4/‘{?@% 95@ |
H | |
UNIVERSITY OF WISCONSIN
CENTER FOR PLASMA THEORY AND COMPUTATION

REPORT
—

Computational Modeling of Neoclassical and Resistive
MHD Tearing Modes in Tokamaks

T.A. Gianakon

Department of Nuclear Engineering & Engineering Physics
University of Wisconsin-Madison
Madison, Wisconsin 53706-1687

February 1996

UW-CPTC 96-1

..\\,’g 1

Z\Y GiASTER

DISTRIBUTION OF THi2 NNAOMENT IS UNLIMITED @5

Um_,gﬁz

MabpisoN, WiscoNsIN 53706-1687




~ DISCLAIMER
Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.




COMPUTATIONAL MODELING OF NEOCLASSICAL AND RESISTIVE
' MHD TEARING MODES IN TOKAMAKS

by

THOMAS A. GIANAKON

A dissertation submitted in partial fulfillment of the
requirements for the degree of '

Doctor of Philosophy
{Nuclear Engineering and Engineering Physics)

at the
UNIVERSITY OF WISCONSIN—MADISON
1996







iii

Abstract

Numerical studies of the linear and nonlinear evolution of magnetic tearing
type modes in three-dimensional toroidal geometry are presented. In addition
to traditional resistive MHD effects, where the parameter A' determines the
stability properties, neoclassical effects have been included for the first time
in such models. The inclusion of neoclassical physics introduces an additional
free-energy source for the nonlinear formation of magnetic islands through the
effects of a bootstrap current in Ohm’s law. The neoclassical tearing mode is
demonstrated to be destabilized in plasmas which are otherwise A’ stable, albeit
once an island width threshold is exceeded.

The simulations are based on a set of neoclassical reduced magnetohydro-
dynamic (MHD) equations in three-dimensional toroidal geometry derived from
the two-fluid equations in the limit of small inverse aspect ratio € and low plasma
pressure 3 with neoclassical closures for the viscous force V - #. The poloidal
magnetic flux v, the toroidal vorticity w¢, and the plasma pressure p are time
advanced using the parallel projection of Ohm’s law, the toroidal projection of
the curl of the momentum equation, and a pressure evolution equation with
anisotropic pressure transport parallel to and across magnetic field lines. The
equations are implemented in an initial value code which Fourier decomposes
equilibrium and perturbation quantities in the poloidal and toroidal directions,
and finite differences them radially based on a equilibrium straight magnetic
field line representation. An implicit algorithm is used to advance the linear
terms; the nonlinear terms are advanced explicitly.

The simulations are benchmarked linearly and nonlinearly against single and
multiple helicity A" tearing modes in toroidal geometry in the absence of neo-
classical effects. The plasma pressure dynamics and neoclassical tearing growth
is shown to be very sensitive to the choice of the ratio of the perpendicular
to parallel diffusivity (x1/x). The study is completed with a demonstration
of the threshold for single helicity neoclassical MHD tearing modes, which is
described based on parameter scans of plasma pressure fp, the ratio of perpen-
dicular to parallel pressure diffusivities x.1/x;, and the magnitude of an initial
seed magnetic perturbation. The threshold is shown to qualitatively agree with
theoretical predictions.
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Chapter 1

Introduction

The performance gains of the last several years in tokamak fusion plasmas
has generated a resurgence in the observation of low helicity magnetic oscilla-
tions [1, 2]. Often, the onset of such oscillations either cause the plasma to
disrupt violently [3, 4] or they significantly degrade the plasma confinement
[5]. One of the primary candidates for such oscillations, based primarily on the
measurement of island rotation/locking by Mirnov coils and the observation of
pressure flattening about individual resonant rational surfaces by electron cy-
clotron emission [5], appear to be instabilities referred to as magnetic tearing
modes. ,

Furth, Killeen, and Rosenbluth provided an early description of the tear-
ing mode in the sheared slab geometry [6], but Wesson [7] succinctly describes
the tearing mode in a tokamak as “driven by the radial gradient of the equi-
librium current density. The name derives from the tearing and reconnection
of magnetic field lines which occur during the instability as a consequence of
finite resistivity.” The puncture plot of Figure 1.1 illustrates the island struc-
ture of a magnetic field by tracing individual field lines as they wrap around
the plasma and pass through a poloidal cross-section of a tokamak plasma. An
island separatrix exists when distinct field lines converge to a single point and it
separates the topologically toroidal nested surfaces outside the island separatrix
from the flux tubes which are centered about the island O-point. Tearing and
reconnection occur at the island X-point.

In a single fluid resistive magnetohydrodynamic (MHD) model, since the
growth of the instability is slow, inertial effects are in general negligible. This
implies that the plasma is described by a low pressure version of ideal MHD, so
that V x (J x B) =0, or in a large aspect ratio limit that B- VJy =0. The
linearized form of this equation, when combined with Ampere’s law, generates
a balance between the stabilizing effect of magnetic field line bending and the
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Figure 1.1: Puncture plot and pressure contours of a tearing mode in a tokamak

plasma. The solid lines are the puncture plot, and the dashed lines are the
pressure contours.

destabilizing influence of the radial equilibrium current gradient. However in a
narrow layer of width §r about a mode rational surface on which exists a mag-
netic perturbation of the same helicity as the mode rational surface, the field
line term vanishes and ideal MHD is no longer valid. In this narrow boundary
layer, resistivity dominates the mode growth and the mode solution is deter-
mined by a combination of Ohm’s law, Faraday’s law, and Ampere’s law, The
matching of solutions between the resistive inner and ideal outer regions leads
to a parameter which determines the stability of the tearing mode. This tearing
mode matching parameter is given by

, . 1 d‘(/) rste;

where 1 is a solution to the ideal equations outside the layer, ¢ is a measure of
the layer width &z, and r; is the radius of the mode rational surface. The param-
eter A’ is a measure of the free energy available for the resistive reconnection

Ts=€




of magnetic field lines. In addition to the magnetic island structure, a vortex
flow (inertia) is also created which moves plasma in a direction from outside the
island separatrix, toward the X-point, then toward the island O-point, and also
out across the island separatrix. This flow inertia can also be important for the
layer dynamics.

Since the sign of A’ completely determines the stability of the tearing mode
(positive implies instability), only the outer solution need be computed to de-
termine mode stability. An additional complication associated with the linear
theory is that the resistive layer width is often on the order of an ion gyro-
radius, which implies that resistive MHD is no longer strictly valid. Other
complications to linear tearing theory are that, in toroidal geometry, the effect
of poloidal mode coupling complicates the solution. An analytical extension of
this A" approach for toroidal geometry known as E-matrix theory has been de-
veloped [8, 37], which is based on a perturbative scheme in the aspect ratio and
the poloidal 3. Also, a numerical extension is in progress via Glasser’'s DCON
code [13].

While linear theory provides a simple understanding of early growth dynam-
ics, the modes observed experimentally are larger than the resistive layer and
have grown beyond the linear stage. In the nonlinear phase, it is more appro-
priate to use a Rutherford [14] analysis of the tearing mode. In the Rutherford
growth regime, the island width is given by

dW  dxq

Fa
where 7 is the plasma resistivity and W is the island width. Henceforth, the time
will be normalized to the resistive skin diffusion time a?47/c%n and lengths to a
plasma minor radius a. Thus, the dimensional coefficient 477/c? will disappear
from the equation. In the Rutherford regime, the nonlinear portion of B. VJj
generates eddy currents which produce a force that opposes the vortex flow and
as the mode grows replaces the effect of inertia. This causes the growth rate to
slow from exponential to linear in time.

Finally, the A’ tearing mode saturates because the mode nonlinearly gener-
ates currents that are sufficient to flatten the local equilibrium current gradient,
(A’ (W) — 0). The island width in this case is governed by [15]

dW ! Wsat
, ~cz't"‘A(O)(l" W>’
where W, is the saturated magnetic island width. :

However, the dynamics of the experimentally observed modes in the ad-
vanced tokamak operational regimes (but not necessarily in reverse shear dis-
charges) do not agree with this conventional picture of a A’ tearing mode. One

A, (1.2)

(1.3)

| |
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theoretical explanation for such modes is destabilization from the perturbed
bootstrap current. Neoclassical effects arise from the viscous damping of the
poloidal electron flow. The portion of the flow produced from the poloidal pro-
jection of the diamagnetic current when balanced against electron-ion friction
yields a parallel current proportional to the cross-field pressure gradient, the
bootstrap current. In the presence of a magnetic island, the pressure flattens
within the island separatrix when parallel transport is fast relative to perpendic-
ular transport. The pressure flattening eliminates the diamagnetic and hence
the neoclassical bootstrap current within the magnetic island. However, the
cross-field pressure gradient remains outside the island separatrix. Since the
pressure contours deform due to the island formation, a perturbed bootstrap
current develops. For an equilibrium with dp/dq < 0, where p is the equilibrium
pressure and q is the inverse rotational transform, this perturbation produces a
destabilizing effect.

Qu and Callen [16] and also Carrera et al. [17] developed analytic theories
for the nonlinear evolution of the island width W, which can be summarized as

aw

Tt (A' + -VY-E> ) (1.4)

%%
where « is a numerical coefficient of O(1) and W, is a coefficient which describes
the bootstrap current. For this class of modes A’ is typically stabilizing, though
it need not be, and can be well approximated in the limit of large m by —2m/r;,
where m is the poloidal mode number and r, is the normalized radius of the
mode rational surface. '

However, when the magnetic island is “small,” the helical perturbation of
the pressure profile about the island may be insufficient to destabilize the island
and a threshold for mode destabilization occurs. Fitzpatrick [8] has developed
an analytical model for the island dynamics which incorporates many of these
features. In this particular model, the magnetic island width, W, is given by

LW _ Ay ogpesPe W

S 1.
dt ss W2+ W2’ (15)

where I; ~ 0.8227, A" ~ —2m/p,, W, ~ 1.8W,,

W, = 2.83 (i‘i)m( L )0'5, (1.6)

X” €8N

€5 = €ps, (1.7)




’

. Psq
s = ’ 1.8
S =" (1.8)
| .
g=—6 (%) 5. (19)

Here, x 1 and x| are the perpendicular and parallel pressure diffusivities respec-
tively, the mode is resonant at p = r/a = p, = r;/a where ¢ = m/n, B is
the pressure on axis, and p, is the pressure gradient evaluated at the resonant
surface.

This model is essentially the same as the Qu and Callen model in the limit
xii/xL — o0, i.e., where the pressure completely equilibrates on each flux sur-
face. The dynamics of the island evolution model can be illustrated in the sim-
ple phase space diagram of Figure 1.2. At small island width the perpendicular
pressure transport dominates over the parallel transport and the pressure profile
is unaffected by the island structure, which then produces no perturbed boot-
strap current, and no island growth. As the island width is increased, the island
eventually perturbs the pressure profile and the perturbed bootstrap current is
then able to destabilize the island. An increase in the overall plasma pressure
shifts the entire phase space curve upward. This then reduces the threshold for
the mode and also increases the saturated island width. Alternatively, an in-
crease in the parallel pressure diffusivity primarily shifts the instability threshold
to smaller amplitude, but leaves the saturated state-at nearly the same value.
The two possible critical points, at which the growth rate is zero, are given by

_ —Qg 1 2 2\0-5
W=——%3 (o2 - aw?) ", (1.10)
where
9.26€234,
Qo = "—A;.r. (111) :

The smaller of these fixed points is unstable and the larger is stable.

As illustrated in Figure 1.3, recent work by Chang demonstrates excellent
dynamical agreement between the neoclassical MHD model and experimental
observations on TFTR [1, 2]. Asshown in Figure 1.4, the analytical estimates of
the saturated island width also show remarkable agreement with the neoclassical
MHD estimates.

The difficulty with the TFTR data is that it is difficult to ascertain the
existence of an instability threshold for the mode, because small amplitude os-
cillations are near the threshold of detectability with the Mirnov coils. However,
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Figure 1.2: Phase diagram of the neoclassical MHD tearing mode.

experimental observations on DIII-D of finite § versus the maximum field error
for stability, as illustrated in Figure 1.5, indicate a threshold for destabilization
of tearing modes [18]. But, these modes have not as yet been experimentally
identified as neoclassical tearing modes.

