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Abstract: In an extended main grid outage spanning multiple days, load shedding serves as a critical mechanism 
for islanded microgrids to maintain essential power and energy reserves that are indispensable for fulfilling 
reliability and resiliency mandates. However, using load shedding for such purposes leads to increasing occurrence 
of cold load pickup (CLPU) events. This study presents an innovative adaptive CLPU model that introduces a 
method for determining and incorporating parameters related to CLPU power and energy requirements into a two-
stage microgrid unit commitment (MGUC) algorithm. In contrast to the traditional fixed-CLPU-curve approach, 
this model calculates CLPU duration, power, and energy demands by considering outage durations and ambient 
temperature variations within the MGUC process. By integrating the adaptive CLPU model into the MGUC 
problem formulation, it allows for the optimal allocation of energy resources throughout the entire scheduling 
horizon to fulfill the CLPU requirements when scheduling multiple CLPU events. The performance of the 
enhanced MGUC algorithm considering CLPU needs is assessed using actual load and photovoltaic (PV) data. 
Simulation results demonstrate significant improvements in dispatch optimality evaluated by the amount of load 
served, customer comfort, energy storage operation, and adherence to energy schedules. These enhancements 
collectively contribute to reliable and resilient microgrid operation. 
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Notations for the 1st stage MGUC 

𝑙𝑙,𝑚𝑚,n Load group (LG) index 
𝑁𝑁G Number of LGs 
𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚 Index of the switch connecting LG m and n 
p Phase index 
Δ𝑡𝑡, 𝑡𝑡,𝑁𝑁𝑡𝑡 Time interval (30min), interval index, and the number of intervals 
𝑓𝑓1load Total weighted load served 
𝑓𝑓1PV, 𝑐𝑐PV PV curtailment and its penalty factor 
𝑓𝑓1CLPU Total CLPU penalty 
𝑤𝑤𝑚𝑚,𝑝𝑝
crit ,𝑤𝑤𝑡𝑡

pref Weightings of critical loads and loads during customer preferred supply periods 

𝑈𝑈𝑚𝑚,𝑡𝑡
G ,𝑈𝑈𝑚𝑚,𝑡𝑡

Goff Supply status and interruption status of the LG m, binary 

𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡
Ncrit,𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡

crit  Non-critical load and critical load forecasts without CLPU effect, i.e., the corresponding steady-
state or normal loads 

𝑃𝑃PV,𝑡𝑡
pred PV prediction 

𝑃𝑃PV,𝑡𝑡 ,𝑃𝑃PV,𝑡𝑡
curt Scheduled PV utilization and curtailment 

𝑇𝑇𝑡𝑡out Outdoor temperature 
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𝑃𝑃𝑚𝑚,𝑡𝑡
Steady Normal TCL load when no outages 

𝑃𝑃𝑚𝑚,𝑝𝑝
MaxCLPU Synchronized peak of TCLs 

𝐷𝐷𝑚𝑚,𝑡𝑡
peaksatu Saturated peak duration under the temperature of interval t 

𝜏𝜏𝑚𝑚,𝑡𝑡
Tout CLPU peak duration increment under the temperature of interval t 
𝑈𝑈𝑚𝑚,𝑡𝑡
satu Saturation status of the estimated CLPU peak duration, binary 

𝑑𝑑𝑚𝑚,𝑡𝑡 Accumulated CLPU peak duration during outages without considering saturation 
𝑑𝑑𝑚𝑚,𝑡𝑡
peak Accumulated CLPU peak duration during outages considering saturation 
𝑑𝑑𝑚𝑚,𝑡𝑡
re  Remaining peak duration at the beginning of interval t 
𝛾𝛾𝑚𝑚,𝑡𝑡
Tout CLPU power decay rate 
𝑈𝑈𝑚𝑚,𝑡𝑡
decay CLPU decay status 

𝑘𝑘𝑚𝑚,𝑡𝑡 ,𝑘𝑘𝑚𝑚,𝑡𝑡
Steady Factors of TCL load and normal TCL load, in per unit value 

𝑘𝑘𝑚𝑚,𝑡𝑡
CLPU,𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡

CLPU CLPU consumption in per unit value (factor) and in kW 
𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡
norm Normal load in LG m on phase p when no outages 

Ω𝑚𝑚from,Ω𝑚𝑚to The “from” LG set and “to” LG set of the LG m 
𝑃𝑃𝑚𝑚𝑚𝑚,𝑝𝑝,𝑡𝑡 Active power at switch mn flowing from LG m to LG n 
𝑐𝑐eCLPU, 𝑐𝑐dpCLPU, 𝑐𝑐reCLPU Penalty factors of CLPU increment, CLPU peak duration and remaining peak duration 

𝐷𝐷𝑚𝑚,ini
MSDserved The initial service duration of the current scheduling horizon 

𝐷𝐷𝑚𝑚MSD,𝐷𝐷�𝑚𝑚,𝑡𝑡 Consecutive scheduling intervals corresponding to the MSD and the required service duration 
𝑥𝑥,𝑁𝑁topol Topology index and the number of topology candidates 
𝑈𝑈𝑥𝑥,𝑡𝑡  
topol Selection status of the xth topology candidate, binary 

ℳ𝑡𝑡
G Mapping matrix of distribution network topology candidates and LG status, 𝑁𝑁G × 𝑁𝑁topol 

Notations for the 2nd stage MGUC 

𝑖𝑖,𝑁𝑁𝑚𝑚node Node index and the number of nodes in LG m 
∆𝑡𝑡′,𝑇𝑇2 Interval and horizon of the 2nd stage 
𝑓𝑓2DR DR usage 
𝑓𝑓2PV, 𝑐𝑐2PV PV curtailment and its penalty factor 
𝑓𝑓2BESS, 𝑐𝑐2low BESS negative energy deviation penalty and its penalty factor 
𝑈𝑈𝑚𝑚,𝑖𝑖,𝑝𝑝,𝑡𝑡′
DR  Load shedding status of node i, binary 

𝑃𝑃𝑚𝑚,𝑖𝑖,𝑝𝑝,𝑡𝑡′
node ,𝑃𝑃𝑚𝑚,𝑖𝑖,𝑝𝑝,𝑡𝑡′

norm  Total load and the normal load of node i 

𝑘𝑘𝑚𝑚,𝑡𝑡′
CLPU CLPU factor for the 2nd stage 

𝐸𝐸1 BESS energy setpoint, i.e., the BESS energy by the end of the first step from the 1st stage MGUC 
𝐸𝐸2,𝑇𝑇2 BESS energy by the end of the last step at the 2nd stage 
∆𝐸𝐸2low BESS negative energy deviation 

 
 

1. Introduction 
The increase in severe weather events across the United States has resulted in a higher frequency of extended 

power outages spanning multiple days [1]. This trend has sparked increased attention toward advancing microgrid 
technology as a means to bolster the robustness of electricity services [2]. To ensure power supply during extended 
outages that last for multiple days, the creation of temporary microgrids presents more economically viable options 
compared to the implementation of self-contained permanent microgrids, primarily because multi-day outages 
occur with low probabilities. 

However, within temporary microgrids reliant on highly intermittent generation resources and battery energy 
storage systems (BESS), which are likely to constitute the majority of DERs in distribution systems [3], the 
installed capacity of intermittent DERs often proves inadequate for sustaining all loads during prolonged outages 
spanning multiple days. As a result, microgrid unit commitment (MGUC) frequently requires multiple load 
shedding actions through demand response or feeder reconfiguration. These measures are crucial for upholding 
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the availability of essential power and energy reserves to meet reliability and resilience requirements.  
Nevertheless, in scenarios where the shed loads include a significant proportion of thermostatically controlled 

loads (TCLs), such as Heating, Ventilation, and Air Conditioning (HVAC) units, the TCLs’ temperature can 
gradually shift away from the desired range. As a result, when the interrupted loads are reconnected, all TCLs 
might activate simultaneously. Furthermore, restoring the TCLs’ temperature will require the devices to operate 
for periods ranging from tens of minutes to hours beyond their usual cycling durations. This situation leads to a 
notable surge in peak power demand and additional energy requirements, which is known as the cold load pickup 
(CLPU) phenomenon. 

