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ABSTRACT

A formal description of the structure of several recent performance assessments (PAs) for the Waste Isolation Pilot
Plant (WIPP) is given in terms of the following three components: a probability space (S 4 sp Dsp) for stochastic
uncertainty, a probability space (&, 4 sw Psy) for subjective uncertainty and a function (i.e., a random variable)
defined on the product space associated with (S, 4 sp Psp) and (S, 4 sw Psy)- The explicit recognition of the
existence of these three components allows a careful description of the use of probability, conditional probability
and complementary cumulative distribution functions within the WIPP PA. This usage is illustrated in the context
of the U.S. Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191,
Subpart B). The paradigm described in this presentation can also be used to impose a logically consistent structure
on PAs for other complex systems.
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1. Introduction

The importance of an appropriate treatment of uncertainty in performance assessments (PAs) for complex
systems is now widely recognized.1!® In particular, analyses for most complex systems such as chemical plants,
nuclear power stations, radioactive waste disposal facilities and human populations involve two types of uncertainty:
stochastic uncertainty and subjective uncertainty. Stochastic uncertainty arises because the system under study can
behave in many different ways and is thus a property of the system. Subjective uncertainty arises from a lack of
knowledge about the system and is thus a property of the analysts performing the study. Commonly used
terminology for these two types of uncertainty includes aleatory, type A, irreducible and variability as alternatives to
the designation stochastic and epistemic, type B, reducible and state of knowledge as alternatives to the designation
subjective. Performance assessments must be carefully designed and implemented to maintain a distinction between
stochastic and subjective uncertainty. Otherwise, the effects of these two types of uncertainty become commingled

in a way that makes it difficult to draw useful insights from the analysis.

Probability is typically used to characterize both stochastic and subjective uncertainty (e.g., see the three
analyses summarized in Ref. 20). Indeed, the use of probabilify is a fundamental part of PA for a complex system,
with the result that PA is also referred to as probabilistic risk assessment (PRA). Yet, when the documentation of
most PAs is examined, little is typically found that is suggestive of the conceptual material covered in a textbook on
probability. This is unfortunate because having a clear conceptual model for the probabilistic basis of an analysis
helps in understanding the design and implementation of the analysis, in avoiding conceptual errors, and in relating

analysis procedures to similar procedures used in other contexts.

The purpose of this presentation is to provide a formal probabilistic description of a PA involving stochastic and
subjective uncertainty. This description will be given in the context of several recent PAs for the Waste Isolation
Pilot Plant (WIPP).21-29 However, the underlying concepts and associated structure are relevant to PAs for any

system that involves both stochastic and subjective uncertainty.
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2. Probability

Probability is more than a number between 0 and 1. Rather, there are three elements in the development of
probability: (1) a set S'that contains everything that could occur for the particular "universe” under construction, (2)
a suitably restricted set . of subsets of &, called a Borel or o-algebra, and (3) a function p defined for elements of J
that actually defines probability.30-31 In particular, . has the properties that (1) if £ 4, then &€ € J, where the
superscript ¢ is used to denote the complement of & and (2) if { € ;} is a countable collection of elements of ., then
U;& and ;& are also elements of . and p has the properties that (1) p(S) = 1, (2) if E J, then 0 <p(§<1,and
@3)if &, &, ... is a sequence of disjoint sets from S (ie., & N &= ifi#j), then p(U;&) = Z; p(&). The triple
(S, 4, p)iscalled a probability space. In the terminology of probability theory, S'is the sample space, the elements
of Sare elementary events, and the subsets of $contained in ¢ are events. In most applied problems, the function p
defined on J is replaced by a density function d such that, if €€ J, then

p&=[, dooav. @

In a careful development of probability, the preceding integral would be a Lebesgue integral, but for our purposes it
can be assumed to be the Riemann integral of elementary calculus. The properties of the set Jenter into the formal
development of the concept of integration over §. The notation dV is used in Eq. (1) because & is multidimensional

(e.g., S < R™) in most problems of interest.

Problems involving probability usually relate to the behavior of a function f defined on the sample space S
associated with a probability space (S, 4, p). For example, the expected value of fis given by

E(f)= [ f0d(x)av. @

Similarly, the complementary cumulative distribution function (CCDF) associated with fis given by

ccDF(R)= S rRIFH04Y, 3)
where
sald={y 225 2

and CCDF(R) is the probability that a value of R will be exceeded by f In an unfortunate but widely-used

terminology, f is referred to as a random variable.



The CCDF defined in Eq. (3) is defined over the entire sample space S. It is also possible to define CCDFs
conditional on the occurrence of subsets of & In particular, the CCDF associated with f conditional on the

occurrence of a subset of Sis given by

CCDF(RI &) = j 25zl f(x)]d(x)dV/Ie d(X)dv, ®)

where 8y, is defined in Eq. (4) and CCDF(RI &) is the probability that a value of R will be exceeded by f given that
consideration is restricted to the set & The probabilities CCDF(RIE) are conditional probabilities because of the

restriction of consideration to the subset €of S,

An additional important concept that arises in PAs for complex systems is that of a product space. Many
problems involve more than one probability space. For example, two probability spaces S .0’1, py) and (S5, Jz,
p,) might be involved in the formulation of a problem. Then, a third probability space (&, 4, p) can be obtained by
combining (S, 4, py) and (S,, J,, p,), where R

§=8x & ={x1.x:]: 31 € x5 € S}, ©
,J= ,Jlx .J2={8! &= 81 X 82,where 81 € ,J], 82 € ,Jz}, (7)
p(&)=p1(&)p2(&2) for E= & x&;. ®)

The definition of p(&) in Eq. (8) implies that (S}, ,Jl, py) and (S, JZ, p,) are independent in the sense that the
occurrence of elements of S, has no effect on the occurrence of elements of S, and vice versa. If such is not the

case, then more involved relationships are required to define p.



3. Probability in PAs for the WIPP

Now that a few basic ideas from probability have been introduced, the use of probability in PAs for complex
systems is considered. This usage will be motivated and illustrated by procedures used in several recent PAs for the
WIPP (i.e., in 199121-24 and 199225-29), The use of probability in these PAs derives from the EPA Containment
Requirement 40 CFR 191.13,33:34 which follows:

§ 191.13 Containment Requirements,

(a) Disposal systems for spent nuclear fuel or high-level or transuranic radioactive wastes shall be designed
to provide a reasonable expectation, based upon performance assessments, that cumulative releases of
radionuclides to the accessible environment for 10,000 years after disposal from all significant processes and
events that may affect the disposal system shall:

(1) Have a likelihood of less than one chance in 10 of exceeding the quantities calculated according to Table
1 (Appendix A); and

(2) Have a likelihood of less than one chance in 1,000 of exceeding ten times the quantities calculated
according to Table 1 (Appendix A).

