
pairs (“logits_neg”). Figure modified from Ref. [7]. 

 
Supervised Learning 
 

Training a model in a supervised way leverages the same node embedding and GAT workflow, 
but does not use graph augmentations or compute similarity scores. Rather, the training is done in 
the conventional way by associating graph embeddings with their ground truth label and using 
cross-entropy loss. See Fig. 6. 
 

 
 
FIGURE 6: Illustration of the workflow for training a model with supervised learning.  

 



 26 March 2024 
2024-LDRD-2301 Final Report 

 

8 
 

Data 
 

To generate a dataset with ced2graph, a user can either provide a list of specific date and time 
stamps or provide a range of dates and the interval at which to output a graph. We leveraged both 
methods for the work reported in this note. The ced2graph software also allows for user-defined 
filtering so that a graph is generated only if specific constraints are met. For the datasets described 
below, we only require the current monitor at 0L02 (IBC0L02Current) read greater than 0.1 µA. 
The user also sets the number of edges each setting node should make with downstream setting 
nodes. Our baseline dataset uses a value of 2 (this does not mean that each node has only two 
connections, it means that each setting node is connected to the next two downstream setting nodes 
and any reading node(s) in between). A summary of the graph datasets is shown in Table 1, with 
more detailed descriptions of each given below.  
 

TABLE 1: Summary of the baseline graph datasets. 
 

Dataset Name Number of Graphs Number of Edges Labeled? 
2021 2,129 2 N 
Good Setups 354 2 Y 
Bad Setups 254 2 Y 
January 2022 353 2 N 

 
2021 Data 
 

The injector state was recorded every hour for the calendar year of 2021 which, after filtering, 
yields 2,129 graphs (the first half of the year was a Scheduled Accelerator Down (SAD) and 
operations did not start in earnest until August). This dataset is used for model pre-training. 
 
Good Setups Data 
 

In order to identify periods of good injector running, we used the MyaPlot Event Search feature. 
Given specific PVs and logical conditions to search on, Event Search returns events in a given 
time period that meet those constraints. Good injector configurations were identified if there had 
not been a fast shutdown (FSD) trip for 30 minutes, the laser modes (master and Hall) were reading 
continuous wave (CW) operation, and the beam current at 0R08 exceeded 5 µA [14]. While Event 
Search can automate this search, each event still must be examined by an experienced operator to 
confirm that a Hall was not changing current or coming on- or off-line.  Following this procedure 
returns a dataset of 354 graphs labeled as good for supervised learning. 
 
Bad Setups Data 
 

Calling these “bad” setups is a misnomer – it would more correct to label them “non-ideal”. And 
it turns out, identifying these kinds of setups is very difficult. A setup in which beam cannot be 
cleanly transported through the injector is clearly bad, but the aim of this work to identify optimal 
setups and be able to distinguish them from non-ideal configurations. If the beam is deemed good 
by users in the experimental halls, then it’s safe to assume the injector setup is good. However, if 
the beam is deemed bad by the users, it does not necessarily follow that the injector configuration 
is bad. The issue could originate from anywhere in the several kilometers of beamline between the 
injector and the end stations. Therefore, to create a collection of bad setups we leveraged data from 
a January 9, 2022 beam studies that took data for a different project involving the injector [15]. In 
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the study a variety of beamline components were varied, one at a time, from their nominal values 
and the downstream response of the system recorded. The changes to each element were sufficient 
to cause a downstream response, but small enough for beam to be transported cleanly. The time 
stamps corresponding to each system change were used as input to ced2graph. In the end we 
generated a dataset of 254 graphs labeled as bad for supervised learning.  
 
January 2022 Data 
 

Lastly, we generated an unlabeled dataset for gauging the performance of the trained model, as 
a way to mimic a deployed system. The data was collected between January 10, 2022 (so as not to 
include the beam studies the previous day) through the end of the month, at intervals of every hour. 
This results in 353 graphs. Note that January 2022 is part of the same operational run from which 
the unlabeled 2021 graphs were extracted. This is important because we know that from one 
operational run to another there are significant underlying data drifts (though not yet well defined 
or identified). We will return to this issue in the “Future Work” section. 
 

By considering this many PVs (296), at such a fine granularity (every hour, or even every several 
seconds), over such a long time (several months), we are utilizing data from the archiver in novel 
ways. It’s not surprising, therefore, that several issues had to be resolved before it all worked 
smoothly. For example, one of the issues was the discovery that several of the vacuum readback 
PVs were reading current drawn (Amperes) rather than pressure (Torr). It’s critical that nodes of 
the same type report their features in the consistent units. Fortunately, the scaling to convert from 
current to pressure is known [16] and straightforward to implement in the configuration file of 
ced2graph.  
 

