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Abstract

Cropland management practices that restore soil organic carbon (SOC) are increasingly
presented as climate solutions that also enhance yields. But how often these benefits align at the
farm level — the scale of farmers’ decision-making — remains uncertain. We examined
concurrent SOC and yield responses to cover cropping, including their direct connection, with a
global meta-analysis. Cover cropping simultaneously increased yields and SOC in 59.7% of 434
paired observations. Increases in SOC helped increase crop yields in soils with initial SOC
concentrations below 11.6 g kg™'; for example, a change from 5 g kg to 6 g kg increased yields
by 2.4%. These yield benefits did not vary with nitrogen inputs or cover crop type, suggesting
they are not substitutable with fertilization. Integrating legume cover crops into systems with
simplified rotations or with nitrogen inputs < 157 kg N ha' season™” led to the largest yield
increases (up to 24.3%), with legumes also increasing SOC more than non-legumes (upto 1.5 g
C kg™"). By simultaneously increasing yields and SOC, targeting cover crops on low carbon soils
is an opportunity to benefit both food security and climate.



Soil organic carbon (SOC) is considered a critical component of soil health. In agroecosystems,
soil health is a metaphor that describes the degree to which soils support multiple functions
beyond just crop productivity'2. SOC influences multiple soil-based ecosystem services, such as
nutrient cycling and retention, soil aeration and structural integrity’, climate regulation®, and
possibly crop productivity®. The concentration of SOC has thus become one of the most common
metrics for assessing the state of a soil’s health®.

Despite the various benefits that SOC is thought to provide’, agricultural expansion and
intensification have dramatically depleted SOC across the world®. Practices that sequester SOC,
defined here as practices where soil carbon inputs are greater than outputs, are garnering
increasing attention for their potential to restore soil functionality while simultaneously drawing
down atmospheric carbon®'®. Cover cropping is one such cropland practice. Grown on fallow
soils otherwise left bare, cover crops increase organic matter inputs to the soil in the form of crop
detritus and root exudates. Recent meta-analyses showed that cover cropping increases SOC by
0.21-0.56 Mg C ha™ yr! "3 highlighting its potential to restore some portion of the 116 Pg of
global SOC that has been lost since the dawn of agriculture®.

But the extent to which farmers will voluntarily adopt C sequestering practices hinges on more
than just their potential to mitigate climate change or restore soil health'*!>. How a practice
influences crop productivity and farm profitability is central to farmers’ management decisions.
Recent meta-analyses show that cover cropping typically increases crop yields'®!”. Yield increase
estimates range from 6% to 33% depending on cash crop type, cover crop type, fertilizer
additions and other factors like aridity'®, although some studies show crop yield decreases as
well'®"7. However, since syntheses of how cover cropping affects SOC and yields have been
conducted separately, it is not known how often cover cropping simultaneously increases SOC
and yields (co-benefits) at the same location, increases or decreases one but not the other
(trade-offs), or even decreases both SOC and yields (co-costs). Perhaps more importantly, it is
also not known if there are management, edaphic, or environmental conditions in which the
largest yield increases are most likely to align with the largest SOC increases. Understanding the
potential for co-benefits will help inform decision-making at the farm level and will help identify
areas of overlap between farm level benefits and benefits for society that might occur at regional
or global scales.

When yield increases do result from cover cropping, a critical knowledge gap is the relative role
of changes in SOC in driving these increases, versus other cover cropping effects, such as
nutrient scavenging'’. Understanding the role that SOC plays in yield changes under cover
cropping would contribute to recent calls to better quantify the relationship between SOC and
yields generally>*.

The widespread expectation that increasing SOC will increase crop productivity exists®*!' %
because, as part of soil organic matter, SOC is related to many soil properties and functions that
are important for plant productivity like nutrient and water provisioning. However, evidence of a
relationship between SOC and yield remains contradictory and inconclusive®**2®. Pot
experiments show a positive and causal relationship between SOC and plant growth, up to a
threshold of ~3% SOC?**, but limited inference — beyond the direction of causality — is
reasonable from few controlled environment studies that artificially manipulate SOC. Other