(b) Performance assessments need not provide complete assurance that the requirements of 191.13(a) will be
met. Because of the long time period involved and the nature of the events and processes of interest, there will
inevitably be substantial uncertainties in projecting disposal system performance. Proof of the future
performance of a disposal system is not to be had in the ordinary sense of the word in situations that deal with
much shorter time frames. Instead, what is required is a reasonable expectation, on the basis of the record
before the implementing agency, that compliance with 191.13(a) will be achieved.

Containment Requirement 191.13(a) requires that the CCDF for normalized release to the accessible
environment fall below a boundary line33-38 defined by the points (0.1,1) and (0.001,10) as indicated in Fig 1.
Construction of this CCDF requires a probability space. In the WIPP PA, this probability space is assumed to derive
from various disruptive events that conceivably could occur at the WIPP over the next 10,000 yr. The defining
character of these events is that their occurrence involves a relatively rapid change in conditions at the WIPP (e.g.,
volcanism, meteor impact, drilling intrusions, ...). In the WIPP PA, as in many other analyses, the uncertainty
indtroduced by the possible occurrence of such disruptions is referred to as stochastic uncertainty and is

characterized by a probability space (cS;,, J <0 Dsp)-

Review work has indicated that drilling intrusions are the only disruptions at the WIPP with sufficient
probability to be relevant to assessing compliance with 191.13(a) (Ref. 21, Chapt. 4). Therefore, the probability
space (S, 4 sp Pgy) for stochastic uncertainty is used to characterize the occurrence of drilling intrusions. In the

computational implementation of recent PAs for the WIPP, the elements X, of S, have been vectors of the form

X =[t1, %1108, %05 1y 0001, %4,1,,0,0,0,...], ©)
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Fig. 1. Comparison of CCDF for normalized release to the accessible environment with boundary line specified in
191.13(a).

where ¢; is the time of the ith drilling intrusion, x; is the location of the ith drilling intrusion, I; is the activity level of
waste penetrated by the ith drilling intrusion, and 7 is the number of drilling intrusions. The function p, is defined in
terms of the rate constant A in a Poisson model for drilling intrusions, the area of pressurized brine beneath the waste
panels, and the repository area occupied by waste of each activity level. 39,40 Given the definition of X, in Eq. (9),
8, is a subset of R*°. However, because of upper bounds placed on A, n has been assumed to satisfy the bound
n < nBH in recent PAs for the WIPP, in which case S, is a subset of R3"BH and, as an example, a subset of R30 if

nBH = 10.

The CCDF specified in 191.13(a) is obtained by integrating over S, as indicated in Eq. (3). Specifically, the
CCDF for comparison with the EPA release limits is given by

CcCDF(®)= | 5, 3Rlrbes)|du(xar) v ‘ (10)
nS

= 28 R [f(xst,i )]pst (Sst,i )v (11)
i=1

where R corresponds to normalized release to the accessible environment, the function f corresponds to the combined

operation of models of the form indicated in Fig. 2 to predict the normalized release associated with an element X,
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Fig.2. Computer programs used in 1991 WIPP PA. Additional information on the individual programs is
available as indicated: BRAGFLO (Ref. 22, Chapt. 5; Ref. 41, Sect. 3.1), CUTTINGS (Ref. 22, Chapt. 7;
Ref. 41, Sect. 3.5; Ref. 42), PANEL (Ref. 22, Chapt. 5; Ref. 41, Sect. 3.2), SECO2D (Ref. 22, Chapt. 6;
Ref. 41, Sect. 3.3; Ref. 43), STAFF2D (Ref. 22, Chapt. 6; Ref. 41, Sect. 3.4; Ref. 44).

of Sy UiSyyi= S SpinSyj=difi%j, and X, € Sy~ The approximation to the integral in Eq. (1) indicated in
Eq. (11) is calculated by the program CCDFPERM#0 in recent PAs for the WIPP.

Once (8, S, ) and f have been developed, the first of several types of conditional CCDFs is possible. In
particular, a CCDF conditional on the occurrence of a specific subset &€ of 5;., can be determined. For example, let

& be defined by
& ={x, x,e 8, and involves one or more drilling intrusions}, 12)

which is equivalent to defining & to be the set of all vectors of the form defined in Eq. (9) with n 2 1. The
corresponding conditional CCDF is given by

CCDF(RI & ) = J-sl 8 R[f(xst )]dst (xst )stt / '[.81 dg (xst )stt’ 13)

where CCDF (RI 81) is the conditional probability of exceeding a normalized release of size R given that at least one

drilling intrusion has occurred. Examples of CCDFs conditional on the set &, in Eq. (12) are shown in Fig. 3.
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Fig.3. Original (unconditional) CCDFs and CCDFs conditional on one or more drilling intrusions (i.e., on the set
& in Eq. (12)) for release to the accessible environment due to groundwater transport and release to the
accessible environment due to cuttings removal for sample element 46 in 1991 WIPP PA.

If there was no uncertainty as to how the function f and density d,, in Eq. (10) should be defined, then the CCDF
required in 191.13(a) could be calculated and compared with the specified boundary line. With complete certainty,
191.13(a) would either be met or not met, and there would be no additional uncertainty to be considered in the
analysis. However, this type of certainty never exists in an analysis fora complex system, which is where 191.13(b)

enters the analysis and leads to an additional probability space.

Containment Requirement 191.13(b) requires a "reasonable expectation" that compliance with 191.13(a) will be
achieved. The goal in recent PAs for the WIPP has been to assess this reasonable expectation on the basis of the
effects that fixed, but poorly known, quantities have on the location of the CCDF specified in 191.13(a). To this
end, the function f and density d, in Eq. (10) were developed so that F(X,,) and dy(X,,) depend on quantities that are
believed to have fixed values (at least within the resolution of the modeling being used). In other words, fand d,, are
treated as being of the form f(X,,, X;,) and ds,(xstlxsu), where X, € cS;.t and X, is a vector of fixed, but poorly known,
quahtities. Distributions are then assigned to the elements of X, to characterize where their true, but unknown,
values are believed to be located. In turn, the location of the distribution of CCDFs that results from the uncertainty
in X, provides a measure of the assurance with which 191.13(a) can be met. The development of distributions for
the elements of X, is still in progress in the WIPP PA,?3:27 with the result that the PA has not yet arrived at the point

where all distributions in use can be viewed a providing representations for where "true, but unknown, values are



believed to be located.” In particular, the analysis is still at a stage where some distributions are assigned primarily

to help assess the sensitivity of analysis outcomes to the associated input variable.