To explore the dynamics of the neoclassical MHD tearing mode in a realistic
toroidal geometry, numerical simulations based on neoclassical reduced MHD
equations have been conducted. In Chapter 2, the model equations for neoclas-
sical reduced MHD are derived and their implementation in the FARGO code
is presented. In Chapter 3, simulation results based on this neoclassical MHD
model are presented, beginning from a single helicity standard A’ unstable tear-
ing mode in Section 3.1, moving on to multiple helicity modes in Section 3.2,
and finally to a single helicity neoclassical MHD tearing mode in Section 3.3.
The results are summarized in Chapter 4.
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Figure 1.3: Dynamic evolution of the analytical model (b} agrees with experi-
mental observations (a) on TFTR [1,2]. The island width is computed from the
signals from the Mirnov coils and is in agreement with the island width deduced
from the electron cyclotron emission diagnostic. Neutral beams are on during
the hashed region of the time line. A single free parameter (k;) multiplying the
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Chapter 2

Model Equations

In this chapter, a set of equations for the numerical simulation of resistive in-
stabilities in a tokamak are developed which include neoclassical viscous stress
effects. The starting point is a set of two fluid equations in the limit of zero
electron inertia (m. — 0). Anideal MHD equilibria in an axisymmetric toroidal
geometry is next assumed and formulated in terms of a Grad-Shafranov equa-
tion. This equilibrium is solved numerically with the fixed boundary equilibrium
Grad-Shafranov code RSTEQ [19, 20, 21]. The equilibrium is then used to de-
fine a nonorthogonal “straight-field-line” coordinate system, which will be used
to formulate the model equations by decomposing the derived evolution equa-
tions into equilibrium (subscript 0) and fluctuation components (subscript 1).
The full set of two fluid equations are not solved; instead, a set of neoclassical
reduced MHD evolution equations for the poloidal flux, the toroidal vorticity
and the plasma pressure are derived based principally on an expansion in two
small parameters, the inverse aspect ratio (¢ < 1) and the plasma pressure
(8 <« 1), which will be formally defined later. The equations are implemented
and solved numerically based on the initial value code FARGO [22]. Throughout
the following sections, all operators are fully expanded to reflect their eventual
numerical implementation.

2.1 Two fluid equations

The two fluid equations in the limit of zero electron inertia (m. — 0) are current
continuity or quasineutrality

-

v-j=0, (2.1)
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-
where J is the plasma current; ion continuity or mass conservation

0PD
ot

. where pp is the plasma mass density and ¢ is the plasma flow velocity; electron
momentum balance or Ohm’s law

+V - (%pp) =0, - (22)

E+E*4+5xB=ni-v.7, (2.3)

ppe
where E is the internal electric field, E4 is the externally applied inductive
electric field, B is the magnetic field, 7 is the plasma resistivity due to collisions

between electrons and ions, m; is the ion mass, e is the electron charge, and # 1re
" is the electron stress tensor; ion momentum balance

ppat-{-ppv Vi=JxB-Vp— V-%,--—V-??e, (2.4)

where 7:'1:6 is the electron stress-tensor and 7:?; is the ion stress tensor; and lastly
the pressure or heat balance equation

op
ot

where the electron and ion pressures have been combined into a total pressure
p; Q is the plasma heating source term, and § is the heat flux which is given by

+7-Vp=Q-V-q, (2.5)

-

. =B-Vp
§=—x:Vp—(x—x1)B BT (2.6)

where x, is the perpendicular pressure diffusivity and xj is the parallel pres-
sure diffusivity. In addition to the fluid equations, the Maxwell equations are
required, which are: no magnetic monopole’s,

V-B=0, (2.7)
Ampere’s law,
VxB= 4—671 7, (2.8)
and Faraday’s law,
_8_§ =V x E. (2.9)
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The fluid equations above are incomplete because of the introduction of the
stress tensor term—a term which must be evaluated either via a kinetic or
higher-order fluid moment approach. This model will use a stress tensor based
on a neoclassical closure {26, 27, 28] appropriate for the limit of long colli-
sional mean free path length (or low collision frequency), which accounts for
the viscosity between trapped and untrapped particles. The stress tensor, 1:’1:, is
represented in a Chew—Goldberger—Low form as

A
A

~o
o —

B I
lle = (f{ - g) (Pl — PL)as (2.10)

where
(B?) ¥y VBz_

[Bze)ty B

(pll - p.l.)a = —2manaﬂa (211)

the subscript alpha indicates electron’s or ions. The (®) is a flux surface average
of the quantity ®. The viscous damping frequencies are approximated by [26, 28]

2.3¢!/%y,

fe & , 2.12)
(1 + 1.0702% + 1.020,0) (1 + 1.071ee2?) (
0.66¢1/2y;
B = 1/2 ) 3/2y? (2'13)
(1 +1.030,;° + 0.31v)(1 4 0.660s6r ©)
where
Vig = z/ae;'?’/zRquﬂl, : (2.14)

in which v, is the collision frequency of plasma species o and V7, is the thermal
velocity of species a. Here, ¢, = p/R is the ratio of the local plasma minor
radius to the plasma major radius. The species velocities which appear are
given by

Fo=0— —27], (2.15)
epp

and in the case of ions
U; = U. _ (2.16)

In both Ohm’s law and the momentum balance the relevant expression for the
viscous force will be

=1§§-V(—f—)+—f—-V(-B—2>———f—éxVxE—-;-Vf,

Ay

V-
B2) "B \2 ) B 2.17)

where f = p;; —p..
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2.2 Equilibrium

The equilibrium is assumed to be describable by an axisymmetric, toroidal,
ideal MHD model. The equilibrium forms the geometric foundation on which
the initial value equations are time advanced and is designed to minimize the
numerical errors associated with the parallel operator B - V that appears in
the evolution equations. The most convenient geometry for this operator will
be a straight magnetic field line representation, which will have the advantage
of simplifying this operator to algebra when fluctuation quantities are Fourier
decomposed. However, the straight-field-line representation is a nonorthogonal
coordinate system; thus covariant and contravariant basis vectors, with associ-
ated metric elements, will have to be introduced to define vector operations. In
Figure 2.1, the configuration space geometry is presented.

Figure 2.1: An axisymmetric toroidal geometry is assumed with an outer con-
ducting wall as a boundary condition. The Shafranov-shifted magnetic axis is
at a radius Ry. The x and z are rectangular coordinates in the poloidal cross-
section.
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The ideal MHD equilibrium is described by three equations, Eq. 2.7, Am-
pere’s law, and the ideal MHD equilibrium force balance

%f x B = Vp. (2.18)

Equation 2.7 indicates the magnetic field may be expressed in terms of two
magnetic potentials ¢ and x as

B=VyxxVo+V(x V. (2.19)

The angle { = —¢ is the toroidal angle, where ¢ is the standard cylindrical
geometry angle. (The minus sign enters for historical reasons based on the left
handed coordinate system originally used in the FARGO formulation [22].) The
angle 6 is a poloidal angle and is arbitrary for purposes of the equilibrium solver,
until the conversion is made from the solver’s geometry to the straight-field-line
geometry. The third coordinate will be a flux coordinate p which will have the
property that B - Vp = 0; that is, the magnetic field lines lie in surfaces of
constant p. The transformation between this coordinate system (p,0,() and
the configuration space (z, z, ¢) will be dealt with later in this section.
In an axisymmetric torus, Eq. 2.19 reduces to

—a—X-Vp x Vl + 3—¢Vp x V¢, (2.20)

B Op dp

i

where 1 = ¥(p). (Often p = ¥, but not here.) Also from the force balance,
since B - Vp = 0, the pressure is a flux function p = p(p). In a straight-field-
line representation, the field line path depends by definition only on the flux

surface label, where the equation of the field line is given by the components of
dl x B = 0 which here yield

@4 (2.21)
-B-V68 B-V(
Subsequently, the inverse rotational transform, defined as
B . ¢
= B-ve _B (2.22)

=B v BY

must be a flux function. Finally, the flux coordinate p will eventually be nor-
malized to have a value of 0 at the magnetic axis and a value of 1 at the plasma
edge.
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In axisymmetric systems the equilibrium magnetic field is expressed not in
terms of these potentials but equivalently as

B =IV{+V{x Vi, (2.23)

where I can be shown to be a flux function from axisymmetry. This form is
introduced because it is the basis of the equilibrium solver. The relationship

between the two systems is derived by taking the toroidal projection of Eq. 2.23
and Eq. 2.19. The result is’

I dx
(_ A . . .
Bt = 7 dep Ve x V¢, (2.24)
where x = x(p) is a flux function.
When, the radial projection of the ideal MHD equilibrium force balance is
combined with Ampere’s law, the result is the Grad-Shafranov equation [23],
which is expressed as

RV . (inp) = _Popdr 1,d
R2

~saf s~ ey (2.25)

where the following normalizations have made [20]. First, length scales have
been normalized by the plasma minor radius ¢ = e¢Ry, where Ry is the Shafranov-
shifted major axis and e is the inverse aspect ratio defined as

1 1
¢ = /V FV =, (2.26)

but with the exception that the cylindrical coordinate R has been normalized
by Ro. The magnetic field has been normalized by the value (in units of Gauss)

B* = IwazzRal, (2.27)
where I/I,,u =1 at the plé,sma edge. The flux ¢ has been normalized by
¢* = _GZROIwall- (2.28)

The pressure is normalized to po, the pressure on axis, which leads to a definition

of By of

8wpoR2

wall

6o (2.20)

The equilibrium solver generates the solution ¥(R,Z) based on the two free
input flux functions g(z) and p(%).
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2.2.1 Metric elements

As previously mentioned, a transformation to define the vector operators [23]
must now be made between between the solvers (R, ¢, Z) coordinate system and
the straight-field-line representation (p, 8, () [20]. First, a slight transformation
will be made by converting R to X = R — 1 as is done in the numerical imple-
mentation. The coordinates (x,z,¢) may be formally expressed in terms of the
flux coordinates (p,0,{) in terms of the general curvilinear coordinate system
transformations:

z = f(p,0),
z = g(Pag)a ‘ (230)
¢ = .

The procedure is straightforward to generate the contravariant flux coordi-
nate directions in terms of the original toroidal basis. Namely, the gradients of
the above equations are taken and the resultant matrix inverted to generate the
nonorthogonal basis:

_ R [Yg af
Vp = —J{aov Bﬁv}
_ _R{ 8oy Of,
Vo = _]{ E)V +8 }, (2.31)
_ ¢
VC - R,
where J is the Jacobian
_ 3fag 8]"39
J=-E {ap 26~ 20 3p} (2.32)
Note that
J1=Vp-(V8x V(). (2.33)

As of yet, the p and 8 coordinate system is still arbitrary until the connection
is made with the straight-field-line representation requirement of Eq. (2.22). A
convenient choice for 7, which leads to a representation that can readily be
reduced to cylindrical coordinates, is

1
pR?

T 1=Vp-(VOx V()= — (2.34)
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The metric elements are represented as [20]

1 ag\>  [(8f\’|
PP . o e—— —_— -
g” = Vp-Vp 02 R2 {(69) +(60> ’ (2.35)
-1 (dgdg 8fd
9 = V”'ngﬁ{a_Zé%+5’g5£}’ (2:36)
# _ vg.upo L [(39) _ (0f\
¢ = Vb vo_szz{(ap) 3 [ (2:37)
1

In order to eliminate singular behavior near the magnetic axis, which becomes a

problem when spline fits of the metric elements are generated, a series of hatted
metric elements are defined as

g” = Ry'§”, (2.39)

g = Rgl-g—pz, (2.40)
oo

¢ = Ralgp—z, (2.41)

where f and g have been normalized to eRy and p to eRé/ 2. The hatted terms
represent the dimensionless metric elements that are available as output from
the equilibrium code. Additionally, the following metric elements, which are
derived from the above relations, are required:

Gpp = P2R2 807 (2-42)
9o = —p°Rg”, (2.43)
ge = p R'¢”, _ (2.44)
gc = RIR. (2.45)

2.2.2 Equilibrium magnetic field

From Eq. (2.23), the contravariant components of the equilibrium magnetic field
may be expressed as

B*=B-Vp = 0,
= Lyan I
Bl=B.vo = =i __ 2.46
B R2 gqR?’ (2.46)
Loan 1
B‘=B.v( = 2
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where
dy  pl
:fp— = -’?,
and I(p = 1) = 1 at the plasma edge. The covariant components of the magnetic
field are then

(2.47)

- nlp.
B, = g,,B° +gpeB€ = —IuueRy 1/2?‘09’)9’

Ip?
39 = gpeBp + g@eBo = Iwallez_g—gpp, (2-48)

B; = g¢¢B¢ = Il

2.2.3 Equilibrium currents

The equilibrium currents can now be deduced from Ampere’s law,

4—”,1 Vv x B, | (2.49)

and represented by the contravariant components of the current as
4T

———J” = 0,
—C—J = Rgezzﬁidp’ (2.50)
4z —Layall 1 8 Ip a 1 Ipa,,e
= J¢ = po o0 s
¢ R} {Rzap( g)+pR2q36’
or by the covariant components of the current as
%1'] — Iwall .\pg dI
c 14 CRg/z )
47 1 dI
471'

—k = —Z-RORZJC.

2.3 Neoclassical Reduced MHD Equations

The model presented here is a close derivative of the reduced-MHD models of
both Strauss [24] and also Hazeltine and Meiss [25] , and as such reduces the
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14 unknowns plus stress-tensors in the full MHD equations to three unknowns
determined by a parallel Ohm’s law, a vorticity evolution and a pressure evolu-
tion equation. While these models neglect the viscous stress tensor, this model
includes such effects based on neoclassical closure arguments [26]. At this point
it is convenient to define two timescales which will be relevant for the initial
value equations. The first is the resistive time 7p which is defined as

n= SHo 4T (2.52)

n &’

and will be used to normalize all times. The second is the Alfven time 74 which
is defined as

I? |
52 = —uall 2.53
4 7 ppRiar (2:53)
The ratio of these two time scales,
s=2, (2.54)
TA

is defined as the Lundquist or magnetic Reynold’s number and for a hot tokamak
plasma has the property S > 1; e.g., in TFTR S ~ 10%.