Given that TCLs usually account for around 50% of energy usage in distribution systems [4] in cold winter 
or hot summer days, the impact of CLPU becomes particularly significant when scheduled interruptions extend 
for hours or overnight. Consequently, MGUC algorithms must factor in CLPU requirements while planning load 
shedding by reconfiguration to fulfill power and energy demands. We will now examine the current state-of-the-
art concerning the existing CLPU model and its application within MGUC for the purpose of optimizing the 
scheduling of service restoration and load shedding events. 

Existing CLPU Models: Two approaches have been proposed in the literature for modeling CLPU: data-
driven and model-based. The data-driven methodology calculates the CLPU curve through historical outage data. 
For instance, curve-fitting methods can compute the CLPU peak for various outage durations [5]. Another 
approach involves predicting the CLPU peak from a statistical CLPU model [6]. The limitation of these approaches 
is the insufficient outage data available for model derivation. 

The model-based approach uses physics TCL models to estimate CLPU effects. A CLPU delayed exponential 
model is proposed in [7] based on heating load simulation under a specified outside ambient temperature. In [8], a 
3-piecewise linear function that depicts the CLPU power consumption of the CLPU peak period and the decay 
period is presented, the exponential decay is simplified to a linear decay. Many widely used delayed exponential 
models or their linearized versions yield a fixed CLPU profile computed from fixed ambient temperature and 
outage duration. However, in practice, ambient temperature is time-varying and load shedding duration is unknown 
before the MGUC has been solved. Thus, a fixed CLPU model only yields the rough estimation of CLPU power 
and energy needs in MGUC. In [9], the authors present a multi-state load model that estimates the CLPU peak and 
the CLPU duration using TCL status and settings as inputs. However, if detailed TCL-level information is not 
available to the microgrid controller, the methods cannot be applied.  

In summary, when estimating CLPU power (e.g., peak power, duration, decay rate, and steady-state power) 
and energy needs, the existing CLPU models cannot account for variable interruption duration and time-varying 
ambient temperature changes [10]. 

MGUC enhanced by CLPU Constraints: As shown in Table I, various methods have been proposed to 
incorporate the CLPU considerations into MGUC. For example, in [11], the authors propose to use a linearized, 
delayed exponential CLPU curve to formulate a Mixed-Integer Linear Programming (MILP) algorithm for service 
restoration by microgrids. An alternative approach proposed by authors in [12-13] represents CLPU as a separate 
demand block for coordinative scheduling of service restoration and repair crew routing. In [14-15], the authors 
use interruption duration as an input for selecting a CLPU profile from a set of predefined candidate profiles. These 
profiles are generated by simulating CLPU effects under different interruption durations while maintaining a 
consistent outdoor temperature. Also, the CLPU power fluctuation when outages are short and some houses’ 
temperatures are still within comfort bands is considered [14], and uncertainties of CLPU curves are modeled by 
adding Gaussian noise to the selected CLPU profile [15]. The main disadvantage of methodologies outlined in 
[11-15] is their underlying assumption of a constant ambient temperature throughout the duration of the CLPU 
period. Additionally, the authors use MGUC for microgrid load restoration, they assume once a cold load is picked 
up, it cannot be re-interrupted. Thus, in the problem formulation the MGUC only needs to accommodate one 
complete CLPU event for a scheduling horizon.    

However, when dealing with the scheduling of multiple service interruptions to fulfill power and energy 
reserve needs during prolonged outages, the timing and duration of the load shedding events are decision variables. 
Moreover, if the load shedding event lasts for hours or overnight, using a fixed ambient temperature throughout 
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the entire period will result in large errors in CLPU estimation. Thus, if the MGUC is required to optimize when, 
how many, and how long the load shedding events are, relying solely on a limited set of fixed CLPU profiles 
proves inadequate. This is because the variability in ambient temperature and outage durations can span a wide 
range in a prolonged scheduling period (e.g., 24 or 48 hours). For instance, the temperature can fluctuate by more 
than 10°C, and outages may vary between 2 and 14 hours. Likewise, creating a set of predefined candidate CLPU 
profiles becomes impractical due to the necessity for a significantly large number of candidates to adequately 
address the scheduling requirements. Thus, in this paper, we present an adaptive CLPU model, which can be 
directly integrated into the MGUC, for estimating the power and energy requirements of multiple CLPU events. 
In Table I, we highlight the unique considerations of the proposed CLPU enhanced MGUC algorithm and provide 
a comprehensive comparison with the existing methods.  

The main contributions of the paper are two-fold. First, we introduce an adaptive CLPU model that can 
accurately estimate CLPU using interruption duration and ambient temperature as inputs. The CLPU model 
parameters can be estimated offline using TCL parameters derived from the smart meter data for a wide range of 
operation conditions. Second, we present the formulation of the adaptive CLPU based operational constraints, 
which can be integrated into a 2-stage MGUC formulation for optimal scheduling of multiple load shedding events. 
This enables the microgrid to optimize the number, timing and duration of the load shedding events, consequently 
leading to more optimal power and energy dispatch outcomes during extended outages in multi-day microgrid 
operation. The adaptive CLPU enhanced MGUC is formulated as a MILP problem, making it tractable, and its 
performance is verified by real-time device level CLPU simulation.  

The rest of this paper is organized as follows. Section 2 presents the proposed adaptive CLPU model and the 
proposed MGUC algorithm considering adaptive CLPU estimation. Results are presented in Section 3 and Section 
4 concludes the paper. 

Table I. Summary of literature review 

Ref. 

Microgrid Operation Setup Microgrid Unit Commitment Algorithm Setup Verified 
dynamic 
responses

§ 

3-phase 
unbalanced 

system 

Outage 
duration 

Main energy 
source* 

Optimization 
stages 

Rolling 
horizon 

Forecast 
error 

CLPU 

Y/N CLPU 
events 

CLPU 
model 

[11]  < 1 hour DG RT    one fixed 

no real-
time 

CLPU 
simulation  

[12]  up to days DG DA    one fixed  
[13]  up to days DG + BESS DA    one fixed  
[14]  several hours DG RT    one candidate  
[15]  several hours DG RT    one candidate  
[16]  several hours DG DA    multiple   
[17]  < 1 day DG DA+RT    multiple   
[18]  < 1 hour DG RT    one   
[19]  up to days DG DA    multiple  no CLPU  
[20]  < 1 day DG + BESS DA    multiple   
[21]  several hours DG + BESS RT    multiple   
[22]  multi-days BESS + PV DA    multiple   

Proposed  multi-days BESS + PV DA+RT    multiple adaptive 

verified 
by real-

time 
CLPU 

simulation 
*DG denotes dispatchable distributed generations; § Using openDSS, gridLAB or HIL simulation 

2. Methodology 

In this section, we present the CLPU model and the integration of the CLPU constraints into the MGUC 
algorithm for multi-day, off-grid operation. 



 

5 
 

 
Fig. 1. Configuration of the microgrid test system (when serving LGs 1-4). 

 

 
Fig. 2. The Two-Stage MGUC Process: (a) Flowchart of the 2-Stage MGUC, with commands sent to the next stage 

marked in red, and (b) Scheduling Horizons and Intervals for the 1st and 2nd Stages. 
 

2.1 Overview of the Feeder-level Microgrid Operation 

In this paper, a modified IEEE 123-bus test system [23] is used to illustrate the feeder-level temporary 
microgrid operation. As shown in Fig. 1, a hybrid energy system consisting of a MW-level photovoltaic (PV) 
plant and a grid-forming BESS is connected to bus 7.  Five 3-phase switches (S1-S5) can be used to remotely 
switch on/off the five load groups (LG1-LG5). LG2 and LG3 are critical LGs as they serve critical loads. Please 
note that critical loads are assumed to have dedicated backup generators, but they still have high supply priority 
for preserving their fuel. 

