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Objectives

The basis of this research is to apply novel techniques from Artificial Intelligence
and Expert Systems in capturing, integrating and articulating key knowledge from
geology, geostatistics, and petroleum engineering to develop accurate descriptions of
petroleum reservoirs. The ultimate goal is to design and implement a single powerful
expert system for use by small producers and independents to efficiently exploit reservoirs.

The main challenge of the proposed research is to automate the generation of
detailed reservoir descriptions honoring all the available "soft" and "hard" data that ranges
from qualitative and semi-quantitative geological interpretations to numeric data obtained
from cores, well tests, well logs and production statistics. In this sense, the proposed
research project is truly multi-disciplinary. It involves significant amount of information
exchange between researchers in geology, geostatistics, and petroleum engineering.
Computer science (and artificial intelligence) provides the means to effectively acquire,
integrate and automate the key expertise in the various disciplines in a reservoir
characterization expert system. Additional challenges are the verification and validation of
the expert system, since much of the interpretation of the experts is based on extended
experience in reservoir characterization.

The overall project plan to design the system to create integrated reservoir
descriptions begins by initially developing an Al-based methodology for producing large-
scale reservoir descriptions generated interactively from geology and well test data.
Parallel to this task is a second task that develops an Al-based methodology that uses
facies-biased information to generate small-scale descriptions of reservoir properties such
as permeability and porosity. The third task involves consolidation and integration of the
large-scale and small-scale methodologies to produce reservoir descriptions honoring all
the available data. The final task will be technology transfer. With this plan, we have
carefully allocated and sequenced the activities involved in each of the tasks to promote
concurrent progress towards the research objectives. Moreover, the project duties are
divided among the faculty member participants. Graduate students will work in teams
with faculty members.

The results of the integration are not merely limited to obtaining better
characterizations of individual reservoirs. They have the potential to significantly impact
and advance the discipline of reservoir characterization itself.




Summary of Technical Progress

1. Decomposition of System

We have decomposed the overall system development into smaller component
parts to allow us to focus on the expert knowledge required for that component. In
addition, the decomposition will facilitate the implementation of the system and its
validation and verification. The three component systems will be representative of how
each of the experts in geology, geostatistics, and engineering characterizes the reservoir.
Figure 1 describes a model for this breakdown. The concurrent development of these
component systems fits into the development of the large and small scale aspects of the
system as originally stated in the proposal.

The geostatistical system continues to be tested and updated. This sytem includes
the use of wavelet transforms to determine the effect of compression to some part of the
original data on the overall performance of the reservoir. Concentration on the geology
system has been placed on upgrading the neural network output for log facies recognition.
In addition, we have developed an automated system for correlation of zones among
wells. The marker bed recognition system is considered complete at this time, though
later enhancements may be added. The individual components (completion rules, type
curve matching, and linear regression components) are currently being integrated to form
a complete well test interpretation system. The graphical system is currently being
designed for implementation to visualize correlations between wells. This system will be
augmented as the other system components mature. The designing of the overall user
interface to integrate all of the systems will begin in the following quarter.
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2. Geostatistical System: Incorporation of Dynamic Constraints in a Reservoir
Description Process

Three synthetic 100x100-gridblock datasets were generated: two using the
Ingen/makecdf/SA suite of algorithms (described in the report for the last quarter for
1994) and one using the sequential Gaussian simulation (sGs) algorithm from GSL/B.' In
this report, we present the results obtained using these datasets for evaluating the
performance of the proposed composite objective function SA algorithm. The approach
used in evaluating the results is to compare the ‘truth case’ description to that obtained by
our algorithm and also to that obtained when a variogram-only objective function is used.
Note that in testing our modified approach, we use both upscaling approaches (modified
geometric averaging and ‘Ding’?) in the runs for the first two synthetic images. Note also
that the same variogram models are used for the composite objective function SA run (our
modified SA algorithm) and for the variogram-only objective function SA run. Hence the
only difference between these SA algorithms is that the flow simulation constraint is
included in our modified approach. The comparisons made are:

e  Visual comparisons of the images.

e Comparison of the dynamic behavior. This is accomplished by flow simulating all
descriptions using ECLIPSE-100° and calculating the relative (percentage) errors
in the flowing BHPs using the truth case flow simulation results as the standard or

basis of comparison.
The purpose, of course, is to validate that

e the realizations generated by the modified SA algorithm more closely ‘resemble’
the truth case image than that generated by the variogram-only objective function,

and that

e the dynamic behavior of the distribution obtained from the modified approach also
matches that of the truth case more closely than that of the variogram-only
objective function SA run.

