

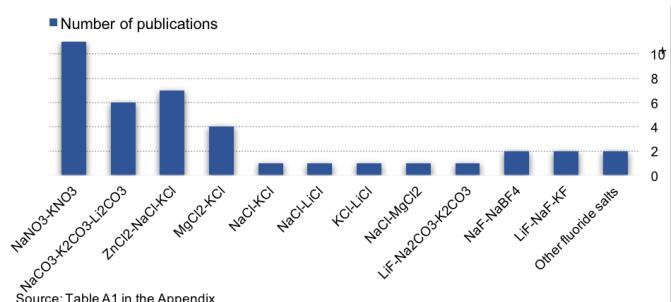
## GEN3 CSP MATERIALS: CRITICAL REVIEW OF LIMITED EXISTING AND NEW SURVEY DATA

**Andrey Gunawan, Bettina K. Arkhurst, Sonja A. Brankovic, Shannon K. Yee**  
 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology  
 Atlanta, GA

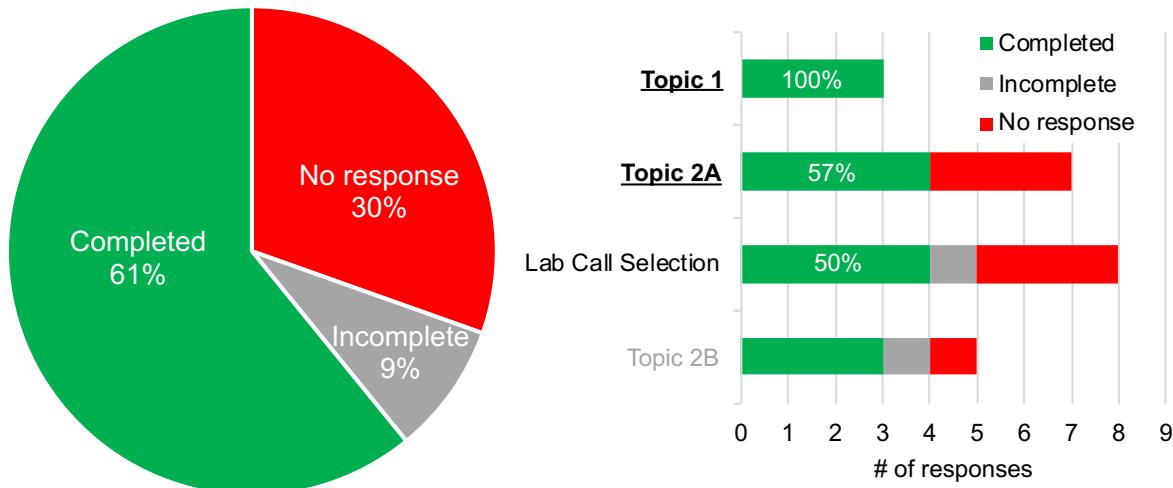
### ABSTRACT

Novel high temperature ( $\geq 700^{\circ}\text{C}$ ) Heat Transfer Medias (HTMs, *e.g.*, molten salts) and corrosion-resistant Containment Materials (CMs, *e.g.*, metal alloys or ceramics) are necessary for concentrated solar power (CSP) given the emphasis on higher temperatures and high cycle efficiency in the 3<sup>rd</sup> generation CSP (Gen3 CSP) technologies. In early 2019, we sent out an online survey to the Gen3 CSP community to fully assess the communal needs for thermophysical properties measurements of which HTMs and CMs, and what temperature range and other testing environments would be ideal for those materials. Based on the recorded responses, seven unique HTMs and twenty-six unique CMs were identified. Since then the list has been constantly updated, following our interactions and inputs from the Gen3 CSP community, with some new materials substituting their older counterparts. Currently, there are total of ten unique HTMs and twenty-nine unique CMs that are under consideration by the Gen3 CSP community. By analyzing the available body of research to date and combining it with our survey data from within the Gen3 CSP community, this paper presents trends of what people in the CSP world are thinking regarding materials worth investigating and suggests which thermophysical property measurements are critical to advance high-temperature CSP systems.

### INTRODUCTION


Many of the critical thermophysical properties (*e.g.*, thermal conductivity, thermal diffusivity, and specific heat) for those HTMs and CMs are not readily available at high temperatures with varying compositions and degrees of contaminants and corrosion. We have performed a thorough literature review and have summarized relevant thermophysical properties in Appendix Table A1. As can be readily seen, there exists large gaps in available thermophysical properties. Figure 1 summarizes the number of publications reporting thermophysical properties for a number of potential molten salts. This indicates that there is a clear need for more thermophysical

property measurements, and for developing engineering models from these measurements, to enable engineering designs for realizing the Gen3 CSP systems.