A 2-stage MGUC is used to schedule the microgrid operation, as shown in Fig. 2(a). A 16-hour ahead 
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rolling forecaster and a 30-minute ahead forecaster provide the PV, load, and weather forecasts to the 1st and 
2nd stage MGUC, respectively. In the 1st stage, a rolling 16-hour ahead MGUC is conducted every 30 minutes 
to schedule BESS, PV, and the on/off status of LGs and switches. The solution for the first 30-minute interval 
will be executed and used as the inputs for the 2nd stage MGUC.  

As shown in Fig. 2(b), each scheduling interval is 30-minute (∆𝑡𝑡 = 30) so there are 32 scheduling intervals 
(𝑁𝑁𝑡𝑡 =32) in the 1st stage MGUC. As the BESS is the only grid-forming device in the microgrid, we assume that 
load shedding, achieved by switching LGs off, is the main approach for meeting power reserve requirements 
and energy needs. In the 2nd stage, all weather variables are treated as static. The circuit topology, BESS budget, 
and CLPU estimations derived from the 1st stage MGUC for the forthcoming 30-minute interval are transmitted 
to the 2nd stage MGUC, where intra-30-minute, 5-minute-interval power dispatch decisions are made for BESS 
and DR to ensure load balance and voltage regulation. This two-stage process, using a rolling horizon 
optimization strategy, is performed every 30 minutes, as illustrated in the timeline diagram in Fig. 2 (b). 

2.2 Problem Formulation for the 1st Stage 

The objective function of the 1st stage is formulated as 
max  𝑓𝑓1load − 𝑐𝑐PV𝑓𝑓1PV − 𝒇𝒇𝟏𝟏𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 (1) 

𝑓𝑓1
load = �� � 𝑈𝑈𝑚𝑚,𝑡𝑡

G 𝑤𝑤𝑡𝑡
pref�𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡

Ncrit + 𝑤𝑤𝑚𝑚,𝑝𝑝
crit𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡

crit �∆𝑡𝑡
𝑝𝑝∈{𝑎𝑎,𝑏𝑏,𝑐𝑐}

𝑁𝑁G

𝑚𝑚=1

𝑁𝑁𝑡𝑡

𝑡𝑡=1

 (2) 

𝑓𝑓1PV = 3�𝑃𝑃PV,𝑡𝑡
curt𝛥𝛥𝛥𝛥

𝑁𝑁𝑡𝑡

𝑡𝑡=1

 (3) 

𝑃𝑃PV,𝑡𝑡
curt = 𝑃𝑃PV,𝑡𝑡

pred − 𝑃𝑃PV,𝑡𝑡 (4) 

� 𝑈𝑈𝑥𝑥,𝑡𝑡  
topol

𝑁𝑁topol

𝑥𝑥=1

= 1 (5) 

�𝑈𝑈1,𝑡𝑡,
G 𝑈𝑈2,𝑡𝑡,

G …𝑈𝑈𝑁𝑁G,𝑡𝑡
G �

⊤
= ℳ𝑡𝑡

G �𝑈𝑈1,𝑡𝑡,
topol𝑈𝑈2,𝑡𝑡,

topol …𝑈𝑈𝑁𝑁topol,𝑡𝑡
topol �

⊤
 (6) 

𝐷𝐷�𝑚𝑚,𝑡𝑡 = �
min�𝐷𝐷𝑚𝑚MSD − 𝐷𝐷𝑚𝑚,ini

MSDserved ,𝑁𝑁𝑡𝑡�, 𝑡𝑡 = 1  

min�𝐷𝐷𝑚𝑚MSD,𝑁𝑁𝑡𝑡 − 𝑡𝑡 + 1�, 𝑡𝑡 > 1            
 (7) 

� 𝑈𝑈𝑚𝑚,𝑡𝑡+𝑧𝑧
G

𝐷𝐷�𝑚𝑚,𝑡𝑡−1

𝑧𝑧=0

≥ 𝐷𝐷�𝑚𝑚,𝑡𝑡�𝑈𝑈𝑚𝑚,𝑡𝑡
G − 𝑈𝑈𝑚𝑚,𝑡𝑡−1

G � (8) 

Equations (5) and (6) are reconfiguration constraints. We use a topology look-up table for selecting feasible 
and radial circuit topologies. We put all 13 feasible circuit topology candidates of the test system into a look-up 

table (�𝑈𝑈1,𝑡𝑡,
topol𝑈𝑈2,𝑡𝑡,

topol …𝑈𝑈𝑁𝑁topol,𝑡𝑡,
topol �

⊤
) so that a matching matrix (ℳ𝑡𝑡

G) can be used for determining the on/off of 

load groups (𝑈𝑈𝑖𝑖,𝑡𝑡,
G ), the switch status can be determined using the similar methods. Equations (7) and (8) consider 

the minimum service duration (MSD) [22] to avoid frequent switching on/off LGs.  
Note that the main objective of a conventional 1st stage MGUC is to maximize the total served load (𝑓𝑓1load), 

minimize the PV curtailment (𝑃𝑃PV,𝑡𝑡
curt), and meet user comfort requirements (e.g., supply priority to critical loads 

and user-preferred hours, minimum service duration [22]). Our contribution to the MGUC problem formulation 
is the integration of CLPU energy constraints (𝒇𝒇𝟏𝟏𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂) into the existing MGUC objective function in (1). Then, 
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when scheduling the on/off status of an LG through feeder reconfiguration (i.e., determine 𝑈𝑈𝑚𝑚,𝑡𝑡
G  in (2) 

considering constraints (5)-(8)), we can factor in the CLPU energy needs associated with re-energizing loads 
that were previously shed during subsequent intervals.  

We will show in the simulation results that such considerations are crucial for multi-day microgrid 
operations, especially when the LGs need to be turned off multiple times. This is because, within a 30-minute 
interval, if the unaccounted CLPU energy requirement surpasses the allocated amount scheduled by the first-
stage MGUC, the microgrid will exceed the “optimal” energy quota for that interval. Consequently, because of 
the overuse, the microgrid will fail to supply the scheduled loads in the subsequent 30-minute intervals.  

Moreover, if the CLPU power demand exceeds the capacity of the available power supply, the microgrid 
would either need to unexpectedly shed load or be forced to shut down. We will introduce the CLPU power 
constraints in Section 2.4. 

Please refer to [22] for the rest of the MGUC constraints, including PV and BESS operational constraints, 
microgrid reserve constraints, and polygon-based linearization of active power and reactive power constraints 
of the inverters and switches. 

2.3 Adaptive CLPU Model 

To illustrate the derivation of the adaptive CLPU model, we consider a scenario of 1100 heterogeneous 
HVAC units in the 123-bus test system. These HVAC units are modeled using the RCQ model introduced in 
[24]. To model realistic HVAC operation, we derive the RCQ parameters from 145 sets of sub-metered HVAC 
profiles (Pecan Street dataset [25]) using the method described in [26]. Note that in cases where sub-metered 
HVAC profiles are not available, the load disaggregation algorithms introduced in [27-28] can be used to extract 
the HVAC profiles from smart meter data.  

Using those typical HVAC model parameters, we conduct offline simulations by using weather forecast 
and LG on/off status as inputs to model the HVAC load curve under different outdoor temperatures and 
scheduled interruption durations. As shown in Figs. 3 and 4, compared to the normal HVAC electricity 

consumption (𝑃𝑃𝑚𝑚,𝑡𝑡
Steady) when there are no service interruptions, a significant amount of extra energy will be 

needed for picking up the HVAC units that have been in the “off” state for an extended period. This additional 
energy corresponds to the CLPU energy requirements. 

 
Fig. 3. CLPU curves for different outage lengths (𝑇𝑇out =36 °C). 
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Fig. 4. CLPU curves for different outdoor temperatures (2-hour outage). 

 
Step 1: Compute the HVAC steady state power consumption at time interval t. The TCL normal/steady-

state load (𝑃𝑃𝑚𝑚,𝑡𝑡
Steady) can be readily estimated based on the outdoor temperature, as shown in Fig. 4. 

