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1.0 Introduction 

Pacific Northwest National Laboratory (PNNL) has been a forebearer of international scientific 
research since its establishment in 1965. PNNL is a United States Department of Energy (DOE) 
research site operated by the Battelle Memorial Institute, a scientific nonprofit for the benefit of 
national security. The lab’s primary site in Richland, WA is partially located on the Hanford 
Nuclear Reservation, where all the plutonium for the world’s first atomic bomb was produced 
under the Manhattan Project during World War II (“Hanford Site”). Once scientific research and 
development were separated from other activities at the Hanford site, operations at PNNL 
began. Within PNNL there are seven directorates: Business Services, Earth and Biological 
Sciences, Physical and Computational Sciences, Energy and Environment, Operational 
Systems and Technology, Computing and Information Technology, and National Security (“Lab 
Leadership”). 

The National Security Directorate (NSD) at PNNL contains four divisions: Artificial Intelligence 
(AI) and Data Analytics; Emerging Threats and Technologies; Nuclear, Chemistry, and 
Biosciences; and Physical Detection Systems and Deployment. Every summer, NSD accepts a 
limited number of interns into the National Security Internship Program (NSIP) for hiring into one 
of these four divisions. I was accepted into the 2023 cohort of NSIP into AI and Data Analytics 
as part of the Machine Learning (ML) and Mathematical Modeling Team under my mentor, Dr. 
Margaret (Maggie) Lund. The project on which Maggie needed my help involved utilizing 
mathematical analysis techniques on chemical spectroscopic and spectrometric data, which 
allowed us to synchronize two of the Department of Energy’s key capabilities: Chemical and 
Materials Science, and Computational and Mathematical Sciences (“DOE Capabilities”).  

I am in my last semester at Gonzaga University, obtaining a BS in applied mathematics with a 
minor in chemistry on a pre-veterinary professional track. After a previous summer internship at 
a veterinary clinic that served clients with large, small, and exotic animals, I loved the job but 
didn’t find many passionate veterinarians in the industry. The clients were difficult, the hours 
were long, and the vets suggested that I go into research due to my love of school. Thus, this 
summer I wanted to look for a more research-oriented internship experience. I found that my 
particular skillset didn’t fit well with many internships – there was a need for students in 
chemical and biological laboratories, or for computational mathematics students with fluency in 
multiple coding languages and knowledge in different areas of applied math. While I had a good 
level of experience in both areas, I was not an expert in either. This made it difficult to be 
considered for solely mathematics-based or chemistry-based research internships, despite my 
work ethic and GPA. What I really wanted was to utilize my diverse skillset and learn more 
about the possible applications of an education in mathematics and chemistry, so I was straight-
forward about this during my interview with Maggie. She then informed me that she already had 
an intern, Emily, and hadn’t considered a second one until my recruiter had informed her of my 
interests. In essence, she only interviewed me because of my unique educational experience in 
mathematics and chemistry. This made me feel that the National Security Internship at PNNL 
was the perfect position for me to learn and flourish. With Maggie’s skillset in data analytics, 
Emily’s in machine learning, and mine in chemistry, we had the perfect team of mathematicians 
to conquer the challenges of our project.  

The goal of the project is forensic analysis of food commodities to determine their geographic 
origin and authentication status. Geographic sourcing determines a food’s region of origin using 
its chemical composition to identify biological signatures. Certain biological signatures are 
unique to geography, allowing analysts to determine where a food was originally harvested or 
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produced. Moreover, ensuring the authenticity of a food confirms that it hasn’t been adulterated 
throughout the curation process, benefitting economic security. Adulteration can happen via 
dilution, additives, removals, or substitution of the natural materials within a food without the 
importer or manufacturer declaring that such changes have been made (Mumtaz). This may be 
done to mask the food’s geographic origin, or to save on costs of production. Countries allowing 
imports of adulterated foods are considered victims of economically motivated adulteration, or 
food fraud (Center for Food Safety and Applied Nutrition). For example, the addition of sugar 
syrups, such as high fructose corn syrup, to pure maple syrup without the company declaring 
that there are additives constitutes food fraud. The American public is therefore under false 
pretenses that they’re purchasing pure maple syrup. This leads to more profit for selling less of 
the pure product, and thus compromise of economic security within the US food industry. To 
prevent food fraud, a combination of chemical analysis techniques to analyze food products, 
called foodomics, is utilized (Valdes). This field of analytical chemistry is important to 
government organizations, consumers, researchers, and private food industry worldwide. An 
article published in American Chemical Society best defines this method of food analysis: 
“Foodomics’ was defined to integrate the use of advanced omics technologies, such as 
transcriptomics, proteomics, [genomics,] and metabolomics, together with biostatistics, 
chemometrics, and bioinformatics, to allow the evaluation of complex biological systems, as well 
as the mechanisms of bioactive food compounds that may affect them,” (Valdes). These various 
omics techniques study the RNA transcripts, proteins, genome, and metabolites of a food 
commodity, respectively. 

