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Abstract: In an extended main grid outage spanning multiple days, load shedding serves as a critical mechanism
for islanded microgrids to maintain essential power and energy reserves that are indispensable for fulfilling
reliability and resiliency mandates. However, using load shedding for such purposes leads to increasing occurrence
of cold load pickup (CLPU) events. This study presents an innovative adaptive CLPU model that introduces a
method for determining and incorporating parameters related to CLPU power and energy requirements into a two-
stage microgrid unit commitment (MGUC) algorithm. In contrast to the traditional fixed-CLPU-curve approach,
this model calculates CLPU duration, power, and energy demands by considering outage durations and ambient
temperature variations within the MGUC process. By integrating the adaptive CLPU model into the MGUC
problem formulation, it allows for the optimal allocation of energy resources throughout the entire scheduling
horizon to fulfill the CLPU requirements when scheduling multiple CLPU events. The performance of the
enhanced MGUC algorithm considering CLPU needs is assessed using actual load and photovoltaic (PV) data.
Simulation results demonstrate significant improvements in dispatch optimality evaluated by the amount of load
served, customer comfort, energy storage operation, and adherence to energy schedules. These enhancements
collectively contribute to reliable and resilient microgrid operation.
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Nomenclature

Notations for the Ist stage MGUC

l,m,n Load group (LG) index

NG Number of LGs

Im, mn Index of the switch connecting LG m and n

p Phase index

At,t, N, Time interval (30min), interval index, and the number of intervals

fload Total weighted load served

fEV, cPV PV curtailment and its penalty factor

fELPU Total CLPU penalty

Wi i;, wtp ref Weightings of critical loads and loads during customer preferred supply periods

us ., Uiftff Supply status and interruption status of the LG m, binary

pNarit perit Non-critical load and critical load forecasts without CLPU effect, i.e., the corresponding steady-
mpt:impt state or normal loads

e PV prediction

Py, PSV'E Scheduled PV utilization and curtailment

oM Outdoor temperature
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Normal TCL load when no outages

Synchronized peak of TCLs

Saturated peak duration under the temperature of interval ¢

CLPU peak duration increment under the temperature of interval ¢

Saturation status of the estimated CLPU peak duration, binary

Accumulated CLPU peak duration during outages without considering saturation
Accumulated CLPU peak duration during outages considering saturation
Remaining peak duration at the beginning of interval ¢

CLPU power decay rate

CLPU decay status

Factors of TCL load and normal TCL load, in per unit value

CLPU consumption in per unit value (factor) and in kW

Normal load in LG m on phase p when no outages

The “from” LG set and “to” LG set of the LG m

Active power at switch mn flowing from LG m to LG n

Penalty factors of CLPU increment, CLPU peak duration and remaining peak duration

The initial service duration of the current scheduling horizon

Consecutive scheduling intervals corresponding to the MSD and the required service duration
Topology index and the number of topology candidates
Selection status of the x™ topology candidate, binary

Mapping matrix of distribution network topology candidates and LG status, NS x NtPol

Notations for the 2" stage MGUC
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Node index and the number of nodes in LG m

Interval and horizon of the 2™ stage

DR usage

PV curtailment and its penalty factor

BESS negative energy deviation penalty and its penalty factor
Load shedding status of node 7, binary

Total load and the normal load of node i
CLPU factor for the 2™ stage

BESS energy setpoint, i.e., the BESS energy by the end of the first step from the 1% stage MGUC
BESS energy by the end of the last step at the 2" stage
BESS negative energy deviation

1. Introduction

The increase in severe weather events across the United States has resulted in a higher frequency of extended
power outages spanning multiple days [1]. This trend has sparked increased attention toward advancing microgrid
technology as a means to bolster the robustness of electricity services [2]. To ensure power supply during extended
outages that last for multiple days, the creation of temporary microgrids presents more economically viable options
compared to the implementation of self-contained permanent microgrids, primarily because multi-day outages

occur with low probabilities.

However, within temporary microgrids reliant on highly intermittent generation resources and battery energy
storage systems (BESS), which are likely to constitute the majority of DERs in distribution systems [3], the
installed capacity of intermittent DERs often proves inadequate for sustaining all loads during prolonged outages
spanning multiple days. As a result, microgrid unit commitment (MGUC) frequently requires multiple load
shedding actions through demand response or feeder reconfiguration. These measures are crucial for upholding
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the availability of essential power and energy reserves to meet reliability and resilience requirements.

Nevertheless, in scenarios where the shed loads include a significant proportion of thermostatically controlled
loads (TCLs), such as Heating, Ventilation, and Air Conditioning (HVAC) units, the TCLs’ temperature can
gradually shift away from the desired range. As a result, when the interrupted loads are reconnected, all TCLs
might activate simultaneously. Furthermore, restoring the TCLs’ temperature will require the devices to operate
for periods ranging from tens of minutes to hours beyond their usual cycling durations. This situation leads to a
notable surge in peak power demand and additional energy requirements, which is known as the cold load pickup
(CLPU) phenomenon.

Given that TCLs usually account for around 50% of energy usage in distribution systems [4] in cold winter
or hot summer days, the impact of CLPU becomes particularly significant when scheduled interruptions extend
for hours or overnight. Consequently, MGUC algorithms must factor in CLPU requirements while planning load
shedding by reconfiguration to fulfill power and energy demands. We will now examine the current state-of-the-
art concerning the existing CLPU model and its application within MGUC for the purpose of optimizing the
scheduling of service restoration and load shedding events.

