UCRL-ID-123530

Efficient Second Order Remapping on
Arbitrary Two Dimensional Meshes

Douglas S. Miller
Donald E. Burton
Joseph S. Oliviera

‘March 18, 1996

This is an informal report intended primarily for internal or Timited external
distribution. The opinions and conclusions stated are those of the authorand may
or may not be those of the Laboratory.

DISCLAIMER v
This document was prepared as an’account of wofk spbnsored by an agency of the United States
Government.. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal Hability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

~* or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

-not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California,

~and shall not be used for advertising or product endorsement purposes.

This report has been réproduced
directly from the best available copy.
Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
. 5285 Port Royal Rd.,
Springfield, VA 22161

-~

 DISCLAIMER
Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.

Efficient Second Order Remapping on
Arbitrary Two Dimensional Meshes

Douglas S. Miller, Donald E. Burton, Joseph S. Oliviera
Lawrence Livermore National Laboratory

March 18, 1996

Abstract

We have developed an efficient method of remapping physical variables
Jrom one unstructured grid composed of arbitrary polygons to another,
based on the work of Remshaw and Dukowicz. FEulerian cycles are
used to convert the mesh into a single chain of connected edges, which
eliminates grid searching. The error is second order in the zone size.
The algorithm handles degenerate meshes well. Computational effort
to perform a remap scales linearly with the number of zones in the two
grids, which is an improvement over typical N log N methods.

1 Introduction

Except for the one dimensional case, any physics code in which the mesh
moves as the problem evolves in time faces the difficulty of the mesh tangling,
zones inverting, or the mesh in other ways becoming unsuitable to continue
solving the problem at hand. Lagrangian hydrodynamics codes frequently
encounter this situation. To continue running the problem, the user or the
code must generate a new mesh and then map the physics variables from the
old mesh to the new one. This paper deals with the mapping process, often
called “remapping” or “rezoning”. '

Previous authors, notably Dukowicz [3] and Ramshaw [6], have dealt with
the question of how to do this remapping for a grid composed of triangular
or quadrilateral zones, but the methods they proposed were not applicable to

1

arbitrary, unstructured grids. We extend their work by providing a method
that works on totally unstructured meshes composed of arbitrary polygons.
We also improve the efficiency of the remapping process by converting each
mesh into a single long chain of connected edges over which to integrate. We
detail our method for dealing with degeneracies in the mesh as well.

2 Review of Ramshaw and Dukowicz

We begin with an explanation of our version of the method of Ramshaw
and Dukowicz. It differs only slightly from their original work [2][5]. Let us
suppose that we want to map an intensive physical quantity ¢(x) from one
mesh, the “old mesh”, to a different one, which we will call the “new mesh”.
Let ¢, denote the value of g on the new mesh in the k* zone. Then we have

di= , a0 aa (1)

Dukowicz’s first essential contribution was to point out that this problem is
easier to solve if we make a substitution of variable and use the divergence
theorem to reduce the dimensionality of the above integral. We have chosen
to specialize to two dimensions in this paper and so we will replace ¢ with
the curl of a vector F where Dukowicz used the divergence of F. This leads
us to use Green'’s theorem in the next step instead of the divergence theorem
but the basic idea is the same.

VxF=g¢g (2)

Then we use Green’s theorem to convert the two-dimensional integral in
equation (1) to a line integral around the zone k.

/AkaFdAz‘/Akq(x)dA (3)

fEkF.dl=/Akq(x)dA (4)

2.1 Choosing an F

F can be thought of as a vector potential. It has no important physical
meaning, and any zero curl vector field can be added to it without changing
our results.

An obvious choice for F is
1 - 1 -
F=—2—qokxx+§(x—x0)-(x—x0)kxVq (5)

for each zone, where x; is the zone center and Vg is a constant within each
zone. This F is discontinuous across zone boundaries, which changes the
results of Green’s theorem as used above; one must add delta function con-
tributions generated at the discontinuity boundaries. The strength of the
delta function is precisely the difference in F across the boundary, so the fi-
nal result is that one integrates F over the new mesh edges and the quantity
(Fiete — Frignt) over the old mesh edges, where “left” and “right” are defined
by the direction of integration.

1
a = A_(f F-dl+ / (Fieft — Frignt) - dl) (6)
k faces old faces
of new contained
zone k in zone k

2.2 Integrating F

F is integrated over closed curves, but these curves are in practice a series of
straight lines. Hence the integral is just the sum

fsz-dl=Z/‘:iF-dl | (7)

where a; and b; are the beginning and end points of zone edge ¢. The form
of F makes this straightforward to evaluate. ’

bi 1 - 1. i bi 2 1
/ F.dl = —qok-(az-xbi)+—k~qu(bz-—a¢)[(xﬂ—iﬁ——)) +'—(ai—bz‘)2]
ai 2 2 2 12 .
8

The first term on the right hand side corresponds to doing a pure donor cell
remapping. The second term adds a second order correction. The gradient
factor, Vq, can be defined in a variety of ways, and is usually limited in
‘some fashion to avoid non-monotonic behavior. A Van Leer-type limiter 4],
generalized to arbitrary polygonal zones by Dukowicz and Kodis [3] has been
used in our second order test problems. The value of ¢ in a zone is set to
g = q, + aVq, where g, is the constant average ¢ in the zone and « is set
such that the value of ¢ in a zone is never outside the range of the g, of its
neighbors.