 

Figure 1. The purposes and names of various omics technologies comprising foodomics. From 
Anal. Chem. 2022, 94, 1, 366–381 by A. Valdés, et al., 2021. 
https://doi.org/10.1021/acs.analchem.1c04678 

 
Utilizing the techniques and theories within foodomics, we were tasked to analyze spectral data 
of various food samples produced by inductively coupled plasma mass spectrometry (ICP-MS) 
and nuclear magnetic resonance (NMR) spectroscopy. When I came onto the project in May, 
Maggie had been working on a program in RStudio that analyzes ICP-MS data and determines 
geographic origin of a food commodity using machine learning algorithms. Thus, my tasks were 
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to refresh my knowledge on ICP-MS theory, understand the spectral dataset, and learn about 
the data science and machine learning techniques used to analyze the spectral data. Though I 
was able to fit this all into one sentence, learning really took up the majority of my first ten 
weeks on the project. I had only worked with ICP-MS spectra in classes and had never utilized 
my skills in mathematics with datasets or machine learning. Once the ICP-MS program was 
finalized and ready to submit to the sponsor, we moved along to exploratory research of the 
NMR dataset. I had more experience with NMR, but the goal to create a computer program that 
analyzes NMR spectra for geographic origin and adulteration analysis was daunting and brand 
new to me. 
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2.0 Inductively Coupled Plasma Mass Spectrometry 

Spectrometry is a chemical analysis technique that produces a spectrum with quantitative 
measurements, as opposed to spectroscopy which requires analysis on the resulting spectra to 
come to a quantitative conclusion. Spectrometric instruments measure interactions between 
light and matter, as well as the “reactions and measurements of radiation intensity and 
wavelength,” (“Understanding Spectroscopy and Spectrometry”). Mass spectrometry produces 
an approximate mass measurement as the quantitative result, where inductively coupled 
plasma mass spectrometry (ICP-MS) uses plasma to atomize a chemical or biological sample, 
measures elemental composition at trace levels, and results in a mass-to-charge ratio of each 
element in the sample. There are two analytic methods utilizing inductively coupled plasma: 
inductively coupled plasma atomic emission spectroscopy (ICP-AES) and ICP-MS. ICP-AES 
has a higher detection limit than ICP-MS, requiring more of an element to be present in a 
sample for it to be detected (Wilchefski). Thus, it isn’t as useful for determining trace levels of 
elements in a sample, as it only measures in parts per million. On the other hand, ICP-MS has a 
much lower detection limit, a higher sensitivity, and can measure elemental composition within a 
wide range: 1000s of parts per million to 1 part per trillion (Wilchefski). Wilschefski and Baxter 
explain the important advantage of using ICP-MS: “From a laboratory perspective, perhaps the 
most significant advantage of ICP-MS is its multi-element capability, which allows multiple 
elements to be measured simultaneously in a single analysis.” Other element detection 
techniques, such as flame absorption and flame emission spectroscopies, can only measure 
single elements in each analysis. This makes ICP-MS a favorable technique for its efficiency 
and production of useful analytical information. 

2.1 How the ICP-MS Instrument Works 
 
The ICP-MS instrument uses an argon inductively coupled plasma source that atomizes a 
sample via ionization, where a mass spectrometer then distinguishes ions by their mass-to-
charge (m/z) ratio (“Elemental Analysis Core”). Ionization occurs when ions are formed by the 
reduction or oxidation of an atom or molecule, thus breaking bonds with other atoms 
(“Ionization”). The chemical or biological sample of interest must be liquid to go through the 
inductively coupled plasma, which is an energy source supplied by electric currents (“Inductively 
Coupled Plasma”). Thus, any solid samples must be diluted or thermally digested, the 
breakdown of large molecules by heat (Ngo). After moving through the plasma, the detector 
counts the number of selected ions per second, allowing the instrument to determine 
concentration of each element. This detector measures in “counts per second,” which, 
intuitively, counts the number of ions hitting the detector every second. The conversion to units 
of concentration requires the use of an external calibration sample, where a sample with known 
elemental concentration values is measured and recorded in the instrument before any samples 
of interest. The resulting spectra has the mass or m/z ratio as the x-axis, indicating the element, 
and intensity, corresponding to concentration and counts-per-second, on the y-axis.  
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Figure 2. A guideline to ICP-MS spectra, where each element measured by the instrument has 
a standard number of peaks and m/z value. From Guideline of inductively coupled 
plasma mass spectrometry by M. F. Al-Hakkani, 2019. 
https://doi.org/10.1007/s42452-019-0825-5 