Definition of distributions for the elements of X, defines the probability space (8, £, p,,) for subjective
uncertainty. Here, subjective uncertainty is used to designate a lack of knowledge about a fixed, but unknown,
quantity. The study of subjective uncertainty is the primary domain of classical statistics, although many analyses for
complex systems find that they must rely heavily on expert-review processes?5-48 to assess subjective uncertainty
[i.e., to define (eS}u, J sw Psy)]- In the 1991 WIPP PA, X, contained the 45 variables indicated in Table 1; thus, Sm

is a subset of R45. For notational ease, integrals over elements of 4,‘ will be expressed with the density function d_,.
Thus,

p(&= -[8 dg (xsu )stu (14)

for Ee 4,

Table 1. Examples of Imprecisely Known Variables Considered in 1991 WIPP PA (adapted from
Table 3-1 of Ref. 24, App. A of Ref. 41 and Table VI of Ref. 49, which list all 45 variables
considered in the 1991 WIPP PA). The variables indicated in this table and their

associated distributions define the probability space (S, 4, p,) for subjective
uncertainty.

Variable Definition

1 BHPERM  Borehole permeability. Range: 1x 10~14to 1 x 10-!! m2. Distribution: Lognormal.

2 BPPRES Initial pressure of pressurized brine pocket in Castile Formation: Range: 1.1 x 107 to 2.1
x 107 Pa. Distribution: Piecewise linear.

3 BPSTOR Bulk storativity of pressurized brine pocket in Castile Formation: Range: 2 x 102 to 2
m3. Distribution: Lognormal.

4 BPAREAFR Fraction of waste panel area underlain by a pressurized brine pocket (dimensionless).
Range: 2.5 x 10~ to 5.52 x 10~1. Distribution: Approximately uniform.

23 LAMBDA  Rate constant in Poisson model for drilling intrusions. Range: O to 1.04 x 10-11 51,
Distribution: Uniform.

45 VWOOD Fraction of total waste volume that is occupied by IDB (Integrated Data Base)50
combustible waste category (dimensionless). Range: 2.84 x 10~1 to 4.84 x 10-L.
Distribution: Normal.




At this point, the WIPP PA involves two probability spaces,(S, 4 o Psp and (S, 4

st e O sus Dsy)» @nd the actual

object of study becomes the product space (S, 4, p) derived from these two individual spaces [see Egs. (6) - (8)].
Definition of the probability function p associated with this product space is actually more complicated thar
indicated in Eq. (8) because elements of S, affect the definition of p,. In particular, p has the form

p(&= jsd(X)dV, x =[x, Xg ]

= Iesu [Jgst dst (xstlxsu ) stt] dsu (xsu )stu s (15)

where €= &, x &, € J, dis the density function associated with p, and d, is now a function of both X, and X,
(Table 2).

Three different CCDFs associated with the product space containing &, X &, for normalized release to the
accessible environment are presented in PAs for the WIPP: an unconditional CCDF based on the entire product
space, a CCDF conditional on the occurrence of a specific element of 8,,» and a CCDF conditional on the

occurrence of a specific element of Ssr In addition, a cumulative distribution function (CDF) based on the

probability space (S, 4 > Pgyp) also plays an important role. Each of these cases is now discussed.

Table 2. Definition of Density Functions for (S,,, £, by (S Sy Py and (S, 4, p).

Density Functions Assumed to be Known

d,(X,) = densityfunction for (S, Ly py)
dy(X,X,) = density function for (S, 4 < Psp) given Xg,

Constructed Density Functions

d(x,X,) = density function for (S, 4,p)
= dg (XgiXg,) do,(Xg,)
dg (X)) = density function for (S, 4 st Psp)

= -[S d(xst’xsu)dvsu

su
= j. dst (X5t l X sy ) dsu X5y )dVy
Ssu
dg, (X, /X,) = density function for (S, &, py,) given X,
= d(xst’xsu) / dsl(xst)’ dst (xst) # 0

= dst (xst I X5y ) dsu (xsu ) IS dst (xst I Xsu )ddu (xsu )stu
Su

10



3.1 Unconditional CCDF on Product Space for S;x S,

The unconditional CCDF based on the entire product space is given by
CCDF(R) = -[s 8 p[FO0]dX) AV, S= 8y x 8y, X=[Xgpo X ]

= J“S:s‘u l:jsst ) R[f(xst’ Xy )] dg (xstlxm ) stt] dg, (Xm ) dVy,, 16)

where CCDF(R) is the probability that a normalized release of size R will be exceeded. In the 1991 WIPP PA, the
function f derives from the combined operation of the CUTTINGS, BRAGFLO, PANEL, SECO2D and STAFF2D
models as indicated in Fig. 2; in the 1992 WIPP PA, the STAFF2D model was replaced by the SECOTP model (Ref.
26, App. C; Ref. 28, Chapt. 6). The CCDF in Eq. (16) is designated as the mean CCDF in PAs for the WIPP (see
Figs. 4 and 5, with an approximation to the CCDF defined in Eq. (16) appearing in Fig. 5). The reason for the

designation "mean CCDF" will be discussed later.

The integral in Eq. (16) is too complicated to be evaluated with a closed-form procedure. Rather, a numerical
approximation must be used. In the WIPP PA, a two stage procedure is used to approximate this integral. In the
first stage, Monte Carlo techniques are used to approximate the outer integral in Eq. (16). Specifically, a Latin
hypercube sample5!

Xoupo k=1,2, ..., nLHS, an

is generated from the sample space &, associated with the probability space (S,,, £, p,), which leads to the
following approximation to CCDF(R):

nLHS

CCDF(R)= Y szt SR[F(Xots X1 )] ot (el X sz ) Vi / nLHS . (18)
k=1

In the WIPP PA, the Latin hypercube sample is generated with the LHS program52 and the mechanics of performing
the indicated summation take place in the CCDFPERM program.40 In the second stage of the procedure, the
integrals in Eq. (18) are evaluated with an importance sampling procedure (Ref. 53, Sect. 5.4) that involves the
subdivision of the sample space &, associated with the probability space (S J

st Psp) into a sequence S, ;, i=1,

2, ..., nS, of disjoint subsets such that U,-eS;,, ;= S, Although the notation in use does not explicitly indicate it, (S
4 sp Psp) actually changes from sample element to sample element (i.e., is a function of X,,) due to the dependence of
Py on variables contained in X,,,, with the result that the sets &, ; and the probabilities p,( 8,7 can also change from

sample element to sample element. Once the &, ; are defined, the approximation to CCDF(R) becomes
nLHS . nS
ccor®= Y, | 3, 8 [#(kosXous )] per(Sus) J1mts, a9

k=1 i=1

11
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where X;,; € &, ;

and p,, (S, 51, 1 defined by

Pst (Sst,i )'_"J.S dgg (X5 X g 1) AV (20)

st
In terms of implementation, JXg xsu,k) is calculated with CUTTINGS, BRAGFLO, PANEL, SECO2D and
STAFF2D for a relatively small number of elements X, of S; the results for these elements are then used to
construct (i.e., estimate) f(x st,i» Xsu i) for the large number of X,;; involved in the summation in Eq. (19). 40 This

construction process takes place in the program CCDFPERM, as does the evaluation of the probability p( S, s,i) 10
Eq. (20). The mean CCDF in Fig. 5 was produced by the calculation shown in Eq. (19).