Step 2: Compute the CLPU peak power. From the simulation results shown in Figs. 3 and 4, the peak 
CLPU power usually equals the synchronized peak of all HVAC loads, 𝑃𝑃𝑚𝑚MaxCLPU.  Although in mild days, a 
few HVACs don’t need to work after resupply since their room temperatures could be still within the comfort 
bands, the CLPU peak can be slightly lower than  𝑃𝑃𝑚𝑚MaxCLPU (e.g., the 26 ºC case in Fig. 4), such cases can be 
ignored for hot summer or cold winter days. Thus, to simplify the CLPU model, in this paper, we assume that 
the CLPU peak will be equal to 𝑃𝑃𝑚𝑚MaxCLPU. By doing so, our underlying assumption is that when a group of 
HVACs is off for more than 30 minutes, they will all turn on simultaneously when the power supply is restored. 
This assumption can lead to a slight overestimation of the power needs in mild days. 

Step 3: Compute the CLPU peak duration. As shown in Figs. 3 and 4, the peak duration is dependent on 
the interruption duration and ambient temperature. As summarized in Fig. 5, at a given outdoor 

temperature, 𝑇𝑇𝑡𝑡out, the CLPU peak duration, 𝑑𝑑𝑚𝑚,𝑡𝑡
peak, is a function of outage/interruption duration, 𝑑𝑑𝑚𝑚,𝑡𝑡

off . The 
longer the outage lasts, the longer the CLPU peak duration will be. To simplify the calculation, we linearize the 
𝑑𝑑𝑚𝑚,𝑡𝑡
peak versus 𝑑𝑑𝑚𝑚,𝑡𝑡

off  curve so that for a given temperature at interval 𝑡𝑡, an incremental peak duration can be 

calculated from the slope of the curve, 𝜏𝜏𝑚𝑚,𝑡𝑡
Tout. Note that if the outage duration reaches a certain value, 𝑑𝑑𝑚𝑚,𝑡𝑡

offsatu, 

𝑑𝑑𝑚𝑚,𝑡𝑡
peak is capped at 𝐷𝐷𝑚𝑚,𝑡𝑡

peaksatu. We opt for a 2-piece linearization to make a compromise between accuracy and 
problem complexity. Note that the 2-piece linearized curve can effectively capture the two primary 
characteristics of the CLPU curve: 1) the CLPU peak duration increases as the outage duration increases, 2) the 
CLPU peak has a saturation point. 

 
Fig. 5. Impact of outdoor temperature on CLPU duration curve (𝜏𝜏𝑚𝑚,𝑡𝑡

Tout = ∆𝑑𝑑𝑚𝑚,𝑡𝑡
peak/∆𝑡𝑡, where ∆𝑡𝑡 = 30 minutes). 
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Fig. 6. Impact of outdoor temperature on CLPU decay rates. The dots represent decay rates obtained for different outage 

durations 𝑑𝑑𝑚𝑚,𝑡𝑡
off  (Note that the curve is normalized to the synchronized CLPU peak, 𝑃𝑃𝑚𝑚,𝑡𝑡

MaxCLPU). 

Step 4: Compute the CLPU decay rate. As shown in Fig. 6, the CLPU power decay rate, 𝛾𝛾𝑚𝑚,𝑡𝑡
Tout , is a 

function of outdoor temperature, 𝑇𝑇𝑡𝑡out. The higher 𝑇𝑇𝑡𝑡out is, the slower the CLPU peak decays from 𝑃𝑃𝑚𝑚MaxCLPU 

to the steady-state HVAC consumption level, 𝑃𝑃𝑚𝑚,𝑡𝑡
Steady. Two curve-fitting approaches can be used for estimating 

the CLPU decay rate based on variations in downtime and ambient temperature. The first approach involves 
using one curve for each downtime to calculate the decay rate based on ambient temperature. The second 
approach is to use a single equivalent curve tailored to the most commonly occurring downtimes to determine 
the decay rate based on ambient temperature only.  

Because the microgrid operators possess foreknowledge of the temperature variation range, we choose the 
second approach, using an equivalent ‘decay rate-temperature’ curve to estimate the decay rate based on 𝑇𝑇𝑡𝑡out 
to simplify the MGUC problem formulation and reduce computational complexity. To enhance the accuracy of 
decay rate estimation and minimize the impact of varying outage durations, we tailor the curve to best suit 
outage durations falling within the range of 4 to 10 hours. Please note that within our MGUC problem setting, 
short outages are seldom observed for two main reasons. First, minimum supply duration constraints are in place 
to discourage very brief CLPU events. Second, when considering the same total interruption duration, the CLPU 
consumption for multiple short interruptions is higher than that of a single long interruption (see Fig. 10(a)). As 
a result, the CLPU constraints favor scheduling a single, extended load shedding event rather than multiple 
shorter ones. Consequently, when short outages do occur, they typically happen only once during the daytime 
when temperatures exceed 30 ºC.  

In practical applications, we recommend that modelers identify the temperature variation range and 
downtime range to select a 'decay rate-temperature' curve that best aligns with their specific operational 
conditions. 

Step 5: Formulate the adaptive CLPU model. To facilitate the power calculation, we use 𝑃𝑃𝑚𝑚MaxCLPU as the 
power base so that the CLPU peak is 1.0 p.u., the power of the HVAC load of the mth LG at time 𝑡𝑡 is 𝑘𝑘𝑚𝑚,𝑡𝑡 

p.u., and the steady state power of the mth LG is 𝑘𝑘𝑚𝑚,𝑡𝑡
Steady p.u.. Let 𝑡𝑡O, 𝑡𝑡H, 𝑡𝑡D, and 𝑡𝑡S be the interruption start 

time, the load restoration time (i.e., where the CLPU peak starts), the decay start time (i.e., where the CLPU 
peak ends), and the time reaching steady (see Fig. 7(c)).  
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Fig. 7. Conceptual comparison of the CLPU models. (a) Temperature, (b) the fixed CLPU model (assuming the CLPU 
peak power is equal to twice that of the normal load and peak duration is 2 hours), (c) the adaptive CLPU model. Grey 

shaded areas are the HVACs’ normal electricity consumption when there is no interruption. 

The adaptive CLPU model can be described by 

𝑑𝑑𝑚𝑚,𝑡𝑡H
peak =

⎩
⎪
⎨

⎪
⎧
� 𝜏𝜏𝑚𝑚,𝑡𝑡

Tout

𝑡𝑡H

𝑡𝑡=𝑡𝑡O

,𝑑𝑑𝑚𝑚,𝑡𝑡D
peak < 𝐷𝐷𝑚𝑚,𝑡𝑡

peaksatu

𝐷𝐷𝑚𝑚,𝑡𝑡
peaksatu,𝑑𝑑𝑚𝑚,𝑡𝑡D

peak ≥ 𝐷𝐷𝑚𝑚,𝑡𝑡
peaksatu

 (9-1) 

𝑡𝑡D = 𝑡𝑡H + 𝑑𝑑𝑚𝑚,𝑡𝑡H
peak (9-2) 

� 𝛾𝛾𝑚𝑚,𝑡𝑡

𝑡𝑡S

𝑡𝑡=𝑡𝑡D

= 1 − 𝑘𝑘𝑚𝑚,𝑡𝑡S
Steady (9-3) 

𝑘𝑘𝑚𝑚,𝑡𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧

 0,                      𝑡𝑡 ∈ (𝑡𝑡O, 𝑡𝑡H)
1,                      𝑡𝑡 ∈ [𝑡𝑡H, 𝑡𝑡D]

1 − � 𝛾𝛾𝑚𝑚,𝑡𝑡

𝑡𝑡

𝑡𝑡=𝑡𝑡D

, 𝑡𝑡 ∈ (𝑡𝑡D, 𝑡𝑡S)

𝑘𝑘𝑚𝑚,𝑡𝑡
Steady,           𝑡𝑡 ∈ [𝑡𝑡S, 𝑡𝑡E]

 (9-4) 

𝑘𝑘𝑚𝑚,𝑡𝑡
CLPU = �

0,                        𝑡𝑡 ∈ [𝑡𝑡O, 𝑡𝑡H)
𝑘𝑘𝑚𝑚,𝑡𝑡 − 𝑘𝑘𝑚𝑚,𝑡𝑡

Steady, 𝑡𝑡 ∈ [𝑡𝑡H, 𝑡𝑡E]  (9-5) 

Figure 7 illustrates the daily ambient temperature profile (Fig. 7(a)), the fixed CLPU curve obtained by the 
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existing CLPU model (Fig. 7(b)), and the adaptive CLPU curve obtained by the proposed method (Fig. 7(c)). 
The fixed CLPU curve is obtained by modeling the HVAC operation for predefined outage duration and 
constant ambient temperature [7-8], so it has the fixed CLPU peak ratio (peak versus steady value), the fixed 
peak duration and decay duration for all outage scenarios. As shown in Fig. 7(b), the drawbacks of using such 
an approach are: 1) the CLPU peak can be significantly over- (hours 8-10) or under- (hours 16-17) estimated, 
and 2) significant over- or under- estimation of the CLPU decay energy needs. 