 

 

Figure 3. Example ICP-MS spectrum for detecting trace mercury (Hg) concentrations in 
samples of wood. From Inductively Coupled Plasma Mass Spectrometry Applications 
by A. Karttunen, 2022. 
https://wiki.aalto.fi/display/SSC/Inductively+Coupled+Plasma+Mass+Spectrometry 
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2.2 When to Use ICP-MS 
 
The fundamental reason for a scientist to use ICP-MS as their analytical method is when the  
elemental composition of a biological liquid or dissolvable-solid is of interest. It can measure 
nearly every element in the periodic table, including many radioactively produced and non-
natural elements. It is the only analytical technique with “such broad element coverage, low 
detection limits, and wide measurement range,” (“An Introduction to the Fundamentals of ICP-
MS”). While it does have significant strengths, there are drawbacks to ICP-MS. It is an 
extremely expensive method, considering the cost of the instrument, ranging from $50,000 to 
$500,000, as well as the cost of calibration samples (Wilbur). It also cannot measure every 
single element: hydrogen and helium are below its mass range; argon, nitrogen, and oxygen are 
present at too high a level due to the plasma and air; and fluorine and neon cannot be ionized in 
argon plasma,” (“An Introduction to the Fundamentals of ICP-MS”). As can be seen in the 
periodic table of standards, there are also many heavy elements that can’t be detected via ICP-
MS. The most important drawback to an analyst is that ICP-MS cannot measure presence of 
chemical compounds and complex molecules or determine the bonding activity between 
elements. This analytical method should only be used when concerned with elemental 
composition, not with functional group or molecular composition. The table below best maps the 
benefits and drawbacks to ICP-MS in comparison to other elemental detection techniques. 
 

 

Figure 4. Comparing the advantages and disadvantages of ICP-MS and alternative techniques 
for elemental detection in biological samples. From Inductively Coupled Plasma Mass 
Spectrometry: Introduction to Analytical Aspects by S. C. Wilschefski and M. R. 
Baxter, 2019. https://doi.org/10.33176%2FAACB-19-00024 
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2.3 ICP-MS in Analytical Chemistry and Research 

2.3.1 Toxic, Therapeutic, Nutritional, and Metabolic Elements 
 
ICP-MS is extremely useful in scientific research, especially in medical and national security 
applications. This technique can be used to detect levels of elements in the blood or urine that 
may be toxic to humans, so if a person’s symptoms coincide with some sort of elemental 
toxicity, a doctor can confirm what element is present and treat accordingly (Wilchefski). In 
addition to determining concentration of harmful elements, it can measure concentration of 
therapeutic elements to ensure the effectiveness and responsiveness to a new medication or 
treatment. ICP-MS can also measure concentration of nutritional elements from food, and the 
body’s naturally produced metabolic elements to confirm that metabolic processes are operating 
as expected. The figure below outlines relevant elements that can be detected by ICP-MS, as 
well as their classification of toxic, therapeutic, nutritional, or metabolic and the range of 
acceptable levels in the blood or urine. 

 

Figure 5. Element concentration ranges that are often detected in biological samples of blood 
or urine. From Inductively Coupled Plasma Mass Spectrometry: Introduction to 
Analytical Aspects by S. C. Wilschefski and M. R. Baxter, 2019. 
https://doi.org/10.33176%2FAACB-19-00024 
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2.3.2 Geographical Sourcing of Food 
 
In addition to applications in the medical field, our national security project utilizes ICP-MS 
spectral data to geographically source food commodities for the benefit of national economic 
security. Origin fraud is the most prominent motivation behind geographical sourcing: “Origin 
fraud, which occurs when plant food is misrepresented in its geographical origin, is a form of 
mislabeling that has a significant impact on the economy and is documented in many countries. 
Agricultural and food products are subject to strict control on their origin to ensure quality during 
import and export,” (Nguyen). The current standard for food traceability is the protected 
geographical indication (PGI) system, which relates a food product’s ingredients to the most 
significant location of production (“Geographical Indications and Quality Schemes Explained”). 
For example, a wine labeled as produced in the Provence region of France must be majority 
(85%) composed of grapes grown in Provence. While the PGI system sources origin using 
reported origin of ingredients, there is a push to approach food traceability from an analytical 
perspective using ICP-MS data (Nguyen). This way, a food’s origin can be confirmed by 
substantial chemical analysis and standards of elemental concentrations corresponding to a 
particular region. This would be particularly effective in plant-based foods: “Generally, trace 
elements represent the geographical tracer in a specific soil condition, and are absorbed via the 
roots and transferred to various parts of the plant. The distribution of trace elements reflects the 
elemental signature of the soil origin,” (Nguyen). Origin fraud is an international issue, so there 
must be an analytical approach to food traceability, as opposed to a standard agreement of 
claiming ingredient origins.  
 