https://www.zotero.org/google-docs/?1yjDmw
https://www.zotero.org/google-docs/?HK1lnb
https://www.zotero.org/google-docs/?LGPprl
https://www.zotero.org/google-docs/?kNBIY6
https://www.zotero.org/google-docs/?fp9Icb
https://www.zotero.org/google-docs/?xwSi2D
https://www.zotero.org/google-docs/?05n7pV
https://www.zotero.org/google-docs/?sawLRM
https://www.zotero.org/google-docs/?v5NM1J
https://www.zotero.org/google-docs/?zvtTTR
https://www.zotero.org/google-docs/?g1qewk
https://www.zotero.org/google-docs/?43Gozh
https://www.zotero.org/google-docs/?FPVek6
https://www.zotero.org/google-docs/?zsrQZt
https://www.zotero.org/google-docs/?kucK7P
https://www.zotero.org/google-docs/?s3EyCW
https://www.zotero.org/google-docs/?7giuqr
https://www.zotero.org/google-docs/?sweBtY
https://www.zotero.org/google-docs/?TO4lFy

attempts to circumvent this challenge use observational data, but the lack of controls and
covariation between SOC and other environmental and management variables create complex
interactions that can be difficult to tease apart even using multivariate approaches’**. Using
similar meta-analytic techniques, recent studies have reported positive effects of SOC on
yield>?, little to no effects®®, and negative effects®. In addition, observational studies examining
SOC-to-yield relationships span very wide ranges of SOC>*. These regional or global
SOC-to-yield relationships are generally not applicable to an individual farmer since SOC
increases following changes to management are often modest (e.g., relative increases of 5-6%
SOC for cover cropping and reduced tillage®).

Meta-analysis of studies on agricultural practices expected to shift SOC, such as cover cropping,
provides an alternative approach to quantifying the SOC-to-yield relationship®. By pairing
treatments with relevant control values, relationships between changes in SOC and changes in
yield can be quantified in such a way that eliminates the confounding effects that result from
observational data (e.g., between climate or edaphic factors that influence both SOC and yields).
While other effects can also confound or obscure the SOC-to-yield relationship in this approach
(e.g., increases in both nitrogen availability and SOC from legume cover crops or increases in
crop productivity that could also lead to SOC increases®), building a broad yield model that
examines possible confounders can increase confidence in the causality and context-dependence
of SOC eftects on yield.

We use a global meta-analysis to determine how cover cropping affects SOC and crop yields
simultaneously, and the extent to which changes in crop yield (Ay,,) are related to changes in
SOC (Agoc). We thus build on previous meta-analyses that assess how cover cropping affects
SOC or yields individually by linking these responses together in a paired treatment-control
meta-dataset. We asked 3 questions: 1) Are co-benefits, i.e., simultaneous increases in crop
yields and SOC, the most common response to cover cropping? 2) Do changes in SOC link
directly to changes in yield and, if so, is this association related to nitrogen (N) inputs? 3)
Regardless of direct links between SOC and yield, are there edaphic, environmental, or
management conditions where co-benefits of increased SOC and yield from cover cropping are
more likely to be maximized? We compiled an exhaustive database of paired yield and SOC
responses to cover cropping and constructed models with factors mediating their individual and
joint responses. By building comprehensive models to identify and quantify important predictors
of yield and SOC changes from cover cropping, our study not only helps with farm-level
decisions regarding cover cropping, but also informs policymakers seeking to quantify the
impact of cropland carbon sequestration on global food production capacity.

Results
Joint impacts of cover cropping on crop yields and SOC

Based on 434 observations spanning five continents (Fig. S1), cover cropping had a strong
positive effect on both SOC and yield. The linear mixed effect models, based on observations
from all management types and sites, predicted yield and SOC changes of +10.9% [95% CI: 7.5
— 14.5] and +1.07 g kg' [95% CI: 0.82 — 1.32], respectively. The average initial SOC
concentration of our dataset was 15.5 + 9.2 g kg (standard deviation) at an average sampling
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depth of 0-18.4 cm + 7.3 cm (standard deviation). Mean maize, rice, and wheat yields (the three
most common cash crops in the dataset) in control plots were 7.3 = 4.0, 3.7 £ 2.0 and 4.2 + 2.0
Mg ha'! (+ standard deviation). The average experiment length (time from beginning of the
experiment to sampling of SOC) was 7.7 yrs.

In 59.7% of the 434 paired observations in our dataset, cover cropping increased both SOC and
yields (Fig. S2). Trade-offs, in which either SOC or yield increased while the other decreased,
accounted for about one-third of observations. In 20.7% of paired comparisons, cover crops
increased SOC but decreased yield; in 12.9% of cases, cover crops increased yields but
decreased SOC. Co-costs, in which cover cropping negatively affected both yields and SOC,
accounted for 6.7% of paired observations.