The CLPU curves calculated by the adaptive model are illustrated in Fig. 7(c). Compared to the fixed 
CLPU, the adaptive CLPU model can accurately capture the CLPU energy needs by estimating the CLPU peak 

ratio based on 𝑃𝑃𝑚𝑚MaxCLPU and 𝑘𝑘𝑚𝑚,𝑡𝑡
Steady and calculating the accumulative impact of interruption duration and 

ambient temperature on peak duration by (9-1) and on the decay process by (9-4).  
Note that when the ambient temperature varies a lot during the CLPU event, the CLPU peak duration and 

the decay duration vary too, the decay process may exhibit either a convex or concave shape, as shown in the 
first and second CLPU events in Fig.7(c), respectively. 

The proposed adaptive CLPU model offers a more comprehensive and precise depiction of CLPU, 
encompassing ambient temperature, outage duration, and peak characteristics. All the necessary parameters for 
this adaptive model can be derived from offline HVAC simulations. As demonstrated in the following section, 
the model's linearization and cumulative formulation simplify the estimation of CLPU requirements when 
scheduling multiple load shedding events in the MGUC problem, all without imposing significant computational 
overhead. 

2.4 Integration of the CLPU model into the 1st stage MGUC 

The key challenge for considering the CLPU power and energy needs in MGUC is that the time when the 
load shedding happens and ends are decision variables so they are unknown before solving the MGUC problem. 
The main contribution of the proposed adaptive CLPU mode is that it provides an analytic formulation of the 
CLPU model with respect to the interruption duration and ambient temperature. This enables the MGUC to 
estimate the CLPU consumption during the optimization instead of using a predefined CLPU profile.  

The adaptive CLPU model can be integrated into the MGUC as follows. 
Step 1: Determine the CLPU Peak Duration. 

𝑈𝑈𝑚𝑚,𝑡𝑡
Goff = 1 − 𝑈𝑈𝑚𝑚,𝑡𝑡

G  (10) 

0 ≤ 𝑑𝑑𝑚𝑚,𝑡𝑡 ≤ 𝑀𝑀𝑈𝑈𝑚𝑚,𝑡𝑡
Goff (11) 

𝑑𝑑𝑚𝑚,𝑡𝑡 +𝑀𝑀𝑈𝑈𝑚𝑚,𝑡𝑡
G ≥ 𝑑𝑑𝑚𝑚,𝑡𝑡−1 + 𝜏𝜏𝑚𝑚,𝑡𝑡

Tout𝑈𝑈𝑚𝑚,𝑡𝑡
GoffΔ𝑡𝑡 (12) 

𝑈𝑈𝑚𝑚satu ≤ 𝑈𝑈𝑚𝑚,𝑡𝑡
off  (13) 

𝑑𝑑𝑚𝑚,𝑡𝑡
peak ≥ 𝐷𝐷𝑚𝑚,𝑡𝑡

peaksatu𝑈𝑈𝑚𝑚,𝑡𝑡
satu (14) 

𝑑𝑑𝑚𝑚,𝑡𝑡
peak ≥ 𝑑𝑑𝑚𝑚,𝑡𝑡 − 𝑀𝑀𝑈𝑈𝑚𝑚,𝑡𝑡

satu (15) 

𝑑𝑑𝑚𝑚,𝑡𝑡
re − 𝑑𝑑𝑚𝑚,𝑡𝑡−1

re ≥ 𝑑𝑑𝑚𝑚,𝑡𝑡−1
peak − 𝑈𝑈𝑚𝑚,𝑡𝑡−1

G Δ𝑡𝑡 −𝑀𝑀𝑈𝑈𝑚𝑚,𝑡𝑡
Goff (16) 

0 ≤ 𝑑𝑑𝑚𝑚,𝑡𝑡
re ≤ 𝑀𝑀𝑈𝑈𝑚𝑚,𝑡𝑡

G  (17) 
Equation (10) determines whether an LG is “off”. (11) and (13) ensure if the LG is “on”, 𝑑𝑑𝑚𝑚,𝑡𝑡 and the 

CLPU peak saturation status (𝑈𝑈𝑚𝑚satu) should be 0. This is because the CLPU cumulates only when the LG is off. 
Thus, for each consecutive “off” interval, a resultant CLPU peak duration increment is added to the previous 
CLPU peak duration cumulatively using (12). Note that in (12), we do not consider the saturation effect.  

Equations (14) and (15) are used for computing the CLPU peak duration considering whether or not the 
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peak duration is saturated. If the CLPU peak duration is saturated (𝑈𝑈𝑚𝑚satu = 1), (15) will be disabled so (14) is 
used to calculate the saturated CLPU peak duration and saturation status. If the CLPU peak duration is NOT 
saturated (𝑈𝑈𝑚𝑚satu = 0), (14) is disabled and (15) is used to compute the 𝑑𝑑𝑚𝑚,𝑡𝑡

peak by 𝑑𝑑𝑚𝑚,𝑡𝑡. Note that the maximum 
CLPU peak duration is capped according to the temperature of the step (see Fig. 5). The big-M method is used 
in (11-12) and (15-17), the 𝑀𝑀  is a selected large number greater than 24 × 60  minutes (in our case, 
𝑀𝑀 =1500). 

Equations (16) and (17) estimate the remaining CLPU peak durations when the LG is “on” and determine 
when the CLPU peak ends and the CLPU decay starts. Note that minimizing the duration of CLPU peaks can 
also minimize the additional energy required for CLPU. In (16), if the LG is turned “on” at step 𝑡𝑡, the remaining 
peak duration 𝑑𝑑𝑚𝑚,𝑡𝑡

re  should equal the estimated peak duration 𝑑𝑑𝑚𝑚,𝑡𝑡−1
peak ; if the LG is turned “on” before step 𝑡𝑡 

and remains “on” for the next time step, 𝑑𝑑𝑚𝑚,𝑡𝑡
re = 𝑑𝑑𝑚𝑚,𝑡𝑡−1

re − Δ𝑡𝑡. Thus, by incorporating those constraints, MGUC 
tends to supply loads in consecutive intervals rather than turning them on/off frequently. 

Step 2: Determine the CLPU Decay Process. The following constraints compute CLPU decay status 

(𝑈𝑈𝑚𝑚,𝑡𝑡
decay) for the mth LG at time 𝑡𝑡 and ensure that the CLPU decay starts only when the CLPU peak duration 

elapses. 

𝑈𝑈𝑚𝑚,𝑡𝑡
decay ≤ 𝑈𝑈𝑚𝑚,𝑡𝑡

G  (18) 

𝑀𝑀�1 − 𝑈𝑈𝑚𝑚,𝑡𝑡
decay� ≥ 𝑑𝑑𝑚𝑚,𝑡𝑡

re  (19) 

−𝑀𝑀𝑈𝑈𝑚𝑚,𝑡𝑡
decay +𝑀𝑀s𝑈𝑈𝑚𝑚,𝑡𝑡

G ≤ 𝑑𝑑𝑚𝑚,𝑡𝑡
re  (20) 

Equation (18) indicates that CLPU decay only could happen when the LG is “on”. The decay status is 
decided by 𝑑𝑑𝑚𝑚,𝑡𝑡

re  and the LG status 𝑈𝑈𝑚𝑚,𝑡𝑡
G  with (19-20), if the CLPU peak is ended (𝑑𝑑𝑚𝑚,𝑡𝑡

re = 0) and the LG is 

still served, 𝑈𝑈𝑚𝑚,𝑡𝑡
decay is 1. Especially, 𝑀𝑀s is a small constant (in our case, 𝑀𝑀s = 0.001). 