This paper will focus on presenting the survey responses for the Gen3 CSP prioritized HTMs and prioritized CMs. Nonetheless, this is followed by brief discussion on our work aimed at measuring the thermophysical properties of these HTMs and CMs at those high temperatures ( $\geq 700^{\circ}\text{C}$ ) across a range of conditions with novel immersion electrothermal probe technique and modified photothermal technique, thereby providing research and support analysis for the Gen3 CSP integrated thermal system. Overall, by analyzing the available body of research to date and combining it with our survey data from within the Gen3 CSP community, we would like to leave the reader with trends of what people in the CSP world are thinking regarding materials worth investigating and which thermophysical property measurements are critical to advance high-temperature CSP systems.

### GEN3 CSP SURVEY RESULTS

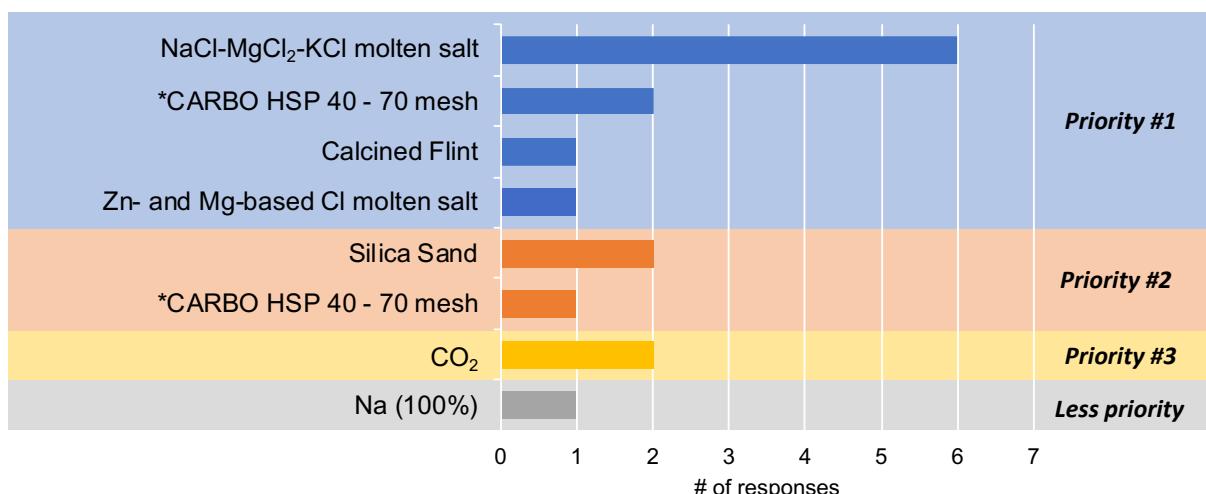
We began by creating a short online survey that will fully assess the needs of the Gen3 CSP awardees regarding materials of interest. This survey requested that awardees prioritize (i)



**Figure 1: Number of publications on thermophysical properties data of molten salts above 700 °C. Very limited property data exists**