2.3.1 Perturbed magnetic field

From Eq. (2.7), the perturbed magnetlc field may be expressed in terms of a
vector potential,

B, =V x A, (2.55)
where

Ay = EL,unRo (—1V( + ex1V0), (2.56)

in which A{ = 0 is the gauge condition. The %, is normalized by €21,,,;R% and is
assumed to be O(1), and x; is normalized by €3I,,.u R and is also assumed to be

O(1). Consequently, the perturbed contravariant components of the magnetic
field are

6I’wall 1 a"pl 2 1 aXl

By = Lwt %1
R)? pR? 06 pR2 8¢’
I 1 ¢
"] wall 1
B] = R o 0 (2.57)
B = Luar 1 9x1

R 7 9
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The covariant components of the magnetic field are then

gy = e[ §"0h_ i #0x)
T RPE e 0 ap ' p 8
3;[)1 01 L e0X
= Iua P8~ pp~ 1 pd A .
Bgl 1€ {pg P 89 + pg ap + eg a( 5 (2 58)
10 '
BCl = _eIwa.ll;a—;(-
Subsequently, the following orderings will be made
B . A el i I aX
B, By = _R._?{ pR2 a + O(€?), : (2.59)
and .
B? ~ O(€?), A (2.60)

in order to identify the order of various nonlinear terms which will be dropped
when the reduced MHD equations are derived.

2.3.2 Perturbed currents

From Eq. (2.8), which is Ampere’s law, the contravariant components of the
fluctuating current can now be expressed as

Jiar_ Lear ) 10 (10x)]
c RY? | pR? 09 \p Op

Iwall gp9162¢1 éfiazd)l +e ZI‘WG-” 1 ~p962
“RPP\ B 000, T B opal | T < B \pRY B0

Ji4r lﬁvgﬂ{:i_a_ (EQK +
¢ € R} |pR?3p \pdp

Loan [ §%° 18%p | §°° 8% want | —1 §% 0%x
7 {pRzzaeac bR 8pac}+€ B {pm . 6c2}’ (2.61)
Jidn Luan {32¢1 {gpp} oY, [ 1 9 g0 1 1 apgpp]
c R} | 0% | R? 8p |pR? 567 pR? dp
Py [26°°] 100 [ 1 0.4 1 8
3 aa{ ] 0 96 [;»R?@@ TR 5 ]

+

R? Bp 0¢  pR2O8 p OC

E'E

2 002 R2

1 8%, [Aee]} Iwa,,{ -1 0 Ap96x+ 1 3@"98;(}
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The covariant components of the fluctuating current are then

. Iwa.ll fl_w__?_ 1aX Apei 18X . _1_621/)
he = W{paﬂ p9p) "9 Bp\ndp) T FBpACJ

_ Lwati § .0 O 16x pp O Jd (1 Bx
Jig = eRO {g 80( 3 + €epg Bp p@p
_ Iwa.ll 1 6’lp 3 \
o= {R2600§}+0(6 ), (2.62)
J]_( = ROszc.

Subsequently, the following orderings can be identified

Jt ~ O(1), (2.63)
and also
5 o 1dI
J-Jo~ 0 (Z&Z) +0(1). (2.64)

For the g-profiles considered here dI/dp ~ € or smaller, which is roughly con-
sistent with 8 ~ O(e).

2.3.3 Perturbed velocity

In expanding the velocity, several levels of approximation are introduced. First,
the equilibrium flow is assumed to be zero. Second, the plasma is assumed to
be incompressible. This can either be attributed to the assumption of constant
density or can be can be deduced from an assumption that the compressibility
V - ¥ equilibrates on the fastest time scale or that sound waves equilibrate
density fluctuations on the fastest time scale. In analogy to the magnetic field,
the velocity is represented by a stream function, in the form

o=V x (2.65)
where
0 = - VE + AV, (2.66)

and the gauge condition )] = 0 has been chosen. The evolution of A; will be
neglected, which is consistent to lowest order in € with ¢ being an E x B flow




2.3. NEOCLASSICAL REDUCED MHD EQUATIONS 21

from Ohm’s law. Consequently, the perturbed contravariant components of the
velocity are

o _ & 1 04

vy = 633/2;}?2'_8_07

o _ & 104

v, = R O (2.67)
vi =0,

where ¢ has been normalized by ¢*, which is

5= (2.68)

TR

The covariant components of the velocity are then

¢ {@” 9% Apea¢1}

+9g

Upr = eﬁlz —p—aﬂ dp

- ¥ *p9_1.% *pp%
vep = Ro{pg >0 + pg % [ (2.69)
va = 0.

2.3.4 Vorticity

In analogy with the relationship between the current and the magnetic field,
- the vorticity will be computed. The vorticity is defined as

&=V x7. (2.70)

Only the toroidal projection of the vorticity will appear in the evolution equa-
tions derived in later sections. The toroidal projection of the vorticity is given

by
= Sl 52 5] S e
e | R‘f] + 5 ]
i L )

which is the same operator, except for normalizations, as that which appears in
the toroidal current definition, Eq. (2.62).
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2.3.5 Divergence of the momentum equation

Since the plasma density is constant and V - ¢ = 0, the divergence of the
momentum equation will be used to relate the magnetic potential y to the
pressure p. The divergence of the momentum equation is

2 -
Vz(p+8B—ﬂ_)=é—7£J2—pr -V-V. 7rz vV-V-7.. (2.72)

First, the equilibrium quantities are balanced and dropped from the equation,
which in dimensionless form yields

9? S
( '2V2 + ——-——) (ﬁpl +€B; - By + €2B12)

R?2 0(?
1 2 3
= J +J1 Jo—gz'( 2—V'V°7I'i-—V'V'7re). (273)

[ The decomposition of V? into an €7 2V2 + (1/R?)(9%/9(*) operator will be
dealt with later in the pressure evolution section where the operator appears in
the context of the heat flux.] For .S > 1, 8 ~ ¢, and to lowest order in €, Eq.
(2.73) reduces to

I 9x :
Vi (Pl - ;ﬁa—p) =~ O(e), (2.714)
which can be satisfied with
I 0y
- A 2.
51 oRZ 9p (2.75)

Equation 2.75 eliminates magnetosonic waves from the evolution equations and
is to lowest order a statement of perturbed radial force balance: p; +B,-By=0.

2.3.6 Parallel Ohm’s law
In equilibrium, Eq. (2.3), which is Ohm’s law, reduces to"

EA = 7]j;) - &ﬁ ° #O,e- (276)

pPDE
Such an expression remains consistent with the solution to a Grad Shafranov
equation by treating the applied equilibrium electric field (E4) as the field which
should have been applied to generate the desired equilibrium pressure and q
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profiles. Conveniently, for the initial value equations this equilibrium equation
will be subtracted from Ohm’s law; then E 4 and the equilibrium 7' . need never
be computed.

From Faraday’s law, the perturbed electric field may be expressed in terms
of a vector potential and a scalar potential ,

B =-2"24Va, (2.77)
(&4

where ¢ is the electrostatic potential and is determined by the radial projection
of Ohm’s law, i.e., the gauge condition. The radial projection is

0 190 e 4 =
5:; + _RE% = +teJ, + —l’f—_ep -V - e, (2.78)
where « has been normalized by
o = 2 Tuatflo, (2.79)

CTR

Since pe/vVe; ~ 2.3¢'/2, the solution to Eq. (2.78) to lowest order in € is

i | (2.80)

or that ¢, is basically the electrostatic potential. This is also consistent with
the lowest order in € solution of the &, projection of Ohm’s law.
Next, the lowest order in ¢ parallel (B-) projection of Ohm’s law is

o _ _:7_[5¢1 la¢1] 1 0¢, 01 1 948y

or dC qd6| pR® 06 dp ' pR:Op o
2 -
+RJS - %—B V-7, (2.81)

where all quantities have been normalized. (This equation generates most of
the previously defined normalizations when written in a dimensional form.)
Ordering of the stress tensor term is completed by first considering (py — p.)e

(B |1 p v -V(B) p.J V(B
(P = Pr)e = =2 2 {_2 z o B } ’

in which w,, = eB/m.c is the electron cyclotron frequency. To reduce the above
equation to a programmable form, the flux-surface-averaged terms will be based
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on equilibrium quantities, as will factors of 1/B%. Such an approximation is
valid because the particle trapping is not strongly affected by the presence of
the island. Smolyakov [29] has calculated the change in the viscosity due to
such variations and found them to be small, when the islands are sufficiently
small.

The normalization factors scale roughly as pe/we ~ 1077 and p./ve ~
2.3¢'/2, which indicate the velocity component may be neglected. Next, only
equilibrium and linear terms of J - V(B?) are retained. Spong [30] indicates
that the contribution of similar nonlinear terms is small. Therefore, the elec-
tron pressure anisotropy is

e (B 1 - -
(P —pi)e = +2’:——;ff‘;5’3>2—2? {Jo- V(BE) + 41 - V(BY)
e([___o_é_orj_] ) 0
+Jo- V(B - Bo)}. (2.83)

From Section 2.2.7, él . éo will be expressed in terms of the pressure. Then, to
lowest order

2 pe B2 1 10B%dI 10B23
(p||—PJ.)e — __ﬁ__ ( 0) 5 { ol 0 i o 9P
B

€ v, <[B-°.v32 R?BZp 06 dp IBZp 80 dp
BO

B dI1dp _@_aBgl_@}

Bl dppd0 T 1BL 0p p 00 (2:84)

‘Next, the parallel projection of the stress-tensor term of Eq. (2.17) is com-
puted and found to be
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which when expanded into a form suitable for numerical implementation be-
comes

Bso 2, On)—Bu_(B) 1 p(1833)2
TTE YT 5,1 v [Bvei]’. BeBiq \p 00
P | €V ([BOBVBQ] ) 0d \P

4]

Lop | Bpe (BY) 1 1083, o5 _ Lan
p 00 |é z/e([gog)gzr) R’Bip 00 q| 0p R?dp
(Lo | ) pl1omar

Ve ([Bog)Bn2] )R B§ q p 00 dp

p 00

Opy |} 2Bu. (B?) 1 10B2 IdI
3, Iounl? BABE, 1,
o | v ([BO-BYBQ] )R B§p 06 dp

0

Oy ) Lpe (B _ _1_dI (1083’
dp | € Ve([ﬁo'VB2a]2>R4BgdP p 00

19y | —1p.  (BY) 1 dI9B318B}

A (Bt RiBidp Op p 00
Bj :

, (2.86)

where the nonlinear contributions have been dropped [30]. Also, the B- Vip—
P1)e has been ordered small and therefore dropped. A flux surface average of
this quantity would also annihilate this latter term. Equation 2.86 is the model
which will be used to describe the perturbed bootstrap current.

2.3.7 Toroidal vorticity evolution

The toroidal vorticity evolution equation is generated by operating on the mo-
mentum balance equation with the operator V({ - Vx. The result is

o out
2Ry OT

= ppV - (va_ng).*.lv.(é,jc_j'BC) —V(-VXV-7,
c (2.87)
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where pp is the plasma density which is assumed to be a constant. The normal-
ized vorticity evolution equation detailed in a form necessary for the numerical
implementation is

owt _ 1 90wt 1 0p0ut [ 1 0p8J5 1 949
or pR20p 00  pR206 Jp pR? 06 0p pR? 0p 06
0 (1 0 Ip 190 I 9
7P 9 S Y5
N5 (%) - Jlao( )+ i 1256”1 T At
1 8YaJf 1 aJf 2
SF 56 0, 3 Op 00 —V(-VXV-7. (2.88)

The interpretation of each of these terms is as follows. The first two terms
on the right-hand-side represent the convection of vorticity, the J1 and J; J? are
curvature pieces and expand as

22 (L)+n2 (L) - {;zzzz}{i£-< > ——( )}

R
1 8%, 10 ( )
p6p6( R2 Bp R2 Y
19p, | [—Pol &
+{p 26 } {7767 (Ez“)}
6p1 ﬁo 11 8 I
Ao 2w (@) 25

The last two terms of Eq. (2.89) are often referred to as the pressure curvature
pieces and lead to the Glasser effect [31, 32], which produces a stabilizing effect
linearly and nonlinear when the equilibrium has good average curvature. The 6
remaining current pieces are the linear and nonlinear portions of B-VJ¢. The
final stress tensor term is the ion viscosity. For the numerical implementation,
the J¢ terms must also be expanded into operators on %, so that

10, 16 0.0, 10 )\ 1 0w (2,
waclt T "aeag{?{l[ap Py +paeapag{ "}
S (L 10 (1,

5o 2{ }+p2 agaoz{_’g }

0% 19 ., 18 0
+8C6p {R‘* [p appg + 609 (2.90)
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and also
Ip 1 6 _ 1 321/)1 6 apf 1 6 ,\99 1 631/)1 ~p8
Fa,50 = 70 {qR‘* [3;) 2509 ||t 2500, qR429
1% [ Ip .4 1821,1)1 19 ., .10,
+—3 063 {&ﬁg 3 paﬂap qR4 p@ppg + p@ﬁg

+1 631/11 Ip App
p 008p? qR“

+la¢l 1 -Q_ Ip a “p@ 1 (9 *99
» 00 \ 206 |qB2 \3p° © po0°
+l_0.2_1£)l -1_1_?_ 2_2698 + = 1 52'¢1 _1_li IP Aee
p60p \ B2 p 00 [gRZ Y o2 06° \R2p06 [gR2Y
+82¢1 118 Ip e
0p? R2P39 qu
ay [ 1 1 a | Ip 1 a v _1_ J .

