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• For advanced real-time monitoring and control of gas species in 

combustion environments, development of efficient sensing platforms and 

new  sensor materials able to work under harsh environments are required

• Semiconducting optical-based sensor platform based on strontium titanate 

(SrTiO3, STO) shows promise; cubic ABO3 structure has tunable electronic, 

optical properties dependent on A-site, B-site doping, oxygen vacancies

• Hydrogen (H) and oxygen (O) impurities are ubiquitous to metal oxide 

perovskites; both H and O are thought to contribute to room temperature, long 

lasting photoconductivity in STO, indicating the potential use of STO in H, O 

gas sensing applications

• Understanding how lanthanum (La) and magnesium (Mg) doping of STO 

and oxygen vacancy defects affect electronic and optical properties of 

SrTiO3 is required to tailor STO-based materials for development of sensitive, 

selective gas sensors

• First-principles modeling assesses the tunability of STO material properties 

via incorporation of La, Mg impurities and emergence of oxygen 

vacancies
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• Density functional theory (DFT): PAW-PBE(+U) XC in GGA

• Energies of formation of point defects (La and Mg dopants, O vacancies)

• Optical properties calculated from frequency-dependent dielectric function

• Incorporation of H and O interstitial atoms

Perovskite oxide: La- and Mg-doped SrTiO3 Doped Perovskite Sensing Layers on Optical FiberIntroduction

Interstitial hydrogen and oxygen impurities
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• Electronic structure of SrTiO3 shows a bandgap of 2.98 eV; optical 

calculations indicate SrTiO3 has absorption peak in the IR spectrum at 55 nm

• Incorporation of O vacancy creates an occupied defect state within the 

bandgap. Its location  is sensitive to Hubbard parameter U; contributions to 

defect state are shown to be due to O 2p, Ti 3d hybridization

• Incorporation of O vacancies to SrTiO3 due not cause peaks in the absorption 

coefficient within the range of visible light; increase in O vacancies causes 

lower-wavelength peak in optical conductivity below 200 nm

• La-doped STO shows n type behavior for all doping levels of La studied 

ranging from 12.5 to 37.5 at. %; La doping impacts free carrier concentration

• La doping causes shift in dielectric matrix to higher photon energy above 4 eV

• La doping causes loss in optical transparency at lower range of visible light

∆𝐻 𝑆𝑟𝑇𝑖𝑂3, 𝑑𝑒𝑓 = 𝐸 𝑆𝑟𝑇𝑖𝑂3, 𝑑𝑒𝑓  
− 𝐸 𝑆𝑟𝑇𝑖𝑂3 − ෍

𝑖

𝑛𝑖𝜇𝑖 

• Determine local energy 

minima of adsorbate H, 

O atom binding sites

• Elucidate electronic, 

optical properties of 

STO with interstitial H, 

O atoms

• Nudged elastic band 

calculations to 

determine relevant 

diffusion barriers 

LaSr7Ti8O24

La2Sr6Ti8O24

La3Sr5Ti8O24

• Mg-doped STO exhibits varied electronic, optical properties dependent on site 

of Mg substitution; neither show absorption in visible light range

• B-site doped STO has occurrence of Drude peak in imaginary component of 

dielectric matrix, confirming the presence of free carriers

B-site Mg doping induces p type 

conductivity in STO

• Incorporation of H, O interstitials alters SrTiO3 electronic, optical properties as 

both can act as electron donors to system

• H introduces defect state at VBM below Fermi level without significant 

change to bandgap, absorption, or dielectric matrix

• O induces n-type conductivity, evident in DOS and Drude peak in imaginary 

component of dielectric matrix; causes peak shift in optical conductivity to 

lower wavelength (higher photon energy)

Sr8Ti8O23 LaSr7Ti8O24 MgSr7Ti8O24 Sr8MgTi7O24

Sr8Ti8O24

H + Sr8Ti8O24

O + Sr8Ti8O24

• Interstitial H atom preferably binds to O 

atom in STO leading to breaking of 

octahedral symmetry 

• Interstitial O atom bonds to apical O causes 

distortion of Ti octahedral but does not 

break symmetry of crystal

• As a functional sensing layer on evanescent-field based optical fiber sensors, A- 

or B-site doped can operate as a versatile, high-T sensor for reducing or oxidizing 

gas streams.

• La-doped SrTiO3 acts like an n-type doped semiconductor under reducing 

conditions – demonstrating  an effective high-T sensing material for H2.

• Other SrTiO3-based systems such as SrFexTi1-xO3 (SFTO) and Mg-doped 

SrTiO3 can act as p-type doped semiconductors under oxidizing conditions 

and show promise for high-T stable oxygen sensing.

Interstitial H atom Interstitial O atom
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