Existing CLPU Models: Two approaches have been proposed in the literature for modeling CLPU: data-
driven and model-based. The data-driven methodology calculates the CLPU curve through historical outage data.
For instance, curve-fitting methods can compute the CLPU peak for various outage durations [5]. Another
approach involves predicting the CLPU peak from a statistical CLPU model [6]. The limitation of these approaches
is the insufficient outage data available for model derivation.

The model-based approach uses physics TCL models to estimate CLPU effects. A CLPU delayed exponential
model is proposed in [7] based on heating load simulation under a specified outside ambient temperature. In [8], a
3-piecewise linear function that depicts the CLPU power consumption of the CLPU peak period and the decay
period is presented, the exponential decay is simplified to a linear decay. Many widely used delayed exponential
models or their linearized versions yield a fixed CLPU profile computed from fixed ambient temperature and
outage duration. However, in practice, ambient temperature is time-varying and load shedding duration is unknown
before the MGUC has been solved. Thus, a fixed CLPU model only yields the rough estimation of CLPU power
and energy needs in MGUC. In [9], the authors present a multi-state load model that estimates the CLPU peak and
the CLPU duration using TCL status and settings as inputs. However, if detailed TCL-level information is not
available to the microgrid controller, the methods cannot be applied.

In summary, when estimating CLPU power (e.g., peak power, duration, decay rate, and steady-state power)
and energy needs, the existing CLPU models cannot account for variable interruption duration and time-varying
ambient temperature changes [10].

MGUC enhanced by CLPU Constraints: As shown in Table I, various methods have been proposed to
incorporate the CLPU considerations into MGUC. For example, in [11], the authors propose to use a linearized,
delayed exponential CLPU curve to formulate a Mixed-Integer Linear Programming (MILP) algorithm for service
restoration by microgrids. An alternative approach proposed by authors in [12-13] represents CLPU as a separate
demand block for coordinative scheduling of service restoration and repair crew routing. In [14-15], the authors
use interruption duration as an input for selecting a CLPU profile from a set of predefined candidate profiles. These
profiles are generated by simulating CLPU effects under different interruption durations while maintaining a
consistent outdoor temperature. Also, the CLPU power fluctuation when outages are short and some houses’
temperatures are still within comfort bands is considered [14], and uncertainties of CLPU curves are modeled by
adding Gaussian noise to the selected CLPU profile [15]. The main disadvantage of methodologies outlined in
[11-15] is their underlying assumption of a constant ambient temperature throughout the duration of the CLPU
period. Additionally, the authors use MGUC for microgrid load restoration, they assume once a cold load is picked
up, it cannot be re-interrupted. Thus, in the problem formulation the MGUC only needs to accommodate one
complete CLPU event for a scheduling horizon.

However, when dealing with the scheduling of multiple service interruptions to fulfill power and energy
reserve needs during prolonged outages, the timing and duration of the load shedding events are decision variables.
Moreover, if the load shedding event lasts for hours or overnight, using a fixed ambient temperature throughout
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the entire period will result in large errors in CLPU estimation. Thus, if the MGUC is required to optimize when,
how many, and how long the load shedding events are, relying solely on a limited set of fixed CLPU profiles
proves inadequate. This is because the variability in ambient temperature and outage durations can span a wide
range in a prolonged scheduling period (e.g., 24 or 48 hours). For instance, the temperature can fluctuate by more
than 10°C, and outages may vary between 2 and 14 hours. Likewise, creating a set of predefined candidate CLPU
profiles becomes impractical due to the necessity for a significantly large number of candidates to adequately
address the scheduling requirements. Thus, in this paper, we present an adaptive CLPU model, which can be
directly integrated into the MGUC, for estimating the power and energy requirements of multiple CLPU events.
In Table I, we highlight the unique considerations of the proposed CLPU enhanced MGUC algorithm and provide
a comprehensive comparison with the existing methods.

The main contributions of the paper are two-fold. First, we introduce an adaptive CLPU model that can
accurately estimate CLPU using interruption duration and ambient temperature as inputs. The CLPU model
parameters can be estimated offline using TCL parameters derived from the smart meter data for a wide range of
operation conditions. Second, we present the formulation of the adaptive CLPU based operational constraints,
which can be integrated into a 2-stage MGUC formulation for optimal scheduling of multiple load shedding events.
This enables the microgrid to optimize the number, timing and duration of the load shedding events, consequently
leading to more optimal power and energy dispatch outcomes during extended outages in multi-day microgrid
operation. The adaptive CLPU enhanced MGUC is formulated as a MILP problem, making it tractable, and its
performance is verified by real-time device level CLPU simulation.

The rest of this paper is organized as follows. Section 2 presents the proposed adaptive CLPU model and the
proposed MGUC algorithm considering adaptive CLPU estimation. Results are presented in Section 3 and Section
4 concludes the paper.

Table I. Summary of literature review

Microgrid Operation Setup Microgrid Unit Commitment Algorithm Setup Verified
dynamic
Ref. 3-phase . T . CLPU
unbalanced Outage Main energy | Optimization Rol'hng Forecast CLPU CLPU | responses
duration source* stages horizon| error |Y/N
system events model
no real-
time
v v
[11] <1 hour DG RT one fixed CLPU
simulation
[12] up to days DG DA v v one fixed
[13] v up to days DG + BESS DA v v one fixed
[14] 4 several hours DG RT v 4 one candidate
[15] several hours DG RT v 4 one candidate
[16] several hours DG DA v multiple
[17] <1 day DG DA+RT v multiple
[18] v <1 hour DG RT one
[19] v up to days DG DA multiple no CLPU
[20] v <1 day DG + BESS DA v multiple
[21] v several hours | DG + BESS RT multiple
[22] multi-days BESS + PV DA multiple
verified
by real-
Proposed v multi-days | BESS + PV DA+RT v v v | multiple | adaptive time
CLPU
simulation

*DG denotes dispatchable distributed generations; § Using openDSS, gridLAB or HIL simulation

2. Methodology

In this section, we present the CLPU model and the integration of the CLPU constraints into the MGUC
algorithm for multi-day, off-grid operation.
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Fig. 2. The Two-Stage MGUC Process: (a) Flowchart of the 2-Stage MGUC, with commands sent to the next stage
marked in red, and (b) Scheduling Horizons and Intervals for the 1% and 2" Stages.