3 Remapping Method

At this point we have a method in hand for doing remapping. First we
integrate the edges of the new mesh through the old mesh. In integrating
these edges, each edge is broken up into segments; each edge segment of the
new mesh passes through exactly one zone of the old mesh. We accumulate
the contribution from each edge segment to the right and left zones of the
new mesh.

b;
A';ﬁ@:/wp.dl 9)

new

. b;
Arigt _ _ f F-dl (10)
a;

Then we integrate the edges of the old mesh through the new mesh. Each old
edge segment passes through only one zone of the new mesh. We accumulate
the contribution of each old edge segment to the new zone containing it.

b;
Agg = /ae (Fiett — Frigne) - dl (11)

The combination of old and new mesh contributions to a new mesh zone,
divided by the area of the new mesh zone, results in the value of the remapped
quantity in the new mesh zone.

4 Eulerian Cycles

Having reduced the remapping problem to performing a collection of line
integrals, the question arises of how to perform those integrals in an efficient
way. Each edge of both meshes must be integrated, or “traced”. The diffi-
culty with naive approaches to this problem is that the zones containing the
edge must be found in the other mesh for each integration. Point location
in an arbitrary mesh is an expensive operation. Ideally we would like to lo-
cate a starting point once, integrate that edge to its endpoint, then use that
endpoint as the starting point for another edge, and so on. A perfect mesh
trace would visit every edge exactly once and cover the entire mesh.

This is precisely the definition of an “Eulerian Cycle” or “Eulerian Walk”.
The algorithm and prerequisites for its application are well known. An Eule-
rian Walk exists on a mesh if and only if 1) the degree of each vertex (i.e., the

4

number of edges coming into it)is even, or 2) there are exactly two vertices
of odd degree in the entire mesh. A mesh with these properties is called
“Eulerian”.

Clearly, most computational meshes are not Eulerian. This need not be
a hindrance, however; any mesh can be made Eulerian through the simple
artifice of doubling each edge. The extra edges are not a significant burden
to computation if each edge is marked as it is integrated. The second time
an edge is encountered, the integration step is skipped, the algorithm jumps
to the edge endpoint and continues.

Through this technique, the expensive point location operation is incurred
only once at the beginning of each mesh trace, and relatively inexpensive
line intersection calculations suffice to cover the entire mesh. Further, no
unnecessary edges are considered when doing the intersection calculations.

5 Handling Degeneracies

Degeneracies are defined as instances where the intersection between an edge
of the old mesh and an edge of the new mesh is not unique. Examples include
an edge that exits a zone through a vertex, or an edge that lies exactly on
top of an edge in the other mesh. Two methods are often employed to
deal with degeneracies; the first is to write special code to handle each type
of degeneracy on a case by case basis, the second is to perturb the vertex
positions by an amount large enough to break the degeneracies but small
compared to some scale length of the problem. Handling degeneracies as
special cases leads to awkward and error prone code. We use the perturbation
approach for identifying intersecting edges, but insist on computing areas of
intersection based on the unperturbed points.

Our method for handling degeneracies is to perturb each point in the
new mesh by a nonzero random amount that is é times smaller than the
shortest edge in the mesh. J is an adjustable parameter that we have set to
1078 in our test problems. Once all degeneracies have been broken, the mesh
traces are done. The edge intersection points are stored not as (z,y) pairs
but as (epew, Colg) PaIrs, where eyey, is the index of an edge in the new mesh
and eqgq the index of an old mesh edge. An essential ingredient in handling
degeneracies is that the same intersection point be calculated for {(€pew, €oid)
as (€o1q, €new)- We achieve this by ordering the edge pair according to mesh

Figure 1: Keyhold test problem: 160 second order rezones with modified
Van Leer limiting of the gradient. The blank region in the initial data is a
plotting error.

number in the case of degenerate edges (for an unambiguous mesh number
we use the memory location of the mesh structure, which does not change
throughout the remapping process). We define a unique (z,y) intersection
point in space for two edges even if they are parallel and overlay one another
in the unperturbed representation (in that instance the intersection point
will be an extreme point of one of the edges). In this fashion we can perturb
the new mesh to eliminate degeneracies but obtain the unperturbed areas for
the ¢’ calculation.