**Figure 2: Response rate from twenty-three online surveys that were sent out**

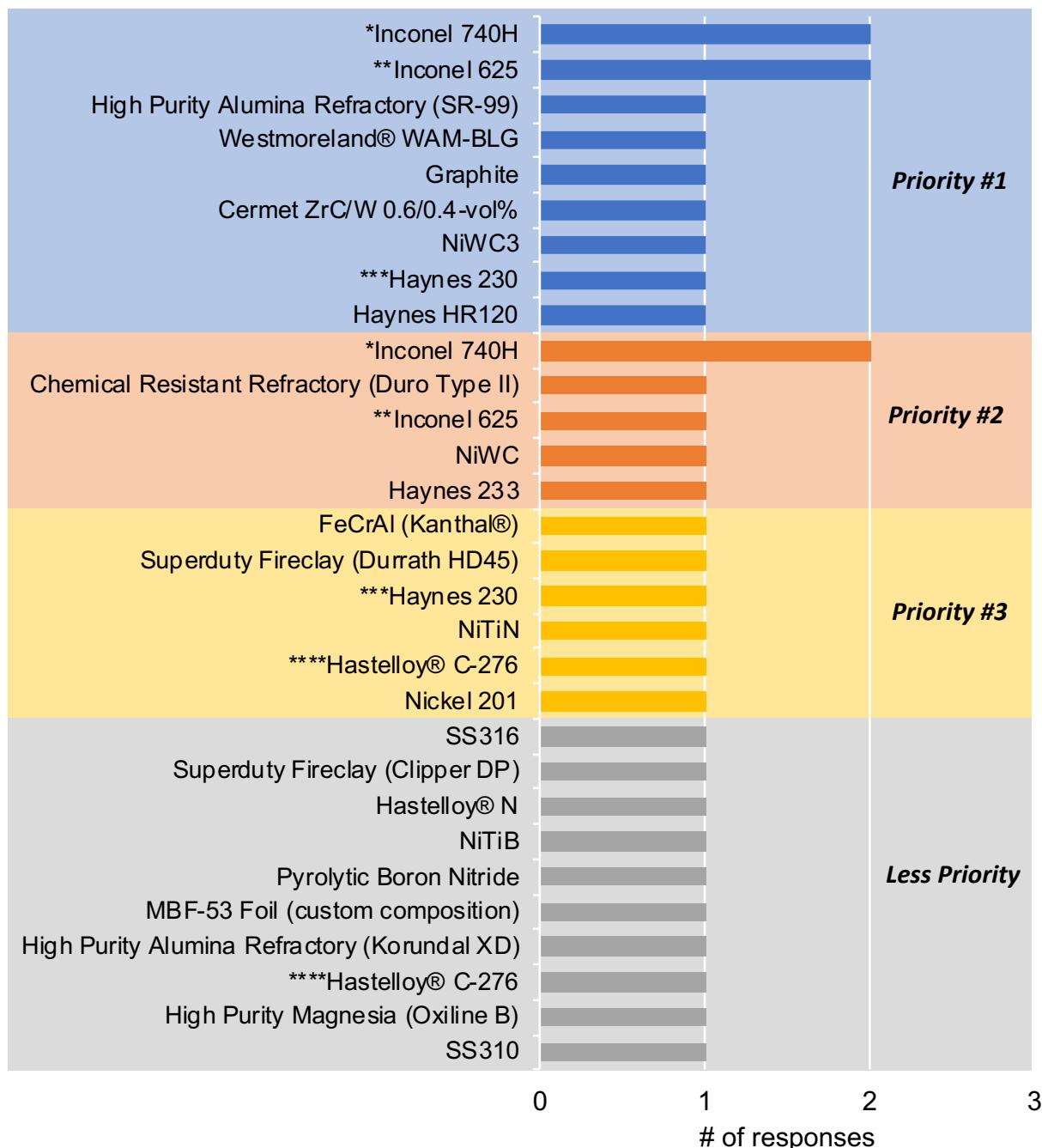

which heat transfer medias (HTMs) and containment materials (CMs) they want tested, (ii) what temperature range and other testing environments would be ideal for their specific materials, and (iii) which thermophysical property measurements are critical to advance the high-temperature CSP systems. The survey had gone through an internal review by our team and received final approval by the U.S. Department of Energy (DOE) before sending to the target awardees. The online survey was emailed to twenty-three awardees. Sixteen awardees initiated responses, but only fourteen completed the survey (Fig. 2).

The awardees were first asked to list the heat transfer media (HTMs) that need to be tested in terms of descending priority. Sixteen responses were recorded. And from the sixteen responses, seven unique HTMs can be distinguished. Based on the assigned priority, then the total number of responses a specific HTM received (see Fig. 3), we created a list of

prioritized HTMs to be measured in terms of descending priority are (1 = most important HTM for us to analyze):

1. NaCl-MgCl<sub>2</sub>-KCl molten salt
2. CARBO HSP 40 – 70 mesh
3. Calcined Flint
4. Silica Sand
5. CO<sub>2</sub>
6. Zn- and Mg- based chloride molten salt
7. Na (100%)

The awardees were also asked to list the containment materials (CMs) that need to be tested in terms of descending priority. More (thirty-three) responses were recorded, and from these responses twenty-six unique CMs can be distinguished.



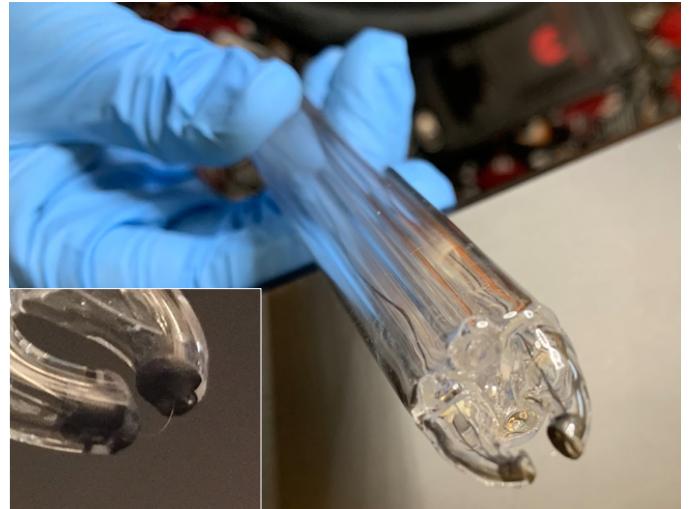

**Figure 3: Survey responses for the prioritized heat transfer medias (HTMs). Asterix (\*) indicates the same HTM**

In the same manner, based on (first) the assigned priority and (secondly) the total number of responses a specific CM received (see Fig. 4), we created the list of prioritized CMs to be measured in terms of descending priority are (1 = most important CM for us to analyze):

1. Inconel 740H
2. Inconel 625

3. High Purity Alumina Refractory SR-99
4. Westmoreland® WAM-BLG
5. Graphite
6. Cermet ZrC/W 0.6/0.4-vol%
7. NiWC3
8. Haynes 230




**Figure 4: Survey responses for the prioritized containment materials (CMs). Asterisks (\*/\*\*/\*\*\*/\*\*\*\*) indicate the same CMs**