It should be pointed out that in the modified SA run, a flow simulation time range
of 1-100 days was used in all cases. However, in these comparisons, we flow simulate to

150 days, i.e., we are no longer using history matching but are in fact observing how well
the future performance of the results of both descriptions match that of the truth case.




2.1  Visual Comparisons for Dataset #1

Figure 1 presents a visual comparison of the results. It shows 4 maps: the first, (a),
is the truth case, the second, (b), is the modified SA run in which modified geometric
averaging upscaling is used to create the upscaled (flow simulation) grid, the third, (c), is
the modified SA run in which Ding’s upscaling approach is used and the fourth, (d), is the
result for the variogram-only objective function SA run. It can be seen that the major
features of the truth case description are captured by both Figures 1 (b) and (c), while
Figure 1(d) does a relatively poor job.




Modified Geometric Averaging

True Image: 1st 100x100 Grid
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Figure 1: (a) Truth Case (b) Modified SA Run Results - 1
(c) Modified SA Run Results - 2 (d) Variogram-Only SA Run Results for Dataset #1




2.2  Flow Performance Comparisons for Dataset #1

2.2.1 Composite Objective Function vs Variogram-Only Objective Function

For this first dataset, nine wells were used for flow simulation. As stated above, all
grids were flow simulated under the same set of conditions and the flowing BHPs
compared. Figures 2(a)-(b) compare the errors in these pressures (actually in the change
in the flowing BHPs) as a function of time for the variogram-only objective function SA
run and that of the composite objective function SA run. In these plots we have used the
geometric averaging approach. The relative errors are calculated as given in Equation (1)
below:

' Truth Case' Ap,; — SA Run Result Ap . (1)
' Truth Case' Ap,; .

Relative Error =100-

Other wells show a similar behavior. These plots show that the errors are significantly
smaller when the modified approach is used, even in the predictive part of the time scale
(>100 days). These plots further illustrate that the upscaling approaches used are

adequate.
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Figure 2: Pressure Error Comparisons Between the Modified SA
Approach and the Variogram-Only SA Approach for Dataset #1




2.2.2 Comparison of Upscaling Approaches

Figures 3(a)-(b) give the results of the analyses conducted to ascertain whether
one upscaling approach was better than the other. It can be seen from these plots that the
methods performed about the same, thus validating the use of either. Figure 4 shows that
the maximum absolute relative errors from the variogram-only objective function results
are larger than those of the results from the modified approaches. Figure 4 also shows
that when the maximum absolute relative errors are compared, the two approaches appear
to be on par, and in addition, these results are at least an order of magnitude better than
those of the variogram-only results.
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Figure 3: Pressure Error Comparisons Between the Modified

Geometric Averaging and ‘Ding’ Upscaling Approaches for Dataset #1
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Figure 4: Comparisons of Maximum Absolute Relative Errors from Variogram-
Only Objective Function and the Composite Objective Function Using the Two
Upscaling Approaches For Dataset #1

2.3  Visual Comparisons for Dataset #2

Figure 5 below shows the true image for dataset #2 -- also generated using the
Ingen/makecdf/SA code -- in (a), the SA composite objective function run results using
modified geometric averaging upscaling and Ding upscaling in (b) and (c) respectively,
and the SA variogram-only objective function run result in (d). As for dataset #1, it can be
seen that the composite objective function SA runs results match the true image much
better than that of the variogram-only SA run. Although not shown, the bottomhole
pressure comparisons are very similar to Dataset # 1.

2.4  Visual Comparisons for Dataset #3

Having verified that the two upscaling approaches are equally good, we focussed
on a comparison of the modified SA algorithm (in which upscaling is performed via
modified geometric averaging) and the variogram-only algorithm for dataset #3. For this
case also it can be seen in Figure 6 that the composite objective function results are better
in matching the true image visually.