2.3.8 Neoclassical closure for the momentum balance

The reduction of the pair of stress-tensor terms which appear in the momentum
balance proceeds in several steps. First, the electron stress-tensor term is smaller
than the ion stress-tensor term by ~ (m./m;)"/? and thus can be neglected.
Next, Eq. (2.17) is split into the two notationally convenient components

= 58 f fo (B f
V.%4 = BB- V(B2)+82V(2)——E§BXVXB (2.92)

V.75 = —gv f, (2.93)
where f = p; — p. and
' V-R=V-7F4+V-7p (2.94)
Furthermore, the closure simplifies to
V(- VXxV-7=V( -V xV-#, (2.95)

To generate an expression for V(- V x V - 74 the J x B expression from the
momentum balance is substituted into Eq. (2.92) and then solved for V - 7 4.
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The result is

sz _ 1 f== f fo (B
et - g o) 4o )

f| Do 2
+52 [PDT)‘{ +Vp+ V- 7"3]}’ (2.96)

where f = (p — p.) and D/Dt = 8/8t+ ¥ - V. Since f/B* ~ S™2u; /v < 1,
Eq. 2.96 becomes

Vg {BB v(;) ];v (32)}. (2.97)

This result is now substituted into Eq. (2.95) and common terms are collected.
The stress-tensor term is then

V(- VxV-#=V(xV- {BB v(é;)}qL ~V¢- v(gz)vaz.(z.%)

The first term is neglected since it is O(¢) smaller than the second term. After
the various operators are expanded and also approximating B? ~ B2, the stress

tensor term becomes
g_@ 1 1 1 (BY) (18B%\
02 [ ) e v.; B2RZ R? /[B.vB21%\ \p 08
([(BZE])

V(- VXV.-7

B* (B 10B®
R2<[Bv32] ¥4 00

L 1@Vl 1 1 (B) (9B
p? 062 € ve; B2R? -12—2([5‘-;7232]2> Op
104 J1lpw 1 & B2 (B*) 14B?
p 30 || € ve.; B2R? 8pdf

7 (g o 00
1 62¢ 2 'Uz 1 1 (BZ) aBz 1 6B2
+ {— } { 621/ B2R? R? <[1§§232]2> ap ; 56 } .(2.99)

d¢ 1w 11 ?
) ve; B2R2 p 8p30

|
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2.4 Pressure Evolution

The pressure evolution equation for an incompressible plasma is

Op

St VP=0-V-q (2.100)
where the heat flux is
. BB -V
§=—x1Vp — (xi1 ~ X) =57 (2.101)

@ is the plasma heating source, and x . and X are the perpendicular and parallel
pressure diffusivities, respectively. Both will be treated as constants.

One of the difficulties in the numerical implementation of this pressure equa-
tion is to connect the heat source term @, which is generally unknown, with
the equilibrium pressure profile, which is the input required for the equilibrium
code. To simplify the numerical implementation, the pressure is decomposed
into the equilibrium and fluctuating portions:

p=po+pi. (2.102)
The revised pressure equation is then

0 . - o

—éqt]; + v ’Vpo+’l)1 ’Vpl = V~q1, (2.103)
where () has been balanced with the equilibrium portion of the heat flux and
changes to the resistive heating are deemed to be small. The ¢ fluctuation is
given by

- BB -V BB, -Vp
G =—x1Ve = (a1 = x1) |~ 5 By le 21,

(2.104)

where By - Vpg is equal to zero, since the equilibrium pressure profile is a flux
function { i.e., po = po(p) and B-Vp=0].

Next, the convective portion of Eq. (2.103) is expanded into a form suitable
for numerical implementation:

o _ 1 8¢13pg+ 1 0410pn 1 961 0p:

V-§. (2.105)

or ~ pR2 90 3p pR2 89 Op pR®dp 06




30 ' CHAPTER 2. MODEL EQUATIONS

The “perpendicular” portion of —V - ¢; is given by

—V.-q = xl{apl{”"} apl{ - a""’pR 4 a""’ Rz}

R2 5,7 oR2 967
1 aPl 9499 18101 19 ~p9 2 1 9 »ea 2
+ 5936 7+ ro’ © tomaed ¢
1 0? p41 8 D1
T {5} + 5 {-}5}} (2.106)

where the perpendicular diﬂ'usivity has been normalized by €2R2/7r. Since
~V - g1 ~ V?p;, the operator V? is easily observed to decompose into e 2V2 +
1/R28%/8(?. The parallel heat flux is decomposed into two linear terms and
one group of nonlinear terms:

B§
B,-V
(xit—x1) | Bo V( lepl)
. 0
= EO'VPI §1'VP0 §1'VP1
B, V( B + B2 + B ,  (2.107)

where 1/B? ~ 1/BZ. Now each of these terms is expanded in a form suitable
for numerical implementation:

2 2 2
Term 1 = 6p1{—l—- ! }+lapl {2p1 = }-l-

0¢? | R? R*B; p000¢ | R*q R?B?
py [ pI? 10 1 + 18p [p17 1 4
9¢ | R?qp 00 R*BZ p? 00%? | R?q®> R*B?
10p; (P11 0 1
p 006 { R2q2 p 08 R2B2 (2.108)
1 62¢1 I 1 dpo 1 62@()1 pl 1 dpo
Term 2 = = sac {ﬁBng’% T2 \RqBiR dp | T
p 06 {R2q dp p 08 BZR2 , (2.109)
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The last term of Eq. (2.107), Term 3, is a nonlinear term and is dealt with
differently than the linear terms in the numerical implementation (see the nu-
merical implementation section). To reduce computational time, Term 3 must
be expressed in a form which minimizes the total number of operations. Hence,
Term 3 becomes

_ 1 (895 plags 1 [0 0fs O¢a0fs
Term 3 = ( + )+ {8p 20~ 59 ap},(2.110)

2\9( gqp b
where
1 10¢;0p1 101 0p
%= prge {,0 5 90 500 Dp (2.111)
and
_ 1 Opr  pI18py  10¢1dpo|
fa=9+ pamm { ac v 3590 " 50 dp (2.112)

2.5 Energy Integral

The neoclassical reduced MHD model presented satisfies an energy integral,
which is computed by a summation of the multiplication of the parallel Ohm’s
law plus equilibrium Ohm’s law by Jg + J{, with the multiplication of the
vorticity evolution by S~2¢, and the multiplication of the pressure equation by
Be~%nI/R?. This result is then integrated over the plasma volume. The result
is

5 ] €V 51V x Y (ot w0+ 3190 x Vol = Spin | =
- f &V { (Tie + Joo) (J§ + )
+(J§+J§)(E;—E-V-%e+§;l§-v-7?e,eq>+-L6-V-%,-

2 ((m ¢ % ¢6¢)

+ 2 229,
+ ] &V {(J§ + I) B4, (2.113)

907 | p2062 " 0 0p

8. I - B-v
_—~lnR2 Q+XJ_V2P+(X“—'X_L)B-V sz




32 CHAPTER 2. MODEL EQUATIONS

The first term (%;) on the left-hand-side (LHS) of the equal sign represents the
energy in the magnetic fluctuations, the second term (¢;) on the LHS represents
the kinetic energy of flows in the plasma., the third term can either be interpreted
as the energy in the magnetic fluctuations associated with Bo B1 or more
commonly as the interchange term [25].

The third term on the LHS develops from the J x B force in the momentum
balance. Recall that the energy integral for the full MHD equations is developed
by vector multiplication (dot product) of the momentum equation with ¢ and
the Ohm’s law dotted with J. The resultant &- J x B cancel each other in the
Ohm’s law and the momentum equation. In this model when ¢ is multiplied by
the vorticity equation, a term of the form I/R? J1 /e - V¢, develops, where Jl fe
is the order 1/e¢ perturbed current of Eq. (2.62). This current depends only on
x and therefore the pressure and also has no toroidal component. This term
can be shown to explicitly cancel with appropriate terms from the poloidal
and radial projections from the full MHD Ohm’s law. However, since these
equations are not explicitly solved in the numerical simulations , the “correct”
procedure is to base the energy balance only on the set of equations which are
time advanced. In that case, the above term can be massaged into the form
In(I/R*)v - Vp. The In(I/R?) moment of the pressure equation can then be
used to generate term 3 of the LHS and term 5 of the right-hand-side (RHS)
of Eq. (2.113). These terms have the general feature that when integrated over
the plasma volume, the only non-zero contributions are pressure perturbations
which change equilibrium harmonics (i.e., n = 0 toroidal harmonics). Also, in
the limit of cylindrical geometry (I = 1, R? = 1), these terms vanish exactly. In
comparison with Hazeltine and Meiss [25], @ = 0, x. = 0, and X} = 0 so that
these dissipation terms do not appear. Term 3 of the LHS is then described as
the stabilizing effect of good average curvature in the tokamak.

The terms on the right-hand-side (RHS) represent energy sources and sinks.
The first term on the RHS, J? is the resistive dissipation and is manifestly neg-
ative. The second and third set of terms on the RHS represent electron and ion
stress viscous dissipation. The fourth term is a numerical viscous dissipation.
This viscosity has minimal impact on the numerical results, but was added pri-
marily to improve numerical stability by increasing grid coupling in the vorticity
equation. To lowest order in ¢, this term is positive, because the operators on
¢ are nearly equivalent to those in w¢. The operator is a carryover from the
original Charlton numerical implementation [22] and should be rewritten and
reprogrammed for future work. The fifth term on the RHS is less easily inter-
pretable, since it does not appear to be convertible to a positive definite form.
Perhaps as with the pressure curvature term, the term produces dissipation on
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the average. The sixth and final term on the RHS is an energy source from the
applied electric field. (The neoclassical MHD simulations have been run with
the Glasser terms disabled to avoid this possible energy source.)

Finally, the pressure equation also satisfies an energy integral independent
of the above analysis. The form is »

- 2
B-Vp
—/d3V XL IVPIZ“I'XII% - (2114)

2.6 Numerical Model

The numerical model implemented in the FARGO code consists of a Fourier
decomposition in the poloidal and toroidal directions and a central-finite dif-
ferencing scheme in the radial or flux coordinate direction. The advantage of
such a representation is that it provides the most accurate method for com-
puting the operator By - V since it reduces the operator to the algebraic form
(I/R?*)(—m/q + n). An accurate evaluation of this operator is important be-
cause in the evolution equations the operator By-V appears numerous places
and is often multiplied by a large coefficient (i.e., $% or x|, which can be > 10'°
for reactor grade plasmas), which makes it prone to numerical error. Since only
up/down symmetric tokamak equilibria will be considered, the following Fourier
decomposition is used for fluctuation quantities:

P1 =Y Pilp;) cos(mub + nif), (2.115)
l

é1=">_ #i(p;)sin(mf + ni¢), (2.116)
{

p1 = pip;) cos(mid + ny¢), (2.117)
1

where the summation is over the modes “included” in the calculation. Equi-
librium quantities are similarly Fourier decomposed except with no toroidal
dependence. To clarify which modes are included in the calculation, this study
should be contrasted with turbulence calculations which require a summation
over a very large set of modes (> 5000) to accurately produce results [33]. How-
ever, in the case of magnetic islands/tearing modes, usually only a few modes
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are unstable and they tend to be large and coherent in nature. Furthermore,
the poloidal mode coupling between various helicities is typically on the order
of € so that just a few modes are required to include the effects from coupled
modes. Consequently, an accurate model of magnetic island phenomena can be
described with relatively few harmonics.

The FARGO code is an initial value code, and each simulation has been
initialized with a perturbation of the form

¢startpm 3 p<ps

—pm 2.118
",bstart%?ﬁs——rﬁ%a P > Pss ( )

"»bm,'n(paT- = 0) = {

where g4yt is the initial perturbation magnitude and p; is the radial location of
the rational surface. This initial perturbation approximates the eigenfunction
for a stable A’ tearing mode and accurately reproduces the mode shape near the
magnetic axis and conducting wall. This perturbation shape also reduces the
time required for initial transients to decay and leave only the desired eigenfunc-
tion. Finally, a finite perturbation of this type assists the initial destabilization
of the neoclassical tearing mode. :

As an illustration of the time advance, the basic equations can be expressed
as follows

) ¥

aL'§~: - > =, = ¢1

o =R-Z4+ N(Z); CE= b (2.119)
wi

where L and R are linear operators and N represents the nonlinear terms. In

general, L and R are a series of block tridiagonal matrices. The matrices are
tridiagonal due to the central-differencing in the flux coordinate p and are block
due to both the four equations and also because of poloidal mode coupling. The
exact details are not important for the current discussion. However, the form
of the time-differencing is important since it has important implications for the
stability of the calculation. The central time-differencing scheme takes the form

3 At 3 t= -
(L - —2—R> LGS (L + %—R) F 4+ AN (3). (2.120)
Numerically, the linear portion is solved implicitly with a block tridiagonal solver
[34] and the nonlinear term is solved explicitly. Initially, in the linear phase,
large time steps can be taken. However, when the nonlinear terms become
important, the explicit nature of the nonlinear term requires At to be reduced to
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insure stability. In the linear regime, an Alfven time is often needed (At = 1/5),
and, in the nonlinear regime for an island width of 20% of the plasma minor
radius, At = 0.001/S.