9. Haynes HR120
10. Chemical Resistant Refractory (Duro Type II)
11. NiWC
12. Haynes 233
13. FeCrAl (Kanthal®)
14. Superduty Fireclay (Durrath HD45)
15. NiTiN
16. Hastelloy® C-276
17. Nickel 201
18. SS316
19. Superduty Fireclay (Clipper DP)
20. Hastelloy® N
21. NiTiB
22. Pyrolytic Boron Nitride
23. MBF-53 Foil (custom composition)
24. High Purity Alumina Refractory (Korundal XD)
25. High Purity Magnesia (Oxiline B)
26. SS310

Since then the list has been constantly updated, following our interactions and inputs from all Gen3 CSP community, with some new materials substituting their older counterparts. At the time of writing this paper, there are total of ten unique HTMs and twenty-nine unique CMs that are under consideration by the Gen3 CSP community. We expect that this list will not stop growing in the near future, therefore, we will present the updated list during our presentation at the conference.

## IMMERSION ELECTROTHERMAL PROBE AND MODIFIED PHOTOTHERMAL TECHNIQUES

To measure thermophysical properties of HTM (*e.g.*, the molten salts), the most common technique is a transient hot wire approach. In this approach, a current is passed through a wire and the temporal temperature response of the wire is monitored. Using heat transfer models the thermal conductivity of the HTM can be determined. This approach has several limitations and is not the most accurate approach for measuring thermophysical properties. Specifically, this approach is confounded by natural convection and has a reduced degree of accuracy and sensitivity due to having a solid metal core resulting in a high axial effusivity. Our innovative immersion electrothermal approach is an improvement over the transient hotwire technique. The immersion electrothermal probe that we will develop will be used in conjunction with the 3-omega technique to simultaneously measure the thermal conductivity, thermal diffusivity, and heat capacity of the HTM. While the 3-omega technique is conventionally used to measure thermal conductivity of thin-films and bulk solids [1], the modified metal-coated fiber geometry used as heater-thermometers allows



**Figure 5:** The electrochemical immersion probe. The inset shows Pt-coated single ceramic fiber connected with high-temperature carbon paste on to four tungsten wires, to create four-point electrical connection

us to accurately measure thermal conductivities of liquids, gases, and powders [2].

The immersion probe, depicted in Fig. 5, will consist of a metal-coated fiber connected in a four-probe configuration. The sensor utilizes an electrically insulating ceramic core of diameter  $\sim 50 \mu\text{m}$  coated with  $\sim 100 \text{ nm}$  platinum, which serves as the metal heater-thermometer for 3-omega measurements. The core is made from ceramics due to the low thermal conductivity ( $\sim 1 \text{ W/m-K}$ ) and ability to withstand high temperatures. The sensor is subsequently coated with a corrosion resistant insulating layer using sputtering in a custom rotary lathe. The fiber is then flexed into a U-shape, and four-point electrical connections are achieved. The probe is designed such that only the fiber is exposed, while the electrical leads are covered in a high temperature corrosion resistant sheath (*i.e.* quartz) which is capable of withstanding temperatures up to  $1200^\circ\text{C}$ .

We have solved the radial heat diffusion equation and developed analytical thermal transfer functions for multi-layered metal-coated fiber that can be used to obtain thermal conductivity ( $k$ ), thermal diffusivity ( $\alpha$ ), and volumetric heat capacity ( $C$ ) from the experimental 3-omega data. Thus, fitting the experimental data to theoretical models in select frequency windows will simultaneously yield both the  $k$  and  $C$ , for which we can then compute the  $\alpha$ . In this configuration, the technique is less sensitive to the thermal properties of the metal and outer insulating layer compared to that of the salt. This enables us to choose the metal and the insulating layer based primarily on chemical compatibility with the molten salt environment, and demonstrates the versatility of the proposed technique.

The photothermal technique is a modified Xenon flash diffusivity method suited to measure thermal conductivity, specific heat, and thermal diffusivity of containment materials, which accommodates the high temperature and corrosive

chemistry requirements. This specific thermometry method and the most recent experimental results are discussed in another paper, which is also presented and published in this conference proceeding.[3] The flash method can measure wide ranges of thermal conductivity (0.1-4000 W/m-K) and thermal diffusivity (0.01-2000 mm<sup>2</sup>/s), with measurement uncertainties smaller than 5%. A custom designed furnace integrated with the sample chamber allows for measurements under high vacuum ( $\sim 10^{-4}$  mbar) and temperatures up to 1250°C. The customized sample holders allow us to measure thermophysical properties of liquids, anisotropic solids, thin films/lamellae structures, and materials under mechanical pressure.

The internal pump integrated with the instrument supports defined atmospheres in the sample chamber over the entire temperature range. This allows for in situ monitoring of thermophysical properties in the presence of reactive gases, and water and oxygen contaminants. Furthermore, the containment materials will be exposed to the different molten salt chemistries of interest for extended periods of time, and the effect of aging on thermophysical properties will be quantified. The data analysis software can account for multi-dimensional heat loss from the sample, multilayered structures, porosity, transparency, translucency and roughness of sample. By accounting for these features, errors as big as 15% can be avoided. Furthermore, this broadens the class of materials that can be reliably measured.

## ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy Solar Energy Technologies Office under Award Number DE-EE0008371. B.K.A would also like to acknowledge support from National Science Foundation Graduate Research Fellowship.

## REFERENCES

- [1] Dames, C., and Chen, G., 2005, "1 $\omega$ , 2 $\omega$ , and 3 $\omega$  methods for measurements of thermal properties," *Review of Scientific Instruments*, 76(12), p. 124902.
- [2] Schiffres, S. N., and Malen, J. A., 2011, "Improved 3- $\omega$  measurement of thermal conductivity in liquid, gases, and powders using a metal-coated optical fiber," *Review of Scientific Instruments*, 82(6).
- [3] Brankovic, S. A., Arkhurst, B. K., Gunawan, A., and Yee, S. K., 2020, "High-temperature thermophysical property measurement of proposed Gen3 CSP containment materials," *Proc. ASME 14th International Conference on Energy Sustainability*, ASME.
- [4] Mehos, M., Turchi, C., Vidal, J., Wagner, M., Ma, Z., Ho, C., Kolb, W., Andraka, C., and Kruizenga, A., 2017, "Concentrating Solar Power Gen3 Demonstration Roadmap," National Renewable Energy Laboratory (NREL), Golden, CO (United States).
- [5] SQM, 2016, "SQM's Thermo-Solar Salts (Salt Factsheet)," <http://www.sqm.com/en-us/productos/quimicosindustriales/salestermosolares/productostermo-solares.aspx#divcompatibilidad>.
- [6] Vignarooban, K., Xu, X., Arvay, A., Hsu, K., and Kannan, A. M., 2015, "Heat transfer fluids for concentrating solar power systems – A review," *Applied Energy*, 146, pp. 383-396.
- [7] Kuzmina, O., Slattery, J. M., Hu, M., Song, Q., Jiao, S., Haarberg, G. M., Xu, Q., Wang, D., Madden, P., Cooper, D., McGregor, K., Sudmeier, T., Tang, B., Zhu, H., Kamali, A., Yu, L., Chen, G. Z., Irvine, J., Liu, Y., Ge, J., Pringle, J., and Yue, X., 2016, "Improvements of energy conversion and storage: general discussion," *Faraday Discuss*, 190, pp. 291-306.
- [8] Wu, Y.-t., Ren, N., Wang, T., and Ma, C.-f., 2011, "Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant," *Solar Energy*, 85(9), pp. 1957-1966.
- [9] Coyle, R., Thomas, T., and Schissel, P., 1986, "Coyle, R. T., Terence M. Thomas, and Paul Schissel. Corrosion of selected alloys in eutectic lithium-sodium-potassium carbonate at 900C," *Solar Energy Research Institute*, Golden, CO (United States).
- [10] Olivares, R. I., Chen, C., and Wright, S., 2012, "The Thermal Stability of Molten Lithium–Sodium–Potassium Carbonate and the Influence of Additives on the Melting Point," *Journal of Solar Energy Engineering*, 134(4).
- [11] Ejima, T., Sato, Y., Yamamura, T., Tamai, K., Hasebe, m., Bohn, M. S., and Janz, G. J., 1987, "Viscosity of the eutectic dilithium carbonate-disodium carbonate-dipotassium carbonate melt," *Journal of Chemical & Engineering Data*, 32(2), pp. 180-182.
- [12] Linder, C., 2017, "Investigation of new materials and methods to reduce corrosion of stainless steel in contact with molten chloride salts," *Master of Engineering*, Luleå tekniska universitet, Luleå, Sweden.
- [13] Vignarooban, K., Pugazhendhi, P., Tucker, C., Gervasio, D., and Kannan, A. M., 2014, "Corrosion resistance of Hastelloy in molten metal-chloride heat-transfer fluids for concentrating solar power applications," *Solar Energy*, 103, pp. 62-69.
- [14] Alkhamis, M., 2018, "Stability of Metal in Molten Chloride Salt at 800C," *Master of Science*, The University of Arizona, Tucson, AZ, United States.
- [15] Li, Y., Xu, X., Wang, X., Li, P., Hao, Q., and Xiao, B., 2017, "Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl<sub>2</sub>, CaCl<sub>2</sub>, ZnCl<sub>2</sub> for heat transfer and thermal storage fluids in CSP," *Solar Energy*, 152, pp. 57-79.
- [16] Manga, V. R., Swinteck, N., Binguier, S., Lucas, P., Deymier, P., and Muralidharan, K., 2016, "Interplay between structure and transport properties of molten salt mixtures of ZnCl<sub>2</sub>-NaCl-KCl: A molecular dynamics study," *J Chem Phys*, 144(9), p. 094501.
- [17] Williams, D., 2006, "Assessment of candidate molten salt coolants for the NGNP/NHI Heat-Transfer Loop," Oak

Ridge National Laboratory (ORNL), Oak Ridge, TN (United States).

