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Abstract—This paper develops a reinforcement learning (RL)
approach to solve a cooperative, multi-agent Volt-Var Control
(VVC) problem for high solar penetration distribution systems.
The ingenuity of our RL method lies in a novel two-stage progres-
sive training strategy that can effectively improve training speed
and convergence of the machine learning algorithm. In Stage 1
(individual training), while holding all the other agents inactive,
we separately train each agent to obtain its own optimal VVC
actions in the action space: {consume, generate, do-nothing}.
In Stage 2 (cooperative training), all agents are trained again
coordinatively to share VVC responsibility. Rewards and costs
in our RL scheme include (i) a system-level reward (for taking
an action), (ii) an agent-level reward (for doing-nothing), and
(iii) an agent-level action cost function. This new framework
allows rewards to be dynamically allocated to each agent based
on their contribution while accounting for the trade-off between
control effectiveness and action cost. The proposed methodology
is tested and validated in a modified IEEE 123-bus system using
realistic PV and load profiles. Simulation results confirm that the
proposed approach is robust and computationally efficient; and
it achieves desirable volt-var control performance under a wide
range of operation conditions.

Index Terms—Distribution systems, inverter-based resources,
machine learning, multi-agent, progressive training, reinforce-
ment learning, smart inverter, volt-var control.

I. INTRODUCTION

Solar photovoltaic (PV) systems equipped with smart in-
verters have superior continuous reactive power (Q) regulation
capabilities compared with capacitor banks and voltage regu-
lators. Therefore, developing control strategies for distributed
PV systems to provide Volt-Var control (VVC) is gaining
increasing attention. In general, there are three popular VVC
approaches: rule-based, optimization-based, and more recently,
machine learning-based. Although rule-based approaches are
widely used in the field due to the ease of implementation, they
lack the ability to adapt to fast-changing operational condi-
tions. The major drawbacks of optimization-based approaches
are their strict requirement of accurate network models and
complex computational platforms for implementation. Future-
more, the computational complexity increases exponentially
as the system scale (e.g. number of controllable devices)
increases.

Machine learning, especially reinforcement learning (RL),
has been proven effective to generate optimal voltage control
policies via offline and online training [1-3]. Comparing
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to conventional rule-based VVC controls, main advantages
of the RL-based VVC are its ease of implementation and
high adaptability in a fast-changing operational environment.
Zhang et al. [1] and Sun and Qiu [2] proposed multi-agent
reinforcement learning (MARL) solutions for training VVC
agents in both centralized and decentralized environments.
However, under this setting, the decentralized agent does not
have learning capability - it only executes. Wang et al. [3]
formulated the VVC problem as Markov game for solving
the Voltage Violation problem using (one-shot) static environ-
mental data as an episode. In order for agents to evolve their
policies in response to a nonstationary environment, Lowe
et al.. [4] developed a multi-agent deep deterministic policy
gradient (MADDPG) method. However, inferring other agents’
actions requires training additional neural networks, causing
the design of VVC increasingly complex when the number of
VVC agents increases.

Centralized RL-based control design approaches often suf-
fer from the so-called curse of dimension. Convergence and
stability in training are usually difficult to achieve when many
agents need to coordinate their operations in a fast changing
environment. For example, an common scenario that often
occurs in VVC training is passing clouds accompanied by
rapid load changes in a distribution circuit with many PV
systems.

To address the aforementioned issues, in this paper, we
develop a two-stage RL approach to train multiple VVC agents
progressively on a distribution feeder. Our contributions are
two-fold. First, we propose a novel reward design and alloca-
tion mechanism to account for the contributions of all agents;
we aim to trade-off between control effectiveness and cost. In
particular, aach VVC agent can take one of three basic actions:
“generate-Q”, “consume-Q” and “do-nothing”. The system’s
performance score is calculated by the degree of system-wide
voltage violations for assessing VVC performance achieved
by all VCC agents. Immediate reward is defined as the
score of take-an-action (i.e., generate or consume ) minus
the score of do-nothing. At the agent-level, the action cost
is calculated according to the efforts committed by an agent.
The “do-nothing” reward allows us to include “do-nothing” as
a “wise” action when the value of take-an-action diminishes.
Note that the agent-level reward plays an important role in a
decentralized, co-operative training environment. Rewards are
not shared uniformly among all agents but rather dynamically



assigned according to their efforts, which takes into account
an agent’s contribution while considering the cost for taking
an action.