3.2 CCDF Conditional on Element of S,

The construction of a CCDF conditional on the occurrence of a specific element of S, is now considered. It is
useful to begin by considering the more general case of a CCDF conditional on the occurrence of an arbitrary subset
& of 8- The corresponding conditional CCDF for normalized release to the accessible environment has the form
shown in Eq. (5), where the probability space under consideration is the product space associated with Sy X S,y As

aresult, the CCDF is actually conditional on the occurrence of 8 % &, Specifically,

CCDF(RI 8, x €, )= ISHX o SRLFXI]d(aV 1 -[S:,x o 400V, x=[Xg,x,]
J. 5 f(xst’xsu )] dg (xstlxsu)dsu (xsu)stt dvy,

/ Igsu J‘fgt dy (xst X gy ) dgy (xsu ) dVy dVy, 1)

where CCDF(RI Sy x & m) is the probability that a normalized release of size R will be exceeded conditional on the

occurrence of S, x &,.

For a CCDF conditional on the occurrence of a specific element X, of &,

e the set &, will contain only X,

with the outcome that the integrals in the numerator and denominator of Eq. (21) will be zero. As a result, Eq. 21)
cannot be applied directly to obtain CCDF (Rl St X {isu }) Instead, the desired probability is obtained by taking the
limit of the expression in Eq. (21) as the size of the set &, containing X, approaches a volume of zero (i.e., as

V(E,,) = 0). Specifically, CCDF|(RIS;, X{X,, t is defined by the limit
Su.
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CCDF (R [ St % {ist }) = » (le’im)ii)o {Iesu J:S; t 5 R[f (Xsts Xsu )] dgy (Xot1 Xy, ) A (K5 ) Vst AV
Su

ljg IS dst(xstlxsu)dsu (xsu)dvst stu }
su st
_ i {[ [RERICIE P (xs,nfm)dvs,}dw (%) V(E)
st

V(& )0
/ |:J.S dst (xst I )A(su ) stt] dgy ()A(su) V( 8su ) }
st

[by mean value theorem with X, X, € &,

= limit [J‘ S Sr [f (xst ’ isu )] dgt (xst ! isu ) dVy ] [dsu (’_(-su )/ dgy (isu )]

V(&,)-0 | O

= S, 8 R[f(xst’isu)]dst (xstlisu)dvst’ (22)

provided the functions involved are "reasonably" behaved.

The expression CCDF (R 1S5 X{im}) as defined by the integral in Eq. (22) gives the probability of exceeding a
normalized release of size R conditional on the occurrence of the element Xy, of . In PAs for the WIPP, this

probability is approximated by
nS
CCDF (RISst X {isu}) = Z 8R[f (xst,i risu)] Pst (‘Sxt,i ) (23)
i=1

with use of the same notation as in Eq. (19). In particular, the probability of exceeding a normalized release of size

R conditional on the occurrence of a sample element X, ;, of the form indicated in Eq. (17) is

nS
CCDF(RI Set X {xsu,k }) = 2 dr [f(xst,i 2 X suk )] Pyt (S-Y‘:i ) : @9

i=1

Plots of the resultant CCDFs for the individual sample elements in the 1991 WIPP PA appear in Fig. 4. The
calculation indicated in Eq. (24) to obtain the CCDFs in Fig. 4 is performed in the program CCDFPERM.40

The CCDF discussed in Sect. 3.1 is often referred to as a "mean CCDFE" because it can be viewed as the mean of
the CCDFs discussed in this section. In particular, the integral for CCDF (RISs, X{isu}) in Eq. (22) is the inner
integral in Eq. (16).
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3.3 CDF Basedon §,

The expression CCDF| (Rl St x{x su }) is a function defined on &, for each value of R. Thus, this expression
has a distribution that derives from the probability space (S, 4 sw Psyp)- For notational reasons, this distribution is
best expressed as a cumulative distribution function (CDF). In particular, the probability that
CCDF(RI Ser X {Xg, }) is less than or equal to p is given by

CDF(p,R)=1— Is 8 ,[CCDF(RI S,y x {0 P d(Xsi) 2V,

= 1—_[5;“ 8,,{_[8“ 3 R[f(xsz,xs,,)] dgr (Xs¢1X 5 ) AV }d(xm)dvm , 25)

where 8p is defined as indicated in Eq. (4). The CDFs defined by Eq. (25) are characterizing the uncertainty in the
exceedance probabilities that are used in comparisons with the boundary line specified in 191.13(a). The probability
space (S, 4 sw Pgy) characterizes how well we (i.e., all the analysts involved) know the appropriate values for use
in the modeling system employed in a PA for the WIPP. The uncertainty in this input translates into corresponding
uncertainty in quantities predicted by the PA. Among these uncertain quantities are the exceedance probabilities
associated with normalized releases of different sizes. The CDFs defined by Eq. (25) characterize a degree of belief
with respect to where these exceedance probabilities are located and thus provide a measure of the assurance
requested in 191.13(b) that 191.13(a) will be met.

As is the case for all integrals over probability spaces in PAs for the WIPP, the integral in Eq. (25) must be

approximated numerically. Specifically, the following approximation is used:

nLHS nS
CDF(p,R)=1~ )" 8,,{2 Sa]f (Kot Xout )] Pt (Ss,,,-)}/nLH& (26)
k=1 i=1

where notation is the same as used in Eq. (19). Further, Eq. (19) provides an approximation to the expected (i.e.,
mean) value of CCDF(RI St x{x su }), where this expectation derives from (S, 4 s Dsy)- As an example, the
CDFs that result for the results summarized in Fig. 4 and values of R = 0.001, 0.01 and 0.1 are shown in Fig. 6. The
preceding procedure for estimating the integral in Eq. (25) for a given value of R is equivalent to determining the
number nE(Sp) of CCDFs that have an exceedance probability less than or equal to p and then defining CDF(p,R) to
be nE(Sp)/nLHS. The percentile curves (i.e., 10th, 50t (median), 90%) and mean curve in Fig. 5 result from
connecting the corresponding percentile and mean values for individual normalized releases. Thus, these curves
provide a compact summary for distributions of the form shown in Fig. 6. A CDF is used to represent the
uncertainty in exceedance probabilities so that the distributions in Fig. 6 will have the same orientation as the

percentile curves in Fig. 5.
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Fig. 6. Estimated CDFs for exceedance probabilities associated with normalized releases to the accessible
environment of R = 0.001, 0.01 and 0.1 in Fig. 4.

