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Abstract

We propose a sequential Monte Carlo (SMC) method to efficiently and accurately compute cut-
Bayesian posterior quantities of interest, variations of standard Bayesian approaches constructed primar-
ily to account for model misspecification. We prove finite sample concentration bounds for estimators
derived from the proposed method along with a linear tempering extension and apply these results to a
realistic setting where a computer model is misspecified. We then illustrate the SMC method for inference
in a modular chemical reactor example that includes submodels for reaction kinetics, turbulence, mass
transfer, and diffusion. The samples obtained are commensurate with a direct-sampling approach that
consists of running multiple Markov chains, with computational efficiency gains using the SMC method.
Overall, the SMC method presented yields a novel, rigorous approach to computing with cut-Bayesian

posterior distributions.

1 Introduction

Models of complex physical systems are often constructed via the coupling of multiple submodels
where each represents a distinct, salient process. Submodels may entail their own experimental data,
physical parameters, and a simulator of the subprocess being represented, all of which can be used for
statistical modeling and inference. For example, Figure 1 illustrates the structure of an ethylene-oxide
reactor model consisting of coupled submodels where each submodel corresponds to a relevant physi-
cal subprocess, such as turbulence, reaction kinetics, mass transfer, and diffusion. Standard Bayesian
inference, especially with the aid of hierarchical models, is a powerful way to perform uncertainty quan-
tification within physical systems such as the ethylene-oxide reactor illustrated. Nonetheless, modern
Bayesian statistics has seen the development of cut-Bayesian posteriors for modular inference (Bayarri
et al., 2009; Plummer, 2015; Jacob et al., 2017; Carmona and Nicholls, 2020; Yu et al., 2021; Frazier
and Nott, 2022), variations of standard approaches meant primarily to dampen the pernicious effects
of model misspecification. Despite many recent developments in modular inference, computation can
be a major impediment for the use of cut-Bayesian posteriors and is an active area of research. Our
main objective is to introduce novel sequential Monte Carlo (SMC) methods for efficiently computing
with cut-Bayesian posterior distributions along with finite-sample theoretical results that underpin the

concentration of resultant estimators.

*LA-UR: 23-31546; correspondence to: ggopalan@lanl.gov; gopalan88@gmail.com.
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Figure 1: Components of a prototypical ethylene-oxide reactor model intended for demonstrating modular
Bayesian inference, including the SMC method for cut-Bayes computation that is the subject of this paper.
Green coloring indicates submodels for which experimental data exists, whereas gray corresponds to sub-
models that lack data. The top red model depicts the integration of multiple reactor tubes into a new design
for which pure prediction would be required.

While we will precisely define what is meant by a cut-Bayesian posterior distribution in the following
section, the essential idea of this modeling strategy is to fix distributions over some subset of the important
parameters, or to only use some subset of the available experimental data and submodels to infer a
distribution over said parameters. Subsequently, the associated uncertainty of these fixed distribution
parameters is integrated out through a mixture when performing standard Bayesian inference over the
remaining parameters of interest. Throughout, we will refer to the parameters with a fixed distribution
as cut parameters and their corresponding fixed distribution as the cut distribution.

While our focus is computation, we provide some of the major arguments that have been made in
favor of cut-Bayesian posteriors for context. Perhaps the most commonly cited justification is that of
model misspecification; some submodels could be poorly specified, and it makes sense to use data only
from the well-specified submodels in inferring parameters; this approach has sometimes also been referred
to as feedback cutting. Second, it is common practice to use a plug-in point estimate for one or more
parameters when there are many parameters to infer, as a way to mitigate complexity of the problem.
However, the plug-in method inherently ignores uncertainty of the fixed parameter — instead, fixing a
distribution over the parameter via cut Bayes provides a viable alternative to a full Bayesian approach
that incorporates uncertainty for all parameters of interest. While fixing a parameter that does not
provide much sensitivity could be appropriate, the same does not hold for sensitive parameters. A third,
related motivation is computational complexity; for instance, a Markov chain Monte Carlo (MCMC)
method may mix substantially better when working with fewer parameters than a full parameter set, for
instance by avoiding non-identifiability. These and additional motivations are explicated in the work of
Bayarri et al. (2009), Plummer (2015), and Carmona and Nicholls (2020), amongst others.

Despite sound justification for the use of cut-Bayes methodology, sampling from or approximating the



cut-Bayesian posterior distribution can be an onerous computational difficulty. As outlined in Plummer
(2015), the ideal standard is to run many Markov chains long enough to explore the posterior distribution
conditional on draws of the cut parameters, an approach we will refer to as direct sampling. This
procedure yields exact samples from a cut-Bayesian posterior distribution in contrast to sampling from
cut distributions within an MCMC routine — what Plummer (2015) refers to as nasve cut, which is not
guaranteed to converge to the target distribution. However, running many Markov chains could take
an unrealistic amount of time to complete, even in a parallel environment, given how many iterations
may be needed to mix for even a single chain. As an alternative, Plummer (2015) puts forth a heuristic
approach dubbed tempered cut which takes small steps at each iteration for the cut parameter.

Besides the work of Plummer (2015), there is some recent literature on computing or approximating
cut-Bayesian posterior distributions. One such contribution is the unbiased MCMC method of Jacob
et al. (2020), which is parallel and relies on maximal couplings of Markov chain proposals to ensure
distinct chains meet. Additionally, Liu and Goudie (2021) present a method for approximating the
cut posterior distribution that improves on the tempered cut method of Plummer (2015) and relies on
stochastic approximation Monte Carlo (Liang et al., 2007). Yu et al. (2021) and Carmona and Nicholls
(2022) have developed variational inference for cut-Bayesian posterior computation. Baldé et al. (2023)
use Gaussian-process emulation to approximate the posterior distribution conditional on cut parameters
along with a linearity assumption for a coupled model. In comparison, to our knowledge, the method
presented is the first development of the theory and application of SMC for computing with a cut-Bayesian

posterior distribution. Some main features of the SMC method presented are that it:

1. yields estimators that concentrate around the true cut-Bayes posterior quantities with specific finite

sample bounds,

2. does not require Gaussian or variational approximations to the posterior distribution conditional

on cut parameters, and

3. does not assume linearity of functions, for instance, in the simulator.