10




Modified Geometric Averaging

True Image: 2nd 100x100 Grid
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Figure 5: (a) Truth Case (b) Modified SA Run Results - 1

(c) Modified SA Run Results - 2 (d) Variogram-Only SA Run Results for Dataset #2
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Figure 6: (a) Truth Case (b) Modified SA Run Results - 1
(c) Variogram-Only SA Run Results for Dataset #3




2.5  Sensitivites on Variogram Component

Previously the variogram models were based on the exhaustive dataset. Cases were
run in which we attempted to model the variogram using the conditioning data (9 point
values of permeability) only. This sparcity of data resulted in a variogram model which is
very approximate and may even be inaccurate. Also while an exhaustive dataset allows
anisotropy modeling, such a meager dataset is hard-pressed to give even an isotropic
model. Figure 7(b) shows the resulting image obtained for the modified SA approach. It is
obvious from these results that although there was insufficient information, we still get a
reasonable image of the truth case. However, as shown in Figure 7(c), the results for a
variogram-only SA run -- using a conditioning data-based (isotropic) variogram model --
are unable to capture the image of the truth case. This last result is dramatic proof of the
utility of the flow simulation constraint in the SA process.

13




Conditioning Data Variogram Model

Figure 7: Results from Sensitivity Tests on Variogram Component
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3. Integrated Lithofacies and Petrophysical Properties Simulation

This section presents the progress for the new procedure developed to generate
reservoir models by simultaneously simulating the lithofacies and petrophysical properties,
i.e., porosity and permeability. The technique used is the conditional simulation method
which is capable of honoring the original distribution of the data and the associated spatial
relationship.

The main driver of the program has been developed and compiled with the
previously-generated classes to obtain a working program. Much of the time was spent in
debugging the code. A preliminary result, which is the reproduction of the results from the
original Fortran version, has been obtained. The future work will emphasize the
modification of the simulation technique and the development of the program interface.

3.1 Co-Simulation Program

Background theory used in developing the simulation technique was presented in
the previous quarterly report. This report presents the description of the program structure
followed by a discussion of the preliminary results.

3.1.1 Program Structure

The cosimulation program is written in the C++ language. The main purpose of
writing the program in this language is to obtain reusable and extendable code while
maintaining the ease in creating the interface in the spirit of a user friendly program
package. The list of the classes used in the program is summarized in Table 1. The inter-
relationship among these classes is shown in Figure 8. The arrowed line indicates the
inheritance relationship, e.g., between class Application and class Cosim, whereas the line
ending with a circle indicates where the class is being used. For example, class Variogram
is used in class Kriging, and class Kriging is used in class GausSim.

Class Application is the main driver for the program. It is developed using the
principal of polymorphism and dynamic binding where it contains a virtual function called
DoSimulation. This virtual function is defined inside some other classes which are
inherited from the Application class and dynamically binded during the execution of the
program. Therefore, common features of the Application class, such as development of
the grid system, variogram definition, correlations among variables, etc., can be used for
different techniques of simulation. At this time, there is only one class derived from the
Application class, i.e., the Cosim class. Future extension of this program would take
advantage of this structure.

The Cosim class consists of the functions to perform the cosimulation of lithofacies
and petrophysical properties. There are 3 main classes which are used in this class, i.e., the
IndSim for Indicator Simulation, the GausSim for sequential Gaussian simulation, and the
CondDist for conditional distribution technique for generating the permeability
distribution. The class GaussSim can be used for either generating porosity distributions
alone or for both rock type and porosity in which the technique of truncated Gaussian
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simulation (GTSIM) is applied. In the case where it is used for GTSIM, the IndSim is used
for generating the proportion curve which is required in transforming the Gaussian
simulated result back to its indicator value. At this time, the program allows the GTSIM
technique only.

The kriging class is used to performed the kriging of the unsampled value. In
developing the covariance matrix, this class can either use the covariance table which is
provided by class CovTab, or directly calculate the covariance between two points given
the variogram model. The class stores the information about the variogram model input by
the user and provide the routine to calculate the variogram or covariance value between
two given points in three dimensional space. The CovTab class stores the covariance value
between two points which is defined by the super block searching technique.

Several other classes which are grouped together as the Miscellaneous class are
used by almost all of other classes. This is due to its functionality that basically provides
the utility function and common data structure.