Explaining variability in crop yield responses to cover cropping

To help explain variation in crop yield responses to cover cropping and drivers underlying
patterns of co-benefits and tradeoffs, we considered 29 possible management and environmental
variables as moderators (Table S1). Significant predictors in our yield change (Ay,,) model
included an interaction between SOC change (Agyc) and initial SOC, in addition to rotational
complexity and N fertilizer, with each of the latter interacting with cover crop type (legume vs.

non-legume) (Table 1; Table S2). Marginal R2 of our Ay,;; model was 0.25 and conditional R2

was 0.89, indicating unmeasured site-level effects account for a substantial proportion of
variation. Addition of other variables like soil texture, sampling depth, or phosphorus inputs did
not improve model fit (Table S2).

Table 1. Standardized coefficients and type III ANOVA results from our Ay,,, model (n = 417). df is numerator and
denominator degrees of freedom, respectively, with Kenward-Roger approximation for denominator degrees of

freedom. Ay, is the log cash crop yield response ratio. Agyc is the SOC change from cover cropping (g kg™'). Initial
SOC is SOC (g kg™ prior to cover cropping. Cover crop type is binary categorical; legume vs non-legume coded 1
and 0, respectively. N fertilization is in-season cash crop N fertilization (kg N ha™' season™). Rotational complexity is
a categorical variable corresponding to the number of different cash crop species in rotation throughout the
experiment. p-values in italics are considered significant at a = 0.05. fStandardized coefficients are not presented
for this categorical variable with multiple levels.

Ay,o1s Model Results
Variable Standardized df p-value
Coefficients

Initial SOC 0.01 1,92 0.63

Asoc 0.04 1,43 0.06

Cover Crop Type -0.14 1,24 0.59
Rotational Complexity + 2,71 <0.001
N Fertilizer -0.13 1,29 <0.001




Absolute Latitude -0.05 1,88 0.09
Agoc X Initial SOC -0.08 1,71 <0.01
Rotational Complexity X Cover Crop n 2,25 <0.001
Type
N Fertilizer X Cover Crop Type 0.17 1,25 <0.001
Agoc X Cover Crop Type -0.04 1,32 0.16
Agoc X N Fertilization 0.0 1,36 0.99

We found that SOC changes from cover cropping (Agoc) were associated with yield changes
(Ayiw), but only in soils with initial SOC values of 11.6 g kg™' or less (Fig. 1). In soils with initial
SOC values of 5 g kg, for instance, a 1 g kg increase in SOC was associated with a 2.4% yield
increase. In soils with initial SOC values greater than 11.6 g kg™, Aqoc was not significantly
associated with Ay, The Agoc-to-Ay.,, relationship did not differ between cover crop types

(legume vs. non-legume) and did not vary across differing levels of N fertilization.
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Fig 1. Yield change associated with a 1 g kg increase in SOC (e.g., from 5 g kg™ to 6 g kg™) at differing levels of
initial SOC. Initial SOC is SOC (g kg™) prior to cover cropping (0-18.4 ¢cm depth on average). Shaded bands are
95% Cls. Increased SOC is positively associated with yield (red) only in sites with below average initial SOC (less
than 11.6 g kg™). 90% of observations fell within the initial SOC range shown. 40 out of 92 study sites in our dataset

had initial SOC levels below 11.6 g kg™

A SOC Effect

I Positive

I Not Significant



The effect of rotational complexity on Ay, differed between legume cover crops and
non-legume cover crops (Fig 2B, Fig 2C). Holding other predictors at their dataset average, Ay,
in legume cover crop treatments was significantly greater in continuous cash crop monocultures
(+24.3%, 95% CI: 18.1 — 30.8) versus rotations with two (+11.0%, 95% CI: 3.1 — 19.5) cash crop
species (Fig 2B). For rotations with 3 or more cash crops, Ay, from legume cover crops was not
statistically different from zero. For non-legume cover crops, the magnitude of Ay, across
rotational complexity groups varied but not significantly so. Holding other predictors at their
dataset average, non-legume cover crops significantly increased yield in continuous cash crop
monocultures (+7.8%, 95% CI: 1.7 — 14.2) and plots with 3 or more cash crops in rotation
(+20.9%, 95% CI: 8.3 — 35.0) (Fig 2C). Ay, from non-legume cover crops in two-crop rotations
was positive but overlapped zero (+7.2%, 95% CI: -0.8 — 15.9)