Step 3: Determine the CLPU Power Consumption. From Fig. 4, 𝑃𝑃𝑚𝑚,𝑡𝑡
Steady is estimated based on 𝑇𝑇𝑡𝑡out. 

Then, the steady load factor, 𝑘𝑘𝑚𝑚,𝑡𝑡
Steady, can be calculated by  

𝑘𝑘𝑚𝑚,𝑡𝑡
steady =

𝑃𝑃𝑚𝑚,𝑡𝑡
Steady

𝑃𝑃𝑚𝑚MaxCLPU
 (21) 

where the TCL load factor 𝑘𝑘𝑚𝑚,𝑡𝑡  is within the peak value (1.0 p.u.) when the LG is “on” and is bounded 
by  

𝑘𝑘𝑚𝑚,𝑡𝑡
steady𝑈𝑈𝑚𝑚,𝑡𝑡

G ≤ 𝑘𝑘𝑚𝑚,𝑡𝑡 ≤ 𝑈𝑈𝑚𝑚,𝑡𝑡
G  (22) 

When the LG is turned “on” at 𝑡𝑡, CLPU is at its peak so that  𝑘𝑘𝑚𝑚,𝑡𝑡 = 1 (1.0 p.u.), which could be ensured 
by 𝑘𝑘𝑚𝑚,𝑡𝑡 = 𝑈𝑈𝑚𝑚,𝑡𝑡

G − 𝑈𝑈𝑚𝑚,𝑡𝑡−1
G . During the CLPU peak duration, 𝑘𝑘𝑚𝑚,𝑡𝑡 = 1 is maintained. When the CLPU decay 

period starts, 𝑘𝑘𝑚𝑚,𝑡𝑡 =  𝑘𝑘𝑚𝑚,𝑡𝑡−1 − 𝛾𝛾𝑚𝑚,𝑡𝑡𝑈𝑈𝑚𝑚,𝑡𝑡
decay . Note that reducing 𝑘𝑘𝑚𝑚,𝑡𝑡  could mitigate CLPU, so all these 

scenarios can be ensured by  

𝑘𝑘𝑚𝑚,𝑡𝑡 − 𝑘𝑘𝑚𝑚,𝑡𝑡−1 ≥ �𝑈𝑈𝑚𝑚,𝑡𝑡
G − 𝑈𝑈𝑚𝑚,𝑡𝑡−1

G � − 𝛾𝛾𝑚𝑚,𝑡𝑡𝑈𝑈𝑚𝑚,𝑡𝑡
decay (23) 

Thus, the CLPU increment factor, 𝑘𝑘𝑚𝑚,𝑡𝑡
CLPU, can be calculated by 

𝑘𝑘𝑚𝑚,𝑡𝑡
CLPU = 𝑘𝑘𝑚𝑚,𝑡𝑡 − 𝑘𝑘𝑚𝑚,𝑡𝑡

steady𝑈𝑈𝑚𝑚,𝑡𝑡
G  (24) 

Assuming that the CLPU peak is 𝑃𝑃𝑚𝑚,𝑝𝑝
MaxCLPU, the CLPU power increment in kW value, 𝑃𝑃𝑚𝑚,𝑡𝑡

CLPU, is calculated 
as 

𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡
CLPU = 𝑘𝑘𝑚𝑚,𝑡𝑡

CLPU𝑃𝑃𝑚𝑚,𝑝𝑝
MaxCLPU (25) 
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Step 4: CLPU Penalty Terms. To minimize CLPU impact on MGUC scheduling, we formulate a CLPU 
penalty term, 𝑓𝑓1CLPU, consisting of three penalty factors, 𝑐𝑐eCLPU, 𝑐𝑐dpCLPUand 𝑐𝑐reCLPU into the 1st stage MGUC 
formulation as: 

𝑓𝑓1CLPU = �� �𝑐𝑐eCLPU𝑃𝑃𝑚𝑚,𝑡𝑡
CLPUΔ𝑡𝑡 + 𝑐𝑐dpCLPU𝑑𝑑𝑚𝑚,𝑡𝑡

peak + 𝑐𝑐reCLPU𝑑𝑑𝑚𝑚,𝑡𝑡
re �

𝑁𝑁𝐺𝐺

𝑚𝑚=1

𝑁𝑁𝑡𝑡

𝑡𝑡=1

 (26) 

𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡
norm = 𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡

Ncrit + 𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡
crit  (27) 

� 𝑃𝑃𝑙𝑙𝑙𝑙,𝑝𝑝,𝑡𝑡

𝑙𝑙∈Ω𝑚𝑚from
= 𝑈𝑈𝑚𝑚,𝑡𝑡

G 𝑃𝑃𝑚𝑚,𝑝𝑝,𝑡𝑡
norm + 𝑷𝑷𝒎𝒎,𝒑𝒑,𝒕𝒕

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 + � 𝑃𝑃𝑚𝑚𝑚𝑚,𝑝𝑝,𝑡𝑡
𝑛𝑛∈Ω𝑚𝑚to

 (28) 

Equation (28) ensures that each phase meets the power balance requirement when considering the CLPU 
effect. Note that the CLPU power needs can exacerbate 3-phase load unbalance. Because the adaptive CLPU 
can accurately estimate the per-phase CLPU power, it can be used for improving the phase unbalance control. 
This is another advantage of using the adaptive CLPU model in MGUC in unbalanced distribution systems.  

2.5 The 2nd Stage MGUC Problem Formulation 

The objective function of the 2nd stage MGUC minimizes the amount of per-phase DR usage,  𝑓𝑓2DR, the 
PV curtailment, 𝑓𝑓2PV, and the BESS negative energy deviation from its budget, 𝑓𝑓2BESS. 

min  𝑓𝑓2DR + 𝑐𝑐2low𝑓𝑓2BESS + 𝑐𝑐2PV𝑓𝑓2PV (29) 

𝑓𝑓2DR = � � � � 𝑈𝑈𝑚𝑚,𝑖𝑖,𝑝𝑝,𝑡𝑡′
DR 𝑃𝑃𝑚𝑚,𝑖𝑖,𝑝𝑝,𝑡𝑡′

node ∆𝑡𝑡′
𝑝𝑝∈{𝑎𝑎,𝑏𝑏,𝑐𝑐}

𝑁𝑁𝑚𝑚node

𝑖𝑖=1

𝑁𝑁G

𝑚𝑚=1

𝑇𝑇2

𝑡𝑡′=1

 (30) 

𝑃𝑃𝑚𝑚,𝑖𝑖,𝑝𝑝,𝑡𝑡′
node = 𝑃𝑃𝑚𝑚,𝑖𝑖,𝑝𝑝,𝑡𝑡′

norm + 𝑘𝑘𝑚𝑚,𝑡𝑡′
CLPU𝑃𝑃𝑚𝑚,𝑖𝑖,𝑝𝑝

MaxCLPU (31) 

𝑓𝑓2BESS = ∆𝐸𝐸2low (32) 
𝐸𝐸2,𝑇𝑇2 + 𝛥𝛥𝛥𝛥2𝑙𝑙𝑙𝑙𝑙𝑙 ≥ 𝐸𝐸1 (33) 

𝛥𝛥𝛥𝛥2low ≥ 0 (34) 

𝑓𝑓2PV = 3 � 𝑃𝑃pv, 𝑡𝑡′
curt ∆𝑡𝑡′

𝑇𝑇2

𝑡𝑡′=1

 (35) 

The CLPU effect is included by (31) in the 2nd stage, the CLPU factor, 𝑘𝑘𝑚𝑚,𝑡𝑡′
CLPU, is calculated by interpolating 

the first stage’s estimated CLPU factor 𝑘𝑘𝑚𝑚,𝑡𝑡
CLPU linearly. We penalize the negative BESS energy deviations with 

(32-34) as such deviations could compromise the overall optimal solution of the 1st stage. 
In the 2nd stage, we perform the unbalanced linear power flow [29]. The hybrid PV plant's voltage is fixed 

at 1.03 p.u., and all other nodal voltages are maintained within the range of [0.95,1.05] p.u.. The operational 
constraints of PV and BESS, microgrid reserve constraints, and linearization of active power and reactive power 
constraints of inverters and lines are similar to those in the 1st stage. 