The percentile values on which the percentile curves in Fig. 5 are based are conditional on individual
normalized release (i.e., R) values. Thus, these curves characterize the uncertainty in the probability that specific R
values will be exceeded rather than the uncertainty in the location of entire CCDFs. For example, it is inappropriate
to conclude that there is a probability of 0.9 that a CCDF produced for a randomly selected element of S, will fall
below the 90th percentile curve. The probability that a CCDF will fall below a specified boundary line (e.g., the
boundary line defined in 40 CFR 191.13(a) and illustrated in Fig. 4) can be estimated by generating a sample from
§,, as indicated in Eq. (17) and then dividing the number of CCDFs below the boundary line by the sample size. In
contrast as shown by the development leading to Eq. (19), connecting the mean exceedance probabilities for

individual R values produces the unconditional CCDF discussed in Sect. 3.1.

3.4 CCDF Conditional on Element of S,

The construction of a CCDF conditional on the occurrence of a specific element of S, is now considered. This

case is similar to the case considered in Sect. 3.2 for a CCDF conditional on the occurrence of a specific element of

S,

- 1t is useful to first consider the more general case of a CCDF conditional on the occurrence of an arbitrary

subset &, of S, The corresponding conditional CCDF for normalized release to the accessible environment has the
form shown in Eq. (5), where the probability space under consideration is the product space associated with 8 X

S, As aresult, the CCDF is actually conditional on the occurrence of &; X &,. Specifically,
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CCDF(R1 €y x 8, )= IS,xS 8 R[FO0]d(0aV 1 Ie g, d00AY. X=X Xy
S Su Si SU

_[ J- f(xst » Xsu )] dg (xst Xy ) dgy (xsu ) dVgy dVy

Sll

/ J J' d.\'t (xst I xsu ) dsu (xsu) stu stt’ (27)
Sst é.‘su

where CCDF(RI &g X Ssu) is the probability that a normalized release of size R will be exceeded conditional on the

occurrence of &, x &,

To obtain a CCDF conditional on the occurrence of an element is, of Sﬂ, it is necessary to consider the limit of
the expression in Eq. (27) as the volumes of sets &, that contain X, go to zero (i.c., as V(& ) = 0). Given the ratio
in Eq. (27), this limit does not have a simple form due to the dependence of f(X,, Xg,) and dg (X, IX.) on Xy
However, considerable simplification is possible provided there is no “relationship between the variables in X, that
affect fand the variables in X, that affect d;,. As discussed in the next paragraph, this is the case in recent PAs for
the WIPP,

In recent PAs for the WIPP, the probability space (S 4 su» Psy) Tor subjective uncertainty is itself a product
space obtained by combining a probability space (S, s, 4 su,d Psyqd)> Which characterizes the uncertainty in
variables used in the definition of the functions P and d,, and a probability space (S 414 f» Psup» Which

characterizes the uncertainty in variables used in the definition of the function £ The elements Xgy,q Of S, 4 are of

the form

X, 4= [BPAREAFR, LAMBDA], (28)

where BPAREAFR and LAMBDA are defined in Table 1. Thus, eS}u 4 1s a subset of R2. The distributions indicated
in Table 1 provide the information needed to complete the definition of (S, s, 40_:,, @ Psy,g)- Similarly, the elements

Xy, f of cS' su, f A€ Vectors containing the remaining 43 variables indicated in Table 1 (i.e., Seu 5 is a subset of R43) and
the indicated distributions in Table 1 provide the information needed to complete the definition of (S p L y
Psup As Sg, = 8, 4% 8, 5 each element X, of S, has the form

Xsu =[xsu,d 'xsu,f] (29)

and is thus a vector from R4S as previously noted. Further, the functions fand d, in Eq. (27) are actually of the form
T Xy, ) and diy (X, 1 X, ) rather than A, X,,) and (X, 1 X,). Finally, if &, ge 4, 4 &, 7€ Sy pand &
= &y ax &y pthen
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Psu (esu)= dgy (xsu)stu
Esu

= J 8su’ d J‘ gsu,f dSu,d (xsu,d ) dg, f (xsu, f) avy, f AV d> 30)

where dg, jand d, rare the density functions associated with the probability spaces (S, su,db 4 su,d» Psu,d) and (S, £
4 suf Psu f), respectively, and the indicated decomposition in Eq. (30) follows from the assumed independence of the

two preceding spaces.

Due to the considerations indicated in the preceding paragraph, the relationship in Eq. (27) is actually of the

form

CCDF(R1 E; x Sg,)

Jest ‘[sud
ey Is
j&tjsud

/J Jl su, Xy d) d ( stlxsu,d) stu,d dv;t

J. S 7 8R[f (xstrxsu, I )] dsu, f (xsu, f ) dsu,d (xsu,d ) dy (xst[xsu,d ) stu, 5i stu,d dVy

j su,f suf) sud( sud) ( stlxsud) studesud aVy

sud

j 8R[ XstsXsu, f ]dsuf su,f) su,d ( Su. d) st( st X5y d) dv:sudesud dVy

(31)
in recent PAs for the WIPP.

The expression in Eq. (31) can now be used to obtain the CCDF for normalized release to the accessible
environment conditional on the occurrence of an element X, of S Specifically, with the assumption that X €

¢

5P

CCDF(RI{R Y S0 )= V(li.m)it i CCDF(RI &, % S,)
—

= limit {[I sudJ-'S [ xst’xsuf)] suf( suf) sud( sud)dst (xstlxsud)dvsu,f stud:|V(8st)

V(E,)—0

/ I dsu,d (xsu,d ) dy (f(st ! xsu,d) stu,d V( 8_\1) }
‘Ssu,d

[from Eq. (31) by mean value theorem with X, Xy € 65,]
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= limit {j St Ly [f (ist Xsu,f )] dyu,f (xsu,f ) AV f }

V(&0
-[S dsu,d (xsu,d ) dg (ist I Xsud ) stu,d
su,d

IS dsu,d (xsu,d ) dy (ist ! Xsud ) stu,d

su,d

= IS 8 R[f(ist’ xsu,f )] dsu,f (xsu,f) stu,f’ (32)
su,f

provided the functions involved are "reasonably" behaved. The representation for CCDF] (R I{is,}x Ssu) in Eq. (32)
gives the probability that a normalized release of size R will be exceeded conditional on the occurrence of the

element X, of &,

As is the case for all integrals discussed in this presentation, the WIPP PA does not evaluate the integral in Eq.