The push for ICP-MS in food traceability is well-researched and supported in literature, but with 
the limited data produced by the instrument, it may make sense to utilize additional analytical 
methods. Nuclear magnetic resonance spectroscopy provides many more data points for a 
single sample and includes much more information regarding chemical composition. 
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3.0 Nuclear Magnetic Resonance Spectroscopy 

Spectroscopy is defined as the “study of the absorption and emission of light and other radiation 
by matter,” and involves the splitting of light in a similar way that a prism splits light into a 
rainbow (“Understanding Spectrometry and Spectroscopy”). The resulting spectrum is 
determined by measuring changes in the intensity or frequency of this radiative energy. In 
contrast to spectrometry, there are no analytical results or measurements without a hands-on or 
automated analysis of the spectrum. It is an inherently theoretical approach to studying the 
sample, as opposed to the practical measurement that spectrometry provides. NMR 
spectroscopy is used to determine the molecular identity and structure of a chemical sample 
and provides a chemist the ability to “characterize molecular structures, monitor the composition 
of mixtures, study molecular dynamics and interactions, and quantify known and unknown 
components” of a compound (“How NMR Works: Spectroscopy”).  

3.1 How the NMR Instrument Works 
 
The NMR instrument generates a strong magnetic field causing atoms in the nucleus of each 
desired element to spin in a manner that depends on the element’s environment. 
Electromagnetic radiation with a certain frequency is applied to generate this field, causing the 
nuclei to align their spins with it (“Physical Chemistry”). The instrument then detects the 
absorption signals within elemental nuclei containing an odd number of protons and/or neutrons 
because odd numbered nuclei “exhibit a built-in magnetic moment and angular momentum” that 
give the nuclei their spin (“How NMR Works: Spectroscopy”). Optional odd numbered nuclei 
include proton (1H), carbon (13C), nitrogen (15N), and phosphorus (31P) NMR, with 1H and 
13C being the most common.  
 
Proton (1H) NMR determines the different kinds of protons in the molecule by their absorption of 
the electromagnetic radiation, resulting in spectra that indicates protons in different 
environments in the compound. Bruker best describes the way an NMR instrument determines 
the unique environments of each proton in a compound: “Shift in the usual response frequency 
for a given isotope provide information about their immediate environment, including influences 
from nearby electrons and magnetic nuclei, making it possible to infer molecular identity, 
geometry, and more,” (“How NMR Works: Spectroscopy”). The shift in response frequency is 
read by the instrument as a signal produced by the nucleus returning to its “resting alignment,” 
which is unique to each nucleus.  
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Figure 6. Raw signal from an NMR scan of ethanol. From How NMR Works: Spectroscopy by 
Bruker. www.bruker.com/de/resources/library/application-notes-mr/nmr-101.html. 

The signal is then converted into an NMR spectrum that shows the frequencies that the nuclei 
responded at. The conversion occurs via a mathematical process called a Fourier transform. 
The resulting spectrum plots intensity, corresponding to concentration, on the y-axis, and shift, 
corresponding to functional group and each unique nuclei, on the x-axis. 
 

  

Figure 7. Equations for the Fourier Transform and the inverse Fourier Transform. 

 

 
 

Figure 8. Carbon (13C) NMR spectrum for ethanol on the left, and proton (1H) NMR spectrum 
for the same ethanol sample on the right. Nuclei of interest (C1, C2, and hydrogen 
groups in blue, green, and red) are shown. From How NMR Works: Spectroscopy by 
Bruker. www.bruker.com/de/resources/library/application-notes-mr/nmr-101.html. 
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3.2 When to Use NMR 
 
NMR is most useful when an unknown compound is of interest, especially in the case of a 
chemist monitoring a chemical reaction. Scanning a sample before, during, and after a reaction 
can help chemists determine reactants, intermediates, and products, especially if some 
compounds are known beforehand. The NMR instrument itself scans relatively quickly, though 
the analysis can take some time afterwards as the spectra contains a lot of data. This is a 
significant drawback of NMR – while extraordinary amounts of data contain a lot of information 
about a sample, it can be very complicated to analyze. In one NMR dataset, there can be 
upwards of 20,000 shift values ranging from 10 to 0 ppm after binning, which is a technique to 
shrink the size of a dataset without losing too much information. Often times, samples of interest 
are complicated, containing many functional groups and unique proton environments. This leads 
to peak overlap that can be difficult to distinguish from instrument noise, especially if the 
sample’s structure is completely unknown. If less chemical information is needed to conduct an 
experiment, it makes more sense to use another technique with a smaller resulting dataset, 
such as ICP-MS. 