- [18] Rodriguez, S., Armijo, K., Beeny, B., Denman, M., Cipiti, B., Shoman, N., Farley, D., Ames, D., Andraka, C., Briggs, R., and Sisson, R., 2017, "Advancing Molten Salts and Fuels at Sandia National Laboratories—White Paper," Sandia National Laboratories (SNL), Albuquerque, NM and Livermore, CA (United States).
- [19] Wang, X., Xu, X., Elsentriecy, H., Gervasio, D., Li, P., Li, Y., Hao, Q., and Xiao, B., 2017, "Investigation of Properties of KCl-MgCl<sub>2</sub> Eutectic Salt for Heat Transfer and Thermal Storage Fluids in CSP Systems," ASME 2017 Heat Transfer Summer ConferenceBellevue, WA, USA.
- [20] Gomez-Vidal, J. C., 2017, "Corrosion resistance of MCraIX coatings in a molten chloride for thermal storage in concentrating solar power applications," *npj Materials Degradation*, 1(1).
- [21] Gomez-Vidal, J. C., Fernandez, A. G., Tirawat, R., Turchi, C., and Huddleston, W., 2017, "Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests," *Solar Energy Materials and Solar Cells*, 166, pp. 222-233.
- [22] Forsberg, C. W., Peterson, P. F., and Zhao, H., 2007, "High-Temperature Liquid-Fluoride-Salt Closed-Brayton-Cycle Solar Power Towers," *Journal of Solar Energy Engineering*, 129(2).

## APPENDIX

**Table A1.** Literature review of thermophysical properties of molten salts above 700 °C. **Blue fonts** indicated thermophysical properties data of candidate molten-salt heat-transfer fluids that was recommended by U.S. Department of Energy in the CSP Gen3 Demonstration Roadmap (Table 8 in Mehos et al.[4]). Legend: for materials under column “Alloy”, H indicates Hastelloy, In Inconel, and SS Stainless-Steel

| Type                         | Salt                            | Composition By Wt. | $T_{melt}$<br>(°C) | Stability Limit<br>(°C) | $T_{reference}$<br>(°C) | $k$<br>(W/m-K) | $\alpha$<br>(mm <sup>2</sup> /s) | $c_p$<br>(J/g-K) | Properties                     |       |       | Density<br>(kg/m <sup>3</sup> ) | Absolute Viscosity<br>(mPa-sec) | Ref |
|------------------------------|---------------------------------|--------------------|--------------------|-------------------------|-------------------------|----------------|----------------------------------|------------------|--------------------------------|-------|-------|---------------------------------|---------------------------------|-----|
|                              |                                 |                    |                    |                         |                         |                |                                  |                  | Corrosion (target: <50 um/yr.) |       |       |                                 |                                 |     |
| <b>Solar Salt (baseline)</b> | NaNO <sub>3</sub>               | 0.6                | 220                | -                       | 260                     | 0.492          | -                                | 1.488            |                                |       |       | 1924.6                          | 4.343                           | [5] |
|                              | KNO <sub>3</sub>                | 0.4                |                    |                         | 288                     | 0.498          | -                                | 1.492            |                                |       |       | 1907                            | 3.558                           |     |
|                              |                                 |                    |                    |                         | 316                     | 0.503          | -                                | 1.497            |                                |       |       | 1889.3                          | 2.929                           |     |
|                              |                                 |                    |                    |                         | 343                     | 0.508          | -                                | 1.502            |                                |       |       | 1871.6                          | 2.436                           |     |
|                              |                                 |                    |                    |                         | 371                     | 0.514          | -                                | 1.507            |                                |       |       | 1854                            | 2.062                           |     |
|                              |                                 |                    |                    |                         | 399                     | 0.519          | -                                | 1.512            |                                |       |       | 1836.3                          | 1.786                           |     |
|                              |                                 |                    |                    |                         | 427                     | 0.524          | -                                | 1.516            |                                |       |       | 1818.6                          | 1.589                           |     |
|                              |                                 |                    |                    |                         | 454                     | 0.529          | -                                | 1.521            |                                |       |       | 1801                            | 1.454                           |     |
|                              |                                 |                    |                    |                         | 482                     | 0.535          | -                                | 1.526            |                                |       |       | 1783.3                          | 1.361                           |     |
|                              |                                 |                    |                    |                         | 510                     | 0.54           | -                                | 1.531            |                                |       |       | 1765.6                          | 1.29                            |     |
|                              |                                 |                    |                    |                         | 538                     | 0.545          | -                                | 1.535            |                                |       |       | 1748                            | 1.223                           |     |
|                              |                                 |                    |                    |                         | 566                     | 0.55           | -                                | 1.540            |                                |       |       | 1730.3                          | 1.142                           |     |
|                              |                                 |                    |                    |                         | 593                     | 0.556          | -                                | 1.545            |                                |       |       | 1712.6                          | 1.026                           |     |
| <b>Carbonate Salt</b>        | Na <sub>2</sub> CO <sub>3</sub> | 0.334              | 398                | 800-850                 | -                       | -              | -                                | 1.4-1.5          | 900                            | <1000 | In600 | 2000                            | 4.3 (800 °C)                    | [6] |
|                              | K <sub>2</sub> CO <sub>3</sub>  | 0.345              | -                  | -                       | 450                     | 0.454          | 0.136                            | 1.612            | -                              | -     | -     | 2071                            | TBD                             | [7] |
|                              | Li <sub>2</sub> CO <sub>3</sub> | 0.321              | -                  | -                       | 500                     | 0.458          | 0.139                            | 1.612            | -                              | -     | -     | 2045                            | TBD                             |     |
|                              |                                 |                    | -                  | -                       | 550                     | 0.470          | 0.144                            | 1.612            | -                              | -     | -     | 2023                            | TBD                             |     |
|                              |                                 |                    | -                  | -                       | 600                     | 0.492          | 0.152                            | 1.612            | -                              | -     | -     | 2007                            | TBD                             |     |
|                              |                                 |                    | 398-417            | 850                     | -                       | -              | -                                | 2.205            | -                              | -     | -     | -                               | -                               | [8] |
|                              |                                 |                    | -                  | -                       | -                       | -              | -                                | -                | -                              | -     | -     | -                               | -                               | [9] |