2.1 Overview of the Feeder-level Microgrid Operation

In this paper, a modified IEEE 123-bus test system [23] is used to illustrate the feeder-level temporary
microgrid operation. As shown in Fig. 1, a hybrid energy system consisting of a MW-level photovoltaic (PV)
plant and a grid-forming BESS is connected to bus 7.  Five 3-phase switches (S1-S5) can be used to remotely
switch on/off the five load groups (LG1-LGS5). LG2 and LG3 are critical LGs as they serve critical loads. Please
note that critical loads are assumed to have dedicated backup generators, but they still have high supply priority
for preserving their fuel.

A 2-stage MGUC is used to schedule the microgrid operation, as shown in Fig. 2(a). A 16-hour ahead



rolling forecaster and a 30-minute ahead forecaster provide the PV, load, and weather forecasts to the 1% and
2" stage MGUC, respectively. In the 1% stage, a rolling 16-hour ahead MGUC is conducted every 30 minutes
to schedule BESS, PV, and the on/off status of LGs and switches. The solution for the first 30-minute interval
will be executed and used as the inputs for the 2™ stage MGUC.

As shown in Fig. 2(b), each scheduling interval is 30-minute (At = 30) so there are 32 scheduling intervals
(N; =32) in the 1*' stage MGUC. As the BESS is the only grid-forming device in the microgrid, we assume that
load shedding, achieved by switching LGs off, is the main approach for meeting power reserve requirements
and energy needs. In the 2™ stage, all weather variables are treated as static. The circuit topology, BESS budget,
and CLPU estimations derived from the 1% stage MGUC for the forthcoming 30-minute interval are transmitted
to the 2" stage MGUC, where intra-30-minute, 5-minute-interval power dispatch decisions are made for BESS
and DR to ensure load balance and voltage regulation. This two-stage process, using a rolling horizon
optimization strategy, is performed every 30 minutes, as illustrated in the timeline diagram in Fig. 2 (b).

2.2 Problem Formulation for the 1st Stage

The objective function of the 1st stage is formulated as

max flload _ CPVfIPV _ f(lfLPU (1)

N¢ N6

load Z Z 2 Ur(r}l, pref( Ncrlt CrltPCI'Itt)At (2)
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d
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Ntopol
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G 171G G T topol topol topol T 6
[Ul,t,UZ,t, UNG’t] Mt [U 2 Gt UNtopol‘t] (6)
; { MSD MSDserved _
_ min{DMSP — piShserved, N}, ¢ = 1
Dm,t = ’ (7)
min{DySP, N, — ¢t + 1}, ¢ > 1
Dpe—1
> USirns = Dne(UShe — UShema) ®)
z=0

Equations (5) and (6) are reconfiguration constraints. We use a topology look-up table for selecting feasible
and radial circuit topologies. We put all 13 feasible circuit topology candidates of the test system into a look-up

table ([U topol gotpOl U ;ﬁggtl,l ] ) so that a matching matrix (M) can be used for determining the on/off of

load groups (U ), the switch status can be determined using the similar methods. Equations (7) and (8) consider
the minimum service duration (MSD) [22] to avoid frequent switching on/off LGs.

Note that the main objective of a conventional 1% stage MGUC is to maximize the total served load (£°29),
minimize the PV curtailment (P, P?{}Qt) and meet user comfort requirements (e.g., supply priority to critical loads
and user-preferred hours, minimum service duration [22]). Our contribution to the MGUC problem formulation
is the integration of CLPU energy constraints (IJLPU) into the existing MGUC objective function in (1). Then,
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when scheduling the on/off status of an LG through feeder reconfiguration (i.e., determine U,?l_t in (2)
considering constraints (5)-(8)), we can factor in the CLPU energy needs associated with re-energizing loads
that were previously shed during subsequent intervals.

We will show in the simulation results that such considerations are crucial for multi-day microgrid
operations, especially when the LGs need to be turned off multiple times. This is because, within a 30-minute
interval, if the unaccounted CLPU energy requirement surpasses the allocated amount scheduled by the first-
stage MGUC, the microgrid will exceed the “optimal” energy quota for that interval. Consequently, because of
the overuse, the microgrid will fail to supply the scheduled loads in the subsequent 30-minute intervals.

Moreover, if the CLPU power demand exceeds the capacity of the available power supply, the microgrid
would either need to unexpectedly shed load or be forced to shut down. We will introduce the CLPU power
constraints in Section 2.4.

Please refer to [22] for the rest of the MGUC constraints, including PV and BESS operational constraints,
microgrid reserve constraints, and polygon-based linearization of active power and reactive power constraints
of the inverters and switches.

2.3 Adaptive CLPU Model

To illustrate the derivation of the adaptive CLPU model, we consider a scenario of 1100 heterogeneous
HVAC units in the 123-bus test system. These HVAC units are modeled using the RCQ model introduced in
[24]. To model realistic HVAC operation, we derive the RCQ parameters from 145 sets of sub-metered HVAC
profiles (Pecan Street dataset [25]) using the method described in [26]. Note that in cases where sub-metered
HVAC profiles are not available, the load disaggregation algorithms introduced in [27-28] can be used to extract
the HVAC profiles from smart meter data.