 

Figure 9. Proton (1H) NMR chemical shift functional group ranges for an organic compound. 
From NMR – Interpretation by You Jin Seo. 
https://chem.libretexts.org/@go/page/1812 

 

3.3 NMR in Analytical Chemistry and Research 

3.3.1 Nuclear Magnetic Resonance Imaging 
 
Magnetic Resonance Imaging (MRI) is a noninvasive medical imaging technique based on the 
physics of NMR that generates two-dimensional images instead of spectral frequencies 
(Radlib). These images are then stacked together via reconstruction to generate three-



PNNL-XXXXX 

Nuclear Magnetic Resonance Spectroscopy 12 
 

dimensional images of objects. MRIs were originally called nuclear MRIs, but the “nuclear” 
portion was omitted due to the publicity around nuclear bombs during World War II when the 
MRI was gaining popularity. Though the “nuclear” in this sense is referencing the atomic spin 
within the nucleus, it was often met with hesitation as people assumed it indicated a dangerous 
nuclear reaction (“NMR v MRI”). The revolutionary thing about MRI machines is their ability to 
provide 3D diagnostic imaging of the body’s inner water-based tissues. Organs, connective 
tissue, and cartilage are all too low-density for an x-ray to pick up on, but an MRI can. This 
allows for use in “areas of cardiovascular, neurological, musculoskeletal, and oncological 
imaging,” (“Physical Chemistry”). In addition to the many abilities of MRI, it doesn’t use ionized 
radiation to image, like 3D computed tomography or x-ray. This makes the machine safe for 
patient exposure. 

3.3.2 Plant Metabolomics 
 
NMR is not only useful in the medical field, but in direct applications of analytical chemistry and 
research. Metabolomics identifies and quantifies the metabolites of an organism, which are 
“small molecules that participate in general metabolic reactions and that are required for 
maintenance, growth, and normal function of a cell,” (Schripsema). Plant metabolomics is a 
large area of research, as studying metabolites in plants can be easier than studying their 
proteins and lipids, via proteomics and lipidomics, because they have less of these 
macromolecules than animal products do. NMR is useful in metabolic profiling and metabolic 
fingerprinting, with definitions as follows: 
 

Metabolic profiling – “quantitative analysis of sets of metabolites in a selected 
biochemical pathway or a specific class of compounds. This includes target analysis, the 
analysis of a very limited number of metabolites, e.g. single analytes as precursors or 
products of biochemical reactions” (Schripsema). 
 
Metabolic fingerprinting – “unbiased, global screening approach to classify samples 
based on metabolite patterns or ‘fingerprints’ that change in response to disease, 
environmental or genetic perturbations with the ultimate goal to identify discriminating 
metabolites” (Schripsema). 
 

NMR spectra can classify three quantities of metabolites in a plant’s metabolome: chemical 
nature (alkanes, carboxylic acids, amines, esters, peptides), solubility (water-soluble sugars to 
oil-soluble lipids), and concentration (high concentration to trace levels). The concentration can 
range from that of a sugar, which is about 50% composed of metabolites, down to picomolar.  
 
Though the paper Application of NMR in Plant Metabolomics: Techniques, Problems and 
Prospects used NMR in their studies of plant metabolomics, NMR and ICP-MS are 
complementary and ideal in metabolomics studies. The figure below compares the different 
features of NMR and MS for use in metabolomics. 
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Figure 10.  A comparison table between NMR spectroscopy and ICP-MS for use in 
metabolomics studies. From Comparison of NMR and MS by the European Molecular 
Biology Laboratory, 2020. https://doi.org/10.6019/TOL.MBS.2014.00001.1 