Second, we propose a novel two-stage, progressive training
strategy. In Stage 1 (individual training), each agent is learn
to take three basic control actions: “generate-Q”, “consume-
Q”, and “do-nothing”, assuming all other agents are inert.
Because the training of the agents can be conducted in parallel,
the training time is unaffected by the number of agents. In
absence of interventions from the other agents’ actions, the
agent currently being trained can focus on selecting one of
the three actions with a fixed Q. This guarantees that our
algorithm converges fast and is robust. In Stage 2 (cooperative
training), as all agents have gained understanding of when
to “generate-Q”, “consume-Q”, and “do-nothing”, the training
can now focus on learning the “optimal” magnitude of Q an
agent needs to provide in the presence of the other agents,
i.e. learning coordination only. Thus, the training complexity
is significantly reduced. Our results show that this 2-stage,
progressive training approach is computationally much more
efficient than the state-of-the-art methods, leading to faster
convergence and more robust performance.

II. PROBLEM FORMULATION

A. Assumptions

First, all actions are taken in fast control intervals (i.e., at 1-
or 5- minute), so they are immediately observable to all VVC
agents at time t. We can use the persistence model instead
of policy inference to predict the other agents’ actions by
assuming that observations of the environment at t − 1 are
sufficient to predict the states of the environment at t. Second,
the communication among agents is via the system operator,
who is responsible for letting a VVC agent “know” of required
information at time t (e.g., actions taken by all other agents
at t − 1). However, the other agents’ actions at t are hidden
(and only revealed at the next step) so each agent will make
its own decision independently. The parameters of the policy
network of a VVC agent are also unknown to other agents.
Third, there is no other VVC devices on the feeder so that
the PVs are the only resources for reactive regulation. Fourth,
the only objective of an VVC agent is to control the nodal
voltages to be within the defined operational range.

B. Problem Formulation

To formulate the VVC problem as a Markov decision
process (MDP), in that we define the global state, St, partial
observation Ot

i , and action set, A, of the ith VVC agent at
time t as:

St :=
[
Vt Pt

pv P t
feeder Qt

feeder

]
(1)

Ot
i :=

[
Vt P t

pv,i P t
feeder Qt

feeder At−1
]

(2)

ati := Qt
pv,i (3)

At−1 =
[
at−1
1 . . . at−1

i . . . at−1
N

]
, ∀i ∈ [1, N ] (4)

At =
[
at1 . . . a

t
i . . . a

t
N

]
, ∀i ∈ [1, N ] (5)

Vt =
[
V t
1 . . . V t

k . . . V t
M

]
, ∀k ∈ [1,M ] (6)

where Vt is the nodal voltage set; Pt
pv is the active power

output Set of PV farms at step t; P t
pv,i is the ith PV real power

output at t, P t
feeder and Qt

feeder are the active and reactive
power output at the feeder head t, respectively; ati is the action
taken by the ith agent for generating (positive) or consuming
(negative) reactive power of Qt

pv,i; M is the number of nodes
being monitored; N is the number of VVC agents. Note that
St represents the global view of the environment and Ot

i

describes the agent’s local view of the environment.
Note that At−1 = 0 when t = 1. The action space of a

centralized VVC controller is an action set because all agents’
actions need to be considered. However, the action space of
the ith distributed VVC agent is a scalar, which is the reactive
power output of the ith PV farm, Qt

pv,i (see (3)).

C. VVC Performance Score Calculation

The ANSI standard requires the distribution system voltage
to be maintained within the interval [V −, V +], with V − =
0.95 and V + = 1.05 p.u. However, a utility may choose to
hold system voltage to be within another designated interval
[V Hlim, V Llim]. Inspired by [3], we revised the control target
from a single voltage reference to a set of piece-wise linear
score functions, as shown in Fig. 1. Note that stk is the voltage
score calculated for node k at time t.
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Fig. 1. The setup of the nodal voltage score curve.