The paper is structured as follows. Section 2 provides formal background for cut-Bayesian poste-
rior distributions, SMC in general, and a SMC method with a linear tempering extension presented for
computing cut-Bayesian posterior expectations; Theorem 1 and Corollary 1 provide finite-sample con-
centration results for the associated estimators of these methods. Moreover, Section 3 includes a detailed
treatment of a specific instance of cut Bayes that could arise for a misspecified computer model. For
this example, the posterior distribution of calibration parameters conditional on the cut parameters is
normal with a mean prescribed by a general function of the cut parameters and data; finite sample com-
plexity results are given for this specific case. The application of SMC to a cut-Bayesian posterior in the
ethylene-oxide reactor modular example is presented in Section 4 as an illustration on an actual scientific

model. We review our main findings and suggest future avenues for work in Section 5 and conclude.

2 Background, SMC Method, and Concentration

We begin by reviewing the definition of cut-Bayesian posteriors and SMC methodology in general.
Then we set forth a specific SMC method for computing with cut-Bayesian posteriors and provide con-
centration results for SMC-based estimators of cut-Bayesian posterior quantities. We then show how
a linear tempered variant of the SMC method can be employed that may allow for less computational
burden. We follow up in the subsequent section with an example of how the theoretical results can be
applied to a setting where there is model misspecification, for instance with computer models in which

the conditional posterior takes a Gaussian form.



2.1 Cut-Bayesian Posteriors

Consider the set of parameters (v, ) where v € X% and 6 € X?. Let y = (y1,...,yn) and suppose
veepo() oy v 0~ py(- | v 0).

Throughout, we refer to v as the cut parameter(s) and 6 as the calibration parameter(s). Often p, is
presented as a posterior distribution corresponding to a separate submodel, though p, could be provided
by domain experts without explicit reference to a posterior distribution or experimental data. We refer

to p, as the cut distribution. The standard Bayesian posterior is given by:

py(y | v, 0)po(0 | v)pu(v)
(v, |y)=7nv|y)n0]|y,v)= , 1

v, 0]y)=mn(v]y)m(@]|y,v) ) (1)

where pg denotes a prior distribution for 6 and m(y) is the marginal distribution for y. Typically 6 and
v are assumed independent apriori in which case po(0 | v) = pg(6). When p, is misspecified, updating v
using y can lead to poor estimates of 6 (Bayarri et al., 2009; Plummer, 2015). This is a primary reason

we may choose to not update v using y, leading to the cut-Bayes posterior:

cut py(y | v, 0)pe(0 | v)pu(v)
W, 0 y) =p.W)m(0 |y, v) = ey [7) : (2)
The distributions (1) and (2) differ due to the difference in normalizing constants, with the term py (y | v)
depending on v. The dependence of the normalizing constant on v in the cut-Bayesian posterior prohibits
sampling from (2) using standard MCMC methods (e.g. Metropolis-Hastings).

The direct-sampling approach from (2) (referred to as multiple imputation in Plummer (2015)) is
accomplished by first sampling v ~ p, and then sampling from the conditional distribution 7 (6 | y,v). If
an MCMC method is used to sample from the conditional posterior, obtaining samples from (2) involves
running S distinct Markov chains conditional on different v values. However, such a sampling strategy
can quickly become infeasible if draws from 7(60 | y,v) are expensive, for instance due to a long time
for each Markov chain to mix. We propose an SMC method to sample from the cut-Bayesian posterior

efficiently.

2.2 SMC

SMC methods (“particle filters”) are a class of algorithms designed to sequentially sample from
a sequence of distributions puo,...,us. For example, in filtering problems ps may be the posterior
distribution of the state of a hidden Markov model conditional on the observation process. In Bayesian
inference problems, ps may be the posterior distribution of a static parameter and ps o ugs for a sequence
of inverse temperatures 5o < f1 < ... < Bs = 1. Asymptotic properties of SMC algorithms have been
studied extensively (Chopin, 2004; Del Moral et al., 2012). Finite sample properties of SMC methods
were given more recently in Marion et al. (2023). SMC algorithms are appealing in that they provide
natural estimates of normalizing constants and can be adapted to parallel computing environments easily
(Durham and Geweke, 2014). In addition, they have been shown to perform well even in the presence of
multimodality (Paulin et al., 2019; Mathews and Schmidler, 2024).

An SMC algorithm is initialized by first obtaining samples (called particles) from po. Having obtained
particles approximately drawn from ps—1, a combination of resampling and MCMC methods are used
to propagate particles forward to obtain samples approximately drawn from pus. Critical to the success
of SMC algorithms is the “closeness” of adjacent distributions ps—1 and ps, and defining a sequence of
distributions that enables efficient sampling is challenging. Here, us = w(0 | y,vs), where v is a sample

from the cut distribution p,. Consequently, p, is itself random and there is no natural ordering of the



distributions without further knowledge of the form of 7(6 | y,vs). Note that this setup can be viewed as
a special case of a hidden Markov model, where v, corresponds to the hidden state and us the emission
probability distribution; here vy.s are independent and we are only interested in a fixed time interval
of length S. Consequently, known finite sample bound results for SMC methods do not readily apply,
and it is not immediately clear how the properties of p, change the complexity of the SMC algorithm.
Our approach is to leverage concentration properties of vy.s so that particles approximately drawn from
(0 | y,v:) provide a close approximation of (6 | y,v;) for ¢ # j. In the following section, we give precise
conditions under which this SMC algorithm provides an efficient stochastic approximation method for

estimating expectations under 7°“*,

2.3 Cut-Bayes SMC Method

With an SMC background established, we are now ready to introduce the SMC cut-Bayes method.