Using those typical HVAC model parameters, we conduct offline simulations by using weather forecast
and LG on/off status as inputs to model the HVAC load curve under different outdoor temperatures and
scheduled interruption durations. As shown in Figs. 3 and 4, compared to the normal HVAC electricity

. Stead
consumption (P,

) when there are no service interruptions, a significant amount of extra energy will be
needed for picking up the HVAC units that have been in the “off” state for an extended period. This additional

energy corresponds to the CLPU energy requirements.

dpe?k D)})Jletaksatu
3000 ™ . ”L.\ ‘ i
e L
2500 “h (- ﬁ_,\w\i pMaxCLPU
- m
—7h |
g 2000/ L) Jpseas
eady
< \AjV\NJVVMM\ enx
= 1500 !
[0} [}
z 1
Q 1
A 1000 |
|
500 1
1
1
0 '}

10 12 14 16 18 20 22 24 26
Time (hour)

Fig. 3. CLPU curves for different outage lengths (T°4t =36 °C).
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Step 1: Compute the HVAC steady state power consumption at time interval t. The TCL normal/steady-

state load (P,f:f ady) can be readily estimated based on the outdoor temperature, as shown in Fig. 4.

Step 2: Compute the CLPU peak power. From the simulation results shown in Figs. 3 and 4, the peak

CLPU power usually equals the synchronized peak of all HVAC loads, PMaxCLPU

Although in mild days, a
few HVACs don’t need to work after resupply since their room temperatures could be still within the comfort
bands, the CLPU peak can be slightly lower than PM3XCLPU (¢ o the 26 °C case in Fig. 4), such cases can be
ignored for hot summer or cold winter days. Thus, to simplify the CLPU model, in this paper, we assume that
the CLPU peak will be equal to PM3*CLPU By doing so, our underlying assumption is that when a group of
HVAC:s is off for more than 30 minutes, they will all turn on simultaneously when the power supply is restored.
This assumption can lead to a slight overestimation of the power needs in mild days.

Step 3: Compute the CLPU peak duration. As shown in Figs. 3 and 4, the peak duration is dependent on

the interruption duration and ambient temperature. As summarized in Fig. 5, at a given outdoor

peak
m,t °

temperature, T°'", the CLPU peak duration, d is a function of outage/interruption duration, d;’,fft The

longer the outage lasts, the longer the CLPU peak duration will be. To simplify the calculation, we linearize the

k . . . .
dgle? versus dﬁ’nfft curve so that for a given temperature at interval t, an incremental peak duration can be

calculated from the slope of the curve, 7,1, Note that if the outage duration reaches a certain value, d,‘;{ftsat“,

peaksatu

.t . We opt for a 2-piece linearization to make a compromise between accuracy and

dgle; K is capped at D
problem complexity. Note that the 2-piece linearized curve can effectively capture the two primary
characteristics of the CLPU curve: 1) the CLPU peak duration increases as the outage duration increases, 2) the

CLPU peak has a saturation point.
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Fig. 5. Impact of outdoor temperature on CLPU duration curve (’L’;&ut = Adsf?k /At, where At = 30 minutes).
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Step 4: Compute the CLPU decay rate. As shown in Fig. 6, the CLPU power decay rate, y;l‘,’t“t, isa

function of outdoor temperature, T°Ut. The higher T°U is, the slower the CLPU peak decays from PMaxCLPU

to the steady-state HVAC consumption level, Prfltte 3 Two curve-fitting approaches can be used for estimating

the CLPU decay rate based on variations in downtime and ambient temperature. The first approach involves
using one curve for each downtime to calculate the decay rate based on ambient temperature. The second
approach is to use a single equivalent curve tailored to the most commonly occurring downtimes to determine
the decay rate based on ambient temperature only.

Because the microgrid operators possess foreknowledge of the temperature variation range, we choose the
second approach, using an equivalent ‘decay rate-temperature’ curve to estimate the decay rate based on TPU*
to simplify the MGUC problem formulation and reduce computational complexity. To enhance the accuracy of
decay rate estimation and minimize the impact of varying outage durations, we tailor the curve to best suit
outage durations falling within the range of 4 to 10 hours. Please note that within our MGUC problem setting,
short outages are seldom observed for two main reasons. First, minimum supply duration constraints are in place
to discourage very brief CLPU events. Second, when considering the same total interruption duration, the CLPU
consumption for multiple short interruptions is higher than that of a single long interruption (see Fig. 10(a)). As
a result, the CLPU constraints favor scheduling a single, extended load shedding event rather than multiple
shorter ones. Consequently, when short outages do occur, they typically happen only once during the daytime
when temperatures exceed 30 °C.

In practical applications, we recommend that modelers identify the temperature variation range and
downtime range to select a 'decay rate-temperature' curve that best aligns with their specific operational
conditions.

Step 5: Formulate the adaptive CLPU model. To facilitate the power calculation, we use PM3XCLPU a4 the
power base so that the CLPU peak is 1.0 p.u., the power of the HVAC load of the m™ LG at time ¢t is Ky,

p.u., and the steady state power of the m™ LG is krsrfiady p-u.. Let tg, ty, tp,and tg be the interruption start

time, the load restoration time (i.e., where the CLPU peak starts), the decay start time (i.e., where the CLPU
peak ends), and the time reaching steady (see Fig. 7(c)).
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Figure 7 illustrates the daily ambient temperature profile (Fig. 7(a)), the fixed CLPU curve obtained by the
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existing CLPU model (Fig. 7(b)), and the adaptive CLPU curve obtained by the proposed method (Fig. 7(c)).
The fixed CLPU curve is obtained by modeling the HVAC operation for predefined outage duration and
constant ambient temperature [7-8], so it has the fixed CLPU peak ratio (peak versus steady value), the fixed
peak duration and decay duration for all outage scenarios. As shown in Fig. 7(b), the drawbacks of using such
an approach are: 1) the CLPU peak can be significantly over- (hours 8-10) or under- (hours 16-17) estimated,
and 2) significant over- or under- estimation of the CLPU decay energy needs.