Throughout the simulations a uniform spatial mesh of 500 radial grid points
has been chosen, with the exception of parameter scans over the magnetic
Reynold’s number S. In that case, 300 radial grid points are localized within a
gap of 0.05 about the resonant rational surface; then 100 grid points are placed
between each of the boundaries and the boundaries of the localized mesh. The
two meshes begin to disagree for S ~ 10°. The absolute maximum on the mesh
appears to be about 1000 grid points, at which point point the block solver
indicates the matrix has become singular.

Finally, the “convolutions” which are required when equilibrium quantities
are multiplied together, or when fluctuation quantities are combined, are dealt
with as a spectral sum over the coupled modes with nonzero weights w; ;, i.e.,

N: (@) =S wijaditn (2.121)

Jk

where the subscripts i, 7, k each refer to a specific m and n helicity.
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Chapter 3

Numerical Results

This chapter covers a wide range of observations based on numerical simula-
tions for both single and multiple helicity magnetic islands in toroidal geometry
which, within a resistive MHD model, are either unstable or stable but driven
unstable by either poloidal mode coupling to an unstable mode or by neoclas-
sical bootstrap currents. A convenient organizational scheme to describe this
collection of tearing modes is to begin with a single helicity tearing mode and
then add complexity to the model. To accomplish this task, preliminary con-
cepts and definitions that are common to the analysis of the tearing modes are
presented in Section 3.1. In Section 3.2, the results of numerical simulations for
standard resistive MHD (A’) unstable tearing modes are presented. In the first
subsection, 3.2.1, of this section numerical simulations based on low # toroidal
equilibria are used to benchmark the code with theoretical predictions of the
linear, Rutherford, and saturation growth regimes for single helicity tearing
modes. Next, the plasma pressure, as measured by [y will be increased and
shown to stabilize the tearing mode through curvature effects. In the final sub-
section, 3.2.2, poloidal mode coupling is demonstrated. The final section of this
chapter, Section 3.3, presents results of numerical simulations for single helicity
magnetic islands that are stable to resistive MHD instabilities but instead are
driven by the neoclassical bootstrap current.

O
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3.1 Preliminaries

3.1.1 Profile parameterization

Throughout much of the following analysis, the g-profiles will be parameterized

by [41] ,
2\ /A
7= (1 + (pﬁo) ) , 3.1)

where pg is determined by the limiter or edge value of g,

A- -1f2x
Po‘ = ((QI,Z;ter) — 1) . (32)

In general, three values of A have been considered: A = 1, 2, and 3. The effect of
increasing A is to peak the current profile near the magnetic axis. Additionally,
the equilibrium pressure profile has been parameterized by

po=1—ap’ — (1 +a)p’, (3.3)

where 0 < a < 3 to insure a monotonically decreasing pressure profile. Addi-
tional details pertaining to specific equilibria that have been used throughout
these simulations, are provided in Appendix A.

3.1.2 Island width evaluation

- Before proceeding to a detailed analysis of various tearing modes, various defi-
nitions are required. First, the helical flux is defined as

w={ [ aw(L-1)}- S malp)cos(mb+n0), (54

% 49

where p = pg occurs at ¢ = qo, ¢ is the g-profile corrected for the nonlinear
generation of a 0/0 current, and go is the g value at a particular rational surface.
The helical flux describes the amount of flux passing a helical ribbon between a
surface in the plasma relative to the rational surface ¢ = go. Figure 3.1 illustrates
contours of constant 3 for a typical m/n = 2/1 mode. The procedure for
determination of the island width from the helical flux is illustrated in Figure
3.2. First, the minimum value of the helical flux across the X-point is identified.
Next, the two values of p, p+ and p_ are determined by locating the values of




38 CHAPTER 3. NUMERICAL RESULTS

mo +n

Figure 3.1: The contours of constant helical flux 3™ illustrating the X-points
and O-points for a single helicity 2/1 magnetic island. The helical flux is used
to compute the island width.

1™ across the O-point which equal this minimum X-point value. The difference
in these two values is then the island width in terms of the normalized flux
coordinate p. When the island width is small and for a single helicity mode,
the nonlinear correction to q is small and an analytical formula for the island
width can be developed by Taylor expansion of ¥*. The resultant island width

is
05
) 65)
p=po

While analytically this procedure is straightforward, when the island width is
smaller than the local grid size, a numerical evaluation of the island width
cannot be computed. In general this will not pose a problem, since the region
of primary interest is for large macroscopic islands in the nonlinear regime,
rather than micro-magnetic islands. The only caveat to this statement is that
some of the benchmarks compare the numerical results for linear tearing modes
with theory. However, in these cases the growth rates can still be computed
either directly from the growth rate of %/, or from a magnetic fluctuation
energy growth rate. The problem can be marginally ameliorated by localizing
the spatial grid about the rational surface of interest. However, for multiple
helicity modes a uniform grid is preferable.

¢m/n1 dq
p+ —p-=4 -
¥ (po 4 dp




3.1. PRELIMINARIES 39

0.006 .l t T 1
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O- and X-points are their
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. Island width is the determined by the intersection of the
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Figure 3.2: The procedure for computing the island width from the helical
flux ¢¥* is to compute the island width across the X-point and O-points. The
minimum value across the X-point defines the X-point and provides a value of
¥* on the island separatrix. The two values across the O-point which correspond
to this value determine the island width in terms of the flux coordinate p.
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3.2 Standard Tearing Mode

The standard tearing mode is defined in this context as a tearing mode which
is driven not by neoclassical effects (ue = p; = 0) but is instead driven by
gradients in the equilibrium current. The foray into these modes will begin
with a qualitative benchmarking of the numerical simulations by a comparison
of a single helicity mode with existing theory. Only a qualitative benchmarking
is possible since most of the analytic theory is for cylindrical geometries and
all of the simulations which follow will be for toroidal geometries. A single
helicity mode will refer to a resonant mode (e.g., the m = 2/n = 1 resonant
at the ¢ = 2 surface) and the equilibrium modes (i.e., all the n = 0 harmonics
used to describe the equilibrium). Furthermore, single helicity will not include
higher harmonics of the resonant surface (e.g., the 4/2 and 6/3 are resonant
at the ¢ = 2 surface) nor poloidaly coupled peripheral modes (e.g., the 1/1
and 3/1) which nonlinearly couple to the 2/1 mode. While this thesis does
not demonstrate the role the higher harmonics have on the principal harmonic,
the simulations are extended to include multiple helicities in subsection 3.2.2
and a qualitative comparison with the toroidal coupling physics of E-matrix
[8, 37] theory is made, which suggests that the coupling is O(€). This section is
completed with a discussion of the pressure evolution dynamics.

3.2.1 Dynamics of a single helicity magnetic island

The basic phenomenology of the time evolution of an unstable single helicity
tearing mode is illustrated in Figure 3.3. The initial linear growth regime,
where the mode width increases exponentially in time, is observed by considering
the magnetic fluctuation energy. (The island width is smaller than the radial
mesh size.) As the island width approaches the resistive layer width, the flux
reconnection at the X-point slows and the mode amplitude grows linearly with
time. Finally, the nonlinear generation of an m = 0/n = 0 current flattens the
local current gradient, eliminates the drive mechanism for the island [A'(wset) =
0], and saturates the island width at a width ws,:. These three regimes, linear,
Rutherford, and saturation phases, will be used to qualitatively benchmark the
numerical simulations with existing theoretical predictions.

The linear growth rate for the tearing mode at small amplitude in cylindrical
geometry, and therefore with no pressure/curvature effects, is predicted to be

[35]
A 4/5 m \ 2/ .
= : /5 )
TR (2.12366) (poLs) S (3.6)
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Figure 3.3: The m = 2/n = 1 magnetic island grows exponentially in time
when the island is small. Parameters of S = 107, ¢ = 0.25, x4 = 10?, and
Xjj = 10° have been assumed. Neoclassical viscous effects are neglected and the
conventional viscosity coefficient is = 1073,

where A’ is the tearing mode matching parameter, S is the magnetic Reynold’s
number, m is the poloidal mode number, py is the radius of the mode resonance,
and L, is the local magnetic shear length. While the numerical simulations
presented here are strictly for toroidal geometry and Eq. (3.6) was developed
for cylindrical geometry, Eq. (3.6) is still implicitly correct since this growth
rate is due to the inherently slablike nature of the layer physics. The toroidal
geometry enters through A'.

The parameter A’ warrants further discussion, since it is the general criterion
often quoted for the stability (< 0) or instability (> 0) of the tearing mode in
theoretical discourses. The simulations presented here do not formally compute
this parameter A’, which represents the free energy available for reconnection
[43], because this parameter represents an analytic solution to the problem of
asymptotic matching of an outer ideal MHD solution far from the resonant
rational surface to the resistive inner boundary layer solution in the vicinity of
the resonant rational surface. The numerical simulations do not and cannot
formally separate these two regions.

Another important check on the linear simulations is whether the S scaling
indicated by Eq. (3.6) is observed. Figure 3.4 illustrates the observed asymptotic
scaling of the growth rate normalized to the resistive time is $%4*, which agrees
relatively well with the theoretical expectation of S%4. This deviation is likely
attributable to both higher order corrections from toroidicity and modification
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of the growth rate do to viscosity. At sufficiently large S (S ~ 10!°), the
asymptotic behavior breaks down because the spatial mesh can no longer resolve
the vorticity and the solution becomes erratic. At low S, theory also breaks
down because the resistive layer,

5R _ A: 1/5 (Lspo)2/5
2.12366 Sm ’
is no longer small (< 1). An estimate of the normalized A’ for the case being

considered based on the asymptotic behavior is A’ ~ 16, where m/poL, = 2.36.
The prior analysis was based on the pressure/curvature piece term turned off,

(3.7)

106 1 U t i 1
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Figure 3.4: Single helicity S scan for the m = 2/n = 1 magnetic island illus-
trates the asymptotic behavior of the tearing mode in the absence of the pressure
curvature term. Values of x; = 100, and xj = 10° have been chosen, neoclas-

sical viscous effects are neglected and the conventional viscosity coefficient is
p=10"%.

since in cylindrical geometry the curvature piece is naturally zero. In the pres-
ence of the pressure curvature piece, additional stabilization of the tearing mode
is predicted (a.k.a. the Glasser effect [31] ) and indicated in Figure 3.5. The
figure suggests an asymptotic behavior, but cannot be demonstrated because
the solutions at values of S > 10® become ideally unstable due to the rapid
growth of a 2/1 mode localized about a region near the magnetic axis where
dq/dp = 0. This difficulty is common to all the equilibria generated by the
RSTEQ equilibrium solver, which has numerical problems near the magnetic
axis.
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The stabilization due to the plasma pressure curvature effect is more readily
identified, as illustrated in Figure 3.6, if a parameter scan of the linear growth
rate versus the plasma pressure 3y is conducted with the pressure curvature
terms turned on and off. The figure identifies about half of the stabilization
occurs directly from changes in the metric elements due to the Shafranov shift
at increasing By and the other half directly from the pressure curvature terms.

10° ¢
105 ¢
104 =
10°f
102}
10t |

wl 25 e Curvature on |
. Curvature off

YR, linear growth rate

107 ¢/

10.2 4 L 1 1 I Il
10* 105 10° 107 108 10° 1010

S, Magnetic Reynolds Number

Figure 3.5: Single helicity S scan for the m = 2/n = 1 magnetic island which
demonstrates the stabilizing effect of the pressure curvature term on the linear
mode. Values of x; = 100, and x;; = 10° have been chosen, neoclassical viscous
effects are neglected and the conventional viscosity coefficient is y = 107°.