We found that increased N fertilization reduced Ay,,, in legume cover crop treatments but did not
have a significant effect on Ay, from non-legume cover crops (Fig 2D, Fig 2E). Legume cover
crops in low N systems (12.9 kg N ha' season’, one standard deviation below the mean N
fertilization of our dataset) increased yield by +20.4% (95% CI: 13.8 — 27.4) and in average N
systems (85.9 kg N ha™ season™) increased yield by +13.0% (95% CI: 7.0 — 19.3) (Fig 2D). In
systems receiving more than 157 kg N ha™' season™, we found no statistically significant effect of
legume cover crops. Non-legume cover crops provided yield increases in low (+9.5%, 95% CI:
2.9 — 16.6), average (+11.8%, 95% CI: 5.2 — 18.7), and high (+14.1%, 95% CI: 6.2 — 22.6) N
systems (Fig 2E).
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Fig 2. Cash crop yield change from cover cropping at different levels of rotational complexity (“Rotations”) and N
fertilizer (kg N ha' season™) in our yield model (n = 417, k = 88). Selected N fertilizer levels are dataset mean + sd
with low, average, and high N corresponding to 12.9, 85.9, 158.9 kg N ha" season™, respectively. Rotational
complexity (“Rotations™) is a count of the number of different cash crop species rotated on a given plot across the
length of the experiment. Yield change estimates are shown for both legume and non-legume cover crops. Letters
are pairwise comparison results with different letters indicating significantly different effect sizes at a = 0.05.



Numbers in parentheses are observations in each grouping followed by the number of unique sites in each grouping
(not presented for N fertilizer because displayed estimates correspond to selected values along a continuous axis
rather than groupings). Error bars are 95% Cls.

SOC responses to cover cropping

Our Agoc model included site level aridity and an interaction between cover crop type (legume vs
non-legume) and N fertilizer inputs (kg N ha) as variables which moderated the effect of cover

crops on SOC (Table 2; Fig. 3). Marginal R® was 0.15 and conditional R*was 0.82. In line with

the findings of McClelland et al. (2021), we found that experimental length (i.e., time since
introduction of cover crops) was not a good predictor of SOC response. Addition of other
variables such as initial SOC, mean annual precipitation, phosphorus fertilization, and tillage did
not improve model fit (Table S3).

Table 2. Standardized coefficients and type III ANOVA results from our Agor model (n = 418, k = 88). df is
numerator and denominator degrees of freedom, respectively, with Kenward-Roger approximation for denominator
degrees of freedom. Ag is the measured cover crop treatment SOC concentration (g kg™') minus the measured SOC
concentration of the paired control (g kg') . Cover Crop Type is binary categorical; legume vs non-legume coded 1
and 0, respectively. Aridity is an index of site level aridity (low numbers are more arid). p-values in italics are
considered significant at « = 0. 05.

Agoc Model Results
Variable Standardized df p-value
Coefficients
Cover Crop Type -0.68 1,32 <0.001
N Fertilizer -0.54 1,64 <0.01
Aridity 0.71 1,71 <0.01

We found that non-legume cover crops were less effective at increasing SOC than legume cover
crops (+0.69 g C kg™, 95% CI: 0.4 — 0.98 versus +1.37 g C kg™, 95% CI: 1.11 — 1.63; Fig 4D).

Cover crops were less effective at increasing SOC in more arid sites (Fig 4D). In higher aridity
sites (one standard deviation above the dataset average, roughly in line with areas such as the US
Corn Belt or Southern India) cover cropping increased SOC by +0.70 g C kg™ (95% CI: 0.39 —
1.00) (Fig 4D). In lower aridity sites (one standard deviation below the dataset average, roughly
in line with areas such as northern Japan or Southwestern Brazil), cover crops increased SOC by
1.37 g C kg (95% CI: 1.00 — 1.73).
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Fig. 3. SOC change (g kg') from both cover crop types (legume vs non-legume) across differing levels of N
Fertilizer as well as SOC change estimates at selected values of site level aridity (“Aridity”) in our SOC model.
Selected N fertilizer levels are dataset mean + sd with low, average, and high N corresponding to 12.9, 85.9, 158.9
kg N ha season, respectively. Selected aridity levels are dataset mean + sd. Cover crop type is binary categorical;
non-legume vs legume. Letters are pairwise comparison results with different letters indicating significantly
different effect sizes at a = 0.05. Numbers in parentheses are observations in each grouping followed by the
number of unique sites in each grouping (not presented for N Fertilizer and Aridity because displayed estimates
correspond to selected values along a continuous axis rather than groupings). Error bars are 95% Cls.

Discussion

In our meta-analysis of 92 experiments spanning 5 continents, we found that cover crops
increased crop yields concurrently with SOC in 59.7% of 434 paired observations, thus
providing a win-win outcome for farmers and society a majority of the time. Agy- was directly
associated with Ay, only in soils with relatively low SOC prior to cover cropping. The yield
benefit of increased SOC did not diminish in systems with higher N inputs and did not differ
between cover crop types (legume vs non-legume), indicating that N inputs cannot substitute for
changes in SOC that link to higher yields. The largest SOC increases occurred in legume cover
crop treatments (+1.5 g kg™') and the largest yield increases also occurred from legume cover
crops in systems with low to average N inputs and in 1-2 crop rotations (up to +24.3%).