The CLPU curves calculated by the adaptive model are illustrated in Fig. 7(c). Compared to the fixed
CLPU, the adaptive CLPU model can accurately capture the CLPU energy needs by estimating the CLPU peak

ratio based on PM3¥CLPU and k,srf‘etady and calculating the accumulative impact of interruption duration and
ambient temperature on peak duration by (9-1) and on the decay process by (9-4).

Note that when the ambient temperature varies a lot during the CLPU event, the CLPU peak duration and
the decay duration vary too, the decay process may exhibit either a convex or concave shape, as shown in the
first and second CLPU events in Fig.7(c), respectively.

The proposed adaptive CLPU model offers a more comprehensive and precise depiction of CLPU,
encompassing ambient temperature, outage duration, and peak characteristics. All the necessary parameters for
this adaptive model can be derived from offline HVAC simulations. As demonstrated in the following section,
the model's linearization and cumulative formulation simplify the estimation of CLPU requirements when
scheduling multiple load shedding events in the MGUC problem, all without imposing significant computational
overhead.

2.4 Integration of the CLPU model into the 1st stage MGUC

The key challenge for considering the CLPU power and energy needs in MGUC is that the time when the
load shedding happens and ends are decision variables so they are unknown before solving the MGUC problem.
The main contribution of the proposed adaptive CLPU mode is that it provides an analytic formulation of the
CLPU model with respect to the interruption duration and ambient temperature. This enables the MGUC to
estimate the CLPU consumption during the optimization instead of using a predefined CLPU profile.

The adaptive CLPU model can be integrated into the MGUC as follows.

Step 1: Determine the CLPU Peak Duration.

Go
Ut =1-Ug, (10)
Go

0 < dpe < MU (11)
Ay + MUS,; = dppgq + TR U AL (12)
Ut < Upit (13)
dbei > pPrieatiysat (14)
A2 > g, — MUS® (15)

k Go
rot = dperoq = dpesy — U At — MU (16)
0<die, <MUS, (17

Equation (10) determines whether an LG is “off”. (11) and (13) ensure if the LG is “on”, d,,; and the
CLPU peak saturation status (U52™) should be 0. This is because the CLPU cumulates only when the LG is off.
Thus, for each consecutive “off” interval, a resultant CLPU peak duration increment is added to the previous
CLPU peak duration cumulatively using (12). Note that in (12), we do not consider the saturation effect.

Equations (14) and (15) are used for computing the CLPU peak duration considering whether or not the
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peak duration is saturated. If the CLPU peak duration is saturated (US3*" = 1), (15) will be disabled so (14) is

used to calculate the saturated CLPU peak duration and saturation status. If the CLPU peak duration is NOT

saturated (US3™ = 0), (14) is disabled and (15) is used to compute the dgf? k by d;, ;. Note that the maximum

CLPU peak duration is capped according to the temperature of the step (see Fig. 5). The big-M method is used
in (11-12) and (15-17), the M is a selected large number greater than 24 X 60 minutes (in our case,
M =1500).

Equations (16) and (17) estimate the remaining CLPU peak durations when the LG is “on” and determine
when the CLPU peak ends and the CLPU decay starts. Note that minimizing the duration of CLPU peaks can

also minimize the additional energy required for CLPU. In (16), if the LG is turned “on” at step t, the remaining

dpeak .

peak duration dp;, should equal the estimated peak duration d;, ._;;

if the LG is turned “on” before step t
and remains “on” for the next time step, d;;, = d;7,_1 — At. Thus, by incorporating those constraints, MGUC
tends to supply loads in consecutive intervals rather than turning them on/off frequently.

Step 2: Determine the CLPU Decay Process. The following constraints compute CLPU decay status
(U;:ftc @) for the m™ LG at time t and ensure that the CLPU decay starts only when the CLPU peak duration

elapses.

UpssY < UG, (18)
M(1- Udecay > Jre 19
mt ) = Amt (19)

—MUSY + M3US, < dig, (20)

Equation (18) indicates that CLPU decay only could happen when the LG is “on”. The decay status is
decided by df¢, and the LG status U%, with (19-20), if the CLPU peak is ended (d}¢, = 0) and the LG is

still served, U,Crlftc 4 is 1. Especially, M® is a small constant (in our case, MS = 0.001).

out

Steady . .
P %% s estimated based on Ty

Step 3: Determine the CLPU Power Consumption. From Fig. 4,

Then, the steady load factor, k,snt’iady, can be calculated by
PSteady
ey o _mt @1
) Pm axCLPU

where the TCL load factor k., is within the peak value (1.0 p.u.) when the LG is “on” and is bounded

by
ke VUS e < ke < U, (22)
When the LG is turned “on” at t, CLPU is at its peak so that k,,; = 1 (1.0 p.u.), which could be ensured
by kpe = U,?l,t - U,(,.;l,t_l. During the CLPU peak duration, k,,, = 1 is maintained. When the CLPU decay
period starts, Ky = kpeo1 — Vme Ugff 4 Note that reducing k¢ could mitigate CLPU, so all these

scenarios can be ensured by
d
Kt = kme-12 (Ur(r}l,t - UTCr;l,t—l) — YmtU. P (23)

m,t

Thus, the CLPU increment factor, k%f U, can be calculated by
tead
kit * = K =k Uy (24)