|                |                   |         |                            |     |       |   |   |                             |        |        |   |                  |                |
|----------------|-------------------|---------|----------------------------|-----|-------|---|---|-----------------------------|--------|--------|---|------------------|----------------|
| Chloride Salts | ZnCl <sub>2</sub> | 401     | 700 (in Ar)                | -   | -     | - | - | -                           | -      | -      | - | -                | [10]           |
|                |                   | 405     | 670 (in Air)               | -   | -     | - | - | -                           | -      | -      | - | -                | [11]           |
|                |                   | 405     | 1000 (in CO <sub>2</sub> ) | -   | -     | - | - | -                           | -      | -      | - | -                | [11]           |
|                | NaCl              | -       | -                          | -   | -     | - | - | -                           | -      | -      | - | -                | 18.66 (497 °C) |
|                |                   | -       | -                          | -   | -     | - | - | -                           | -      | -      | - | -                | 6.36 (697 °C)  |
|                |                   | -       | -                          | -   | -     | - | - | -                           | -      | -      | - | -                | 3.14 (897 °C)  |
|                | KCl               | 204     | -                          | -   | -     | - | - | -                           | -      | -      | - | 2400             | -              |
|                |                   | 0.529   | 850                        | 300 | 0.325 | - | - | 800 (in the absence of air) | <10    | HC-276 | - | -                | [6]            |
|                |                   | 0.134   | -                          | -   | -     | - | - | 700                         | ~25    | HC-22  | - | 4.0 (600-800 °C) |                |
|                | 204               | 0.337   | -                          | -   | -     | - | - | 700                         | ~150   | SS304  | - | -                |                |
|                |                   | -       | -                          | -   | -     | - | - | 700                         | -      | SS304  | - | -                | [12]           |
|                |                   | -       | -                          | -   | -     | - | - | 700                         | -      | SS316  | - | -                |                |
|                |                   | -       | -                          | -   | -     | - | - | 700                         | -      | SS309  | - | -                |                |
|                |                   | -       | -                          | -   | -     | - | - | 250, 500                    | 10, 40 | HC-276 | - | -                | [13]           |
|                |                   | -       | -                          | -   | -     | - | - | 500                         | ~30    | HC-22  | - | -                |                |
|                |                   | -       | -                          | -   | -     | - | - | 500                         | >150   | H-N    | - | -                |                |
|                |                   | -       | -                          | -   | -     | - | - | 800 (in the absence of air) | -20.46 | H-230  | - | -                | [14]           |
|                |                   | -       | -                          | -   | -     | - | - | -                           | -7.36  | HC-276 | - | -                |                |
|                |                   | -       | -                          | -   | -     | - | - | -                           | -      | -      | - | -                |                |
| 0.443          | 229               | -       | -                          | -   | -     | - | - | -                           | -      | -      | - | -                | [7, 15]        |
|                |                   | 250-800 | -                          | -   | -     | - | - | -                           | -      | -      | - | -                |                |
| 0.138          | 229               | -       | -                          | -   | -     | - | - | -                           | -      | -      | - | -                | [7, 15]        |
|                |                   | -       | -                          | -   | -     | - | - | -                           | -      | -      | - | -                |                |