6 Examples

In figure 1 we have run a version of the Bailey keyhole test problem [1] with
regular quadrilateral zoning. Our “key” is a 44x27 zone block with a 14x14
hole taken out of it. In this problem each point on the mesh moves through
a circle five zone in radius. We broke this motion into 160 steps. The mesh
has been rezoned once each cycle, or 160 times. The remapping was done
with the second order limited scheme described above.

A

-

<<

AN

7‘4")

a
e

S
ey

s

\¥

View Angle {-120,00, 30.00, 0.00) View Angle {-120.00, 30.00, 0.00}

Figure 2: Remapping a ramp function from the arbitrary polygonal mesh
on the left to the regular quadrilateral grid on the right. The errors near
the edges are due to the poor resolution (very few zones) at the edges of the
arbitrary mesh.

Figure 2 shows the remapping algorithm working on meshes composed
of completely arbitrary polygons. The left grid was made starting with a
triangular grid of random points which was then relaxed, and several nodes
were removed to create a new grid composed of arbitrary polygons. A linear
function f = \/zZ + y? has been defined on the left grid. The left mesh was
then remapped to the grid on the right, which is composed of regular quadri-
laterals. The poor appearance at the edges of the remapped grid results from
the large zones in the donor mesh near its edges.

7 Performance is Linear in Number of Zones

Current global mesh remapping methods in typical codes run in time order
N2 or Nlog N, where N is the number of zones in both meshes. Our method
improves upon this. The algorithm performance is linear in the number of
zones in both the old and new meshes.

The algorithm can be analyzed in three pieces; constructing the Eulerian

cycle, tracing the cycle to find the edge intersections points, and using the
intersections list to compute areas. Constructing the Eulerian cycle is well
known to be require order N, time, where N, is the number of edges in
the mesh. Now we consider the other two components of the remapping
algorithm.

It is helpful to define e,, and ey, as the average number of edges per zone
in meshes 1 and 2, respectively. Also define 23, as the average number of
zones in mesh 1 intersected by an edge of mesh 2. Then the average number
of edges of mesh 1 checked against an edge of mesh 2 for intersection is
Z1e2€1.- We will define E5; to be the total number of edges checked in tracing
mesh 2 through mesh 1;

E2 = Neey,21e2 (12)

where N, is the number of edges in mesh 2. Since N, is related to the
number of zones in mesh 2 by the factor es,, the work required to trace mesh
2 through mesh 1 is just

Eo = Zseg€1,2102 (13)

where Z, is the number of zones in mesh 2. The work is linearly dependent
on the number of zones in mesh 2. The same argument applies to tracing
mesh 1 through mesh 2, so the total computational effort is of order Z; + Z,.

Computing the areas of intersection is done by processing one edge seg-
ment at a time, with constant work for each segment. The number of seg-
ments is the number of edges times the number of zones crossed per edge.
Hence the total work for both mesh traces is Z)e),22,1 + Z2€9,21¢2, again of
order Z; + Z,. Since every step of the algorithm is linear in the total number
of zones, the entire algorithm executes in linear time (see Fig. 3).

8 Future Work

We are currently extending the algorithm described here to unstructured
three dimensional grids composed of arbitrary polyhedra. The bookkeeping
is considerably more complicated but the same basic method of reducing the
dimensionality and integrating the potential function still applies.

Performance of Remapping Algorithm

25 4

run time

2 Ve
N y = -0.236247 +x'0.000498
15 va

) 4
05 4

0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
zones

Figure 3: Run time in seconds versus the number of zones being remapped
(on a 100 MHz MIPS R4000 processor). The remapping algorithm is remap-
ping a mesh back on to itself, which is the worst degenerate case.

9 Acknowledgments

We would like to gratefully acknowledge the advice and support of Todd
Palmer, at Oregon State University. This work was performed under the
auspices of the U.S. Department of Energy, by Lawrence Livermore National
Laboratory under Contract #W-7405-Eng-48.

References

[1] D.S. Bailey and B.bA. Wellnitz. La-10112-c: Rezoning workshop—1983.
pages 1,54-60. Los Alamos National Laboratory, 1983.

[2] John K. Dukowicz. Conservative rezoning (remapping) for general quadri-
lateral meshes. Journal of Computational Physics, 54:411-424, 1984.

[3] John K. Dukowicz and J.W. Kodis. Accurate conservative remapping for
arbitrary lagrangian-eulerian computations. LA-UR 2646, 1985.

[4] Bram Van Leer. Toward the ultimate conservative difference scheme ii.
monotonicity and conservation combined in a second-order scheme. Jour-
nal of Computational Physics, 14:361-370, 1974.

[5] John D. Ramshaw. Conservative rezoning algorithm for generalized
two-dimensional meshes. Journal of Computational Physics, 59:193-199,
1985.

[6] John D. Ramshaw. Simplified second-order rezoning algorithm for gen-
eralized two-dimensional meshes. Journal of Computational Physics,
67:214-222, 1986.

10