Direct relationships between changes in SOC and yield

As the source of carbon input to soil, photosynthesis is the most fundamental constraint on SOC
sequestration®'. Cover cropping is considered one of the most promising approaches to increase
SOC in agricultural soils, in part because it increases net primary productivity (NPP) relative to a
bare fallow, and thus carbon inputs to soil*'*2. Cover cropping may also increase the carbon use
efficiency of the soil microbial community*’, which determines the proportion of carbon inputs
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remaining in soil as microbial necromass, recognized as the primary source of stabilized soil
carbon®*. However, since cover crops not only can help build SOC, but also may increase crop
productivity directly, i.e., in ways not mediated through changes in SOC, disentangling whether
cover crops build SOC directly or build SOC through their effects on cash crop productivity is
challenging®. In our study, this is an important question to address in order to interpret the
positive association between changes in SOC and changes in yield.

The relative changes in NPP from increases in crop productivity vs. cover cropping suggest that
cover cropping is the dominant influence on SOC. In this study, if we assume half of cash crop
biomass would be removed as yield*’, then the average increase in cash crop biomass returned to
soil as residue for the three most common cash crops in the study was 0.9 (maize), 0.5 (rice), and
0.4 (wheat) Mg ha'. Conversely, cover crop biomass of 3-7 Mg ha™' yr' or higher is common"!
and consistent with the average increase of biomass on cover-cropped plots in this study of 5.1
Mg ha'! yr' (n=133, k = 47), or 2.2 Mg ha™' yr' when winter weeds in fallow plots are taken into
account (n = 49, k=18). With all of the cover crop biomass typically returned to the soil, this is
~2.5-5.5 times greater biomass from cover crops directly than from changes to cash crop
productivity. As opposed to the non-significant effect of absolute cash crop yield change on Ag¢
(p = 0.32), only the difference in cover crop biomass between treatment and control plots was a
significant predictor of the absolute change in SOC (p < 0.01; n =49, k= 18) (Table S4). Thus,
we conclude that cover crops directly increase SOC with possible additional but smaller indirect
(non-SOC mediated) effects from cash crop productivity.

Further, if yield increases from cover cropping were driving the positive Agoc-to-Aye,
relationship, leading to higher SOC?’, then this mechanism should increase SOC in soils
regardless of initial SOC level, especially since the Agy- model showed no signs of SOC
saturation in soils with higher initial SOC concentrations (i.e., initial SOC was not a predictor of
Asoc). The best explanation for this interaction is that the positive Agyc-to-Ay,,; response in low
SOC soils is a reflection of decreasing marginal yield benefits from increased SOC in higher
initial-SOC soils.

Our experimentally based approach identified a Agy-to-Ay.,, response that does not vary based
on N inputs or with legume vs. non-legume cover crops, as indicated by the lack of significant
interactions between Agyc and these predictors. A negative Agyc by N fertilization interaction
would have indicated that the yield benefit from SOC was substitutable for N inputs and
therefore N related. Likewise, if the Agyc-to-Ay,,, relationship differed between legume and
non-legume cover crops, then some portion of the SOC benefit likely would have been a
reflection of yield benefits from N fixation. In the absence of these interactions with Agyc, the
link we found between Agy- and Ay, is likely better explained by benefits of increased SOC like
reduced compaction and increased aeration’. Our results thus help to identify and quantify the
yield benefits of soil improvement provided by SOC for which fertilization cannot substitute.

We only found marginal yield increases from changes in SOC when SOC prior to cover cropping
was less than 11.6 g kg', which helps clarify contrasting results of prior observational
meta-analyses. For instance, in a meta-analysis of Danish farms showing no relationship between
yield and SOC?*, there were very few observations with SOC concentrations below 11.6 g kg™'.
On the other hand, a study from China reporting positive and linear relationships between yield
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and SOC* had few observations over ~15 g kg', whereas a global meta-analysis that also
showed a saturating yield benefit had a similarly wide range of SOC values as this study’. The
yield benefit of increased SOC that we identified is slightly less than that reported in the latter
study. For a hypothetical increase from 5 g kg™ to 8 g kg!, our model predicted a +7.9% yield
increase, compared to the +10% yield increase previously reported’. An increase of this size may
take a number of years of improved management.