As the island width becomes sufficiently large, the mode changes from an
exponential growth rate to a growth rate which is proportional to ¢, as illustrated
in Figure 3.7. This growth phase, referred to as the Rutherford regime [14], is
expected to take place when W R g, where W is the island width. From the
previous estimates of A, the resistive layer is approximately éz ~ 0.0016 and as
illustrated in Figure 3.7 this agrees well with the observation of the Rutherford
regime. Analytically, the island width is expected to be

dw ’
Zxn, (3.8)

where A’ is the tearing mode matching condition. In this regime, the nonlinear
portion of B - VJ, that appears in the vorticity evolution equation, generates
eddy currents, which, when crossed with the radial component of the perturbed
magnetic field, produce a force that opposes the vortex flow. As the mode grows
this effect dominates over the inertia (dw®/dt) and causes the growth rate to
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Figure 3.6: Linear stabilization of the tearing mode due to increasing pressure is
caused by a combination of the pressure curvature effect and geometric changes .
caused by the Shafranov shift. The pressure profile is parameterized by the
peak pressure on axis.

slow from exponential to linear. The nonlinearly generated equilibrium current
is still small in this regime and the stabilization is not from quasilinear flattening
of the equilibrium current. '

In the saturation phase (y7r — 0), the mode eventually generates an equi-
librium current sufficient to flatten the current profile about the 2/1 surface [36].
This current flattening eliminates the current gradient drive mechanism for the
island and the mode saturates. The temporal behavior of the island width in
this region is observed to be approximated by

% = A'(0) (1 - WI;;*) : (3.9)

where A'(0) is the A" at zero island width and W,,; is the saturated island
width. '

The final feature of the various regimes to check is the qualitative character
of the eigenfunctions. The eigenfunctions for the 2/1 and the 0/0 components
are illustrated in Figures 3.9 through 3.14 covering a time slice corresponding
to the linear, Rutherford, and saturation phases. The higher order equilibrium
harmonics up to an m = 10/n = 0 employed in the calculations have not
been displayed. All these eigenfunctions are based on the set of parameters:
S =107, e = 0.25, x. = 10%, x;; = 10%, g = 107%, p, = 0, and p; = 0. The
common features to be observed are: 1) The shape of /1, especially about
the rational surface where a large jump in the gradient of t,/; exists which
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Figure 3.7: Prior to mode saturation, the m = 2/n = 1 magnetic island width
grows linearly in time. Values of S = 107, € = 0.25 x; = 10, and xj; = 10° have
been assumed. Neoclassical viscous effects are neglected and the conventional
viscosity coefficient is y = 107°.

corresponds to A'; 2) The value of ¥,/; is approximately constant across the
resistive layer, which is necessary to satisfy the constant ¢ approximation used
to derive the theory; 3) Near the magnetic axis ¢/, has an r™ behavior and
near the conducting wall boundary it has an r~™ behavior. (This behavior is
common for all the m # 0,n # 0 modes); 4) Both ¢,/; and wg /1 are localized in
the vicinity of the magnetic island within roughly the resistive layer width dg;
5) The ¢,; is roughly a factor of S larger than +,;, which is more a reflection
of the normalizations rather than a flow velocity much larger than the magnetic
field; 6) The helical portion of the pressure perturbation corresponds to the
helical structure of 1, which is indicative of pressure equilibration on the flux
surfaces; and 7) A reduction in the 0/0 component of the pressure on axis due
to fast parallel transport around the island (see subsection 3.2.2). The feature
which does not correspond to theoretical expectations is that ¢,/; should be
odd about the mode rational surface; here, in toroidal geometry a mixing of
the magnetic tearing (even) and twisting (odd) parity modes could generate the
observed behavior.
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Figure 3.8: Nonlinear generation of m/n = 0/0 currents produce a quasilinear

flattening of the equilibrium current which eliminates the current gradient drive
for the island.



47

STANDARD TEARING MODE

3.2.

*9)RUIPIO0D XN [eIpel o) ¢ Jo SULIO} Ul 00JINS [RUOIYRI 5YY} JO UOIJRIO] Y3 S9YROIPU]
oul[ PaYsep [ed1}I0A o], 'T'Y Winuqinbe Ioj ounSes Iesul] Sy} UL 9pow /g 93 10} sUOOUNULSIY 6 I

o
o't 0 90 +0 <20 00
T ...._.__..._...lwowl
I ]
X ]
[~ 01—
I ] 5
” 1o
L ]
. N A S TR T 1)
v o
0t 80 90 ¢+0 <20 00
| ._..._.."ﬁ\.«.._..._o
: !
A ] -
i ] >
n NI I ST L )

(,-01%)

00

 BRJRRI LA B SLELEL Y SIS 20 M N 0 B4

T WIS IR NN W W

e
-

adLAN DELERLEN 2 B S I (0 B B ML ML

b

S BTV ATET S ST AT TS YA S AN R

00
20

0
@.ond
80
0l

Al
(-01%)

o~
(44
4




48

"1y wnpqnbe 1of suIdar Ieaul] oY) ut spow ()/() 2Y} 10§ suojounjuadiy :01'¢ 9In3

0t

CHAPTER 3. NUMERICAL RESULTS

(101

PRI I T NS ST —

Ptotoi
©c © ©o o o =
OO N L [e,] [o4] o
DG i e e e e e B B

0

o'l

<

NN RS BW S EE AR B AT

90 ¥0 ¢0 00

8'0

0l

00

0 20

g9'0

80

0l

'wO/O
| |
F- N o N + (o)}
LI N B L B L B WL B
4l IFIPEPE AP ST IR EPUTERES SN ST SN SN AR I T
£
jO/O
! |
N - (@ N (@]
0 NI L B 0 L LA WA A
_ ]
IR SRS EEFEEEE FNE S N T

(1-0t%)

(z,-0t%)




3.2. STANDARD TEARING MODE

(@]
A A wa s B o
N i~
[ Jo
i 1o
B 1@
i 10
- ‘sj -- <+
L o
| Jo
I 1o
o n
NS P PR T B
o w © <+ o o°

t/z¢

()

ﬂllll"lllill[‘r—ﬁ'

44

(x10%)

(x10~5)

o
—l‘l"]l'l_rlll]ll'lifll]‘l ‘_:
o Jmw
L 1o
i Je
L 1o
- { «
= 4=
- 1o
L Je
L ]o

ra by e daaa e l..;l.-.-o'

N O o <+ o ©

I | ]
l/zM
2

o

1|llll‘llll_"Ilfl‘llll .
N i
- Jw
i 1o

X 1o
N Jo
[ 1o
P APSSAR Y BN ST ST T S ATSE IS ST A o
+ ™ o« -~ o°
vz
d

Figure 3.11: Eigenfunctions for the 2/1 mode in the Rutherford regime for equilibrium A.1.
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Figure 3.13: Eigenfunctions for the 2/1 mode in the saturation regime for equilibrium A.1.
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3.2.2 Dynamics of toroidal tearing mode

While the single helicity magnetic island provides an important check of the nu-
merical simulation, in a real tokamak the toroidal geometry produces coupling
between Fourier harmonics with the same toroidal mode number—coupling
which can lead to a ballooning/twisting/tearing plethora of modes [44]. Hence,
in the previous section the unstable 2/1 mode would also generate 3/1, 4/1,
and 5/1 modes at their respective surfaces, in addition to the remaining non-
resonant n = 1 harmonics. The coupling results of this section should be in-
terpreted lightly since this model does not include differential plasma rotation,
which might mask the effects of the poloidal mode coupling in a real tokamak
plasma [45, 29]. Nonetheless, the simulations will be a useful benchmark. This
subsection will be completed with the description of a mode, which is robustly
unstable at high § and exhibits no nonlinear saturation. The mode has been
included as a matter of completeness, but the question of a theoretical interpre-
tation is still speculative.

Only a limited set of equilibria have been chosen for the numerical simula-
tions of this section. The equilibria have the general property that if a numerical
simulation were conducted on any of the individual modes as per the previous
section (i.e., single helicity with no poloidal coupling) then the observed tearing
mode would be A’ stable. However, such equilibria, as will be demonstrated,
do not necessarily insure that an unstable resistive mode structure does not
develop.

The basic phenomenology of the time evolution of a coupled set of 2/1, 3/1,
and 4/1 modes is illustrated in the dynamics of the 2/1 mode as illustrated
in Figures 3.15 and 3.16 for equilibrium A.l which is detailed in Appendix A.
Many of the features which describe single helicity unstable modes also appear
to describe this mode. An initial linear growth regime, where the mode width
increases exponentially in time exists. As the island width increases beyond
the resistive layer w ~ dg, a Rutherford regime appears to exist. Finally, the
nonlinear generation of an m = 0/n = 0 current flattens the current gradient in
the vicinity of the 2/1 island, and apparently eliminates the drive mechanism
for the island. Throughout the simulations the 2/1, 3/1, and 4/1 modes each
grow at nearly the same rate in both the linear and the nonlinear regimes, as
illustrated in Figure 3.17. Furthermore, the mode shapes also remain nearly
the same throughout the simulations, which provides credence to the idea that
the external region solutions are basically described by ideal MHD and are
unaffected by either the linear or nonlinear layer physics. In these simulations
the m = 1/n = 1 mode has been neglected, because it does not have a resonant.
surface within the plasma and also the coupling to this mode can be large [10]
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which makes later benchmark comparisons difficult.
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Figure 3.15: The m = 2/n = 1 magnetic island coupled to the m = 3/n = 1
and the m = 4/n = 1 modes grows exponentially in time when the island is
small. The three curves share the common parameters of S = 5(10°), x, = 10,
and xj = 10°. Neoclassical viscous effects are neglected and the conventional
viscosity coefficient is 4 = 107°. The figure is also indicative of the current
gradient dependency of the mode.

Another interesting feature is that the S scaling appears to be consistent with
the growth rate indicated by Eq. (3.6) for the standard A’ tearing mode. Figure
3.18 illustrates that the observed asymptotic scaling is almost the expected $%/°
for each of the three current profiles even when the coupling to the 3/1 and
4/1 modes are included. Figure 3.18 also shows that these modes are current
gradient driven since the pressure profile is the same in these simulations.

Figures 3.19 to 3.22 illustrate typical eigenfunctions in the linear regime
for each of the harmonics. The 2/1 mode is qualitatively similar to the single
helicity 2/1 mode of the previous subsection: 1) % has an ™ behavior near the
magnetic axis and an r~™ behavior near the conducting wall boundary for the
m £ 0/n # 0 modes; 2) ¢ is localized about the mode rational surface and is odd
about this surface; 3) ¢ is approximately a factor of S larger in amplitude than
%; and 4) The pressure equilibrates along the magnetic flux surfaces. However,
the 3/1 and 4/1 modes exhibit different behaviors. First, the coupling to the
2/1 mode tends to make these modes peaked about the 2/1 resonant surface.
This coupling will be discussed in the next paragraph based on approximate
estimates derived from E-matrix theory [8, 37].
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current gradient steepens at the mode rational surface which further destabilizes
the mode.

10*
2
[ 3
g 1w
<
T 102
o
S 10t
e
[+5]
2 10°
pr . y +0.44
~ 10! —e—2A=1 g1y =4.6"S"* |
& : —o—A=2 vy1g =55*8%42
= 102 —t+— A =34 y1p =9.1*5%42]
1 1 1 1 1 1
102 10° 104 10° 108 107 108

S, Magnetic Reynold’s Number

Figure 3.18: At large magnetic Reynold’s number S , the linear growth rate
of the 2/1 tearing mode asymptotes to S, where a ~ 0.44. The simulations
include the 3/1 and 4/1 modes.




57

Also, Figures 3.20 and 3.21 illustrate the presence of poloidal mode coupling.
The poloidal mode coupling as implemented in this code assumes a phase which
produces the maximum coupling between modes. In a real tokamak plasma,
differential plasma rotation would be expected to reduce and possibly eliminate
this mode coupling. Several observations can be made about the mode coupling
and interpreted based on E-matrix theory [8, 37], an asymptotic theory for the
ideal external problem which is an MHD generalization to toroidal geometry -
of the cylindrical A" analysis with ¢ and €8, as expansion parameters. (Here,
B, is the poloidal 3.) The E-matrix theory finds that for plasmas with weak
shaping the only important coupling for a tearing mode of helicity m/n are the
(m—1)/n and (m + 1)/n harmonics. A more complete coupling theory which
allows for coupling of tearing modes with ballooning modes has been done by
Fitzpatrick [8]. However, even with this more complicated model, the coupling
coeflicients are roughly the same for either type of mode so the coupling can
still be qualitatively discussed with tearing E-matrix theory. In this simple case,
the E-matrix coupled with the layer physics is represented as

Eun By 0O ¢2/1(Pz/1) A2/1 (7)1/’2/1(92/1)
Exn Ejyp Eg ¢3/1 (P3/1) = A3/1 (7)¢3/1(P3/1) >
0 FEsz Ess '¢‘4/1 (P4/1) A4/1 (’7)‘/’4/1(/’4/1) (3.10)

where the A’s contain the layer physics as a function of the growth rate +,
the E;;’s are constants which have the general property that off-diagonal ele-
ments are order € smaller than the diagonal elements, and pa/1, p3/1, and paj
indicate that 1) is to be evaluated at the respective mode surface. With these
assumptions, the E-matrix implies that

~—— ~ . 3.11
1/’3/1 Ezz—A3/1¢2/1 €¢2/1 ( )

In a similar manner ¥41 ~ €31 ~ €24hy;.