3.3.3 Food Science and Foodomics 
 
The last and most important example of NMR in research is within foodomics, where it is used 
to determine the structure of organic compounds in food. “NMR spectroscopy is used to 
determine structure of proteins, amino acid profile, carotenoids, organic acids, lipid fractions,” 
and water content, where it has recently been used to analyze “vegetable oils, fish oils, fish and 
meat, milk, cheese, wheat, fruit juices, coffee, green tea, foods such as wine and beer” (Parlak). 
As an example, food scientists can determine the age and quality of meat via its intramuscular 
fat and water contents. For some meats, such as a ribeye steak, a certain amount of fat is 
necessary to maintain the steak’s quality and taste to the consumer’s expectations. Thus, it is 
important to the consumer that a food scientist has rigorously checked quality prior to 
purchasing and grilling their ribeye. NMR is also used to monitor the effects of cooking; once a 
steak is cooked, an endothermic reaction has occurred, denaturing proteins, and changing its 
taste, texture, and chemical composition. New or different peaks correspond to new or changed 
functional groups within the meat’s chemistry after the input of high-energy heat. It is important 
to understand what people are consuming, and whether a piece of meat is safe to eat before 
and/or after cooking based on its chemical composition. 
 
Following the use of ICP-MS data to geographically source and authenticate food, our project 
aspires to utilize the mass amounts of data in 1H NMR spectra to better accomplish these 
goals. With more information in NMR spectra comes the need for more complicated 
mathematical techniques to analyze and extract useful chemical information. Then, we can 
combat food fraud, adulteration, and masking of geographical source with higher accuracy. 

 



PNNL-XXXXX 

Using Data Science Techniques on Spectral Data 14 
 

4.0 Using Data Science Techniques on Spectral Data 

Seeing as my internship was centered around applied mathematics, it was important for me to 
apply my skills in mathematics to spectral data via techniques in data science. I had never 
worked on datasets prior to this, so approaching chemical datasets felt like a natural application 
of my skillset. From my perspective, there are three essential processes to working with 
datasets: preprocessing, analysis, and interpreting results. Preprocessing, also known as 
pretreatment, entails the cleaning and transforming of data to improve its quality and make it 
more suitable for analysis (“Data Preprocessing in Data Mining”). This can be done by removing 
noise, reducing dimensions, and binning data to make it smaller and more manageable. The 
pertinent part of preprocessing is making data easier to analyze without omitting important 
information. In spectral data, this would mean binning such that there are less points or noise 
without removing any chemically relevant peaks. Subsequently, data analysis is the heart of 
data science, where the broad goal is to find patterns and useful information within a dataset to 
draw conclusions from real experimental data. In NMR, this means analyzing each peak and 
corresponding shift value to determine what functional groups are in a sample. Finally, 
visualizing and interpreting results is arguably the most important part. Why are we analyzing 
this data in the first place? Once patterns are found, how do they affect our goal? If our data is 
uninformative, how should we change our experimental process to improve the outcome? The 
goal here is to sum up the moral of the story. We want to make results interpretable for 
everyone without too much technical information. In NMR, the point may be to determine a 
product from a novel reaction, while in ICP-MS, the goal might be to detect toxic elements in a 
blood sample to determine a treatment plan. The final interpretation of the results is why data 
science exists.  

4.1 Implementation of Geographic Sourcing with ICP-MS Data 
 
The program our team developed to implement geographic sourcing of food commodities using 
ICP-MS data is called Predictive Algorithms for Commodity Traceability (PACT). PACT starts 
with a preprocessing method called Pareto Scaling, which is frequently used in metabolomics 
analysis to normalize the data (van den Berg). Pareto Scaling scales the data by dividing each 
variable, the element detected by ICP-MS, by the square root of the standard deviation. This 
reduces the relative importance of any large data points, and keeps the data structure majority 
intact, staying close to the original measurement. The one downfall of Pareto Scaling is its 
sensitivity to changes in the data. Scaling data is an important technique to balance the 
influence of each variable, and makes it easier for a ML model to analyze the data. 
 
Then, another preprocessing method called Principal Component Analysis (PCA) is applied. 
PCA is used to reduce the dimensionality of large datasets to “increase interpretability” while 
“minimizing information loss” (Jolliffe). It finds new variables, called principal components, that 
are linear combinations of variables in the original dataset by inputting each variable into an 
eigenvalue/eigenvector problem, then solving using matrix algebra. This preserves important 
statistical information while making a dataset more manageable. PCA is an extremely adaptable 
technique that defines variables depending upon each individual dataset. For example, ICP-MS 
has been used to determine atmospheric trace element concentrations in Norwegian moss 
samples due to atmospheric deposition (Berg). Atmospheric deposition is the process “whereby 
precipitation (rain, snow, fog), particles, aerosols, and gases move from the atmosphere to the 
earth’s surface,” (“Atmospheric Deposition”). PCA was used on this Norwegian moss ICP-MS 
dataset consisting of 33 elements and 495 samples, resulting in the following principal 
components listed in Table 1. 
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Principal Component Elements in Linear Combination(s) 