Assume that we can obtain
iid

vo:s = (Vo,...,Vs) ~ Du. (3)

We note that in practice (3) may only be “approximately” achieved by running a Markov chain targeting

py for a sufficient length of time. In our application (Section 4), p, is a known distribution (e.g. uniform)

where (3) can be achieved exactly. The goal is to efficiently sample from po, ..., us, where us(6) =

w(0 | y,vs). Write us(0) = qs(0)/Zs, where Z, denotes the normalizing constant of p(6). Denote the

importance weights ws(0) := qs(0)/qs—1(0) and define their corresponding empirical average as

Conditional on vp.s, the algorithm we consider is a standard SMC algorithm:
1. Sample vo.s ud Dy
2. Sample 5 := (6, ...,60) w 140
3. Fors=1,...,5:

(a) Sample orN = (92, ey éé\’), where

§i = 67_, with probability %
(b) Sample 62 := (0},...,6Y), where
0, ~ K(65,),
where K1, Ka,...,Kgs are a set of Markov kernels assumed to be ergodic and K is ps-invariant. The

estimate of E cut[g] is given by

1 &1 ;
gsMmc = m (N Zg(Vsﬁs)) , (4)

for a measurable function g(0,v). The following theorems give conditions under which gsmc concentrates
around E, cut[g] for g such that |g| < 1. Before stating these, we first fix some notation. Going forward,
we let P and E generically denote the probability measure with respect to the particle system and vo.s
(see Appendix A for details). Let Pas(us) with M > 0 be the set of all probability measures over X'¢



such that

sup (1(B)/p.(B)) < M, for € Pas(j1.).

Bcxd

A distribution n € Par(us) is said to be M-warm with respect to ps. Define the mixing time

Ts(€, M) := min {t : osup  |InKL — pslltv < e} ,
nE€P M (1s)

where ||-||;+ denotes the total variation norm. Warm mixing times are commonly studied in the mixing

time literature (Vempala, 2005; Dwivedi et al., 2018). Roughly speaking, n € Pas(us) implies 1 is “close”

to ps in that their density functions are within a constant factor of each other. Marion et al. (2023)

showed that C(é;) is a 2-warm start with respect to us for appropriate choices of N and ¢. However,

obtaining this warm start requires N to grow linearly in max,ec1,... s} X2 (s || s—1), where

(% - 1>2us_1(dx),

2
o | o) = [
x
denotes the x2-divergence between p, and ps_1. Here, we have less control on this quantity since the
sequence L, . . . , us is indexed by vo.s and is therefore defined randomly at the beginning of the algorithm.

For this reason, we make the following assumption:

Assumption 1. There exists £, > 1 and d € (0,1) such that

P 2 ) > & —1) <é.,.
(Se?ﬁ’fs}x (s || prs—1) > Ea ) < da

The following theorem states conditions under which §sarc approximates expectations under 7%t
Theorem 1. Suppose vy:s (S p.(-) and 65N (S n(- | y,v0). Let § € (0,1), € € (0,1), and set
1. N >log (@) max {1850” E%

2. t > maxs=1,..,5 Ts(m7 2)

3. 5> 6%log(g)

Then under Assumption 1,
P(|gsmc — Eqeu[gl] <€) > 1 =0 —ba, for|g] < 1.

The proof of Theorem 1 is given in Appendix A. Our approach is to apply known finite sample results
for SMC samplers given in Marion et al. (2023). The results of Marion et al. (2023) apply immediately
upon conditioning on vy.s since in this case our algorithm is identical to the one considered in their results.
The key difference is that here o, ..., s are randomly generated at the beginning of the algorithm. The
resulting cost to ensure (4) concentrates around E,cu:[g] is that we now stipulate S = O(e~?). This is
because the particles at a given step of the algorithm provide an estimate of the conditional expectation
E[g(0,vs) | vs] and S = O(¢™?) ensures that these conditional expectations concentrate around their
mean E_ cut[g], based on Hoeffding’s inequality.

For the concentration bound of Theorem 1 to be useful, it is important to ensure that £, is not very
large for choice of dn, since the number of particles, N, is linear in £,. Depending on the form of the
conditional posterior distribution us and the choice of S, it is possible that a small £, is achievable for a
given dq; i.e., the conditional posteriors tend not to be far apart for the S + 1 cut parameters sampled.
However, a variation of the above, which we call tempered cut-Bayes SMC, can be used to reduce &, for

a given Jo, with essentially the same concentration bounds and slight modification. We next introduce



this variant to aid in cases where the S + 1 conditional posterior distributions tend to be far apart (in

the x? distance sense).

2.4 Tempered Cut-Bayes SMC Method

The proposed tempered cut-Bayes SMC method is related to linear tempering presented in Section 5
of Plummer (2015), but the heuristic of Plummer (2015) differs by using MCMC instead of SMC. Without
essential loss of generality, assume that the cut parameters are elements of R% (see Plummer (2015) for
the case of discrete cut parameters). Consider the same set up as in Section 2.3 except augment the
cut parameter sequence by connecting two consecutive and independently drawn cut parameter draws,
vs and vsy1, with a straight line and adding P evenly spaced cut parameters in between. Consider
performing SMC on this newly constructed sequence of (P + 1)S + 1 conditional posterior distributions,
which presumably will tend to be closer together in x? distance than the original S + 1 conditional
posteriors, achieving a smaller &, for a given d.. If we replace (P + 1)S for S in the choice of N and
t in Theorem 1, then, by the proof of Theorem 1 in the Appendix, we will have a coupling of particles
with high probability for all of the conditional posteriors, and thus high probability of coupling for the
conditional posteriors indexed only by the S + 1 independently drawn cut parameters. Hence, we may
compute the estimator as in Equation 4, retaining only the particles at S + 1 cut parameter draws, and
the proof follows as for Theorem 1.