3. Simulation Results 

As shown in Fig. 1, the feeder-level microgrid is modeled by the modified IEEE 123-bus test system. The 
microgrid is supplied by a hybrid PV plant (Node 7) consisting of a 4.5 MW PV farm and a 3 MW/6 MWh 
BESS. A prolonged outage occurs and the hybrid PV cannot provide service in the first several hours due to the 
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extreme weather condition and system device repair, then the hybrid PV plant is expected to serve the feeder in 
the next 48 hours. As the only grid-forming source, the BESS regulates the system voltage at 1.03 p.u. and has 
a charging/discharging efficiency of 95% with a state of charge (SOC) operational range of 20% to 90%. The 
initial SOC is set at 90%. We use the actual PV forecasts and measurements obtained from a 5MW PV farm in 
this study. The forecasting error is small on the first day but significantly larger on the second day, as depicted 
in Fig. 8. 

 

Fig. 8. Total feeder normal load and per-phase PV profiles (forecasted and real) on the 123-bus feeder. 

 

Fig. 9. Per-phase 5-min normal load for the five load groups. 

There are two customer-preferred service periods: 7:00-9:00 and 18:00-20:00, each assigned a preferred 

time weighting (𝑤𝑤𝑡𝑡
pref) of 1.5. Critical loads (Nodes 47 and 65) are assigned with a priority weighting (𝑤𝑤𝑚𝑚,𝑝𝑝

crit) 
of 4. The load at each load node is obtained by randomly selecting the load profiles from the Pecan Street dataset 
[25], which provides minute-level submeter data, using methods described in [22]. The total loads comprise two 
parts: the non-HVAC load and the HVAC load. The baseload (i.e. non-HVAC load) is forecasted using the 
method introduced in [30]. The 1100 heterogeneous HVAC units are modeled by the RCQ model, the parameters 
of which are derived from the sub-metered HVAC load profiles (also from the Pecan Street dataset) using 
methods introduced in [26].  

The HVAC load consumptions under different outage durations and ambient temperatures are used to 
derive the parameters of the adaptive CLPU model using the methods introduced in Section 2.3. Note that the 
CLPU model parameters are in per unit value, so all LGs share a similar set of parameters, except for 𝑃𝑃𝑚𝑚,𝑝𝑝

MaxCLPU 

and 𝑃𝑃𝑚𝑚,𝑡𝑡
Steady, which is related to the number of HVAC units inside each LG. It is worth noticing that the 3-phase 

loads within some LGs can exhibit substantial imbalances (e.g. LG1), as shown in Fig. 9.  
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The corresponding weather data are downloaded from NOAA. The parameters for MGUC, HVAC, and 
CLPU can be found in [31]. 

The MGUC algorithm is formulated as a MILP problem. The solver is CPLEX 12.10 on Matlab 2019. The 
computational environment is a desktop computer equipped with an Intel Core i9-9900 CPU and 64GB of RAM. 
The optimality gap is 0.01%. The MGUC-OpenDSS simulation is conducted using the Matlab COM interface. 

  We run the MGUC-OpenDSS co-simulation with MGUC using baseload forecast and estimating CLPU, 
and OpenDSS using actual baseload and simulated HVAC loads, both of which are 1-minute data. In the figures, 
“RT” denotes real-time simulation results from OpenDSS and “MGUC” denotes the 2nd stage MGUC 
dispatching results, and the red dashed rectangle denotes the preferred periods. 

3.1 Verification of the Adaptive CLPU Model Performance 

To verify the performance of the adaptive CLPU model, in Fig. 10, the simulation results of three constant 

ambient temperature cases are shown. In each case, we model three CLPU events, the duration of which is 2-

hour, 4-hour, and 8-hour duration, respectively. The actual HVAC consumption is simulated by 1100 

heterogeneous HVAC models.  

 
Fig. 10. CLPU estimation using the adaptive CLPU model assuming the ambient temperature remains constant for 

the entire 26-hour period. (a) 26 ºC, (b) 32 ºC, (c) 38 ºC. Note that the black line is the steady-state HVAC load. The 
three CLPU events represent three different outage durations: 2-hour, 4-hour, and 8-hour. 

From the results, the following observations can be made: 
• When the ambient temperature remains constant, the proposed adaptive CLPU model (the shaded 

areas) matches the actual HVAC load (the red lines) very well.  
• As we stated in Section 2.3, if the ambient temperature is mild (i.e., 26ºC), the estimated CLPU peak 

is slightly higher than the actual peak when the interruption duration is only 2 hours. This is because 
we assume the CLPU peak equals to 𝑃𝑃𝑚𝑚MaxCLPU for all scenarios in order to simplify the CLPU model 
representation. 

• In Fig. 10 (a) and (b), we can observe a minor deviation in the first CLPU decay curve. This error 
occurs because the fitted curve for computing the decay rate (see Fig. 6) exhibits greater errors when 
the ambient temperature is 26ºC, making the calculated decay rate for a 2-hour outage duration lower 
than the actual value. 
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3.2 Comparison between Adaptive and Fixed CLPU Models 

Next, we compare the performance between the adaptive and the fixed CLPU models assuming that the 

time and duration of the interruption as well as the ambient temperature profiles are known beforehand. In Fig. 

11, it is evident that when the fixed CLPU model neglects temperature variations (as seen in the 'Fixed (temp)' 

case) or assumes a constant interruption duration (observed in the 'Fixed (otg)' case), the resulting CLPU curve 

(represented by the blue and green dashed lines in Fig. 11) demonstrates notable deviations from the actual 

curves (depicted by the red curve). Because both the timing and duration of interruptions are decision-dependent 

in MGUC, existing works [11-13] considering using fixed CLPU models could not achieve desirable results 

when scheduling multiple CLPU events in a prolonged scheduling horizon (e.g., 24 to 48 hours). 

This also demonstrates a major drawback of using a fixed CLPU model: the establishment of a 

predetermined CLPU profile depends mainly on educated guesses, because before the MGUC is executed, when 

and for how long an LG will be powered off are unknown variables. 

On the other hand, the adaptive CLPU model produces CLPU curves that closely match the actual ones. 

The time-varying temperature will impact the shape of the CLPU profile in terms of the peak duration, decay 

rate, and steady-state value. Note that if the temperature is increasing rapidly, the CLPU decay curve is convex 

due to the increase of the decay rate, for example, the second CLPU curve in Fig.11(a). However, if the 

temperature is decreasing rapidly, the CLPU decay curve will be concave due to the decreasing decay rate, as 

shown by the first CLPU in Fig.11(b). 

 
Fig. 11. Comparing various CLPU models for (a) a case with high daily temperatures occurring between hours 12 

and 16, and (b) a case with high daily temperatures occurring between hours 4 and 8. Note that 'Fixed (temp)' denotes 
simulation results obtained by a fixed CLPU model derived from the average temperature over a 26-hour period; 
'Fixed(otg)' denotes simulation results obtained by a fixed CLPU model assuming a 2-hour interruption duration. 

3.3 CLPU Enhanced MGUC 

As shown in Table II, three MGUC cases are set up for comparing the effect of modeling CLPU effects. 

We compare the MGUC results by evaluating MSD violation, energy served during customer-preferred periods, 

and total served critical load, and total served baseload. The simulation results are summarized in Tables III and 
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IV and shown in Figs. 12-17. 

