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« Quantum materials’ electronic and optical features
- Diamond: A promising candidate material for sensing

- Experiments: Metal organic framework (MOF) encapsulated

nanodiamonds
- Theoretical modeling: Band structures, density of states, response
to strains
- Theoretical model: Level splitting/shiffing under stress
« Technological merits
« Conclusion
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Nitrogen Vacancy Centers in Diamond

e e
A promising quantum sensing material ' ‘**-:'B’ L/\_z_/‘j
« Atomic impurity (N, Si, Sn, etc.) and Carbon : Rk e
vacancy in a diamond lattice: spin qubits Vi \t S ) "N E%
- Opftically-Detected Magnetic Resonance . O\ iy X y \"'_ | '
1 > ]

(magnetometry, thermometry, electrometry) —
- Spin Relaxometry (field and stress sensing)
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PHYS. REV. APPLIED 17, 044028 (2022)
Unprecedented level of field sensitivity could be achieved using NV center in a diamond. PHYS. REV. APPLIED 17, 044028 (2022)
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Nano-spin mechanical system (NSMS) sensor
high-resolution and low minimum detectable
force field.

Shift and split of the spin manifold

0.6 Mpa/sqrt(Hz) at T= 300 K; 68 Pa/ sqri(Hz) @ T< 12 K
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a, b lattice parameter changes
« Shifting of band gap and splitting of a'Ja=b'/b=1.0074 b @/a=Db'/b=1014
band edge under (up to +2%) AT S SN
changes in the lattice parameters. 1 1
« Conduction band edge split by up to
60 milli electron volt (meV) due to

compressive strain under up to 2% e 3 = e
changes in the transverse lattice N : =
M MIFED am 36\,( e s RN
?k?emsgi?irse ltwse(g,rll;) 40 meV due to tensile ' AL ALl I _g/a=b/b=09813
) BASST| &S

strain under up to 2% changes in the
longitudinal lattice parameters (c).
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Optical sensor based on the band gap or band edge shift: Wavelength shift per unit stress on the
photoluminescence (PL) peak.

For oy, = 0,,,~25 GPa, the conduction band edge shiff, AE,,~ 60 meV

Band shift per unit GPa, % ~ 2.4 meV
Wavelength shift per unit GPa, AA~2nm
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The ground state of negative NV center in a nanodiamond is - conduction
described by the Hamiltonian: et —

H, = DyS2 +y,B-S D, = 2.87 GHz

A 4

m=20 m=20

no magneticfield  with magnetic field

For (0,0,B,)= 10 mT, the Zeeman splitting (y.B,) ~140 MHz

band
The transverse components of the field weakly couple to § =
(Sx» Sy, Sz)

Under the applied stress

H = DySZ + M,S? + N {S,, S, } + N, {S,, S, } + M, (S5 — SZ) + M, {S,,S,} +V.B-S

The first two eigenvalues of H (in per GPa) NV dipole orientation along [111]

W|41) = Do + Mz T \/()/eB)z + sz + 1\43,2
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Model for Low Energy Hamiltonian

Energy Splitting for Four Different NV Center Orientations

Applied stress direction

p I [100] e, € {111,111,111,111}

e, € {111,111}
p Il [110] e, € {111,111}
e, € {111,111}

p Il [111] e, € {111,111}

NV sub-ensemble direction

Shift/Splitting per unit pressure

a; +2b
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Dependence of splitting/shifting on the direction of stress, and orientation of dipoles.

Forp || [111], there is no splitting of the energy level for e, € {111,111} NV orientations.
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(0,0,B,)= 10 mT, the Zeeman splitting (y,B,) ~140 MHz from 150 | — Level shift
the center energy line —— Level splitting
100 | — Level splitting
This is equivalent to applying more than 30 GPa pressure! N 5
"E . Zero-field splitting line
Energy shift, and the splitting {§E, AE} g
g -50
{3, 0} MHz/GPa for p || [111] =
-100
{0.7, +5.8} MHz/GPa for p || [110] 150

5 10 15 20 25 30 35
{4.4, +4.6} MHz/GPa for p || [100] Stress (GPa)

NV center oriented along [111]
direction with applied stress along [100]

Above pressure limit is equivalent to just applying 1T mT magnetic field!
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- Developing functional, tunable
materials for target analytes £ st

« The addition of a MOF shell around '
nanodiamonds is a first step for
sensitive sensors

- Simple reaction process to grow |
ZIF-8 MOFs on nanodiamonds. fme )

- Optical properties are /0 nm average distribution
unchanged or enhanced ' P
following MOF encapsulation,
confirming potential for gquantum
sensing applications.
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Spin relaxation time was recoded up to several microseconds in both encapsulated
and bare nanodiamond.

T8,
1 3 o Dispersed Nanodiamonds
TR TR N\ — o Aggregated Nanodiamonds
The stress sensitivity: s = (2nC(dD/dP)\/T;) 2
S
- :
ND dipole e, € 111 @
Applied stress p || [111], u_g_ o
. o |
: v ' B ' s
Level shift dD/dP = 3 MHz/GPa. 5 10 15Timz°m$)25 30 35 40

Spin dephasing T, = 10 us

Ngs ~ 0.32 MPa/VHz

Shugayev, Crawford, et al, Chem. Mater. 2021, 33, 16, 6365-6373.
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Superiority of NV Center Diamond N

Compare to the Traditional Sensors Based on the Band Gap or Band Shift. T

il

Compare resolve frequency per unit pressure

: . AE
Band shift per unit GPa, —~2.4
b DP Typical spin level shift/split per unit

meV from the bandstructure Gpa
calculations

~2-4 MHz/GPa

~ 3 x 10° MHz/Gpa

Quantitatively this is about 4™ order of magnitude improvement over traditional optical sensor!

This shows a superiority of stress sensitivity behavior that could be achieved by
manipulating the ground state spin levels in NV center nanodiamond over the fraditional
optical sensor based on the band edge or band gap shifting.
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« Hydraulic fracturing of clay, sand, and rocks requires fluid injection under tens of MPa pressure

through high-pressure well bores.
« Monitoring deep geological CO, storage and the potential induced seismic vibration triggering

earthquakes (stress could reach up to 10-15 MPQ). .o
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30 ~~, | ®Pi-1stcycle & Po-1stcycle || L
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Fig. 9. Average injection pressures at the manometer versus depth for
each cycle, and opening pressures at the manometer (open squares)
versus depth only for the first cycle

Distance (km)

Nature 2004, 427 (6976), 724-727

NV center coated on the fiber could be developed and deployed to monitor the extreme
pressure with high accuracy!

Marchil; G. Gottardi’ 2013, J. Geotech. Geoenviron. Eng
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« Discussed the electronic and optical features for NV center
nanodiamond using first principles density functional theory approach.

« Demonstrated the band edge splitting/band gap shifting strain due to
changes in the lattice parameters.

* Implemented the model for low energy Hamiltonian to predict the
splitfting of energy levels in + spin manifold under the applied stress.

« Discussed the experimental approach for the measurement of spin
relaxation in in NV center nanodiamond.

» Discussed the superiority of guantum sensing over classical sensing by
combining experimental and theoretical results.
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