(32) directly. Rather, an approximation procedure is used. Specifically,

nLHS
CCDF(RXe}xSau)= >, Sa] f(RoosXos, 1,6)]/ nLES, (33)
k=1

where, in consistency with the notation used in Eq. (32), the elements of the Latin hypercube sample indicated in Eq.

(17) are assumed to be of the form
Xsuk = [xsu,d,k Xsu, £k ] (34

The 1991 WIPP PA evaluated CCDFs of the form defined in Eq. (33) for 10 elements of S, single drilling
intrusions at 1,000, 3,000, 5,000, 7,000 and 9,000, yr and E1E2-type drilling intrusions at 1,000, 3,000, 5,000, 7,000
and 9,000 yr, where an E1E2-type intrusion involves two or more boreholes penetrating the same waste panel, with
at least one intrusion penetrating a pressurized brine pocket and at least one intrusion not penetrating a pressurized
brine pocket. The resultant CCDFs for groundwater transport to the accessible environment are shown in Fig. 7. As
illustrated in Fig. 8, box plots are often used in the WIPP PA to summarize distributions of the form appearing in
Fig. 7 due to their greater compactness and legibility.

If X,,, does not have the decomposition in Eq. (29), the outcome of evaluating the limit in Eq. (32) is

CCDF(RI{% g }x S, )

I sl Bttt v | ]

Su Su

dy (ist IXg, ) dgy (xsu) dVg, ]

(35)

1

j,g 5 R[f(ist’ xsu )] dSu (xsulist) stu ’
su
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Fig.7. Complementary cumulative distribution functions for normalized release to the accessible environment due
to groundwater transport conditional on the occurrence of individual elements of 8, The upper plot frame
contains CCDFs for single intrusions at 1000, 3000, 5000 and 7000 yrs (i.e., for scenarios X1,0,0,0,0),
&0,1,0,0,0), §0,0,1,0,0), §0,0,0,1,0) in the notation used in the 1991 WIPP PA); a single intrusion at
9000 yr (i.e., scenario &0,0,0,0,1)) resulted in no release. The lower plot frame contains CCDFs for E1E2-
type drilling intrusions at 1000, 3000, 5000, 7000 and 9000 yrs (i.e., for scenarios $+~(2,0,0,0,0), ...,
$t-(0,0,0,0,2)).
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Fig. 8. Alternative summary of CCDFs in Fig. 7 with box plots (Ref. 24, Fig. 4.4-1; Ref. 49, Fig. 10).
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where dg,(X,,1X,,) is the density function for X, conditional on the occurrence of X, (Table 2). If a sample from

S, of the form indicated in Eq. (17) is used, then the CCDF in Eq. (35) can be approximated by

cepr(R{R, }x S, )= [28 [ (&ypoX,g, k)]d (%1%, k)] [st,( X, k)} (36)

k=1
which is equivalent to use of the reweighting procedure proposed by Iman and Conover. 54

3.5 Alternate Construction of Unconditional CCDF on Product Space S, 8,

The unconditional quantity CCDF(R) was obtained in Eq. (16) by integrating over the probability space
associated with S= &, x S, As discussed in Sect. 3.2, CCDF(R) is the mean of CCDFs conditional on individual
with this mean being calculated with respect to (&, 4 su» Psw)- EQs. (18) and (24) show that an

elements of 'S, s

su?

approximation to CCDF(R) can be constructed by first approximating CCDFs conditional on elements of &,
obtained by random or Latin hypercube sampling and then vertically averaging these CCDFs.

An alternate approximation procedure for CCDF(R) is to calculate CCDFs conditional on elements of S, as
discussed in Sect. 3.4 and then vertically average these CCDFs over (&, 4.

sp P

Pgp)- Formally,

CCDF(R) = js CCDF(RI {x,}xs, ) d_(Xs+) dVy; [see Table 2 for definition of dgr (X )]
St

j _[ S, R[ stoX )] dy (xstl xsu) dg, (xsu) dv,, dv,, [from Eq. (35)]

=.‘.S J.S 8R[f(x.\:l"xsu)] dst (xstlxsu)dsu (xsu)dv dV_ﬂ, » 37
su " st

which is the same outcome as in Eq. (16).

An approximation to CCDF(R) is obtained by subdividing &, into a sequence &

st,i?

i=1,2,..,nS, of disjoint
subsets. Specifically,

CCDF(R) = 2 Jo  copp(rxg}xs,)dalxy)ave [S =U 18,10 SN S, =9 foriz il
= S i

2 8

=§“{CCDF(Rl {(Xeti 8, }{j S st,}

i=1

[by generalized mean value of theorem with X, ; € Ss,,,-]
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nzsl{ccm(m{xm )}{ [ s [j e )stt:Idm (xsu)stu}; 38)

[from definition of d, (x s,) in Table 2]

where in the final equality

P(Sy,i1%)= IS dy(Xy1X ) AV . (39

Sty i

is the probability of &,

s, Eiven X, and

st i -[S st l d su (xsu ) dVS" “0)

is the expected value of p(&;,; I X,,) over (S, Sy Py

If a sample from ‘Ssu of the form indicated in Eq. (17) is used, then the results in Eqgs. (36) and (38) can be
combined to obtain the following approximation to CCDF(R):

nLHS nLHS
CCDF(R) = Z {l: 28 [ ( sti'Xsu k )]dst (xst,i'xsu,k ):'l[ zdst (xst, il Xgy, k)]}
k=1 1

i=1 k=1

nLHS
{ )y [ | s, ds,(xs,lxm,k)dvs,J/nLHS} , 1)

k=1 2

where {~}, is an approximation to a CCDF over subjective uncertainty conditional on the occurrence of an element

. of S,

1,i and {~}, is an approximation to the expected value over subjective uncertainty for the probability of

5;“ X, has the decomposition indicated in Eq. (29) and a sample of the form in Eq. (34) is used, then the results

in Egs. (33) and (38) can be combined to obtain

nS [nLHS nLHS
CCDF(R)= Y {2 5 R[ %oy 1% 1 k)]/nLHS} {2 [Js dg, (xstlxsu,k)st,J/nLHS} . @)
1 st, i

i=l | k=1 k=1 2

where {~}, and {~}, have the same interpretation as in Eq. (41).