The system score, ScoreAS
A , is defined as the average nodal

voltage score, that is,

ScoreAS
A =

1

M

M∑
k=1

stk, (7)

where AS is the joint action space and A is the joint action
set. Note that the score curve is capped at 5.0 after the system
voltage drops below 0.9 p.u. or surpasses 1.10 p.u.

D. Design and Allocation of Reward

The system-level reward rs is defined as

rs := ScoreAS
A − ScoreAS

DN , (8)

where DN indicates the action of “do-nothing”.
Our reward definition follows the idea of the Advantage

Actor Critic (A2C) method [5]. We deduct the actual reward
from a baseline to reduce the variance of policy gradient so
that policy network can be trained easily. The baseline score
can be computed from (7). This advantage reward can be



explicitly formulated and meaningful to show the effectiveness
of taking actions.

In the single-agent setting, the agent can seek effective
actions by bench-marking against a predetermined baseline
action. However, when there are many VVC agents in the
system, the dimensionality of the (joint) action space increases
drastically. In addition, intervention between actions taken
by different agents makes the baseline action selection much
more complicated. For simplicity, we use the action of “do-
nothing” as a unified baseline action in multi-agent setting.
In power distribution systems, “do-nothing”, in absence of
voltage violations, is indeed often preferred as a baseline
action for controlling a VVC device.

III. TWO-STAGE PROGRESSIVE TRAINING

A. Stage 1: Individual Training

The goal of the first stage is to train a VVC agent by
considering two simplified basic control strategies: i) when
the voltage violation cannot be alleviated by it action, do-
nothing, and ii) when taking an action, what is the polarity of
the action, i.e., generate (+) or consume (-).

The agent-level reward for the ith agent in stage 1, r1,i,
when taking an action, ati, is expressed as

Costi = wcost × |Qt
i| (9)

rDN =

{
1× 10−3 |ati| ≤ ath

0 otherwise (10)

r1,i = rs − Costi + rDN (11)

where Costi is the “cost” for taking an action for the ith agent,
wcost is the weighting factor for computing Cost from |Qt

i|,
ath is the action threshold, and rDN is the do-nothing reward.

Note that (11) aims to trade-off between reward and cost.
The rDN term can not only encourage the agent to take
no action while the effectiveness of its effort diminishes, it
also forms a non-action zone to avoid unnecessary oscillatory
actions. The above setting of the reward structure constitutes
one of the major novelties of our approach.

When regulating nodal voltages on a distribution feeder,
each VVC agent has an effective control range determined
by the network topology and the location of the PV farm.
Thus, when an agent’s action is ineffective or only marginally
effective for mitigating voltage violations, the optimal strat-
egy is do-nothing. However, when multiple agents are being
trained jointly in a nonstationary environment, two main
challenges arise: i) the lack of appropriate baseline actions
for assessing performance improvements and ii) the lack of a
fair performance-driven reward allocation mechanism for each
agent. Consequently, the training process becomes lengthy
and unstable. Convergence to the optimal VVC control and
coordination strategy for all agents is therefore difficult to
achieve.

Main advantages. If there exists only one VVC, the train-
ing converges quickly. This is because the radial distribution
network topology ensures a relatively linear V-Q relationship.
Furthermore, as the agent receives full credits/penalties for

its action as specified in (11), learning the polarity of an
action is straightforward. As the first stage training can be
conducted in parallel, having multiple agents will not slow
down the training process. After the first-stage training, all
agents should “understand” when their actions are effective.
This is a very important feature for reward allocation in
the second-stage training, because all action-taking agents
are considered effective contributors. Through an appropriate
credit-sharing mechanism, agents can learn to contribute the
right amount of Q in presence of other agents.

B. Stage 2: Cooperative Training

The goal of the second stage is to train all VVC agents
jointly in the same environment so that each VVC agent can
learn to generate/consume its own share of reactive power
when coordinating with the other agents for reducing nodal
voltage violations. Our assumption is that, after stage 1, each
agent has learned to take only effective actions, i.e., an agent
will be inert when its action will not help to alleviate voltage
violations and will know when to generate/consume Q. As
defined in (2), in the second stage, the actions taken by all
agents, At−1, at t−1 will serve as an input for the observation
space of all VVC agents at t.