16




Class Name Description
Application | Main driver for the cosim program

Cosim Define the simulation technique to be used

IndSim Provide the procedure to perform indicator simulation.

GausSim Provide the procedure to perform the simulation Gaussian.

CondDist Provide the procedure to perform the conditional distribution technique in generating
the permeability distribution and the storage of the related correlation between porosity
and permeability

Kriging Provide the procedure to estimate the node value either by Simple kriging or Ordinary
kriging technique with or without covariance table.
Variogram Provide the calculation of variogram and/or covariance value between any two points in
3D for a given Variogram model.

CovTab Provide the calculation and storage for the covariance table.

Grid Provide the grid block network of the simulation system that includes the neighborhood
searching technique such as super block search.

Point3D Provide the structure to represents a 3D point. This class is generated using a template
that can accept any data-type.

Utility Provide several utility functions that are common in geostatistical simulation technique
such as random number generator, inverse of Gaussian data, normal transformation,
etc.

listClass Provide the link list of the data to store variable with unknown size. This class is
templated to accept any data-type.

Matrix Provide the procedure related to matrix operation. This class is templated.

Table 1: C++ Class Summary Used in the Cosim Program

17
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Figure 8: Program Structure

3.1.2 Simulation Results

The progress that has been achieved at this point is the simulation using the
truncated Gaussian technique as it was written in the original Fortran version. The result
from the new program matches very well with this Fortran version. That signifies the
reproducibility of the program.

Figures 9A through 9C show cross sections of rock type, porosity, and
permeability, respectively, of the simulation result using the data from North Robertson
Unit, West Texas. The number of the grid blocks used in creating this pictures is 19,602
(99x99x2). Based on the geological description, there are five rock types defined, namely
rock type 1, 2, 3, 4, and 5. But, for the cross section presented in these figure rock type 5
is absent. The formation type is carbonate with a low porosity and permeability. From
these three figures we can see how each variable is connected to each other areally.
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Comparing these three figures we can see how the generated petrophysical
properties (porosity and permeability) are consistently follows the underlying rock type
which is the main feature of this program. Figure 10 shows 3D view of the rock type
distribution to demonstrate the capability of the program in generating the 3D problem.

19




Figure 9B

2 3

5%
%

/’/
R

0.04 0.07

Porosity Cross Scction

20

4

0.1




0.1 0.3 0.5 0.7 0.9 md

Figure 9C Permeability Cross Section

Figure Asnul 10 Three dimensional view of rock type distribution

3.1.3 Future Work

The first modification that is going to be done in the near future is the
incorporation of indicator simulation technique in generating the rock type distribution.
This modification includes the incorporation of soft data to accommodate the uncertainty
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in the data itself. Using this modified program, an interface program will be built to make
the program user friendly.

4. Geological System: Sand Body Identification

In order to analyze well log data, we solve the following two problems
sequentially:
e Well log segmentation problem
o Log facies identification problem

Well log segmentation. Given a well log data file the system determines the
endpoints, called cuts, of every sand body present in the log file. This is needed to divide
the well log (gamma ray) into discrete stratigraphic units. Such segmentation is for log
facies identification and well-to-well correlation. A rule-based system is applied to the
original data file to determine the cuts or segments. The resulting file is then fed to the
neural network to solving the log facies identification problem.

Log facies identification. Given a well log data file and the predetermined cuts,
the system determines which kind of facie or sand body is between any two cuts. A neural
network is used to solve this problem. The input to the network is an intermediate file
generated by the rule-based system.

Our neural network was previously trained with expert-classified well logs to
recognize the following set of fundamental shapes:

bell, funnel, blocky, symmetrical, linear

4.1  Well Log Segmentation

Well logs have to be scaled and normalized in order to set a common ground on
which the problem can be solved. In consequence every log file is scaled in such a way
that:

e maximum gamma ray value maps to 1
e  minimum gamma ray value maps to 0

As a result of this process all the gamma ray values will be within this range (0-1).
This is done before attempting to solve either the log segmentation or the facies
identification problems.