Assuming that the CLPU peak is Prl}l’ngCLPU, the CLPU power increment in kW value, P,%I,‘tPU, is calculated

as

CLPU _ 1,CLPU pMaxCLPU
Pyt = kmit Pnp (25)
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Step 4: CLPU Penalty Terms. To minimize CLPU impact on MGUC scheduling, we formulate a CLPU
CLPU .CLPU

penalty term, f,°“PY, consisting of three penalty factors, cSLPY, cqp and cSPY into the 1% stage MGUC
formulation as:
Ny NG
fitY = Z Z (cSPUPSEVAL + cGEPVabeT + PV ) (26)
t=1m=1
e = Pt + Pripe 27)
— 1JG CLPU
le,p,t - Um,tPTI:l(.)pr,rtn + Pm,p,t + Z Pmn,p,t (28)
leqfrom neqte

Equation (28) ensures that each phase meets the power balance requirement when considering the CLPU
effect. Note that the CLPU power needs can exacerbate 3-phase load unbalance. Because the adaptive CLPU
can accurately estimate the per-phase CLPU power, it can be used for improving the phase unbalance control.
This is another advantage of using the adaptive CLPU model in MGUC in unbalanced distribution systems.

2.5 The 2" Stage MGUC Problem Formulation

The objective function of the 2™ stage MGUC minimizes the amount of per-phase DR usage, fR, the

PV curtailment, £V, and the BESS negative energy deviation from its budget, fFESS.

min ZDR+C£OWf2BESS + C;’VfZPV (29)

T, NG Np2de

PPR= Y Y URR, P ar (30)

t'=1m=1 i=1 pefab,c}

PR, = BRI + kSN 61
fZBESS — AE%OW (32)
Eyr, + AEPY > E; (33)
AEPY >0 (34)
T

fFY=3) poar (35)

t'=1
The CLPU effect is included by (31) in the 2™ stage, the CLPU factor, k%ﬁu, is calculated by interpolating

the first stage’s estimated CLPU factor k,cnljtp U linearly. We penalize the negative BESS energy deviations with
(32-34) as such deviations could compromise the overall optimal solution of the 1% stage.

In the 2™ stage, we perform the unbalanced linear power flow [29]. The hybrid PV plant's voltage is fixed
at 1.03 p.u., and all other nodal voltages are maintained within the range of [0.95,1.05] p.u.. The operational
constraints of PV and BESS, microgrid reserve constraints, and linearization of active power and reactive power
constraints of inverters and lines are similar to those in the 1% stage.

3. Simulation Results

As shown in Fig. 1, the feeder-level microgrid is modeled by the modified IEEE 123-bus test system. The
microgrid is supplied by a hybrid PV plant (Node 7) consisting of a 4.5 MW PV farm and a 3 MW/6 MWh
BESS. A prolonged outage occurs and the hybrid PV cannot provide service in the first several hours due to the

13



extreme weather condition and system device repair, then the hybrid PV plant is expected to serve the feeder in
the next 48 hours. As the only grid-forming source, the BESS regulates the system voltage at 1.03 p.u. and has
a charging/discharging efficiency of 95% with a state of charge (SOC) operational range of 20% to 90%. The
initial SOC is set at 90%. We use the actual PV forecasts and measurements obtained from a SMW PV farm in
this study. The forecasting error is small on the first day but significantly larger on the second day, as depicted
in Fig. 8.
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Fig. 9. Per-phase 5-min normal load for the five load groups.

There are two customer-preferred service periods: 7:00-9:00 and 18:00-20:00, each assigned a preferred

pref crit

time weighting (w; ) of 1.5. Critical loads (Nodes 47 and 65) are assigned with a priority weighting (wy, ,
of 4. The load at each load node is obtained by randomly selecting the load profiles from the Pecan Street dataset
[25], which provides minute-level submeter data, using methods described in [22]. The total loads comprise two
parts: the non-HVAC load and the HVAC load. The baseload (i.e. non-HVAC load) is forecasted using the
method introduced in [30]. The 1100 heterogeneous HVAC units are modeled by the RCQ model, the parameters
of which are derived from the sub-metered HVAC load profiles (also from the Pecan Street dataset) using
methods introduced in [26].

The HVAC load consumptions under different outage durations and ambient temperatures are used to
derive the parameters of the adaptive CLPU model using the methods introduced in Section 2.3. Note that the

CLPU model parameters are in per unit value, so all LGs share a similar set of parameters, except for P,l,‘l’ngCLPU

Steady
and P ¢

, which is related to the number of HVAC units inside each LG. It is worth noticing that the 3-phase
loads within some L.Gs can exhibit substantial imbalances (e.g. LG1), as shown in Fig. 9.
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The corresponding weather data are downloaded from NOAA. The parameters for MGUC, HVAC, and
CLPU can be found in [31].

The MGUC algorithm is formulated as a MILP problem. The solver is CPLEX 12.10 on Matlab 2019. The
computational environment is a desktop computer equipped with an Intel Core 19-9900 CPU and 64GB of RAM.
The optimality gap is 0.01%. The MGUC-OpenDSS simulation is conducted using the Matlab COM interface.

We run the MGUC-OpenDSS co-simulation with MGUC using baseload forecast and estimating CLPU,
and OpenDSS using actual baseload and simulated HVAC loads, both of which are 1-minute data. In the figures,
“RT” denotes real-time simulation results from OpenDSS and “MGUC” denotes the 2nd stage MGUC
dispatching results, and the red dashed rectangle denotes the preferred periods.