The approximations to CCDF(R) in Eqgs. (41) and (42) both involve a construction procedure of the form
indicated in Fig. 9, with CCDFs conditional on the occurrence of individual elements of S, being constructed and
then vertically averaged to obtain an approximation to CCDF(R). The first term (i.e., {~}y) in Egs. (41) and (42) is
an approximation to the conditional CCDFs (i.e., to CCDF (RI {x s,,-}x Ssu) in Fig. 9. The second term (i.e., {~}5)

in Eqs. (41) and (42) is an approximation to the probability (i.e., to p(S, st.1)) Of the subsets S, ;:of Ss, on which the

st,i
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CCDF ~ Xs“ € Sst,1
1 CCDF ~ xst’2 € 8St,2

[R, CCDF (Rl{xt 1} X Sgy)]
[R, CCDF (R|{xg; 2t x Ssy))]
[R, CCDF (R )] where

CCDF(R)= 2 CCDF (Rl {Xgt;} X S5 )P (Sst)
p (Sstl) I P (Sst Ixsu)dsu (X5 )dVsy

"I [I d t(xstlxsu)dvst]d u(Xsy)dVgy

su 'sti

Probability of Release >R

[R,CCDF (Rl {xXgyns} X Ssu)l

CCDF ~ xst’ns [ Sst’ns

R
Release to Accessible Environment, R

TRI-6342-4393-0

Fig.9. Construction of Unconditional CCDF on §, X &, (i.e., CCDF(R)) by Vertically Averaging CCDFs
Conditional on the Occurrence of Elements of 8.

construction of CCDF(R) is based. The summation in Egs. (41) and (42) produces an approximation to the CCDF
labeled CCDF(R) in Fig. 9.

Although Egs. (41) and (42) approximate p(S, s) in the same manner, the approximations to
CCDF(RI {x sti }x Sm) are different. The independence of variables that affect f(Xg, Xy, o) and dg (X, 1 X, ) in Eq.
(42) allows the approximation to CCDF| (RI {x sti }x Ssu)to be constructed directly from the values of X, ;, Xg, £1)
calculated for the sample elements Xg, ¢, k=1, 2, ..., nLHS. In contrast, the corresponding lack of independence for
Eq. (41) requires the inclusion of a weighting term in the approximation to CCDF (RI {x sti }x Ssu) .

The approximation procedure in Eq. (42) has often been proposed for estimating CCDF(R), with there typicaily

being no uncertainty in the probability for subsets S, ; of S,,. 35-59 However, there are two disadvantages to the use

st,i

of Eq. (42). First, by directly constructing CCDF(R) from CCDFs conditional on elements of &, the uncertainty
associated with (S,,, £ sw Ps) that leads to multiple possible CCDFs for comparison with 40 CFR 191.13 is

sw

obscured. Second, when many subsets S, ;

For example, nS exceeded 108 in the construction of some of the CCDFs in Fig. 4 (see Ref. 40, Table 2). In

of 8, are in use, this procedure can become computationally unwieldy.

addition, the use of Eq. (41) when the variables associated with (cS}u, J o D) that affect f(X,, Xg,) and d (%, | X
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are not independent requires the inclusion of weights with the calculated results for individual sample elements. The
requirements for these weights is the reason why the approximation in Eq. (20) of Ref. 15 will not, in general,
produce the same CCDF as the approximations in Eqgs. (19) and (41); however, it does produce the same CCDF as
Eq. (42) when the variables that affect S(Xgp Xg,) and d (X, | X)) are independent.
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4. Discussion

As evidenced by the extensive discussion in Refs. 1-20, much interest exists in the treatment of uncertainty in
PAs for complex systems. Indeed, the incorporation of uncertainty into the outcomes of an analysis is the essence of
a PA for a complex system. However, appropriately drawing a distinction between the uncertainty tilat arises
because the system can behave in many different ways (i.e., stochastic uncertainty) and the uncertainty that arises
from a lack of knowledge on the part of the analysts conducting the PA (i.e., subjective uncertainty) remains an area

of considerable confusion.

This presentation describes and illustrates a formal approach to representing the uncertainty in a PA for a
complex system in which a probability space (S, 4 sp Pgp is used to characterize stochastic uncertainty, a
probability space (S,,, 4,

functions (i.e., random variables) defined on the product space associated with (S, 4, p,) and (Sop L Pap)-

Ps,) 1s used to characterize subjective uncertainty, and the models used in the PA are

Initially, this can sound very complicated. However, this structure produces a relatively simple conceptual
description of a PA into which the many individual components of the PA can be placed and leads naturally to the

actual calculations that are performed within a PA.

The development of the probability space (S,,, £

sp Psp) is central to all PAs. For example, the fault and event

tree techniques that play an important role in many large analyses can be viewed as algorithms for developing, or at
least approximating, (S, 4 sp Psp)- An inevitably-posed question in every large PA involves completeness;
specifically "Did the PA consider everything that could occur in the system under study?". What this question is
actually asking is whether or not the sample space S, was appropriately defined. Another activity that arises in one
form or another in all PAs is scenario development and involves the selection of subsets of &, for consideration in
the PA. Typically, scenarios are elements of Js, for which probabilities are determined and consequence
calculations are carried out. Thus, scenario development can be viewed as the determination of sets in o for
inclusion in the PA. Finally, p;, must be developed if probabilistic statements are to be made about occurrences in
the system under study. An important point that should be recognized is that, although probabilities are determined

for subsets of &,

sp consequence calculations are performed for individual elements of §;,. Thus, an important

consideration in scenario development is to obtain subsets of S, that are reasonably homogeneous so that a
calculation performed for an arbitrary element of & in a scenario will produce results that are reasonably close to

what would be obtained for any other element of &, associated with the scenario.

A clear conceptual model for a PA is very important. At the same time, it is important to recognize how
computational practice diverges from this conceptual model. For example, in most large analyses S 4 st and pg,
are never fully developed. Rather, fault and event tree techniques or some other construction procedure are used to
develop a collection of disjoint sets that spans &, The nature of S, is then inferred from these sets, and Py is

defined only for these sets. Thus, although a probability space (S, J.

o ©sp Pgp) for stochastic uncertainty underlies the
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analysis, this space is never known completely. Rather, enough information about (S 4 sp Psp is developed to

allow the analysis to be performed but a complete construction of (S, L, ) is not carried out.

Much of what is done in a PA involves integrations performed with the probability spaces (S, 4 sp Psp) and
(S 4 » D) leads to the CCDFs that are typically

su? su

, Pg,)- Integration of suitably defined functions over (S 4 s
presented as the outcomes of PAs for complex systems. For most systems, integration procedures based on
importance sampling or Monte Carlo techniques are used. In the example contained in this presentation, an
integration procedure based on importance sampling was used to estimate the CCDF specified in the EPA's
regulation 191.13(a) for the geologic disposal of radioactive waste. This CCDF could also have been estimated with
Monte Carlo procedures.50 The fault tree and event tree techniques used in many large analyses to develop scenarios
can also be viewed as algorithms to define importance sampling procedures for integration over (Sp 4 sp Psp)-
Importance sampling procedures are often used because they provide a way to assure the inclusion of low probability
but possibly high consequence subsets of &, in the analysis. What are rather lightly referred to as "suitably defined
functions" at the beginning of this paragraph are often sequences of complex computer programs. Thus, the closed

form evaluation of integrals is typically not a possibility in PAs for complex systems.