To summarize, without essential of generality assume that cut parameters are elements of R%, and
construct a new sequence 1/5‘:( p+1)s that augments vo.s with P equally spaced points along the line
connecting consecutive points vs and vs11 for s € {0, ..., S — 1}. Index the conditional posteriors corre-

sponding to 15, (py1ys as (5 (.). Then, our main assumption is essentially the same as Theorem 1:
Assumption 2. There exists £, > 1 and do € (0,1) such that

: f(nlll pi) 2 €5 - 1) < ba
<SE{1,.ITI,2%(}>+1)}X (s || ps—1) > )7

Corollary 1. Suppose vo.s 2 pu(-) and 65 o 7(- | y,v0). Construct a new sequence vg. (pi1yg that
augments vo.s with P equally spaced points along the line connecting consecutive points vs and vs4+1 for
s€{0,..,S—1}. Let 6 € (0,%), e € (0,1), and set

1. N >log (W) max{l&‘,';, 6%
2. t > maxe—1,.. sp+1) Ts(

3. 8> Zlog(2)

5
BN[(P+1)S+1]’ 2)

Then under Assumption 2,
P(mSMC_Eﬁcut[g“ S 6) Z 1—-6— 5&7 fO’I‘ |g| S 1.

Note that § is defined the same as in Theorem 1, i.e., it uses only the particles at the S + 1 inde-
pendently drawn cut parameters, not including the P points between consecutive draws. The possible
advantage in Corollary 1 is that £ can be made smaller than &, for a given d,, leading to a smaller N,
with potentially larger ¢; the exact tradeoff will depend on the Markov kernel used, and Section 3 shows
an example where the increase in ¢ is not substantial for appropriate choice of Markov kernel. In addition,
the computational cost of additional resampling and mutation steps must be weighed against reduction
in the number of particles, N. We next illustrate the applicability of the cut-Bayes SMC method and
its linear tempered variant in the following section, in the context of a realistic computer model scenario

where the computer model is misspecified.



3 SMC Cut Bayes for Computer Model Misspecification

A common setting where model misspecification arises is in computer models, for instance in the
Bayesian calibration literature (Kennedy and O’Hagan, 2001; Brynjarsdéttir and O’Hagan, 2014; Higdon
et al., 2008). We consider an example where a cut-Bayes approach can be employed. Consider the set of
parameters (v,0) where v € R% and 6 € R%. Let y € R?. The notation Ny(-,-) indicates a multivariate
normal density where the first argument is the mean and second is the covariance matrix. The model is

specified as follows:
y10 ~ Na(6,0°1),

where y is a single realization, though without essential loss of generality there could be multiple,

independent y’s in the sample. A prior for € conditional on v is given by:
Olv ~ Nu(f(v),0p 1),

where f is a general function f : R% — R? which could be thought of as the output of a computer

simulator or model. Note that marginally:
ylv ~ Na(f(v), (0® + op)I),

which is similar to models often encountered in inverse problems (e.g. see Section 2 of Stuart and
Teckentrup (2018)). A problem with using the full Bayesian treatment for inference of 6 and v is
that misspecification of f(-) could lead to poor inference of both parameters. With many independent
samples of y, it is possible to get more reliable estimates of 6 (i.e., due to posterior asymptotics), but
misspecification of f(.) could still lead to biased and overly confident estimates of v (Brynjarsdéttir and
O’Hagan, 2014). Hence, to mitigate the effect of misspecification of f(-), one can cut on v and fix a
cut distribution, v ~ p,, based on auxiliary models and experiments that appropriately characterize
the uncertainty for v. It should also be noted that a model discrepancy term could still be used in
combination with a cut distribution for v, in order to account for computer model misspecification.
Given the specification of the likelihood and prior conditional on v above, the conditional posterior

is given by
(0 |y, vs) = Na(@;wy + (1 — w) f(vs), cla),

ﬁ and ¢ = (02 —&—a;z)fl, by conjugacy. (The 6; notation is used above to emphasize
P
that the conditional posterior is a distribution over 0, not v.) We show in the following arguments

where w =

that the theorem and corollary of the previous section are directly applicable to analyzing a cut Bayes
posterior in this model.
We consider the SMC cut-Bayes method when f(-) is a A-Lipschitz function with respect to the

Euclidean norm, i.e.,
1F @) = fOly < Ally =2/,

Note that w(0 | y,vs) is strongly log-concave and log-smooth with condition number x = 1, which can be
checked by choosing L and m to both be c¢ in the definition of log-concave and log-smooth given in Wu
et al. (2022). Hence, using the Metropolis-adjusted Langevin algorithm (MALA) for the MCMC kernel



yields by Wu et al. (2022)

D=

5 *
% 9=
X Ty <6N<s 1) ) o7 (@),
where the notation O* indicates the omission of terms logarithmic in d and €. By Theorem 1, the proposed

cut-Bayes SMC algorithm provides a randomized approximation algorithm for estimating E cut [g] in time
1
« [ d2 1
NSt: O ?max{ga,g} . (5)

We calculate the y?-divergence between consecutive conditional posteriors, ps—1 and g, in the fol-
lowing. Note that the x2-divergence between pis_1 and ps is unchanged by subtracting off the common
wy term in the mean. Further, for convenience, define u(.) := (1 — w)f(.). Then the x>-divergence

calculation proceeds as follows.