|                                 |        |              |     |             |               |              |        |                                      |                                                  |                    |               |     |      |       |       |
|---------------------------------|--------|--------------|-----|-------------|---------------|--------------|--------|--------------------------------------|--------------------------------------------------|--------------------|---------------|-----|------|-------|-------|
|                                 |        | 0.419        |     |             |               |              |        |                                      |                                                  |                    |               |     |      |       |       |
|                                 |        | 0.595        | 213 | -           |               |              | ~0.389 | -                                    | ~0.913<br>(230-<br>350<br>oC)                    | -                  | -             | -   | -    | ~2581 | ~4.46 |
|                                 |        | 0.186        |     |             |               |              |        |                                      |                                                  |                    |               |     |      |       |       |
|                                 |        | 0.219        |     |             |               |              |        |                                      |                                                  |                    |               |     |      |       |       |
|                                 |        | 6 variations | -   | -           | 250-<br>800   | 0.35-<br>0.6 | -      | -                                    | -                                                | -                  | -             | -   | -    | -     | [16]  |
| <b>MgCl<sub>2</sub><br/>KCl</b> | 0.375  | 426          | -   | -           | -             | -            | 1.150  | -                                    | -                                                | -                  | 1660          | -   | [17] |       |       |
|                                 | 0.625  |              |     |             |               |              |        |                                      |                                                  |                    |               |     |      |       |       |
|                                 | -      | 426          | -   | 700         | 0.400         | -            | 1.159  | -                                    | -                                                | -                  | 1660          | -   | [18] |       |       |
|                                 | 0.320  | 540          | -   | -           | -             | -            | -      | 800 (in<br>the<br>absence<br>of air) | 16.14                                            | H-230              | -             | -   | [14] |       |       |
|                                 | 0.680  |              |     |             |               |              |        |                                      | 10.03                                            | HC-276             | -             |     |      |       |       |
| <b>NaCl<br/>KCl</b>             | 0.434  | 424          | -   | 427-<br>832 | 0.37-<br>0.45 | -            | 0.999  | 800                                  | -                                                | H-230              | 1440-<br>1750 | < 3 | [19] |       |       |
|                                 | 0.566  |              |     |             |               |              |        |                                      | -                                                | HC-276             |               |     |      |       |       |
| <b>NaCl<br/>LiCl</b>            | 0.3442 | 657          | -   | -           | -             | -            | -      | -                                    | 2500                                             | In800H<br>(bare)   | -             | -   |      |       |       |
|                                 | 0.5547 |              |     |             |               |              |        |                                      | 690-980<br>(depend on<br>coating<br>treatments)  | In800H<br>(coated) |               |     |      |       | [20]  |
|                                 | -      | -            | -   | -           | -             | -            | -      | 700 (in<br>Nitrogen)                 | 4520                                             | SS310<br>(bare)    |               |     |      |       |       |
|                                 | -      | -            | -   | -           | -             | -            | -      |                                      | 190-3340<br>(depend on<br>coating<br>treatments) | SS310<br>(coated)  |               |     |      |       |       |
|                                 | -      | -            | -   | -           | -             | -            | -      | 650                                  | 7490                                             | SS347              | -             | -   |      |       |       |

|                       |                                 |       |         |      |     |           |   |             |     |       |        |           |      |          |
|-----------------------|---------------------------------|-------|---------|------|-----|-----------|---|-------------|-----|-------|--------|-----------|------|----------|
|                       |                                 |       | -       | -    | -   | -         | - | -           | 700 | 12450 | SS310  | -         | -    |          |
|                       |                                 |       | -       | -    | -   | -         | - | -           | 700 | 14310 | In800H | -         | -    |          |
|                       | KCl                             |       | 355     | -    | 700 | 0.420     | - | 1.197       | -   | -     | -      | 1520      | 1.15 | [18]     |
|                       | LiCl                            |       |         |      |     |           |   |             |     |       |        |           |      |          |
|                       | NaCl                            |       | 445     | -    | 700 | 0.500     | - | 1.096       | -   | -     | -      | 1680      | 1.36 | [18]     |
|                       | MgCl <sub>2</sub>               |       |         |      |     |           |   |             |     |       |        |           |      |          |
| <b>Fluoride Salts</b> | LiF                             | 0.177 | ~400    | ~900 | 400 | 1.170     | - | -           | 465 | 8-12  | SS316L | -         | -    | [6]      |
|                       | Na <sub>2</sub> CO <sub>3</sub> | 0.281 |         |      |     |           |   |             |     |       |        |           |      |          |
|                       | K <sub>2</sub> CO <sub>3</sub>  | 0.542 |         |      |     |           |   |             |     |       |        |           |      |          |
|                       | NaF                             | 0.080 | 385     | 850  | 700 | 0.500     |   | 1.510       | -   | -     | -      | 1750      | -    |          |
|                       | NaBF <sub>4</sub>               | 0.920 |         |      |     |           |   |             |     |       |        |           |      |          |
|                       | LiF                             | 0.465 | 454     | 850  | 700 | ~0.6-1.0  | - | 1.890       | -   | -     | -      | 2020      | -    |          |
|                       | NaF                             | 0.115 |         |      |     |           |   |             |     |       |        |           |      |          |
|                       | KF                              | 0.420 |         |      |     |           |   |             |     |       |        |           |      |          |
|                       | Other fluoride salts            |       | 385-510 | -    | 700 | 0.28-0.92 | - | 1.090-1.460 | -   | -     | -      | 1700-3140 | -    | [18, 22] |