To further explore the mode coupling, Figures 3.19 through 3.22 illustrate -
the eigenfunctions for a time slice during the linear phase for the 2/1, 3/1, 4/1,
and 0/0 modes for Equilibrium A.1 at 8, = 0.006. In Figure 3.19, the 2/1 mode
is tearing in structure as per the previous section and mode the coupling is small.
The 3/1 harmonic illustrated in Figure 3.20 is indicative of mode coupling with
a strong peaking about the 2/1 rational surface. The second peak is the natural
response of the 3/1 mode about its resonant surface. The effect of the 4/1 mode
appears to show up only in the vorticity as a small spike. In this case, the ratio
¥3/1(ps/1)/¥2/1(p2/1) = 0.08, which is O(¢). The 4/1 mode illustrated in Figure
3.21 is similar to the 3/1. A peak is observed about the 2/1 resonant surface,
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which is probably not due to direct coupling with the 2/1 mode [O(€?)], but
rather to the large magnitude of the 3/1 mode at this surface and then the
resultant coupling. For this harmonic, the natural response is much larger in
amplitude though narrower in width than the nonlinear coupling contribution.
In this case, the ratio 4/1(pa1)/¥ss1(ps/1) = 0.53, which is also O(e).
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Figure 3.20: Eigenfunctions for the 3/1 mode in the linear regime for equilibrium A.1 and fy = 0.006 illustrate two
peaks and a valley. The largest peak corresponds to the poloidal mode coupling with the 2/1 perturbation. The
other peak corresponds to the natural response of the m/n = 3/1 mode. The valley occurs when the contributions
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As the island width becomes sufficiently large, the mode changes from an
exponential growth rate to a growth rate proportional to time, which will be
labeled as the “Rutherford” regime. Except for minor differences, the nonlinear
mode coupling in this regime remains almost the same as the previous linear
regime. First, as illustrated in Figure 3.23, except for an increase in the mode
amplitude, the 2/1 eigenfunctions are essentially unchanged from the linear
regime. However, both the 3/1 and 4/1 eigenfunctions, as illustrated in Figures
3.24 and 3.25, respectively, exhibit an increase in their magnitude relative to
their magnitude at the ¢ = 2/1 resonant surface. This difference is driven by
a decrease in the mode stability brought about by a steepening of the current
profile about the 3/1 and 4/1 surfaces as evidenced in Figure 3.26. This intro-
duces a rather interesting question, which will not be addressed in this thesis,
but could be addressed by the numerical model: Can the quasilinear stability
of the 2/1 mode destabilize the 3/1 mode due to current steepening at the 3/1
resonant surface caused by the nonlinear coupling of the 2/1 mode?

Finally, the 0/0 component of the pressure continues to lag the island evo-
lution, as evidenced by the lack of a flat pressure profile near the magnetic axis
in the perturbative component. As will be explained in the next subsection, the
choice of x; = 10 is insufficient to produce rapid equilibration of the cross-field
pressure profile. Note that the pressure perturbation is not large enough in
this case to produce a strong flattening of the total pressure profile across the
resonant surface. '
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- Figure 3.25: Eigenfunctions for the 4/1 mode in the Rutherford regime for equilibrium A.1 and By = 0.006. In

comparison with the linear regime, an increase in the magnitude of the 4/1 eigenfunction relative to the magnitude
at the ¢ = 2/1 surface is observed. The largest peak corresponds to the poloidal mode coupling with the 3/1
perturbation. The other peak corresponds to the natural response of the m/n = 4/1 mode.
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In the saturation phase (yTr — 0), the mode eventually generates an equi-
librium current sufficient to flatten the current profile about the 2/1 surface
[36]. This current flattening eliminates the current gradient drive mechanism
for the island and the mode saturates. First, as illustrated in Figure 3.27,
except for an increase in the mode amplitude, the 2/1 eigenfunctions are essen-
tially unchanged from the Rutherford regime. The nonlinear mode coupling in
the saturation regime remains almost the same except for further increases in
the magnitude of the 3/1 and 4/1 eigenfunctions relative to their magnitude at
the ¢ = 2 resonant surface (see Figures 3.28 and 3.29). As with the Rutherford
regime, but to a greater extent, the 0/0 current gradient is steepened about
the 3/1 and 4/1 surfaces as evidenced by Figure 3.30, but not yet enough to
destabilize a tearing mode at either surface.

Another interesting feature is that ¢ changes from an odd function about
the resonant rational surface in the linear regime to an even function in the
saturation phase. From the previous analysis of the single helicity mode in the
Rutherford regime, the change can be attributed to the decreasing role of the
inertia in these regimes and the increasing generation of nonlinear eddy currents.

Finally, the perturbed p/o is reduced near the magnetic axis (p = 0), which
is a reflection of fast parallel transport around the magnetic island. However,
this pressure perturbation is insufficient to flatten the total pressure profile.
Details of the pressure evolution dynamics are discussed in the next subsection.
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Figure 3.28:
comparison with the Rutherford regime, an increase in the magnitude of the 3/1 eigenfunction relative to the
magnitude at the ¢ = 2/1 surface is observed. The largest peak corresponds to the poloidal mode coupling with
the 2/1 perturbation. The other peak corresponds to the natural response of the m/n = 3/1 mode.
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Figure 3.30: Eigenfunctions for the 0/0 mode in the saturation regime for equilibrium A.1 and §y = 0.006. The
nonlinear interaction of the 2/1 mode principally drives the 0/0 mode in this regime. The 0/0 component of the
pressure reflects fast transport around the magnetic island, which produces a shortcircuit of the perpendicular
gradients in the vicinity of the resonant rational surface.
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The previous analysis was based on a low 3 scenario. As the peak plasma
pressure indicated by (o is increased, the mode dynamics undergo a change in
character. At modest values of By, the 2/1 mode remains tearing in structure
and, similar to the single helicity mode illustrated in Figure 3.31, exhibits a
reduced growth rate due to an increase in the pressure.

2000
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v7; (Linear Growth Rate)
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0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
B (Plasma Pressure)

Figure 3.31: Increased B stabilizes the standard tearing mode. The J{ and J?
currents are low  versions and do not include the pressure curvature piece.

However, as 3y is-increased, the dynamics of the island evolution dramati-
cally changes (see Figure 3.32). The principal change appears to be the linear
destabilization of an oscillatory mode, 1, ~ €”cos(wt) (see Figure 3.33). (The
2/1, 3/1, and 4/1 coupled mode simulations exhibit a 3/1 mode which slightly
lags the 2/1 mode, which slightly lags the 4/1 mode.) The temptation is to
label this a twisting/ballooning mode, since a twisting mode is characterized by
a ¢ which is odd about the mode rational surface (see Figures 3.34, 3.35, and
3.36), but twisting modes have growth rates on the resistive MHD timescale
TR ~ S*/® and these modes have a growth rate approximately 10% of the ideal
growth rate. This growth rate would also rule out ideal kink modes which grow
on the ideal time scale [12]. Furthermore, the puncture plot of Figure 3.37,
indicates that both the 2/1 and 3/1 modes are clearly tearing and not twisting
in nature. However, since the instability at the ¢ = 4/1 surface couples to the
2/1 and the 3/1 modes the tearing structure at these surfaces is perhaps not
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Figure 3.32: Above a threshold Gy ~ 0.02 for equilibrium A.1l, a linear desta-
bilization occurs for the highest harmonic in the simulation. The growth rate
scales linearly with 8. The “Modes” are which modes were included in the
simulations. The threshold may be a resistive ballooning mode limit.

surprising. Finally, this mode is driven not by the pressure curvature pieces
(a.k.a. Glasser terms) but by gradients in the parallel current, because only
minimal difference in the mode dynamics is observed when these terms are ex-
cluded from the simulations. (Note, that since this is the term which could
provide an extraneous source of energy if it does not properly cancel in the
energy integral, the lack of a change in the dynamics rules out this possibility.)
Also in nonlinear simulations, the mode does not saturate due to a flattening of
the equilibrium current profile. If this mode is actually a ballooning/twisting
mode variant, and not driven by an unidentified numerical problem, then per-
haps plasma compressibility, which this model lacks, might stabilize the mode
[30].

The final observation is that Glasser’s DCON code [13, 40] makes several
predictions about this set of equilibria: 1) the plasma is Mercier stable; 2)
the plasma is ideal MHD stable to n=1 modes; and 3) the plasma is unstable
to high-n ideal ballooning modes for 3 > 0.02. The second and third points
suggest that the mode is not an ideal ballooning mode, but leaves open the
possibility of resistive ballooning modes.
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Figure 3.33: Above a threshold 8o ~ 0.02 for equilibrium A.1, the coupled 2/1,
3/1, and 4/1 modes exhibit a real oscillation frequency.
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Figure 3.37: Magnetic puncture plot for a coupled 2/1, 3/1 and 4/1 mode based
on equilibrium A.1 and B, = 0.068 illustrates that the 2/1 and the 3/1 modes
are magnetic islands. Note also the existence of secondary magnetic islands and
KAM surfaces which separate the magnetic islands of different helicities.
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3.2.3 Pressure evolution dynamics

In the model used in this thesis, an anisotropic pressure diffusivity which ac-
counts for differences in perpendicular (x.) and parallel (x) heat transport
has been assumed. In a real plasma these coefficients, along with the plasma
resistivity, would depend on various plasma parameters (temperature, density,
turbulence levels, etc.). However, the assumption has been made that in the
vicinity of any particular island the effect of topological changes associated with
the island are likely to be dominant over these spatial variations. Consequently,
x1and xj will be assumed to be constants across the entire extent of the plasma.
In principle, FARGO, the code used in these numerical simulations, could be run
in a fully nonlinear turbulent mode with dynamic versions of x and xj; which
could address such effects, but at the expense of more complicated nonlinear
terms and much longer compute times.

The particular choice of values for x; and x) will reflect three time scales:
the parallel equilibration time, the energy confinement time, and the resistive
time. The ratio of the first two time scales is based on the observation that free
streaming of electrons along the magnetic field lines produces rapid equilibration
of pressure along a field line, while the pressure transport across the magnetic
field lines is constrained. This implies that x;/xL > 1. This choice of x
also plays a significant role in the determination of a short enough time step
to avoid numerical instability associated with the explicit time advance of the
nonlinear portion of the parallel heat flux, yet long enough to simulate the island
growth over a fraction of the resistive time scale. The ratio of the last two time
scales is based on the experimental observation that the energy confinement
time (~ 100 ms in TFTR) is faster than the resistive timescale (~ 10 s in
TFTR), which implies a dimensionless x ~ 100. This choice of x . is central
to insuring that the pressure equilibrates while the island evolves, rather than
that the pressure gradients external to the magnetic island steepen during island
growth or significantly lag the evolution of the magnetics. The eigenfunctions
throughout subsection 3.2.2 elucidate the pressure lagging of the magnetic field
when x, = 10. '

In the low 8 (B = 0.006) case of subsection 3.2.1, x. = 100 and x;; =
107, and the pressure played a minimal role in the dynamics of the magnetic
island evolution. In this low g limiting case, the pressure dynamics can be
described based on rapid parallel transport which effectively “short-circuits”
the perpendicular pressure gradient across the island region. This flattening of
the pressure profile across the island appears as the pressure decrease in the
0/0 component of the pressure between the magnetic axis and the island, as
illustrated in Figure 3.22. A simple estimate of this pressure drop on axis based
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on the “belt” model of Chang and Callen [38] is pojo = —Wdpo/dp|,,, where W
is the island width and dpo/dp is the equilibrium pressure gradient evaluated at
the rational surface. This figure also illustrates that the effect of the pressure
relaxation has not completely propagated to the magnetic axis but requires a
finite time of order the energy confinement time to equilibrate throughout the
plasma. By the time the island reaches the Rutherford phase as illustrated in
Figure 3.26, the pressure has fully relaxed with respect to the island size, which
is at least partly due to a reduction in the growth rate. The general criterion
required to avoid pressure steepening is R = x7'WdW/dt < 1 [39]. At the end
of the linear phase for Equilibrium A.1 at 8y = 0.006 the island width is on
the order of W ~ 0.001 and the linear growth rate for this island at S = 107 is
y1r = 5620. The parameter R = 0.56 is no longer small, which explains most
of the finite time lag in the pressure at the axis. In the simulations presented in
subsection 3.2.1, x; = 100 and the pressure does not quickly equilibrate only
during the early phases of the island growth and this is principally at the major
axis (p = 0).

For the magnetic island evolution illustrated in the prior subsections, the
islands saturate at a small amplitude and appear to generate Fourier harmonics
consistent with theory. However, the small island size precludes an accurate
assessment of the helical structure of the pressure contours and an exact assess-
ment of the pressure equilibration on the magnetic flux surfaces—a feature which
is necessary for the threshold destabilization of the neoclassical tearing mode.
To explore these issues and complications, a single large “static” magnetic is-
land is considered but in the absence of a pressure convection term. Figure 3.38
illustrates the pressure contours superimposed on a puncture plot of the mag-
netic field lines for a finite value of x|;/x1 = 10° (in a real experiment this ratio
could be much larger; perhaps as large as 10'® in TFTR plasmas). In an ideal
situation, where x};/x1 — oo or where the magnetic fluctuations are zero, the
pressure contours and field lines would exactly coincide, as is observed far from
the magnetic island. However, in the vicinity of the island X-point even though
the perpendicular transport is slow, the transit time across the X-point for a
small distance & is quite short: 7 = k2 x, ~ x./(82)%. On the other hand, the
singular nature of the separatrix requires heat to travel an infinite distance in
the parallel direction to cross the X-point: 7y = kﬁ X)- If a Taylor expansion of a
mode is made about the rational surface, then k= 6.(m/q)(dg/dp). A balance
between these two time scales generates a scale length at which the transport
changes form being parallel to perpendicular dominated. The scale length is

0.25 -~0.5
sx (2)(58)
Xl q dp

, (3.12)

p=po
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which for realistic plasmas is very small (~ 1073). This combination of scale
lengths and timescales allows the island to support a weak pressure gradient
across the X-point rather than producing a distinct X-point in the pressure
contours. This feature proves to be pivotal for the amplitude threshold for
generation of the neoclassical MHD instabilities of the next section.