2 _ 1 1 2 2
X (s || prs—1) + 1= W/]Rd eXP{*Q*C(QHH —u(vs)]|” = 10 — w(vs—1)l )}de

— ey L, o] e 10 - Cu) = w4 L Juws) — a0

— exp {e ! u(v) — u(ve)|P}
< exp e (1= w)*A% v — v [P}

where line 2 proceeds from line 1 by completing the square, and line 3 proceeds from line 2 by recognizing

the integral of a Gaussian density. Now, note that using P evenly spaced points between each pair of cut
[[vs=vs—1]|
S
SMC method reduces the term £, by an exponential factor, even for small P, yielding potential savings

parameters reduces the distance between consecutive points to . Thus, the linear tempering
in N. Further, if the MALA algorithm is used, then, up to logarithmic factors, there is no increase in ¢
required based on the result cited previously from Wu et al. (2022).

It is still worthwhile to examine the behavior of the SMC cut-Bayes method without linear tempering.

For example, suppose vs is sub-Gaussian with parameter 1/1/0, i.e.,
E[etT(vsflE[vs])] < elith? /20
If p, is a posterior distribution, for example, then under suitable regularity conditions it will asymptot-

ically resemble a normal and thus sub-Gaussian distribution. Then since ||vs — vs—1|| < ||vs — Elvs]|| +
lve—1 — E[vs—1]|| we have by Hsu et al. (2012):

P <exp {(1- w)2A? ||y, — 1/5_1“2} > exp {M (1 + 2\/§+ 2;) }) <27t (6)

By choosing t = d and &, = 20(1-w)?dA? /o

with:

, we obtain by the union bound that Assumption 1 holds

P(_max (s || prs=1) 2 Ea = 1) < 25e™" = ba,
EIS

so that d appearing in Theorem 1 becomes negligible for large d. In this case, A = O(1) and £, = O(1)
if o = O(d). Roughly speaking, the second condition holds provided the variance of v, decays with d.
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Figure 2: Representation of the catalytic reactor model for ethylene-oxide production. Input gas reactants
are passed over a fixed catalytic bed, resulting in production of output products & byproducts, varying
in production efficiency. In addition to reaction parameters, the interaction parameters related to catalyst
surface and flow turbulence are incorporated.

4 Chemical-Reactor Application

Having established a theoretical basis for SMC in general cut-Bayesian posteriors and for the misspec-
ified computer model setting with a Gaussian conditional posterior distribution, we proceed to demon-
strate the SMC method and the linear tempering variant on a real scientific problem using the model
of an ethylene-oxide production reactor that was previously introduced (i.e., Figure 1). We use this
modular system in conjunction with experimental and simulated high-fidelity data in order to perform
cut-Bayesian inference. Our main result is that both the SMC method of Theorem 1 and the linear tem-
pering variant (Corollary 1) produce similar samples of calibration parameters to the “gold standard”
(Plummer, 2015) direct-sampling method, while expending much less computational time.

The reactor model is a multi-physics system, coupling models from physics, chemistry, and engineer-
ing, as well as models of varying complexity. Production output is a steady numerical solution over a
1-dimensional spatial domain of single tube of a reactor filled with a fixed bed of catalyst pellets. The
reactor concept is illustrated in Figure 2. This model was chosen and constructed to be an extensible
problem of a modular system demonstrating properties of complex system models, partitioning the inte-
grated system into various submodels. The reactor is a common industrial process converting feedstocks
ethylene and oxygen to ethylene oxide, in a reaction promoted by contact with a solid catalyst packing.
The efficiency of the reactor is a function of system controls such as flow rates and temperature and of
properties such as reaction rates and catalyst properties.

A brief description of the physical modeling and mathematical solution algorithm for these processes
is provided. First, at the largest scale, the complex packing of the pellets into the tube results in an
uncertain void fraction, e. The bulk of the gas flowing through these voids, at a given axial length

down the tube, mixes quickly and is then considered to be well approximated by a single chemical

10



composition — this is referred to as the plug-flow approximation. This approach allows a coupled set of
steady, one-dimensional differential equations (one equation for each compound) to model the change
in chemical composition along the length of the reactor. The coupling among these equations is due to
the chemical reaction rate converting the reactant compounds of ethylene and oxygen to either ethylene
oxide or carbon dioxide & water vapor. So next at the smallest scales, these reactions occur on the
surface of the catalyst and are often limited by the available catalyst area. For this reason, highly
porous catalyst pellets are preferred. The diagnostics for the properties of these pores such as the pore
diameter, D, are trusted but are less than ideal (Osterrieth and et.al., 2022). The reaction-rate laws
appear mathematically as algebraic expressions that depend on their own parameters, Cp1 and K1, and
present the most probable point of model misspecification (Klugherz and Harriott, 1971; Pu et al., 2019).
This submodel for the reaction rate depends on the local chemical composition and is thus calculated
separately at each discretized point along the length of the reactor. Finally at the intermediate scales,
the amount of reactants at the surface is continually depleted by the reaction which also results in an
increased concentration of products at the surface, which must diffuse to the bulk — all resulting in a
chemical composition local to the catalyst surface that may differ significantly from the composition
in the neighboring bulk. Hence, the intermediate physical processes of pore reaction & diffusion as
well as turbulent diffusion in the millimeter-scale layer surrounding the pellet must both be modeled
(Koning, 2002). The additional submodel for the turbulence around the pellet introduces two empirical
parameters of ¢ and n. Unfortunately, the coupling of these submodels from the bulk to the surface
requires an iterative multivariable algebraic solve at each discretized point along the reactor — resulting
in a significant increase of computational time. The code for simulating this full model is implemented as
a Python package that we utilized for demonstrating cut-Bayesian inference and is available at reference
Smith (2023).