3.1 Verification of the Adaptive CLPU Model Performance

To verify the performance of the adaptive CLPU model, in Fig. 10, the simulation results of three constant
ambient temperature cases are shown. In each case, we model three CLPU events, the duration of which is 2-
hour, 4-hour, and 8-hour duration, respectively. The actual HVAC consumption is simulated by 1100

heterogeneous HVAC models.
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Fig. 10. CLPU estimation using the adaptive CLPU model assuming the ambient temperature remains constant for
the entire 26-hour period. (a) 26 °C, (b) 32 °C, (c) 38 °C. Note that the black line is the steady-state HVAC load. The
three CLPU events represent three different outage durations: 2-hour, 4-hour, and 8-hour.

From the results, the following observations can be made:

e When the ambient temperature remains constant, the proposed adaptive CLPU model (the shaded
areas) matches the actual HVAC load (the red lines) very well.

o As we stated in Section 2.3, if the ambient temperature is mild (i.e., 26°C), the estimated CLPU peak
is slightly higher than the actual peak when the interruption duration is only 2 hours. This is because
we assume the CLPU peak equals to PM3XCLPU for ] scenarios in order to simplify the CLPU model
representation.

e In Fig. 10 (a) and (b), we can observe a minor deviation in the first CLPU decay curve. This error
occurs because the fitted curve for computing the decay rate (see Fig. 6) exhibits greater errors when
the ambient temperature is 26°C, making the calculated decay rate for a 2-hour outage duration lower
than the actual value.
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3.2 Comparison between Adaptive and Fixed CLPU Models

Next, we compare the performance between the adaptive and the fixed CLPU models assuming that the
time and duration of the interruption as well as the ambient temperature profiles are known beforehand. In Fig.
11, it is evident that when the fixed CLPU model neglects temperature variations (as seen in the 'Fixed (temp)'
case) or assumes a constant interruption duration (observed in the 'Fixed (otg)' case), the resulting CLPU curve
(represented by the blue and green dashed lines in Fig. 11) demonstrates notable deviations from the actual
curves (depicted by the red curve). Because both the timing and duration of interruptions are decision-dependent
in MGUC, existing works [11-13] considering using fixed CLPU models could not achieve desirable results
when scheduling multiple CLPU events in a prolonged scheduling horizon (e.g., 24 to 48 hours).

This also demonstrates a major drawback of using a fixed CLPU model: the establishment of a
predetermined CLPU profile depends mainly on educated guesses, because before the MGUC is executed, when
and for how long an LG will be powered off are unknown variables.

On the other hand, the adaptive CLPU model produces CLPU curves that closely match the actual ones.
The time-varying temperature will impact the shape of the CLPU profile in terms of the peak duration, decay
rate, and steady-state value. Note that if the temperature is increasing rapidly, the CLPU decay curve is convex
due to the increase of the decay rate, for example, the second CLPU curve in Fig.11(a). However, if the
temperature is decreasing rapidly, the CLPU decay curve will be concave due to the decreasing decay rate, as

shown by the first CLPU in Fig.11(b).
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Fig. 11. Comparing various CLPU models for (a) a case with high daily temperatures occurring between hours 12
and 16, and (b) a case with high daily temperatures occurring between hours 4 and 8. Note that 'Fixed (temp)' denotes
simulation results obtained by a fixed CLPU model derived from the average temperature over a 26-hour period;

'Fixed(otg)' denotes simulation results obtained by a fixed CLPU model assuming a 2-hour interruption duration.
3.3 CLPU Enhanced MGUC

As shown in Table II, three MGUC cases are set up for comparing the effect of modeling CLPU effects.
We compare the MGUC results by evaluating MSD violation, energy served during customer-preferred periods,

and total served critical load, and total served baseload. The simulation results are summarized in Tables III and
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IV and shown in Figs. 12-17.

Table I1. Microgrid unit commitment cases: with and without CLPU

Case CLPU Model
1 NoCLPU: do not consider the CLPU effect.
: FixCLPU: fixed two-block model [12] with the CLPU increment equal to the baseload plus the normal HVAC
load and a CLPU duration of 2 hours, these parameters are selected based on the average temperature 29 °C.
3 AdaptCLPU: the proposed method considering the variation of the ambient temperatures and outage durations

3.3.1 With and without CLPU

From the simulation results, we made the following observations regarding the main drawbacks of ignoring
CLPU (NoCLPU case):

Less served critical loads and more CLPU consumption, as shown in Table III.

Frequent LG switching actions. As shown in Fig. 12(a), there are multiple 30-minute or 1-hour supply
periods, representing frequent interruptions of power supply for LGs 1-3 and more violations of MSD
constraints (10 occurrences). This also leads to more CLPU events (14 occurrences) and consumption,
as shown in Table III and Fig. 15(a).

More violations of the operational constraints. As shown in Fig. 16 (a), failing to account for CLPU
will cause the BESS SOC to drop significantly lower than the SOC lower limit.

More forced interruptions. The microgrid has to be shut down twice during hours 9-12 on the second
day after the SOC drops below 10%. This is because when picking up the "off" LGs, the scheduled
energy budget for the 30-minute scheduling interval is quickly depleted by the additional CLPU power
and energy needs, which is almost two times higher than the dispatched value (see Fig. 12(b)).

In contrast, when the CLPU is considered in MGUC (FixCLPU and AdaptCLPU), the MSD constraints
are satisfied with less frequent service interruptions (Fig. 13 and Fig. 14) and smaller BESS negative

deviation (Fig. 16).