4.1.1 Applying Well Log Segmentation Rules
Figure 11 shows how this rules are applied to a section of a log:
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Figure 11

4.1.2 Segmentation Results

The original neural network had problems recognizing cuts between facies. This
neural network only recognized about 70 percent of the actual cuts because it used high
frequency information incorrectly. It was therefore necessary to create a new module to
improve facies recognition. This module uses a low-pass digital filter to eliminate high
frequency information.

The digital filter is represented by the block diagram below (Figurel2):

w(n]) —————| DIGITAL | — 5
(nT) FITER y(nT)

Figure 12: Digital Filtering.

where x(n7T) is the unfiltered or excitation data and y(n7) is the filtered data or the
response of the filter. The response is related to the excitation by:

y(@T) = Rx(nT)

where R is an operator.

The type of filter used to filter the well log is time-invariant, linear and
nonrecursive. Time-invariant means that the operator R does not depend on the time of
the application of the excitation. Linear means that R satisfies the following conditions for
all possible values of a and all possible excitations x;(n7) and xx(n1):

Roax(nT) = aRx(nT)
Rx,(nT) +x, (n)] = Rey (nT) + Rey (n)
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Nonrecursive means that the response to the filter at instant #7 is of the form
y(@T) = f{...,x(nT —21),x(nT - T),x(nT),x(nT + I),x(nT +21),...}

Because the filter is linear and time-invariant, y(nT) can be expressed as

YoT)= Sax(rnT—iT)

i=—o
where a; terms are constants.

The constants a; used to filter the well logs are obtained from the function a(i)
graphed below in Figure 13.

A T3

5 10 15 20
Figure 13: Filter parameters.

The sum of all a; constants is equal to 1, the maximum g; is at 7 = 0 and the
assignment of a; values is symmetric respect to the y-axis(f). Thus, the gain of the filter is
1 and there is no phase delay between the unfiltered and filtered well logs. The result of
filtering is shown in Figure 14:
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Figure 14: Results of filtering.
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We found that using the low-pass filter on the well log data improves its
segmentation, but does not improve the facies recognition performance of the neural
network. Therefore, only filtered well log data are used for segmentation.

We also found that it is necessary to include a new rule to the well log
segmentation technique. This new rule calculates the shape distances between the cuts
that are found using the former rules, if the distance is less than a prefixed valued, one of
those must be a non-cut and it is eliminated. The actual cut is the one which has the
larger gamma ray (Gr.) value. Figure 15 shows a portion of a well log. In this figure it is
seen that the distance between two consecutive possible cuts is shorter than the prefixed
value. Therefore, one of those possible cuts is not a cut. The cut selected by the rule is

the one that has the larger gamma ray (Gr.) value.
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Figure 15: Explanation of the cut elimination rule.

Figure 16 shows the result of applying the new rule. It is seen that the new rule
eliminates 3 possible cuts and only retains the correct cuts. The eliminated cuts are
located at depths of 1561, 1608, and 1618. Also, the eliminated cuts do not coincide with
the cuts supplies by an expert geologist (shown in Figure 17).
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Figure 16: Results obtained with and without the cut elimination rule.
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Figure 17: Results obtained from an expert geologist.

The low-pass filtering technique and the new segmentation rule explained above
improved the performance of well log segmentation from 70 percent to 90 percent. The

probability of recognizing facies correctly is correspondingly increased. Table 2
summarizes the results.

Well Log Number of Cuts Missing Cuts Extra Cuts

Right | Before | After | Before | After Before After

Self 56 13 16 14 1 1 4 2

Self 78 18 20 17 1 3 3 2

Self 81 14 11 12 3 3 1 0

Self 82 11 13 10 1 1 3 0

Table 2: Summary of Results.

4.2  Expert Poll for Log Segmentation and Log Facies Identification:

The ability of the neural network to identify log facies accurately is largely
dependent on the accuracy of the log segmentation algorithm. Although the results have
improved (80% correct) substantially with the new algorithm, the level of accuracy could
still be improved. To date, the assessment of accuracy of the neural network module
output is based on a single expert. Before embarking on additional changes or
modifications, the research group decided that the diversity of opinion among experts

should be polled.
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The polling experiment is based on standard wireline logs from 3 wells (2 Glenn
Pool; 1 Frio). The log displays GR, SP (Glenn Pool logs only) and 3 resistivity curves at a
1-in. = 20-ft. scale over about 200 fi. of thickness. The location of the wells and log
depths are withheld from the subjects of the experiment. The subjects are given a brief
overview of the purpose of the neural network module and how the polling results are to
be used. They are given instructions for completing the experiment. The subjects are asked
a few questions regarding their background. The subjects are located in the Tulsa area;
this was mainly done to expedite the polling. The subjects, however, come from a variety
of backgrounds and some have never worked either of the areas covered by the logs used
in the experiment.