4.1 Calibration and Cut Parameters

The parameters of the ethylene-oxide production reactor can be grouped by the various submodels
included in Figure 1. For the purposes of this example, we first performed a Sobol sensitivity analysis
(Sobol, 2001) in order to select a set of parameters for which ethylene-oxide production is most sensitive.
Based on this analysis and the availability of experimental data to calibrate submodels, we chose to focus

on the turbulence, reaction rate, and catalyst submodels. The calibration parameters of interest are:

e c and n: These parameters describe the relationship between Reynolds number of flow velocity and

the turbulent Nusselt number, based on a linear model in a log-log scale.

e ()1 and K.i: These are reaction rate parameters that determine the rate of ethylene-oxide produc-

tion, using a rate law provided by Klugherz and Harriott (1971).

Further, we assume that the cut parameters come from the catalyst submodel, whose distributions are

fixed based on domain expertise of catalyst properties:
e c: Describes the gaps between pellets in the reactor.
e D: Diameter of the pores in the reactor.

‘We used nominal values based on domain expertise for any additional parameter values. Calibration and
cut parameters are summarized in the following table. For calibrated parameters, the distribution listed

is the prior. For the cut parameters, the distribution is fixed and is not updated.

4.2 Model Specification

Experimental data from actual experiments suggested by domain expertise were used for the tur-

bulence and reaction submodels. These data were compiled from many classical experiments that are
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submodel parameter | description | distribution
Turbulence | ¢ calibrated | U(.01,3)

n calibrated | U(-.8,-.05)
Reaction Cp1 calibrated | U(0,.1)

Ko calibrated | U(0,.1)
Catalyst D cut U(.019, .021)

€ cut U(.6375, .8625)

Table 1: Parameters used for the reactor model demonstration.

described and are available in the Python package from Smith (2023). Let x1,...,xa be the univariate
turbulence data, y1,...,y~ be the bivariate experimental reaction rate data (one component for ethy-
lene oxide and the second for carbon dioxide), and z1, ..., zp be the univariate integrated ethylene-oxide
production data generated with a high-fidelity model. Placed in a vector, we use the notation x, y,
and z. Further, fi(c,n,i) represents the simulator output for the turbulence submodel for the ith input
setting, f2(Cp1, Ke1,1) represents the simulator output for the reaction rate submodel at the ith input
setting, and fs(c,n,Cp1, Ke1,€, D, 1) represents the simulator output for the integrated ethylene-oxide
production model at the ith input setting. Tacitly, the ith input setting represents any inputs additional
to the parameters that corresponded to the ith experimental observation; for instance, Reynolds number
for the turbulence model, and temperatures and pressures for the rate kinetics model.

Conditional on the calibration and cut parameter values, we assume that each of the three data sets
are independent and observed with independent, 0 mean normal errors with known variances. Estimates
of the error variances for each datatype were determined with preliminary simple linear regression fits;
we focus in this example solely on the inference of physical parameters. We denote o7 as the variance
for the turbulence data, X2 as the 2-by-2 covariance matrix for the reaction rate data, and o2 as the
variance for the integrated ethylene-oxide production data.

Thus, we may write the likelihood, conditional on the calibration and cut parameters and simulators,

as:

p(X,y,Z|C, n, KSl’ CP1357D) =
P

M N
[T M@ fi(emsi), 0F) x [[ Na(yis f2(Cpr, Ker, i), B2) x [ [ Mz fs(e;n, Cpr, Koty &, D,d), 03). - (7)
i=1 i=1 i=1

The uniform prior distributions for the calibration parameters c¢,n, Ke1, and Cp1 and the uniform cut

distributions for € and D are specified in Table 1.

4.3 Results

We first implemented an SMC routine based off of Section 2.3 that uses independent draws of the
cut parameter. We used 25 particles with 5 slice sampling (Neal, 2003) mutate steps within the SMC
algorithm. We grouped 10 sets of 10 independently drawn cut parameters in a single batch and ran 8
independent batches. To compare the resultant cut-Bayesian posterior samples of ¢, n, Cp1, and K1, we
generated “gold standard” samples with the direct-sampling method discussed in Section 2. Specifically,
conditional on each draw of cut parameters we use the slice-within-Gibbs (Neal, 2003) algorithm to draw
from the conditional posterior of calibration parameters, running for a total of 1000 iterations; 1000
was chosen based on examining traceplots of preliminary runs as well as calculating the Gelman-Rubin
convergence diagnostic (Gelman and Rubin, 1992) using the implementation from the coda package
(Plummer et al., 2006) for said runs. Pooling all of the calibration samples generated from distinct cut

parameter draws results in samples from the cut posterior distribution (Plummer, 2015). In Figure 3 we
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Figure 3: Comparison of SMC cut posterior samples (red density) of calibration parameters to direct-
sampling (black density); the densities generally appear to be consistent. Additionally, Appendix B contains
a comparison of pairs plots, which show alignment.
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Figure 4: Comparison of tempered SMC cut posterior samples (red density) of calibration parameters to
direct-sampling (black density). 10 particles are used for this run in comparison to the 25 used in Figure 3,
but with P = 1, as in Corollary 1. Samples appear to be generally consistent with direct sampling approach
but with substantial computational reduction.

see a comparison of cut posterior densities for calibration parameters generated with the SMC method
and the direct-sampling method (i.e., using multiple MCMC chains). We see that the densities generally
match up, suggesting the SMC method is producing samples of the cut posterior. Appendix B illustrates
that pairs plots of samples from the SMC and direct methods show agreement; moreover, the bivariate
distributions of pairs indicate curvature that is not characteristic of a bivariate normal distribution. In an
effort to further reduce computational runtime, we additionally implemented the linear tempering variant
of Section 2.4 with 10 particles and 1 additional point on the line connecting successive cut parameter
draws, with 5 independently drawn cut parameters per set. We also reduced the number of mutate steps
by 1. The comparison of resultant samples to the the gold standard is given in the density plot of Figure
4, also showing general agreement, and as is next discussed, indicating computational improvement in
runtime.