In the second stage, the agent-level action reward, r2,i, is
calculated as

r2,i := CFi × rs − Costi (12)

where the cost is calculated using (9) and the contribution
factor CFi can be calculated as

CFi :=
|Qt

i|∑N
j=1 |Qt

j |
(13)

Note that here we use the absolute value of Q because there
may be cases in which one agent is generating Q for boosting
its local voltage while another agent is consuming Q for
suppressing its local voltage. In this case the two agents are
collaborating with each other to remove the voltage violations.
Let aS1,i and aS2,i be the action outputs by the stage-1
policy network, S1, and stage-2 policy network, S2 by agent
i, respectively. The agent’s final action, a2,i, is determined by

a2,i := sign(aS1,i)× 1(|aS1,i| > ath)× aS2,i (14)

Note that (14) generates desired control strategies at two
levels: i) Stage-1 policy network determines a “raw” action:
whether an action is needed and if so, its polarity; ii) Stage-2
policy network provides a “complete” action by prescribing
the magnitude of the action when such an action is needed.

C. Algorithm Implementation

We solve the distributed RL problem using DDPG proposed
in [6] following the workflow shown in Fig. 2. Note that OS1,i

and OS2,i are the partial observations to agent i in stages 1
and 2, respectively. In (2), for OS1,i, At−1 = [at−1

i ] since
there is no other agent in the system; for OS2,i, At−1 =
[at−1

1 ...at−1
i ...at−1

N ], given the second assumption in Section
II-A.



Agent j

aS1,i

aS2,i

a2,i

(14)

a2,j

Agent i

OS2, i   

r2, i

r1, i (11)

(12)

(2)

Individual Training
Solved by DDPG

Stage-1

Cooperative Training
Solved by DDPG

Stage-2

Agent j

OS1, i   (2)

Environment

Fig. 2. An illustration of the two-stage training process using DDPG.

IV. NUMERICAL STUDIES

The training is conducted on a testbed developed using the
topology of the IEEE 123-bus system, as shown in Fig. 3. The
back-end of the environment is OpenDSSDirect running on
Python. The RL agents are trained using Pytorch. The annual
load and PV data are generated from the PECAN street data set
[7]. We consider a 5-minute control interval and a 30-minute
learning episode. Table I lists the locations and capacitys of all
PV farms. All PV inverters are oversized so Spv = 1.08Ppv .
According to [8], the inverter regulates Q within [−44%, 44%]
of the PV rated capacity, Spv. Voltage regulators set at 1:1 ratio
mode and is inert during the training. The utility preferred
voltage operation range is determined by V Hlim = 1.03 p.u.
and V Llim = 1.01 p.u., the values of which are within the
ANSI limit.
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Fig. 3. Configuration of the training environment. (Test feeder topology:
modified IEEE 123-bus syste. Green, red, blue, and black lines: a, b, c, and
3-phase circuits, respectively. Empty circles: buses without loads.)

TABLE I
LOCATION AND CAPACITY OF THE PV FARMS

Inverter Connected Bus(Phase) Installment Capacity
PV1 18(a,b,c) 800 kW
PV2 60(a,b,c) 600 kW
PV3 101(a,b,c) 300 kW

Total PV capacity 1700 kW

A. RL-based VVC Performance in four Seasons

In each season, 20 days are selected for training and 3 days
for testing. The base case is the “do-nothing” case. The nodal
voltage distributions and the three-day-average voltage scores
of the base case and the proposed VVC cases for the four
seasons are summarized in Fig. 4. The left side of the violin
plot represents the base case and the right side is the VVC
case. The base case results show that in summer, the nodal
voltages often drop below V Llim (i.e. 1.01 p.u.) and in spring,
the second worst, the nodal voltages often go above V Hlim (i.e.
1.03 p.u.). As shown by the inner quartiles of the plots, the
nodal voltage for the VVC case are significantly improved and
most of the time the nodal voltages are within the preferred
operation zone. As shown in Fig. 4, in winter, the voltage
violations are rare so for the remaining studies, we only show
the results obtained in the summer and spring.

Voltage Score Spring Summer Fall Winter

Basecase 0.987563 0.967055 0.978325 0.999242

Stage1 0.999850 0.992984 0.993532 0.999951

Stage2 0.999513 0.995537 0.991858 0.999952

Fig. 4. Distributions of nodal voltages and summary of voltage scores.