Ablation Studies 
 

With the datasets described in the previous section, and using the code developed to train deep 
learning models over structured data, we proceed to perform a variety of studies aimed at gauging 
performance of the model. Unless otherwise noted, the graphs are assumed to be undirected and 
constructed with 2 edges. Each model was pre-trained on the 2021 unlabeled graphs using self-
supervised learning and fine-tuned on the labeled graphs using supervised learning. The latter used 
5% of the graphs for training and the remainder for testing. 
 
GNN- Versus MLP-encoder 
 

The premise of this project is to leverage GNNs in order to preserve topological/structural 
information when representing a beamline. The hypothesis being that this would provide more 
expressive low-dimensional representations, which in turn could be used for the benefit of CEBAF 
operations. But given the relatively linear nature of the graph structure, it is not clear a priori if 
this is the case. To address the issue, we compared the performance of the model using a GNN and 
then comparing that when using a simple multi-layer perceptron (MLP). The results are given in 
the first two columns of Table 2. Model accuracies were computed for the three different graph 
augmentations (see the “Graph Embedding” section). The results demonstrate that a GNN 
outperforms an MLP – an indication that preserving structural information greatly enhances 
performance. 
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Table 2: Summary of model performance under a variety of conditions (see text for more detail). 
 

Setting GNN 
(2-edges) 

MLP 
(2-edges) 

GNN 
(5-edges) 

GNN 
(5-edges, directed) 

 Edge Removal 0.9225 0.8612 0.9008 0.7798 
 Feature Removal 0.9037 0.8483 0.6992 0.7302 
 Feature Shuffling 0.9876 0.8417 0.7752 0.7307 
 No SSL 0.8663 0.8512 0.8047 0.7380 

 
Effect of the Number of Edges 
 

The baseline graph datasets were generated with 2 edges, by which we mean each setting node 
is connected to the two downstream setting nodes along with any reading node(s) in between. We 
also explored the effect of pre-training and fine-tuning models on graphs generated with 5 edges. 
The results of this study are shown in the third column of Table 2. Because we start with a greater 
number of edges, it’s not surprising that using edge removal during self-supervised learning does 
not impact performance as much as the other two augmentations. It is not entirely clear why there 
is such a significant drop in performance, though it may be attributed to feature over-smoothing – 
a common problem with GNNs.  
 
Effect of Directed Edges 
 

Another hypothesis posited that graphs with directed edges may prove useful as it builds-in the 
notion of causality (i.e. a beamline component cannot impact upstream of itself). We tested this 
with the 5-edges graph data and the results are given in the fourth column of Table 2. Except for 
the feature removal augmentation, we see a fairly significant drop in performance. We believe this 
is due to the lack of information flow. By construction, edges end on reading nodes. Therefore, 
with directed edges their information is not conveyed to other nodes.  
 
Effectiveness of Self-Supervised Learning 
 

The effect of bypassing pre-training and directly training a model on the smaller set of labeled 
graphs was also investigated. These results are given in the last row (“No SSL”) of Table 2.  
Consider the GNN trained with 2-edge graphs (first column) as this exhibits the best performance. 
Pre-training in a self-supervised way leads to a more accurate final model, especially when limited, 
labeled data is available (recall that only 5% of the training data is used for fine-tuning). Given the 
difficulty and time required for a subject matter expert to label data, the ability to achieve good 
model performance by pre-training on easily accessible, unlabeled data conveys a huge benefit. 
 
Beam Studies Results 
 

In this section we consider two results of graph embeddings with specific application to CEBAF 
operations. 
 
Graph Embedding Test 
 

Preliminary results of applying the graph embedding workflow to the CEBAF injector beamline 
are summarized in Fig. 7. A GNN encoder was first pre-trained on the 2,129 unlabeled graphs 
from 2021 and then fine-tuned on the smaller set of labeled (354 good, 254 bad) graphs. Recall 
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that a bad setup is sufficient to transport beam but would not deliver physics-quality beam to users. 
The good and bad regions in Fig. 7 are denoted by the green and red contours, respectively. After 
fine-tuning, a set of 353 unlabeled graphs representing operations in January 2022 were input to 
the model and their resulting latent representations plotted (denoted by black markers).  
 