Long-range atmospheric transported elements Bi, Pb, Sb, Mo, Cd, V, As, Zn, Tl, Hg, Ga 

Windblown mineral particles Y, La, Al, Li, U, Th, Ga, Fe, V, Cr 

Local emission sources Ni, Cu, Co, and As 

Zn, Cd and Hg 

Fe, Cr, and Al 

Transport from the marine environment Mg, B, Na, Sr, Ca 

Contribution from higher plants Cs, Rb, Ba, Mn 

Table 1. Principal components and their corresponding linear combinations of elements from 
an ICP-MS dataset of 33 elements and 495 samples. From Atmospheric Trace 
Element Deposition: Principal Component Analysis of ICP-MS Data from Moss 
Samples by Berg, T., et al., 2000. 
www.sciencedirect.com/science/article/pii/026974919591049Q 

 
PCA thus reduced the dataset from 33 variables (elements) to 7 without losing predictive power 
for each sample, making it an extremely useful preprocessing technique on ICP-MS data. 
 
Finally, after scaling and performing PCA on the food commodity dataset, the data is analyzed 
using a machine learning algorithm called Support Vector Machines (SVM). SVM is useful for 
categorical prediction, where it trains on ICP-MS data with known geographic source and finds 
unifying features between each sample belonging to a known region. Once the model is trained, 
it is tested with samples from unknown regions and compares to two possible regions, resulting 
in a pairwise similarity metric. The model can determine whether a food sample is more similar 
to samples from region A or region B, where the resulting statistical values add up to 1. The 
reason it’s a similarity metric and not a probability is that there’s a possibility that the sample is 
from neither region A nor B. There are plans to move forward with the program to implement a 
worldwide model that can determine whether a food sample is most likely from region A, B, C, 
D, E, etc. This model would compare the unknown sample to all possible regions in the model’s 
training data, as opposed to just two regions at a time. 
 
Overall, the program was a success, and the analysis of ICP-MS data has been effectively 
completed. The next step is to move onto the more complicated dataset, which contains a lot 
more information regarding geographic origin and adulteration but is much harder to analyze. 

4.2 Innovation of a Theoretical Dual-Angle Approach to NMR 
Analysis 

 
Applying similar ideas to NMR is more challenging because the spectra are extremely 
complicated rather than a distinct set of elements being measured. Researchers on the project 
(data scientists, chemists, and machine learnists) have tried many different approaches to 
working with the data. When Maggie presented me and Emily with a subset of the NMR dataset 
to begin exploratory analysis near the end of the summer, we felt overwhelmed. When I plotted 
the data, I knew I was looking at NMR spectra, but it was much denser than anything I’d worked 
with during organic chemistry courses. I began by doing research on significant geographic 
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markers that can be found in NMR, along with possible adulterant peaks. I was able to highlight 
regions where these peaks may occur, but couldn’t analyze the spectra by hand due to its 
complexity. This sparked a brainstorming session among the three of us, where we tried to 
figure out a way to tackle the dataset using machine learning and chemistry. 
 
Often times, data scientists will input data into a machine learning model to see what it spits out 
without understanding the features on which the model uses to distinguish between datasets. 
The best example of this is well-known in the world of computer science – a machine learning 
model was built to distinguish between images of huskies and wolves (Besse). A lot of the time, 
the model was successful, but occasionally there’d be a misclassification. It was then 
discovered, via machine learning explainability tools, that the model was not looking for features 
on the canines but for snow in the background. A lot of the training images turned out to have 
wolves in snow, and the model never saw huskies in the snow as they were often in grass or 
indoors. Thus, when an image of a husky in the snow was input, the ML model classified it as a 
wolf (Besse). This blind input of data into ML can be a helpful method if an analyst knows what 
output they’re looking for, but can be difficult to decipher if not. With food NMR spectra, peaks 
and regions that a model picks out are meaningless without a chemistry-backed explanation. 
Thus, the idea for a dual-angle approach to NMR analysis was born.  
 
The idea is simple: data scientists can analyze NMR spectra with machine learning models, but 
chemists must be involved in the preprocessing and interpretation of results. In addition to 
chemists attempting to reveal what the models are looking at in the data, we also want to 
implement explainability tools. An explainability tool is an algorithm that is applied to a machine 
learning model that reveals what features on which it is focusing. This allows for a deeper 
understanding of the output so we can adjust training data or change the focus features.  
 