The results are expected back by June 1. A tally will be made to quantify the
diversity of selection among the subjects. A cross tabulation between
experience/background factors and selection outcome will also be compiled to determine
any biases.

5. Geological System Components: Correlation of Log Curves

In this section, we detail the current approach to the correlation of log curves.

5.1  Overview of Approach

The approach has been to develop a rule-based correlation of Gamma Ray logs of
two wells. The rules are based on similarities in well log trace shapes, thickness and
vertical position of the zones. The segmentation of the well logs and log-facies
identification by the neural network and depths of identified marker beds will be given as
input.

As mentioned in the previous approach, we formulated the rules based on the four
criteria listed below, with the zones and the log-facies being automatically determined by
the well-log segmentation and neural network programs described earlier.

1. position of the zones with respect to the length of the logs;
2. distance of the zones from the marker beds;

3. thickness of the zones;

4. log-facies of the zones;

To further improved our resolutisn of the correlation matrix, we are constraining
the distance of the zones from the marker bed and thickness of the zones criteria that are
considered for formulating the rules. The variation in distance of the zones from the
marker bed is a function of the distance between two wells and stratigraphic dip angle.
The key idea for considering vertical distance from the marker bed is that as the difference
in distance from marker bed increases, their correlatibility ranking goes down. Two
stratigraphic units are not considered correlative if the absolute value of the difference in
distance from the marker bed is greater than xtan@, where x = distance between two wells,
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and @= stratigraphic dip angle which is set at 5 degrees by default. Similary, in order to
constrain the thickness difference between two zones begin compared, we impose that
when the difference in thickness goes beyond xfan 6, the zones under consideration are not
correlative.

52  Performing the Correlation of Two Wells from the Matrix

Once the rules have determined the correlation values, the constructed matrix is
analyzed to establish where the zones actually correlate. This analysis is performed by a
small expert system. The analysis is based on the following facts.

1. the ranking of the rules is strictly linear, i.e., a one point difference counts
2. a maximum value for a row and column is the first choice for correlation
3. the neural network may miss cuts making zones appear larger

4. large grain correlation, as in combining zones, is better than pinch outs

We have tested the complete correlation between two sets of wells from Glenn
Pool field: (1) Self 81 with Self 82 and (2) 11-75 with 11-86. The logs were manually
zoned and the log facies of each zone was identified for comparison with the automated
approach. The correlation by a geologist is show in the graphs below for Self 81 and Self
82 and for 11-75 and 11-86, respectively.
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Correlation by a geologist
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Correlation by a geclogist
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5.3

Expert System Correlation Results

In this section we detail the expert system approach to correlating the wells
depicted above using the martix information. Table 3 shows the values of the matrix for
Self 81 and Self 82 when the zones and facies are obtained by the well-log segmentation
and neural network programs.

Self 81

Zone at a2 a3 a4 ab

b1 186 21 128 16 4

b2 132 156 141 16 16

b3 133 51 186 22 34
Self 82 |b4 40 54 34 184 132

b5 39 135 33 147 36

b6 39 135 33 24 159

b7 21 132 51 42 182

b8 35 20 47 52 40

Table 3

The zones in the above table correspond to the following depths.

al : 1430 - 1462 bl : 1454 - 1485
a2 : 1462 - 1471 b2 : 1485 - 1506
a3 : 1471 - 1488 b3 : 1506 - 1518
a4 : 1488 - 1516 b4 : 1518 - 1529
a5:1516 - 1529 b5 : 1529 - 1536

b6 : 1536 - 1545
b7 : 1545 - 1557
b8 : 1557 - 1589

Several passes of the expert system rules were required over the matrix to obtain a
full correlation. The first pass generates all of the values that maximums for rows and
columns. Those values that are both a maximum for a row and a column results in a
correlation of those zones. The results of the first pass on the matrix in Table 3 are as
follows.