& | T
420° -60° 0° 60° 120°
Cropland as proportion of land (%) .
25 50 75 100

Fig. 4: Global croplands with SOC concentrations < 11 g kg™ in black (5-15 cm). Continent borders are outlined in
light gray.

Aligning carbon sequestration goals with yield benefits

Regardless of direct links between Agye and Ay,,;, we found that incorporation of legume cover
crops into systems with one to two cash crops in rotation could build SOC while also increasing
crop yields. Legume cover crops provided increases of +1.5 g kg SOC and +24.3% yield in
continuous monocrop cultures. In two crop rotations, legume cover crops increased yield by
+11.0% while the +1.5 g kg' SOC increase remained unchanged (i.e., rotation was not a
significant predictor of Agyc). Yield benefits of crop rotation diversification are well-known?**’
and based on our results here, appear to be redundant with legume cover crops in more complex
rotational systems. This suggests a need for further research on how to optimize cover crops in
more complex cash crop rotations, e.g. with mixes of cover crop species™ .
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We identified low to average N input systems as other key farm types where cover crops support
alignment between carbon sequestration goals and yield increases. Effects of cover crops on
SOC declined as N inputs increased, and yield benefits from legumes were highest in low N
input systems. Legumes could thus allow for increasing yields while keeping synthetic N
fertilizer inputs low or even reduced®, which also comes with environmental benefits. When
legume cover crops are introduced, reducing N fertilizer inputs would help counterbalance
possible increases in nitrous oxide emissions that can occur in legume systems***!,

The larger SOC response from legumes compared to non-legume cover crops (+1.37 g C kg™ vs
+0.69 g C kg') contrasts with no effect of cover crop type found in prior meta-analyses'"",
possibly due to their more limited datasets. With relatively more labile plant inputs that microbes
efficiently use, legumes may be particularly effective at building soil organic matter pools,
including mineral associated organic matter, that are both stable and supply N***>*_ Greater
absolute changes in SOC in less arid climates may be due to higher cover crop NPP. While
aridity was not in our final Ay, model, other studies show cover cropping leads to higher cash
crop yields in less arid climates'®*, suggesting that such areas may be most likely to have
co-benefits for SOC and yields.

Our global meta-analysis demonstrates that the goal of building soil carbon through cover
cropping aligns with the goal of increasing or maintaining crop yields. Importantly, since these
goals align at the site level ~60% of the time, benefits of higher yields for farmers are achievable
concurrently with the societal benefit of carbon sequestration'’. Yield benefits related to SOC
were only evident in soils with initial SOC concentrations below 11.6 g kg'(43.4% of studies in
our dataset). This finding suggests that direct yield benefits from SOC increases could help
motivate farmers’ adoption of SOC enhancing practices in soils with low SOC. Globally,
approximately 20% of cropland has SOC concentrations in the 5 - 15 ¢cm depth of 11 g kg™ or
lower (Fig. 4). Cover-cropping could improve both productivity and SOC accrual on more than
~40 Mha of maize and wheat cropland which are producing below-potential yield on land
predicted to have less than 11 g kg™ SOC (Figure S4, Table S5). Other incentives will be needed
for farmers with SOC levels greater than ~11 g kg, especially when socio-economic factors
constrain cover crop adoption*. Climate factors like short growing seasons and low water
availability can also limit cover crop adoption'®.

We therefore suggest that determining the conditions for which changes to agricultural
management provide co-benefits for crop yields and SOC — rather than establishing universal
relationships between SOC and yield — will be more useful for spurring agricultural transitions
that produce food while also mitigating climate change. To achieve carbon sequestration goals
while supporting crop yields, diversifying simplified rotations with legumes is a promising
strategy given that legumes often provided the largest benefit to both SOC and yields. Likewise,
in low to average N input systems, the greatest yield benefits can be aligned with the greatest
SOC benefits through the use of legume cover crops. For systems with complex rotations or high
N inputs, non-legume cover crops are a better choice to support yield goals, though SOC changes
may be lower. Identifying when and where agricultural management practices deliver direct
benefits to farmers and contribute to climate change mitigation will help with the urgent need to
increase the carbon sink of agricultural lands.
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Methods
Study Selection

We selected cover cropping studies according to the following criteria: 1) the experimental
design includes one or more replicated cover cropping treatments, defined as a non-harvested
crop grown between productive seasons; 2) the study includes a clear control as either bare
fallow or spontaneous off-season regrowth (e.g., “winter weeds”); 3) data are available for both
SOC and cash crop yield, each measured no more than one year apart; 4) cash crop yield is
measured as fruit or grain; 5) yield and SOC are available as yearly or monthly values rather than
averages across multiple years (for maximum accuracy in matching SOC values with associated
yields); and 6) annual fertilizer inputs are equal across control and treatment or are administered
based on pre-season soil tests. Potted plant experiments were not included in our dataset.