With the NMR spectra, we would start by consulting a chemist on preprocessing methods. It is 
important to reduce the size of the data and analyze at smaller shift widths without omitting 
peaks. Often times, preprocessing methods will evenly space out sections of data for a model to 
analyze, i.e. analyze each 0.5 ppm section individually. A chemist will understand that this 
doesn’t make sense – a peak could be centered at 0.5 ppm, thus omitting important chemical 
data by splitting it. Then, after preprocessing such that a couple peaks are analyzed at a time by 
a ML model, we want to implement explainability tools to tell us what features the model picks 
out as being associated with geographic origin, for example. Then, when a chemist looks at the 
model’s output, they can determine whether the features were actually indicative of region of 
origin. This allows for chemistry-backed conclusions and, ideally, a faster development of a 
method that works to determine geographic origin. 
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5.0 Conclusion 

I was able to contribute a significant amount to this project, especially since Maggie offered 
every opportunity for me to participate in official reports, presentations, and code for the 
sponsor. I am a co-author on the PACT code as well as its user guide. The code was the most 
significant portion of my summer due to the technical skills I gained, and writing technical 
reports became more of a streamlined process for me. Additionally, going through the 
Information Release and Invention Disclosure processes with the program and its user guide 
were tedious and allowed me to see the more bureaucratic side of national research. Along with 
the project deliverables for the sponsor, I held a seminar on NMR spectroscopy for my team, as 
I was most well-versed in chemistry. This NMR seminar allowed me, Maggie, and Emily to be 
on the same page to move forward with analysis from a chemistry-informed position. The NMR 
seminar was a huge turning point and sparked our idea for the dual-angle approach to analysis 
of the NMR dataset. This idea was novel because there was an opening for collaboration 
between chemists in the lab and data scientists working with the numbers, and we took 
advantage of that opportunity. I am proud to have contributed a novel idea to a project in my first 
summer of government research, especially as an intern. I also presented on this project to 
fellow interns, researchers from all my projects, project managers, and administrative 
employees at the lab. “The Intersection of Math and Chemical Sciences: Geographical sourcing 
and authentication of food commodities” was the first research presentation I’d ever given, and I 
am extremely proud of how it turned out. Learning how to tell a cohesive story and engage the 
crowd was an extremely valuable learning experience for my future in national security. I 
learned how important it is to not only perform research and please the sponsors, but also be 
able to share it with the public. 
 
Now that I’ve been shown ways that a diverse skillset can really fit into the world, I’ve decided to 
continue this path and get my PhD in applied mathematics. I hope to find an area of research 
that integrates my chemistry skills as well, but I know that even if my dissertation is heavy in 
math, there are always applications that involve working with chemical data and materials 
science. My current path is to maintain work as an undergraduate intern through next July, then 
transition to a PhD intern once I’ve been accepted into a program. Then, I will return to PNNL 
every summer throughout graduate school to continue gaining experience and working with 
peers and mentors of whom I’ve become so fond. Finally, I’d like to be hired full-time as a PhD 
mathematician at a national lab or alternative government research facility.  
 
I know I can extend this fundamental skillset in analytical chemistry to multiple fields of interest: 
nuclear chemistry, materials science, mathematical modeling, and cheminformatics are just a 
few. An additional project I worked on was focused on quantitative radiography, analyzing x-ray 
radiographs, to characterize materials. We were given a radiograph of an unknown object 
consisting of five concentric spheres, only having knowledge of the diameter beforehand. 
Maggie taught me the mathematical skills to analyze this image with the goal of determining the 
material in each layer. My chemistry knowledge was invaluable on this challenge because I 
understood the likelihood of each layer being one material, or element, over another. For 
example, through radiographic analysis we were able to determine approximate densities of 
each layer in the mystery object. Though this is a small use of my chemistry knowledge, it is 
proving valuable in areas outside of analytical chemistry. 
 
This internship has been a turning point for me in my education and life in general. Before this 
summer, I was against the idea of getting a PhD in math as I thought I didn’t like research. My 
only research experience has been in fundamental analysis problems and, although they’re very 
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important, my heart truly lies in solving real world problems. Working on mathematics problems 
for the benefit of national security makes me feel like I’m doing something important for the 
people around me. I’ve discovered that I can use my interdisciplinary skills in mathematics and 
chemistry at a national lab, and I want to hold onto this opportunity with white knuckles. In this 
project focused on geographical sourcing and food authentication, I’ve learned invaluable skills 
in analytical chemistry that will benefit me far beyond my education at Gonzaga. 
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