There are several things to note in this result. First, the model cleanly separates good and bad 
regions of parameter space. Secondly, the majority of the unlabeled graphs from January 2022 
(75%) are clustered around the good region in parameter space. Intuitively this makes sense, in 
that we were several months into a run, things were running relatively smoothly, and we were 
delivering beam to users. We expect that most of the setups were good. 
 

 
 

FIGURE 7: Visualization showing regions of parameter space for good setups (green contours) and 
bad setups (red contours) based on 2021 data (left). The black markers represent unlabeled states of 
the injector during January 2022. The model assigns a majority of the setups during this time (75%) 
to the region represented by good setups (right). 

 
 
Visualizing Switching Injector Configurations 
 

At the end of August 2022, we secured beam studies time to switch injector configurations in 
CEBAF. The purpose was to start from an initial injector configuration (call it, A), load in different 
configuration (call it, B), and migrate from setup B to setup A in a methodical, incremental way. 
During the beam study we made 64 incremental steps, changing only one beamline component at 
a time, to successfully migrate from setup B to A. Offline, we created embeddings of those 64 
discrete steps to visualize the effect of tuning a beamline by looking at a low-dimensional, latent 
space. This result is display in Fig. 8. Analysis is still ongoing and this dataset will be critical for 
developing an explainability framework – the topic of recently funded FOA project (see Appendix 
B). 
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FIGURE 8: Visualization showing the transition from one injector setup in 64 discrete steps. The 
starting (final) configuration is denoted by the red (green) star. The numbered blue markers indicate 
the steps is migrating from one setup to another. 

 

Summary 
 

The last several years have witnessed a meteoric rise in applications of machine learning to the 
field of accelerator physics. Much of the published work represents leveraging ML on very narrow 
tasks. We believe this work addresses an issue inextricably linked to all user facilities (beam 
tuning) while taking a larger, global approach to the solution.  
 

Excellent progress has been made in the 2 years of support from the LDRD. The ability to quickly 
generate a graph representation of CEBAF along with the ability to pre-train a deep learning model 
on unlabeled data, opens up exciting opportunities to explore additional use cases. In fact, this has 
potential application beyond particle accelerators to other high-dimensional, systems that require 
human-in-the-loop tuning more generally. In principle, these tools could easily be adapted for use 
in other operational facilities. 
 

The project is an intersection of graph analysis, deep learning, self-supervised learning, 
dimensionality reduction, and visualization, all within the context of a complex, operational 
system. This combination of multiple cutting-edge research topics along with an abundance of 
historical, real-world data, makes this a unique research opportunity. We see this project as laying 
the foundation for a highly relevant research program in a rapidly developing field that emerged 
within the last decade, as the tools of deep learning are combined with the tools of graph analysis. 
See Appendix B for a list of papers, proposals, and publications related to this work. 
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Appendix A: Graph File Format 
 

Figure A1 illustrates the four files that are written by the ced2graph software and Fig. A2 
shows the directory structure. The file format is based on the one used for datasets in Ref. [21]. 
Together they constitute all the information needed to construct an attributed, heterogeneous 
graph. They are: 
 

• info.dat: defines the node types 
• meta.dat: lists the number of each node type in the graph 
• node.dat: lists (node ID, node name, node type, node attributes) 
• link.dat: lists (starting node ID, ending node ID, edge type, edge weight) 

 

     
 

     
 

FIGURE A1: Example showing the four files used to define a single graph. 
 
 

 
 

FIGURE A2: The directory structure implemented for writing graph data to file. The timestamp is 
used to create folders according to year, month, day, hour, minute (and second, if need be). 
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Appendix B: Papers, Proposals, and Presentations 
 

Below is a list of papers, proposals, and presentations related to the LDRD project: 
 

• Manuscript submitted (“Graph Learning for Particle Accelerator Operations”) to Frontiers 
in Big Data, Data Mining, and Management, currently under review 

• Successful FOA proposal (“Graph Learning for Efficient and Explainable Operation of 
Particle Accelerators”) to continue work and provides funding through FY25 

• 2023 Artificial Intelligence for Robust Engineering & Science (AIRES) Workshop, “Graph 
Embeddings for CEBAF Operations”, poster presentation 

• 2022 Accelerator Reliability Workshop (ARW), “Toward More Efficient Accelerator 
Tuning with Deep Learning”, presented talk 

• 2023 and 2024 Jefferson Lab Accelerator Advisory Committee (JLAAC), highlighted 
work in talks to external committee and received favorable feedback 