We began our literature search with the study lists of two recent cover cropping
meta-analyses'*!'” and subsequently searched ISI Web of Science for additional studies that
matched our criteria using the search string TS=((cover crop®* OR catch crop OR fallow OR
green manure) AND carbon AND yield). In October 2020, the date of our final search, our
search string returned 2,451 studies. If an article reported only SOC data or yield data, we used
key terms related to the experiment to search Google Scholar for articles reporting on the same
experiment in order to fill in the missing data. In 11 instances, gray literature sources such as
master’s theses, dissertations and conference proceedings were used to supplement data from
peer-reviewed publications. In addition to Google Scholar searches, 36 authors were contacted
for additional data or methodological clarifications, out of which 8 responded and 3 provided
additional data and/or information.

Our final dataset spanned 5 continents and contained data from 92 distinct experiments gathered
from 120 sources (107 peer reviewed journal articles, 6 master’s theses, 2 dissertations, 3
publicly available datasets, and 2 conference proceedings). A list of data sources used in the
study along with extraction notes is provided in the supplementary material.

Data Compilation and Extraction

We quantified the effect of cover crops on yield using the log response ratio, calculated as the
natural log of the cover crop treatment value divided by that of the respective fallow control. For
SOC, we used the absolute difference in SOC between the cover crop and control plots, which
allowed us to assess the influence of initial SOC without the possibility of statistical artifacts
associated with relative differences*’. Within a given study, a treatment value was matched to a
control value only if both groups differed in no other respect than the use of cover cropping (e.g.,
same tillage regime, same N application, etc.) and if the treatments were sampled at the same
time. This aspect of our study design allowed us to control for confounding effects that would
otherwise be introduced in a direct comparison of raw values between studies such as
environmental conditions, management decisions, or edaphic factors. In the case of the yield
response to cover cropping, our use of the RR allowed us to make comparisons across crops with
different morphological characteristics (e.g., tomatoes vs. cotton) because weight units are
normalized by the ratio. Site-level initial SOC values were not available for some of the studies
in our dataset. To approximate missing site-level values, we used the earliest SOC sample
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available for the non-cover crop control, assuming that the field had likely been under a no-cover
crop planting regime prior to the initiation of the cover cropping experiment. We combined soil
metrics and variance measures reported from multiple depths into one single depth using a
weighted average which took into account the size of each depth increment relative to the total
depth sampled. Fig. S9 shows a histogram of deepest sampling depth. In our model selection
process, we assessed the impact of sampling depth as a moderating factor of the effect of SOC on
yield. Although differing sampling depths across studies have the potential to obscure trends
when comparing raw SOC values, we did not find that sampling depth was a significant predictor
of initial SOC values in our dataset. We therefore opted to test initial SOC effects using raw SOC
values.

Data Analysis

We collected sampling variances when available to assign weights to data points. However, only
30% of studies reported some form of variance. Following previous work, we chose instead to
weight our observations using sample size of the treatment and control groups which gave high
weight to larger, well-replicated studies*®™. Our weighting formula (eq. 1) includes the common
weighting ratio based on treatment group sample size (nt) and control group sample size (nc) as

well as a correction term dividing by the total number of observations contributed by a given
study (N). This additional step is meant to ensure that no study contributes a disproportionate
amount to the final model simply because it contained more extractable data points than
another’'.

(Eq. 1) W o=—t—x-X

We modeled study site as a random effect to account for the non-independence of these data
points, and nested sampling year within study site to account for temporal non-independence. To
build models for both Agyc and Ay,,;, we implemented a model selection process which utilized
Akaike Information Criterion (AIC)*?scores to select final predictors which we had hypothesized
may be mechanistically related to Agyc or Ay, Variable relevance was determined by comparing
weighted mixed effect models of each variable as a solitary predictor of each response variable
against the corresponding model containing only the intercept. Because of incomplete data for
certain predictor variables, model comparisons between the solitary predictor and the
intercept-only model were done using complete data subsets for the solitary predictor. If the
regression containing the solitary predictor variable resulted in an AIC score more than two units
below that of the intercept-only regression (i.e., AAIC <2), the variable was included in our final
multiple regression model. We did not perform any further model selection because complex
model selection decisions are often subjective and can change results considerably®. For our
Ay model, we tested interaction terms between Ag,. and soil texture metrics, as well as an
interaction between Ago- and initial SOC (SOC concentration prior to cover cropping), as per
previous findings’. Lastly, we tested interaction terms between cover crop type (legume vs
non-legume) and yield predictor variables whose effects we hypothesized may be influenced by
N fixation such as N fertilization, rotational complexity and Ag,.