Both SMC procedures and the direct-sampling procedure using multiple Markov chains were run
on the Los Alamos National Laboratory (LANL) Darwin computing testbed, which is funded by the
Computational Systems and Software Environments subprogram of LANL’s Advanced Simulation and

Computing program (NNSA/DOE). All methods were batched into 8 jobs where each job was run on its
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own node on the general partition, but no parallelization was used beyond batching independent runs.
Additionally, the BASS R package (Francom and Sansé, 2020) was used to construct a computationally
efficient emulator for the integrated ethylene production model (referred to as fs3 previously) and the
identical emulator was used in the SMC and the direct-sampling procedures. Run time results comparing
the SMC method, the linear tempered SMC method, and the direct sampling MCMC method are shown
in Table 2, indicating substantial improvement using the SMC methods. The overhead time needed to

generate the initial particles required for the SMC methods was 1 hour and 19 minutes.

Method Min job runtime (minutes) | Max job runtime (minutes)
Direct sampling | 645 765

SMC 79 92

Tempered SMC | 29 39

Table 2: Comparison of run times in minutes for direct sampling, SMC (Theorem 1), and the linear tempered
SMC (Corollary 1).

5 Conclusion and Discussion

Our central contribution is the introduction of SMC methods for computing with cut-Bayesian pos-
teriors. The methods are supported by theoretical results of SMC estimators in fairly general settings
as well as finite sample complexity bounds when the conditional posterior is normally distributed, as
was motivated by a computer model misspecification problem. Additionally, we have demonstrated the
practical utility and accuracy of the methods for cut-Bayes inference with a coupled modular chemical
reactor system, and have shown order-of-magnitude computational efficiency gains. To our knowledge,
we have presented the first provably correct SMC-based computational method for cut-Bayesian posterior
inference. The defining characteristics of our method are that it results in convergent estimators and
does not require approximations to conditional distributions. When such approximations are appropri-
ate, alternate methods may be preferred for computational efficiency; however, our SMC method can
be used when such approximations cannot be made (see Appendix C for an example in which the con-
ditional posteriors are non-Gaussian). While the unbiased MCMC method of Jacob et al. (2020) could
be a viable alternative that does not assume approximations to conditional distributions, care must be
taken to ensure that meeting times of coupled Markov chains are not prohibitively expensive, such as
when the dimension of the problem increases. The results of Section 3 provide some theoretical guidance
for how the complexity of our SMC method scales with dimension for a specific case. A crucial aspect
of our theoretical results is that independence is assumed for the cut parameter draws for the applica-
tion of Hoeffding’s inequality; while concentration results are less prevalent in the case of dependence,
future work could explore relaxing the independence assumption in order to derive tighter concentration

bounds.
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A Proof of Theorem 1

A.1 General Results for SMC Algorithms

We first prove a straightforward extension of the finite sample bounds for SMC algorithms given in
Marion et al. (2023). Let po,...,pus = m denote a sequence of distributions defined on a space X (e.g.
X = Rd) with common dominating measure p. The sequential Monte Carlo algorithm produces a set of
particles © = (85, orN N 9~§N7 95"™) jointly defined on XN@5+)  The marginal laws of these
random variables are implicitly defined by the algorithm given in Section 2.3; we do not state these
marginal laws here for brevity but refer the reader to Marion et al. (2023) and Mathews and Schmidler
(2024) for details. In addition, the proof technique of Marion et al. (2023), and the proof technique
used here to extend their results, involves constructing a set of random variables denoted 6% via a
“maximal” coupling construction at the sth step of the algorithm so that 8% ~ ;. and 6% and 8% are equal

XNGSHD with corresponding product

with high probability. The state space we consider throughout is
o-field BYG5+D corresponding to the particle system © along with the constructed random variables
© = (01N,...,05"). We let P and E generically denote the joint probability measure and expectation,
respectively, of © and © (i.e. the probability space is (XN 35D BNESHY py)

We note that in practice (81,...,05") are not constructed during the SMC algorithm; here they
are only constructed in theory for the proof technique. We refer the reader to the Appendix of Marion
et al. (2023) for details on how the construction of © is performed along with some important properties
o

of these random variables. In particular, the authors show that 6% 1L "3 and, consequently, s

and
PN UL (O 61 N N YY1, ALY )
for s =1,...,S5. We use both of these properties below. As in Marion et al. (2023), let

As _ {G;N _ é;N}
Bs = {ws11 2 2K, [ws41]/3}

Cs = As N By,
where 93N = o5 W to. Marion et al. (2023) show inductively that P(Cs) can be made large for
s =0,...,S by choosing N and t sufficiently large. However, here there is no “target” measure and we

wish to obtain samples from all distributions po, ..., us. Therefore, we extend this result to show that
the joint event P(Co N...N Cs) holds with high probability. Clearly a bound on P(Cs) implies a bound
on this joint probability via the union bound. However, doing so results in a looser bound than what is

necessary. Throughout we make the following assumption:

Assumption 3. There exists £ > 0 such that

2
s a1) < & f :1’.”,5'
segﬁ)ﬁs}x (s || s—1) < & for s

We slightly modify the proof given in Marion et al. (2023) to show the following result.
Lemma 1. Let § € (0,%) and choose

1. N > 18log (25 (£ 4 1)
2)

2. t > maxs=1,..,s Ts(m,
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Then for s € {0,...,S}:

(5 s+1
05 > - .

The proof of Lemma 1 proceeds by induction and the arguments are near identical to those given
in Marion et al. (2023). Consequently, we will often point to results given there. The following lemma

establishes the base case.

Lemma 2. Let N > 18log (Z£2) (€ +1). Then P(Co) > 1 — SL_H.