B. Performance Comparison with the Decentralized VVC

The parameters of a set of conventional inverter-based
decentralized VVC control curves [8] are shown in Fig. 5.
As shown in Table II, the conventional decentralized VVC
takes the least number of actions, which is measured by the
cumulative Q consumption,

∑
Q. However, it receives the

lowest Voltage score, showing an inferior voltage regulation
performance. Stage-1 policy does not consider coordination.
Thus, PV1 always generates Q, causing more V Hlim viola-
tions. Stage-2 policy has the highest voltage score, showing
superior VVC control performance. By coordinating with other
agents,

∑
Q is significantly reduced in stage-2.

Voltage (p.u.)

Q  (p.u.)

0.44

-0.44

1.02 1.025 1.03 1.0351.015 1.04

(1.02,0.44)

(1.025, 0) (1.03, 0)

(1.035, -0.44)

Fig. 5. Conventional decentralized Volt-Var control curve.
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TABLE II
VVC PERFORMANCE COMPARISON (THE SUMMER CASE) EVALUATION

Algorithm Voltage Qtotal Qpv1 Qpv2 Qpv3

Score (kVAR) (p.u) (p.u) (p.u)
Base Case 0.98756 - - - -

Conventional 0.98995 93.859 0.01688 0.07611 0.09242
Stage-1 0.99286 452.43 0.41250 0.12527 0.04583
Stage-2 0.99556 144.03 0.01660 0.14361 0.11305

If some nodal voltages fall outside of the designated interval
[V LlimV Hlim] in a control interval, we consider this interval to
be a voltage violation event. Then, we compare the duration of
such voltage events in four use cases: base case, conventional,
stage-1 policy, and stage-2 policy in the summer season. Table
III and Fig. 7 summarize the statistics of the durations of
all voltage violation events in the three summer testing days.
Conventional VVC is effective in reducing longer voltage vio-
lations while leading to many shorter voltage violations. This
results in a large number of cumulative violations. Overall,
the stage-2 policy exhibits optimal performance in terms of
reducing the total voltage violation duration. Nevertheless,
from time to time all PVs have inevitably reached their
maximum regulating capability, as shown in Fig. 6.
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C. Impact of Action Cost

Because action-taking incurs a cost (specified by (10)),
we next conduct a sensitivity analysis in Cw. To observe
the impact of action cost (i.e., the value of wcost) on VVC
control performance, we present the performance comparison
using different wcost values in three spring days. As shown

TABLE III
STATISTICS OF THE VOLTAGE EVENT

Statistics Base Conv. Stage 1 Stage 2
Count 4031 30219 4831 3314
Mean 6.74 1.16 2.64 2.08
Std 15.83 1.075 4.16 2.86

25 percentile 1 1 1 1
50 percentile 2 1 1 1
75 percentile 4 1 2 2
MaxDuration 95 43 47 44

Nodes of MaxDuration 2 5 1 2
Integration Sum 27176 34940 12759 6914

in Table IV, there is a noticeable decrease of Qtotal when
wcost = 0.005, but the degradation in voltage score seems
less evident. However, if wcost increases to 0.01, the voltage
score declines significantly due to the lack of action from the
agents.

TABLE IV
IMPACT OF ACTION COST ON VVC PERFORMANCE

Cw 0.001 0.002 0.003 0.005 0.01
Voltage Score 0.999935 0.999935 0.999777 0.999789 0.997897

Qtotal(kV ar) 225.106 224.310 216.976 206.443 72.033

V. CONCLUSION

In this paper, we develop a two-stage progressive training
strategy for improving the training speed and convergence
when training multiple RL-based VVC agents in high PV-
penetration distribution systems. Simulation results substan-
tiate that stage-1 training can make agents effectively learn
when their actions are effective, while stage-2 training can
further strengthen the agents’s understanding on how to coor-
dinate with others to achieve satisfactory VVC performance.
Most importantly, the policy obtained by the stage-1 can also
serve as a backup strategy in case communication may be
disconnected. Our follow-up journal paper will present the
algorithm in detail with extensive testing results on actual
feeder models.
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