Table I1I. Microgrid performance comparison with and without CLPU

Served load in preferred Served Served
Served load . Curtailed PV CLPU Estimated
Case periods (kWh) critical load | baseload
(kWh) (kWh) (kWh) CLPU (kWh)
total CLPU part (kWh) (kWh)
NoCLPU 54493 10196 1757 4734 21438 2999 7697 -

FixCLPU [12] 50737 7445 540 4814 20464 5877 5893 12885
AdaptCLPU 55173 7771 667 4857 22210 2591 6835 5565
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Fig. 12. Simulation results for NoCLPU. (a) LG status for each scheduling interval with shaded blocks as “on”
blocks, (b) Profiles of the utilized PV, the MGUC-scheduled loads, and the actually served load.
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Fig. 13. Simulation results for FixCLPU. (a) LG status for each scheduling interval with shaded blocks as “on”
blocks, (b) Profiles of the utilized PV, the MGUC-scheduled loads, and the actually served load.
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Fig. 14. Simulation results for AdaptCLPU. (a) LG status for each scheduling interval with shaded blocks as “on”
blocks, (b) Profiles of the utilized PV, the MGUC-scheduled loads, and the actually served load.

3.3.2 CLPU Model Comparison: Fixed versus Adaptive

From the simulation results, we made the following observations regarding the main drawbacks of fixed
CLPU:
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e FixCLPU tends to over-estimate (see Figs. 13(b) and 15(b)) or under-estimate the CLPU effect (see
hours 15-17 on the first day in Fig. 13(b)).

e As shown in Table III, compared to AdaptCLPU, the imprecise CLPU predictions lead to reduced
served load (-8%) and more PV curtailment (over 3.3 MWh), marking the poorest performance among
the three algorithms.

e Asshown in Fig. 16, FixCLPU has the highest SOC level since the actual SOC exceeds the scheduled
value, primarily due to the overestimation of CLPU effect. This also results in PV curtailment during
hours 13-17 on the first day.

e As depicted in Fig. 17, FixCLPU exhibits the biggest gap in LGs’ served time, with LG 1 served for
23.5 hours and LGs 4 and 5 served for less than 8.5 hours. It exhibits a tendency to serve fewer LGs
due to CLPU overestimation, for example, only 4 LGs can be served on the first day (refer to Fig. 13
(a)). While AdaptCLPU can provide service to all LGs each day and extend the service time for LG 5
to 17.5 hours (refer to Fig. 14 (a)).

e In contrast, adaptive-CLPU effectively captures both the magnitude and duration of CLPU events,
resulting in a close alignment between actual served loads and the MGUC scheduled loads (refer to
Fig. 14 (b) and Fig. 15 (¢)) and the least BESS storage deviation (see Fig. 16). This alignment enables
the optimization of the LG supply sequence across the entire scheduling horizon. As shown in Table
III, the performance of the AdaptCLPU case outperforms the other two cases in all performance

metrics except the “served loads in preferred periods” and “CLPU consumption”.
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Fig. 15. MGUC estimated CLPU load versus the actual CLPU load (a) NoCLPU, (b) FixCLPU, and (c)AdaptCLPU.
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Fig. 16. Comparison of BESS and DR operation in the three cases (a) BESS energy storage with the shaded area
denoting the operational range (b) Energy storage deviations (calculated by the MGUC scheduled BESS energy level

minus the actual energy storage level), and (c) Actual DR usage.
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Fig. 17. Comparison of the LGs’ served time of the three cases.

3.3.3 Computing Cost

We compare the solving time for the 1% stage MGUC (the most intensive stage) when considering the
CLPU effects. As Table IV indicates, the average runtime for AdaptCLPU is under 3.8 seconds, with a maximum
runtime of 19.6 seconds. Therefore, despite the higher model complexity associated with the adaptive CLPU
model compared to the FixCLPU and NoCLPU cases, the increase in runtime is not substantial and comfortably

satisfies the runtime constraints for the 2-stage microgrid operation with 5-minute power dispatching

requirements.
Table IV. Model Complexity and Runtime
Number of . Max.
Number of binary Number of Average
Case continuous calculation
variables constraints calculation time
variables time
NoCLPU 1472 800 4786 0.6 1.8s
FixCLPU 1792 960 5408 1.0s 3.1s
AdaptCLPU 2112 1120 7328 3.8s 19.6 s
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4. Conclusions

In this study, we introduced an innovative adaptive CLPU model that incorporates ambient temperature and
interruption duration as input variables, enabling precise estimation of CLPU power and energy requirements.
Utilizing this adaptive CLPU model, we established a comprehensive set of operational constraints for the MILP
MGUC framework. This novel approach empowers the MGUC system to autonomously calculate CLPU needs
and optimize the LG on/off sequence effectively. Our simulation results shown that the adaptive CLPU enhanced
MGUC surpasses the existing approaches, which either neglected CLPU or relied on fixed CLPU curves. By
accurately addressing the demands of multiple CLPU events within the 1st stage energy scheduling process
during extended outages, we significantly reduce power and energy shortfalls in real-time operations. This, in
turn, leads to enhanced served total load, critical loads and baseloads, improved customer comfort (as the
minimum service duration constraints are met), and fewer forced microgrid outages. Note that in our problem
setting, an equivalent ‘decay rate-temperature’ curve is used for estimating decay rate estimation based on
ambient temperature. To minimize the impact of varying downtime on the estimation accuracy, we customize
the curve to optimally align with outage durations ranging from 4 to 10 hours. This approach proves effective
in the proposed problem setting, primarily because short outages are infrequent due to the minimum service
duration and CLPU constraints. In practice, to adapt the CLPU model effectively to various day types and
MGUC problem settings, we advise modelers to customize the equivalent 'decay rate-temperature' curve to best
capture the temperature range and outage duration characteristics specific to their scenarios.

Our future research will focus on the development of MGUC algorithms for managing multiple feeders with
multiple grid-forming sources. This broader scope promises to further advance the reliability, resiliency, and
robustness of microgrid energy management systems in prolonged outages.
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