First Pass Correlated
al -bl
a2 -b2
a3 -b3
a4 - b4
a5-b7

If all zones are correlated, the system will then analyze the correlation (discussed
below). If there are some zones that are not correlated, the system attempts to “fit” them
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into the currently correlated zones. This fitting is performed by examining a neighbor
zone to see if its correlated zone is compatible. The results of the second pass are as
follows.

Second pass
al -bl
a2 -b2
a3 - b3
a4 - b4
a4 -bs
a5 - b6
a5 -b7
An analysis of the values in the second pass determines that all Self 81 zones are
correlated and all Self 82 zones, except zone 8 are correlated. Because zone 8 in Self 82
has values under 100 and it is the lowest depth zone in Self 82, it is deemed
uncorrelatable. Thus, it is assumed to be correlated with the remaining well log
information in Self 81. This situation occurs because the well-log segmentation program
missed a cut in Self 81.

Once all zones are correlated, the system analyzes the results for any problems,
such as a cross-over between zones. It also reevaluates the values to determine if a
maximum could be used in place of a current value. The above correlation is determined
to be complete. The resulting correlation is seen in the graph below, which can be
compared with the earlier graph depicting the geologist’s interpretation.
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The determination of the correlation for 11-75 and 11-86 is similar to the Self 81

and Self 82 correlation, except that more passes are required. The extra passes are due to
a cross over appearing early in the correlated zones. The cross over causes remaining
zones for be “fit” improperly. Thus, when the correlation is analyzed and the cross over is
detected, some initial correlations are deleted and must be redone. The matrix is in Table

4,
11-75
Zone al a2 a3 a4 as
b1 133 35 33 3 16
b2 168 34 36 12 129
b3 21 50 134 130 102
11-86 b4 130 181 51 21 106
b5 22 52 182 102 162
b6 127 35 105 111 124
b7 3 26 160 187 114
b8 5 162 104 122 180
Table 4

where the zones correspond to the following depths

al
a2
a3 :
a4

as:

: 1400 - 1463
: 1463 - 1489

1489 - 1519

: 1519 - 1556

1556 - 1586

bl :
b2 :
b3 :
b4 :
bs:
b6 :
b7 :
b8 :

1399 - 1422
1422 - 1447

1447 - 1465

1465 - 1487

1487 - 1511
1511 - 1533

1533 - 1547

1547 - 1583

Determining the correlation from the maximum values for each row and column, the initial

results appear below. It should be noted that all zones for 11-75 are correlated.

First pass

al -b2
a2 -b4
a3 -bs
a4 - b7
a5 -b8

Second pass

al -bl
al -b2
a2 -b4
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Given the above correlation in the first pass, a second pass is made in which to
“fit” those zones not initially correlated. The results of this pass appear below.



a3 -bs
ad - b7
aS - b8

After two more passes the final correlation appears below.

al - bl
al -b2
a2-b3
a2 -b4
a3 -bs
a4 - b6
a4 - b7
a5-b7

The results are shown in the graph below which can be compared with the earlier
geologist’s results from manual correlation. The system’s results are fairly consistent with
the geologist, though additional improvement in all aspects of the automation is needed.

36



1490 +:

1590

37




6. Well Model Indentification System

The Well Model Identification System consists of two subsystems in well model
identification. The first subsystem (Subsystem-1) uses the time/pressure data derived from
well sites for model interpretation, and the second subsystem (Subsystem-2) obtains
information from geologist and uses Inference Engine for model identification and
selection.

6.1  Subsystem-1

When the Well Model Identification System is run, Subsystem-1 is invoked first,
and it prompts the user for the name of the input file that contains the time/pressure data
derived from well sites. From this data, we generate the derivative data using standard
algorithms. Thus, the input to the system consists of time and derivative information, and
the actual number of time and derivative data pairs that are used as input, depends upon
the test data available. Once the system reads in the time and the derivative data, the next
step is to analyze this data and come up with the simplified symbolic representation for the
whole plot. This representation is done in terms of the following symbols:

up, down, flat, maximum, minimum, plateau, valley

The algorithm begins by calculating the slopes between the data points. This data
is stored in a list. The algorithm proceeds by scanning this list and replacing each slope
with symbolic representation. Then a second scan through the list is done to come up
with a final representation of the whole plot. Here the algorithm uses rules that we
developed to eliminate redundant symbols, or to identify new ones based on the sequence
of primitive symbols (up, down, flat). Typical rules are as follows:

up followed by an up is up

down followed by down is down

up followed by flat followed by down is a maximum if the number
of flats in between is sufficiently small, otherwise it is a plateau.