In both models, we checked for collinearity among variables using generalized variance inflation
factors (GVIF) with the following adjustment to allow for comparability across variables with
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1

differing degrees of freedom> (df): Adjusted GVIF = (GVIF)*” . We considered adjusted
GVIF values of 3 and higher to indicate potential collinearity™. The only cases of collinearity
involved models that included annual temperature and precipitation and the aridity index. These
variables were assessed separately in regression models and the final variable chosen based on
AIC. We centered predictors so that 0 corresponded with the observed mean of each predictor by
subtracting the dataset mean from each observation and subsequently standardized coefficients
by dividing by two standard deviations®®. In our Ay, model, cover crop type was coded as 1 and
0 to allow for comparison of standardized coefficients™.

In order to determine whether changes in cash crop yield from cover cropping were driving
changes in SOC vs. changes in SOC from cover cropping driving changes in yield, we built three
separate weighted mixed effect regressions for Ay (Table S4). We tested cover crop
aboveground biomass as a solitary predictor of Agy and subsequently cover crop aboveground
biomass difference (cover crop aboveground biomass minus aboveground biomass of
spontaneous off-season regrowth in control plots when this data was available) as a solitary
predictor of Agyc. Finally, we tested absolute cash crop yield change (the measured cash crop
yield of the cover crop treatment in Mg ha' minus the measured cash crop yield of the paired
fallow control (Mg ha™)) as a solitary predictor of Ag,.. For absolute cash crop yield change,
only crops with yields reported in constant dry weight and with harvest indexes of approximately
0.5 were included since absolute yields of these crops are comparable (e.g., vs. tomatoes, with
yields reported in wet weight) as a proxy for total aboveground biomass.

All analyses were performed using R Statistical Software v4.2.0°7. We built mixed effect
regressions using the package ‘lme4’*® and determined fixed effect F-values using a type III
ANOVA in the °‘stats’ package’’. We used the package ‘emmeans’ to quantify interaction
effects”. We used pairwise comparison in the package ‘emmeans’ to determine significant
differences among levels of categorical variables using a = 0.05 with a Bonferroni adjustment
for multiple comparisons®. To determine the significance of different levels of our moderating
factors, we checked to see whether their 95% confidence intervals (95% CI) overlapped zero,
with no overlap indicating a rejection of the null (zero effect) at a = 0.05. When reporting
response estimates at specific values of predictor variables, we held all other predictor variables
at their dataset average. We used the Kenward-Roger approximation for denominator degrees of
freedom in all p-value calculations®'.

Assessing Bias and Outliers

Using the ‘InfluencePlot’ function in the ‘car’ package’, we identified highly influential data
points using Cook’s distance and assessed the impact of their removal on our models to gauge
robustness to extreme data points. Starting from the full dataset, we sequentially removed the
point with the highest Cook’s distance in each model and re-ran the models on each trimmed
dataset. Using 10 sets of results for each model, each subsequent one with an additional
influential point removed, we compared changes in effect size coefficients and p-values to
determine if any were highly influenced by one observation (see Table S1 for full comparison
results). We noted one such observation which caused the effect of tillage type on Ay, to be
highly significant. Upon removal of this observation, this effect became non-significant and
successive removal of influential points after this produced stable effect size estimates (Table
S4). As such, we chose to remove this outlier from our Ay,,; model to report robust results which
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reflected the dominant trends in our dataset. In addition to influential data point removal, we
conducted a leave-one-out sensitivity analysis in which we removed studies from our dataset one
study at a time and recalculated coefficient estimates on each trimmed dataset. After performing
this removal for all 92 studies in both our Agy- or Ay, models, we assessed the variability in
coefficient estimates among trimmed datasets (Figs. S5 and S6) and looked for outlier estimates
which would have indicated that one study was having an outsized effect on model fit. In
addition, we looked at each leave-one-out model which pushed coefficient estimates for
significant predictors towards the null (0) and away from the null (0) for non-significant
predictors to see if the significance of any given predictor was dependent on a single study or if
the non-significance of any given predictor was dependent on a single study (either of which
would be a sign of unstable coefficient estimates). We found that variability in all coefficient
estimates was low and that significance or non-significance of any given predictor was not
dependent on any given study. We looked for publication bias in our dataset on both the yield
and SOC RRs using funnel plots (see Fig. S3).
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