Table II. Microgrid unit commitment cases: with and without CLPU 

Case CLPU Model 

1 NoCLPU: do not consider the CLPU effect. 

2 
FixCLPU: fixed two-block model [12] with the CLPU increment equal to the baseload plus the normal HVAC 
load and a CLPU duration of 2 hours, these parameters are selected based on the average temperature 29 ºC. 

3 AdaptCLPU: the proposed method considering the variation of the ambient temperatures and outage durations 

3.3.1 With and without CLPU  

From the simulation results, we made the following observations regarding the main drawbacks of ignoring 
CLPU (NoCLPU case):   

• Less served critical loads and more CLPU consumption, as shown in Table III.  

• Frequent LG switching actions. As shown in Fig. 12(a), there are multiple 30-minute or 1-hour supply 

periods, representing frequent interruptions of power supply for LGs 1-3 and more violations of MSD 

constraints (10 occurrences). This also leads to more CLPU events (14 occurrences) and consumption, 

as shown in Table III and Fig. 15(a). 

• More violations of the operational constraints. As shown in Fig. 16 (a), failing to account for CLPU 

will cause the BESS SOC to drop significantly lower than the SOC lower limit.  

• More forced interruptions. The microgrid has to be shut down twice during hours 9-12 on the second 

day after the SOC drops below 10%. This is because when picking up the "off" LGs, the scheduled 

energy budget for the 30-minute scheduling interval is quickly depleted by the additional CLPU power 

and energy needs, which is almost two times higher than the dispatched value (see Fig. 12(b)). 

• In contrast, when the CLPU is considered in MGUC (FixCLPU and AdaptCLPU), the MSD constraints 

are satisfied with less frequent service interruptions (Fig. 13 and Fig. 14) and smaller BESS negative 

deviation (Fig. 16).  

Table III. Microgrid performance comparison with and without CLPU 

Case 
Served load 

(kWh) 

Served load in preferred 

periods (kWh) 
Served 

critical load 

(kWh) 

Served 

baseload 

(kWh) 

Curtailed PV 

(kWh) 

CLPU 

(kWh) 

Estimated 

CLPU (kWh) 
total CLPU part 

NoCLPU 54493 10196 1757 4734 21438 2999 7697 - 

FixCLPU [12] 50737 7445 540 4814 20464 5877 5893 12885 

AdaptCLPU 55173 7771 667 4857 22210 2591 6835 5565 
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Fig. 12. Simulation results for NoCLPU. (a) LG status for each scheduling interval with shaded blocks as “on” 

blocks, (b) Profiles of the utilized PV, the MGUC-scheduled loads, and the actually served load. 

 
Fig. 13. Simulation results for FixCLPU. (a) LG status for each scheduling interval with shaded blocks as “on” 

blocks, (b) Profiles of the utilized PV, the MGUC-scheduled loads, and the actually served load. 

 
Fig. 14. Simulation results for AdaptCLPU. (a) LG status for each scheduling interval with shaded blocks as “on” 

blocks, (b) Profiles of the utilized PV, the MGUC-scheduled loads, and the actually served load. 

3.3.2 CLPU Model Comparison: Fixed versus Adaptive  

From the simulation results, we made the following observations regarding the main drawbacks of fixed 

CLPU:  
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• FixCLPU tends to over-estimate (see Figs. 13(b) and 15(b)) or under-estimate the CLPU effect (see 

hours 15-17 on the first day in Fig. 13(b)).  

• As shown in Table III, compared to AdaptCLPU, the imprecise CLPU predictions lead to reduced 

served load (-8%) and more PV curtailment (over 3.3 MWh), marking the poorest performance among 

the three algorithms.  

• As shown in Fig. 16, FixCLPU has the highest SOC level since the actual SOC exceeds the scheduled 

value, primarily due to the overestimation of CLPU effect. This also results in PV curtailment during 

hours 13-17 on the first day. 

• As depicted in Fig. 17, FixCLPU exhibits the biggest gap in LGs’ served time, with LG 1 served for 

23.5 hours and LGs 4 and 5 served for less than 8.5 hours. It exhibits a tendency to serve fewer LGs 

due to CLPU overestimation, for example, only 4 LGs can be served on the first day (refer to Fig. 13 

(a)). While AdaptCLPU can provide service to all LGs each day and extend the service time for LG 5 

to 17.5 hours (refer to Fig. 14 (a)). 

• In contrast, adaptive-CLPU effectively captures both the magnitude and duration of CLPU events, 

resulting in a close alignment between actual served loads and the MGUC scheduled loads (refer to 

Fig. 14 (b) and Fig. 15 (c)) and the least BESS storage deviation (see Fig. 16). This alignment enables 

the optimization of the LG supply sequence across the entire scheduling horizon. As shown in Table 

III, the performance of the AdaptCLPU case outperforms the other two cases in all performance 

metrics except the “served loads in preferred periods” and “CLPU consumption”. 

 
Fig. 15. MGUC estimated CLPU load versus the actual CLPU load (a) NoCLPU, (b) FixCLPU, and (c)AdaptCLPU. 
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Fig. 16. Comparison of BESS and DR operation in the three cases (a) BESS energy storage with the shaded area 
denoting the operational range (b) Energy storage deviations (calculated by the MGUC scheduled BESS energy level 

minus the actual energy storage level), and (c) Actual DR usage. 

 
Fig. 17.  Comparison of the LGs’ served time of the three cases. 

3.3.3 Computing Cost 

We compare the solving time for the 1st stage MGUC (the most intensive stage) when considering the 

CLPU effects. As Table IV indicates, the average runtime for AdaptCLPU is under 3.8 seconds, with a maximum 

runtime of 19.6 seconds. Therefore, despite the higher model complexity associated with the adaptive CLPU 

model compared to the FixCLPU and NoCLPU cases, the increase in runtime is not substantial and comfortably 

satisfies the runtime constraints for the 2-stage microgrid operation with 5-minute power dispatching 

requirements.  

Table IV. Model Complexity and Runtime 

Case 

Number of 

continuous 

variables 

Number of binary 

variables 

Number of 

constraints 

Average 

calculation time 

Max. 

calculation 

time  

NoCLPU 1472 800 4786 0.6 s 1.8 s 

FixCLPU 1792 960 5408 1.0 s 3.1 s 

AdaptCLPU 2112 1120 7328 3.8 s 19.6 s 
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4. Conclusions 

In this study, we introduced an innovative adaptive CLPU model that incorporates ambient temperature and 
interruption duration as input variables, enabling precise estimation of CLPU power and energy requirements. 
Utilizing this adaptive CLPU model, we established a comprehensive set of operational constraints for the MILP 
MGUC framework. This novel approach empowers the MGUC system to autonomously calculate CLPU needs 
and optimize the LG on/off sequence effectively. Our simulation results shown that the adaptive CLPU enhanced 
MGUC surpasses the existing approaches, which either neglected CLPU or relied on fixed CLPU curves. By 
accurately addressing the demands of multiple CLPU events within the 1st stage energy scheduling process 
during extended outages, we significantly reduce power and energy shortfalls in real-time operations. This, in 
turn, leads to enhanced served total load, critical loads and baseloads, improved customer comfort (as the 
minimum service duration constraints are met), and fewer forced microgrid outages. Note that in our problem 
setting, an equivalent ‘decay rate-temperature’ curve is used for estimating decay rate estimation based on 
ambient temperature. To minimize the impact of varying downtime on the estimation accuracy, we customize 
the curve to optimally align with outage durations ranging from 4 to 10 hours. This approach proves effective 
in the proposed problem setting, primarily because short outages are infrequent due to the minimum service 
duration and CLPU constraints. In practice, to adapt the CLPU model effectively to various day types and 
MGUC problem settings, we advise modelers to customize the equivalent 'decay rate-temperature' curve to best 
capture the temperature range and outage duration characteristics specific to their scenarios. 

Our future research will focus on the development of MGUC algorithms for managing multiple feeders with 
multiple grid-forming sources. This broader scope promises to further advance the reliability, resiliency, and 
robustness of microgrid energy management systems in prolonged outages. 
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