The probability space (S, 4 o Psy) enters a PA when it is desired to express the analysts' confidence in the
outcomes of the study. Often, (S, 4 o Psy) is developed at least in part through an expert review process in which
distributions are developed to characterize the state of knowledge uncertainty in individual variables used in the

analyses. Taken collectively, these distributions then define S, 4

su? s

Ps,)- In the example contained in this
presentation, the uncertainty characterized by (S, 4 s Psy) leads to an assessment of the "reasonable expectation”
called for in the EPA's regulation 191.13(b). As for (S, 4 < Dsp)» the implications of the uncertainty characterized
by (S 4 su» Pgy) Must be determined by numerical integration procedures. Possibilities include the discrete
probability method®! and Monte Carlo procedures based on simple random sampling or Latin hypercube sampling.
The example contained in this presentation and also the NUREG-1150 probabilistic risk assessments!3.62 used Latin

hypercube sampling because of its efficient stratification properties.

The integration procedures indicated in the two preceding paragraphs can also be viewed as the outcome of
experimental designs applied to S, and 8. Thus, the subdivision of 8, into scenarios (i.e.., elements of 4 sp isan
experimental design based on importance sampling. Similarly, the use of Monte Carlo procedures based on simple

random sampling or Latin hypercube sampling can be viewed as generating random designs.

The Kaplan/Garrick ordered triple representation for risk? provides a useful way to view the structure of a PA
that is consistent with the ideas discussed in this presentation. In the Kaplan/Garrick representation, risk is

represented by a set R of the form

R={(§;-,p$i,csi),i=1,...,nS}, (43)
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where & is a set of similar occurrences, pS; is the probability that an occurrence in the set &; will take place, €S, is a
vector of consequence associated with &, nS is the number of sets selected for consideration, the sets &; have no
occurrences in common, and U;S; contains everything that could occur in the system under consideration. In the
context of the probability space (S, J s Psp), the S are elements of 4 sp the sample space S, is equal to U;S, and
pS; is equal to p (). Further, €S; is obtained by evaluating a function f for a suitably selected element of S;
another possibility is that ¢S; is the expected value of f on S; but this usage is less common. Thus, the
Kaplan/Garrick ordered triple representation for risk is simply a way to develop the CCDFs for the probability space

(S Ssp Pgy) and an associated function fdefined on .

Subjective uncertainty enters into the risk representation in Eq. (43) through the recognition that R is actually a

function of the form

800 =[S0, 5, 00,68, 00} =1,....1560}, o
where
x=[x1,x2,...,x,,v] (45)

is a vector of imprecisely known inputs required in the analysis. Lack of knowledge about X is subjective uncertainty
and is characterized by the probability space (S, &, p,,). In practice, (S, S Pyy,) is defined by a sequence of

distributions
Dy, D,,...,D,y (46)

for the individual elements x; of x. The effect of this uncertainty is typically characterized by generating a random or

Latin hypercube sample
X, k=1,2,...,nkK, CY))

of size nK according to the distributions in Eq. (46) and then evaluating

R(Xk)= {[cS; (Xk ), PSi (xk),cS,- (x,-)],i: 1,...,nS(Xk)} (48)
fork=1,2, ..., nK. The preceding procedure leads to representations of uncertainty of the form shown in Figs. 4-7

and is equivalent to integrating over the probability space (S.,, .4 s Psy) as discussed in this presentation.

su?

An often contentious point that arises in many PAs is whether or not it is meaningful to have a "probability of a
probability.” Such a probability arises quite naturally when product spaces are considered. As discussed in Sect. 3.3

and illustrated in Fig. 6, a probability can arise from one probability space (e.g., (S, 4 sp Dsp) in this presentation)
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and a distribution for this probability can arise from another probability space (e.g., (S 4 s

Pg,) in this

presentation).

A phrase often used in conjunction with PAs for complex systems is "uncertainty and sensitivity analysis."
Uncertainty analysis involves determining the uncertainty in analysis outcomes that derives from uncertainty with
respect to the correctness of the assumptions used in the analysis. In the terminology of this presentation, uncertainty
analysis is an investigation of the effects of subjective uncertainty. Indeed, the primary purpose of this presentation
is to provide a formal description of _uncertainty analysis in which the dependent variable of interest is a CCDF that
results from stochastic uncertainty. Sensitivity analysis involves determining the effects of the uncertainty in
individual variables on various analysis outcomes of interest (e.g., the probability of exceeding a given consequence
value).63 Although not emphasized in this presentation, sensitivity analysis typically involves determining the effects
of individual variables associated with the probability space (S, 4 sw Ps,) on either a function f evaluated at a
specific pointin &, (e.g., see Ref. 49, Tables IX, X, XI) or an exceedance probability that results from integrating f
over (S, 4 s Psp) (e.8., see Ref. 49, Figs. 27, 28). The modifier "typically” is used in the preceding sentence
because it is also possible, though less commonly done, to use sensitivity analysis techniques to investigate the

effects of the variability associated with (S, 4 < Dgp) on predicted quantities of interest.

The division of uncertainty into stochastic uncertainty and subjective uncertainty greatly helps in the
organization of a large analysis. At times it is argued that this distinction is artificial. However, when the actual
computatiéﬁél ffﬁplementation of an analysis must be confronted, the necessary distinctions are usually apparent.
When these distinctions are not immediately apparent, evaluating them forces the analysts to come to grips with the
nature of the system that they are studying and the analysis that they are conducting. Even if there is doubt as to how
an uncertainty should be classified, the use of a formal structure to describe the analysis should leave no doubt as to
how this uncertainty was actually treated. There is nothing wrong with differing views on how an analysis should be
conducted and uncertainty treated within the analysis. What is unacceptable is to be unable to determine what was

done after an analysis is completed.

This presentation has described a paradigm for the description and organization of a PA for a complex system.

In this paradigm, a PA involves three basic components: a probability space (S, 4.

o Dsp Dgp) Tor stochastic uncertainty,

a probability space (S, 4 < Psy) for subjective uncertainty, and a function defined on the product space associated
with (S, 4 Py and (S, & g D). All of the basic results used in expressing the outcomes of a PA can be
described in terms of these three components. The formalism associated with this paradigm is certainly not for
presentation to all groups that may be involved in or interested in a given PA. However, there should be a core of
individuals associated with any PA who have a clear conceptual understanding of the organization of the analysis.
These individuals can then assure that the treatment of uncertainty and the modeling of physical processes is

consistent with this organization and that analysis results are presented in a way that properly communicates what

30



was done in the analysis. The structure described and illustrated in this presentation provides a basis for such an

understanding,.
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