Proof. Note P(Cy) = P(Bo) since 65N := 6. By assumption, 65~ w po. Hence, by Bernstein’s

inequality

P@@—P<;§:mw@g2mgmg

N 0
< ex — < ,
. p{ wu+xmunm»}—5+1
where the final inequality follows by our choice of N and Assumption 3. ]

Proof. (Lemma 1) The proof proceeds by induction. We use the shorthand notation P(Co.s) := P(Co, ..., Cs)
throughout. Lemma 2 establishes the base case by our choice of N. Now suppose the claim holds at step
s—1:

6 S
e1) > - .
P(Co:s—1) > (1 S+1>

Since ¢ € (0, %), it follows that P(Co:s—1) > % by the induction hypothesis. This implies (see Lemma 4.2
of Marion et al. (2023))

P(é; S B | CO:sfl) S 2#5(3)

Consequently, ﬁ(é; | Co:s—1) is 2-warm start with respect to us, where E(ég | Co:s—1) denotes the law of
6% conditional on the event Cp.s—1 occurring. Hence, by a coupling argument (see Lemma 4.1 and the
Appendix of Marion et al. (2023)), we can guarantee by our choice of ¢

1)

s iS— > T a7 AN
P(As | Cois—1) > 1 3G+ 1)

Let

B.= {jlv ;w5+1(‘;‘) > 2Ens[ws+11/3} :

That is, Bs is the same as Bs, except we replace the 02V
(S is. As in the proof of Lemma 2, we have by Bernstein’s inequality and our choice of N

particles with the constructed “target” random

variables 65N

. 5
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Putting it all together,

]P(C;: I CO:sfl) = P(BS N As | CO:sfl) + ]P(Ag | 00:571)

S P(Bg | OOZS—I) +P(A§ | CO:s—l)
— P(BS) + P(A5 | Couo1)

< é

- S+1

The inequality P(BS | C1.s—1) = P(BS) follows using (8) (see the Appendix of Marion et al. (2023)). The

stated bound follows:
(5 s+1
P(Co,...,Cs) =P(Cs | Co,...,Cs—1)P(Co,...,Cs—1) > (1 — 7> .

O

We now use Lemma 1 to prove Theorem 1. We consider the same probability space as before, except
expanded so that vo.s P p, (assumed to also be defined on X) are jointly defined with © and ©; we
again let P and E denote the joint probability measure and expectation, respectively. We appeal to the

fact that conditional on vo.g, the sequence po, ..., ps is fixed and the results above apply.

Proof. (Theorem 1) We have by our choice of N and ¢ along with Lemma 1 that

. =1 : nl: 0
P60 =05, ..., 05" =05 | max  x*(us || prom1) SEa—1) 21—
se{1,...,S}

w

By the law of total probability and Assumption 1

PO = 05,08 =85 21— S . (9)
Going forward we work with the (3", ...,05") random variables instead of (5", ...,05") and then

appeal to (9) to obtain the stated claim. Let piy(v) := Ergjy,)[9(v,0)] denote the mean of g(v,6) with
respect to the distribution 7(6 | y,v) (note pg(v) is a random variable). Recall that conditional on

o, .., Vs, the sequence fig, ..., us is fixed and so OV | vo:s ud (| y,vs) and
E[g(vs,0%) | vo.s] = pg(vs), fori=1,...,N.

By the conditional form of Hoeffding’s inequality (conditional on vy.s), we have by our choice of N that
with probability 1 — g

1

<, fors=0,...,8S. (10)

=1
TR

Zg(l/57éz) - IU’Q(VS)

Since (10) holds jointly for s =0, ..., S, this implies that with probability 1— g by the triangle inequality

that conditional on vg.g,
s

1 1 < P 1 <&
mz ﬁgg(vs, ) —m;)ug(vs)

s=|

< g (11)

Recall that 5.5 “* p, and note that the random variable |g(vs)| < 1 since |g| < 1. Hence, we again
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have by our choice of S that with probability 1 — % (by Hoeffding’s inequality),

S

S+1 Z By (vs) — Ep, [pg(v)]

s=0

< (12)

€
5

By definition, E,, [114(v)] = E cut[g], the expectation under the cut-Bayes posterior. Consequently, (11)

and (12) along with the triangle inequality imply that with probability 1 — 23—6
1 1Y 7~
531 > (N Zg(us,eg)> — Epent[g]| < e (13)
s=0 i=1

Now, (13) holds only for the (65", ...,05") random variables. However, by appealing to (9) it follows
that with probability 1 — % — 0o the same concentration inequalities hold for the (Gé:N, e OEq:N) too.
Hence, by (9) and (13) it follows that with probability 1 — 6 — da,

|9 — Erew[g]] < e.
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B Pairs Plots for SMC and Direct Sampling in Reactor

Example
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Figure 5: SMC cut posterior samples pairs plot versus direct sampling pairs plot for Kel pairs.
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Figure 6: SMC cut posterior samples pairs plot versus direct sampling pairs plot for Cpl pairs.
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Figure 7: SMC cut posterior samples pairs plot versus direct sampling pairs plot for c,n pair.

C Non-Gaussian Conditional Posterior

Here we provide a system which illustrates that conditional posteriors in cut Bayesian modeling
can be non Gaussian, particularly with nonlinear functions. We consider the calibration parameters
0 := (01,02) € R? and cut parameter v € R'. The data model y|6, v is given by N2(f(0,v),diag(.1,1)),
and uniform, independent priors between —30 and 30 are assumed for the components of 6. Further
f:R® = R? is defined to be:

f(01,02,v) := (sin(6,) cos(f2) tan(v), 65 + 05 + v/?).

We simulate a single realization of y according to a true value of 6 equal to (1,2) and v equal to 1.
The conditional posterior, sampled via slice-within-Gibbs sampling, appears in Figures 8 and 9 below
for values of ¥ = 1 and v = .3 respectively, clearly exhibiting non-Gaussian behavior. This example is
meant to illustrate that a normal approximation for the conditional posterior distribution is not always

tenable.
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Figure 8: Non-Gaussian conditional posterior for v = 1.
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Figure 9: Non-Gaussian conditional posterior for v = .3.
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