Using such rules, the algorithm produces a final list of representative symbols
which describe the whole plot. Though it depends upon the particular data used, usually
four to five symbols describe one complete graph. Consecutive identical symbols (e.g. up,
up) are compressed into a single symbol representing several segments. Currently there
are total of five possible shapes representing the models:

shape 1: [up, maximum, down, flat}
shape 2: [up, maximum, down, flat, down, flat]

shape 3: [up, flat]
shape 4: [up, maximum, down, minimum, up, flat]
shape 5: [up, maximum, down, flat, down, minimum, up, flat]
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Once the representative symbols are produced, a conversion algorithm is invoked
to convert the representative symbols (e.g. up, maximum, flat) into one or more paired
integers (e.g. (-4, 0), (-3, 0)) and stored in a list. Figure 18 below shows the 3 possible
results in the list.

HENNnN
/lil
&
~.O

HERNN

D N

Figure 18

The conversion algorithm is necessary because several models may have the same
shape and one model may have two shapes, but each model has a unique paired integers
that represent it. These unique paired integers will be used in matching algorithm to
match the models selected in Subsystem-1 and Subsystem-2. Figure 19 below shows the
all possible shapes and the all possible models.
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ALL POSSIBLE SHAPES ALL POSSIBLE MODELS
(DIFFERENT MODELS
CAN HAVE SAME SHAPE)

VRW PP_SP (-2,0) VFW PP SP (-4,0)

o

VRW PP DP (-2,1) VEW_PP.DP (-4,1)

yAYE

70
’r

73

VRW _FP_SP (-1,0) VFW _FP_SP (-3,0)
VRW _FP DP (-1, 1) VFW_FP_ DP (-3,1)

Figure 19

6.2  Subsystem-2

This subsystem obtains information from geologist and uses anInference
Engine for model identification and selection. This subsystem is invoked after the
Subsystem-1 completed its task. When this subsystem is activated, it prompts the user for
input. 3 questions will be asked, and the geologist must provide all 3 answers:

1. Type of well
2. Fully or Partially Penetrating
3. Single or Double Porosity

Then input information is interpreted. Interpreting this information involves
evaluating conditions and rules from multiple sources. By Applying Al, especially
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knowledge based system techniques, it is easier to codify the experienced engineers’ or
analysts’ expertise, and simulate the interpretation process. The well completion
information gathered from experts in the Petroleum department was represented in the
form of rules. The present rule base consists of 5 parameters and 17 rules. Inference in
the rule base is made using forward reasoning. Forward reasoning is the process of
working from a set of data towards the conclusion that can be drawn from this data. The
input information is then used by the Inference Engine to fire the appropriate rules. The
hierarchy diagram for the rule base is shown in Figure 20. The Inference Engine, using the
above information provided by the geologist, will always produce 1 answer which is the
selected model in the form of e.g. VRW PP_SP (Vertical Radial Well, Partially
Penetrating, Single Porosity). This result is then passed to a conversion function so the
selected model can be represented in the form of unique paired integers, which will then be
passed to the matching algorithm for final model matching and selecting. This conversion
function will convert the result from (e.g. VRW_PP_SP) to paired integers (e.g. (-2, 0) ).

6.3  Well Model Matching

Matching : Result from Subsystem-2 is matched against the result from
Subsystem-1. If no match, the algorithm terminate with no match message. Otherwise,
the final matched model will be passed to the third subsystem which will calculate the
nonlinear regression. Figure 21 below shows the 3 possible results from Subsystem-1, but
only one of the 3 will be matched.

o Horizontal well ( 10, 10 ) will take the 1* answer from the array.
e Otherwise, match them and store the answer.

These two subsystems are currently implemented using MSVC 1.51. The two

subsystems are fully integrated and tested successfully. Further work is being done to
convert the Well Model Identification System into MSVC 4.0
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Figure 21
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