Pressure Contours
1 .O T 1 13 T ‘ T T L] 1 ] T T T T I T L} i T

0.5+

-0.5F

._1.0 1 L 1 [l 1 1 I 1 L i 1 A 1 L I L 1 : 1
-1.0 -0.5 0.0 0.5 1.0
x/a

Figure 3.38: Superposition of the pressure contours on the magnetic field line
puncture plot illustrate that the deviation of pressure equilibration on flux sur-
faces is localized to the vicinity of the magnetic island. A static magnetic per-
turbation of ¥;(p = po) = 10~* at the rational surface has been assumed. On
the contours outside the magnetic island, the pressure contours coincide with
the magnetic flux surfaces to the accuracy that can be illustrated graphically. -
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While Figure 3.38 qualitatively illustrates that the pressure does not com-
pletely equilibrate along the flux surfaces, the degree to which the pressure has
equilibrated along a flux surface can be quantified by computing the pressure
variance (0?) along a field line. In Figure 3.39 this pressure variation is presented
as a function of x|/x. beginning at select points across an island X-point. As
expected, the pressure variation is largest near the resonant rational magnetic
surface, and for x;/x. = 10° has a magnitude of ~ 1 — 2%. The variance is
largest near the mode rational surface, because the field line passes through the
vicinity of the island X-point where transport is dominated by perpendicular
diffusion to regions near the separatrix across the island O-point where trans-
port is dominated by parallel diffusion. This trend is further clarified in Figure
3.40 which illustrates that the peak pressure variance decreases as a function of

X/ xL-

0.001 ——r T T T

Figure 3.39: An increase in x)x. increases the degree to which the plasma
pressure equilibrates on the flux surface. The pressure variance is computed
by following individual field lines approximately 3200 times around the torus
(200000 iterates at a A{ = 0.1 step size) and computing the pressure along the
field line. This pressure is used to compute the mean pressure on a field line
and also the pressure variance. Initial starting points cross through an island
X-point.
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Figure 3.40: An increase in xjx. decreases the peak pressure variance. The
peak is located at or near the mode rational surface.

The final issue which the pressure evolution affects is the numerical stability
of the time advance scheme, especially in the nonlinear phase. In a computer
with infinite precision, a timestep could always be chosen which would insure
stability of the algorithm. However, the necessity of time advancing the equa-
tions for a significant fraction of the resistive time requires an unreasonable
expenditure in compute time, even before numerical rounding errors become a
problem. A reasonable choice to insure stability for a value of x|j = 107 isto use a
timestep of 10~°7g when ¥; ~ 10™%. As v, increases in value the timestep must
be further reduced. With this timestep, and taking advantage of larger timesteps
in the early linear phase, a typical run of 15 modes requires roughly 2 weeks
in real time on an IBM/RISC6000 model 370 (25 Mflops, SPEC92Int=70.3,
SPEC92FP=121.1) [46]. While this solution does not generate the best pres-
sure equilibration, it will be sufficient to elucidate the threshold destabilization
of the neoclassical MHD tearing mode. One possible recourse is to adapt an
additional iterative loop for the pressure dynamics which could operate on a
faster time scale than the evolution of the magnetics.
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3.3 Neoclassical Tearing Modes

In the previous section, considerable time was spent reviewing the standard A’
tearing mode as a confirmation of the operational aspects of the simulations
and also to understand the numerical requirements for stability, convergence
and resolution of a tearing mode. In this section, the analysis of the tearing
mode is extended to a class of unstable modes which are not dependent on A’
for stability, but instead are driven by neoclassical effects.

Neoclassical effects arise from the viscous damping of the poloidal electron
flow. The portion of the flow produced from the poloidal projection of the dia-
magnetic current when balanced against electron-ion friction yields a parallel
current proportional to the cross-field pressure gradient, the bootstrap current.
When (dpo/dp)/(dg/dp) < 0, this perturbation reinforces the magnetic pertur-
bation of the island and an instability may grow in time. [The neoclassical
modes are predicted to be stable in reversed shear tokamak discharges where
(dpo/dp)/(dg/dp) > 0.]

The perturbed bootstrap current as superimposed on the island separatrix
in Figure 3.41 has a structure which corresponds to the island separatrix. (The
separatrix is computed in a manner analogous to the island width calculation.)
However, the contours of the bootstrap current are not easily interpreted in
terms of stabilizing and destabilizing regions. Consequently, a different but
related quantity will be computed by multiplying the Ohm’s law by ;. The
result is

0 "/)3 _ B’ v 2 7¢ D =

3o = B ¢+ R°Jy — 1 B-V - &, (3.13)
where the nonlinear terms have been neglected. From a plot of the magni-
tude contours for each of the above terms, the stabilizing (negative valued) and
destabilizing (positive valued) contributions can be identified. In Figure 3.42,
the perturbed bootstrap current times t; has been plotted. A large destabi-
lizing bootstrap current contribution exists inside the island separatrix and a
small stabilizing bit exists in the vicinity of the island X-point. The fact that a
perturbed bootstrap current exists inside the island separatrix may seem con-
tradictory to the earlier statements about pressure flattening eliminating the
bootstrap current within the island. However, the two viewpoints can be recon-
ciled by noting that the quantities presented here are perturbative quantities,
so that the perturbed bootstrap current of Figure 3.42 is the current required
to flatten the equilibrium bootstrap current.

The picture is incomplete without consideration of the remaining terms in
Eq. 3.13. In Figure 3.43, the contours for the dominant term of 1/)1R2Jf [i.e.,
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the g portion of J{ defined in Eq. (2.62)] indicate that the resistivity plays a
stabilizing role inside the island separatrix, but is smaller than the bootstrap
current contribution. Also, a small destabilizing region exists about the island
X-point. The stabilizing effect is probably a reflection that the equilibrium
is A" stable. The remaining term is —; B - V¢, which is plotted in Figure
3.44. A comparison of this figure with both the resistivity and the bootstrap
current indicate that this term plays a negligible role in the mode destabilization.
Furthermore, this term cannot produce reconnection.

6— —.47E4+00
— —.37E+00
|-~ —.26E+00 <
I —.16E+00
ES e —.52E-01
< 4}--- .B2E-01
x ---  .16E+00
L --- .26E400
3 --- .37E400
© -—-  .47E+00
S ot
m .
O 1 i L | I S S '
0.0 0.2

Figure 3.41: The contours of the perturbed bootstrap current [Term 1 of Eq.
(2.86)] indicate that a large negative current (solid lines) exists inside the island
separatrix (the thick solid line) and large positive currents (dashed lines) exist
about the island X-point. The negative current adds to the the equilibrium
bootstrap current to produce no net bootstrap current inside the separatrix.
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Figure 3.42: The contours of the product of the perturbed bootstrap current
with 1 [Term 1 of Eq. (2.86) times 3/} indicate the bootstrap current is desta-
bilizing (positive valued) within the island separatrix and stabilizing (negative
valued) in a small zone about the island X-point.
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Figure 3.43: The contours of the dominant portion of v; R2J: is stabilizing
(< 0) inside the island separatrix, which is indicated by the thick solid line.
The dominant piece is the §°° portion of J¢.
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Figure 3.44: The contours of — B - V¢ indicate that this term is slightly
destabilizing (> 0) between the island separatrix and the magnetic axis (p = 0)
and stabilizing between the separatrix and the plasma edge (p = 1). Note that
the magnitude of this term is much smaller than the other terms of Ohm’s law,
and hence negligible.
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In an ideal simulation the island growth rate is slow relative to the pressure
evolution and x)/xL — o0, so that even at small mode amplitudes, the mode is
unstable because the pressure exactly equilibrates on the magnetic flux surfaces
(B Vp = 0). However, the introduction of finite values of xj and x, at small
island amplitude produce an insufficient perturbation of the pressure profile
to destabilize the neoclassical magnetic island—a threshold in magnetic island
width, Wipreshoa. As was introduced in Section 1, when the island width is
smaller than this width, (W < Wipreshota) the island decays; however when
the island is larger than this width, (W > Wipreshoia) the island grows. This
dependence on the initial perturbation magnitude [see Eq (2.6)] is illustrated
for the By = 0.068 equilibrium of A.1 in Figure 3.45.

106

107

108

10°
10710
TR

10712

— )

Wstart = 1 .09'04

Wstart = 1.0e-05

10—13
10

10—15
10-16 . 1 i L L
0 5+107* 0.001 0.0015 0.002 0.0025 0.003

’C/’CR

Figure 3.45: Destabilization of the neoclassical tearing mode requires a finite
perturbation to initiate the mode. Here, Wy, is the magnitude of the initial
perturbation evaluated at the mode rational surface. The initial profile shape
decays toward zero value at both boundaries. The oscillatory behavior of the
decaying solutions is a linear effect driven by B- V¢ causing ¥, to oscillate as
it decays.

The neoclassical MHD threshold is also strongly dependent on the plasma
pressure (3o) since the bootstrap current depends directly on the gradient of
the plasma pressure. (Theory indicates a scaling not with fp but with 3,, the
poloidal 3.) Subsequently, as the pressure is increased (e.g., when the neutral
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beams are turned on in TFTR), a given initial magnetic perturbation may
cross the threshold and be destabilized, as is illustrated in Figure 3.46. Much

10 1 , . T 1
107
o 108}
109
110 Bo = 0.0060 |
0 5+10* 0.001 0. 33;5 0.002 0.0025 0.003

Figure 3.46: For a given initial magnetic perturbation, an increase in plasma
pressure causes destabilization of the neoclassical MHD tearing mode.

of this analysis can be combined into a threshold curve for a given xj/x. by
performing a parameter scan over By and Wg,.¢. Figures 3.47, 3.48, and 3.49
provide such a threshold curve for the 2/1, 3/1, and 3/2 modes, respectively,
and compare the numerically computed threshold with the predictions of the
Fitzpatrick threshold [see Eq. (1.10)].

The predictions between theory and the simulations in general show good
but not perfect agreement. The difference is likely due to several related fea-
tures. These simulations are conducted in a toroidal geometry, with no inherent
approximations built into the form of the operators. On the other hand, the
theory exploits various expansions about the mode rational surface to define op-
erators. Differences between these operators produce changes in the bootstrap
current profile about the island which would affect the stability threshold. One
possible difference between the model and the simulations is that inherent dif-
ferences exist between the pressure profiles, especially about the X-point. These
differences would lead to differences in the critical length scale of Eq. (3.12) for
the two models. In the case of the 2/1 mode, the critical scale length for the
simulation is smaller than implied by the theory. In contrast for the case of the
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3/1, the critical scale length for the simulation is longer than implied by the
theory and the 3/2 scalelength is smaller than the theory. Since, no systematic
data trend is apparent, this rules out this possibility. A more likely cause for
the differences is that in computing the Fitzpatrick threshold the approxima-
tion A" = —2m/po has been made, because the simulations do not compute
the value of A’. The difference between the actual value and the approximated
value may be solely responsible for the difference.

102 . . . ,
—O— Fitzpatrick threshold
3 A unstable

107 1 V stable y
S10% v
>

10° v

10° v v v 4 A2

0.02 0.04 0.06 0.08
Bo (Peak B)

Figure 3.47: Neoclassical MHD tearing threshold for the 2/1 mode based on nu-

merical simulations are in rough agreement with the predictions of neoclassical
MHD theory.
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Figure 3.48: Neoclassical MHD tearing threshold for the 3/1 mode based on nu-
merical simulations are approximately a factor of 10 larger than the predictions
of neoclassical MHD theory.
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Figure 3.49: Neoclassical MHD tearing threshold for the 3/2 mode based on

numerical simulations are approximately the same as the predictions of neo-
classical MHD theory. '
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An inspection of the pressure contours superimposed on a puncture plot of
the magnetic field lines, Figures 3.50 and 3.51, conveniently demonstrates that
a pressure gradient, albeit weak, is maintained in the vicinity of the island X-
point. The extension of these contours into the island O-point is also a reflection
of a flattened pressure profile across the O-point and to some extent the island
X-point.

Pressure Contours
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Figure 3.50: Pressure contours for a neoclassical MHD tearing mode based on
Equilibrium A.1 for 8y = 0.067 superimposed on the puncture plot illustrate a
flattened pressure profile across both island X-point and O-point. This is at a
toroidal angle of ( = 0.
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Pressure Contours
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Figure 3.51: Pressure contours for a neoclassical MHD tearing mode based on
Equilibrium A.1 for 8y = 0.067 superimposed on the puncture plot illustrating
a flattened pressure profile across both island X-point and O-point. This is at
a toroidal angle of { = =.

The most important feature which can lower the neoclassical tearing mode
threshold is an increase in the ratio of x| /x.. Unfortunately, numerical diffi-
culties preclude increasing this ratio to a TFTR relevant value of xy/x. ~ 101°.
However, decreasing this ratio as is illustrated in Figure 3.52 demonstrates the
strong stabilizing/destabilizing role this ratio plays, since previously unstable
initial conditions have now been stabilized.
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Figure 3.52: Reduction of x/x. to 10* increases the neoclassical threshold.
Initial conditions which were unstable at x);/x. = 10° are now stable.

Once the island is over the neoclassical threshold and the initial transients
have decayed away, the island width growth rate is proportional to the island
width as illustrated in Figure 3.53. In this particular case, the island width
has reached over 20% of the plasma minor radius. However, the calculation has
been terminated at this point because in order to maintain the stability of the
pressure evolution the time step must be reduced below 0.0174, which would
then imply much longer compute times. Also, the predicted saturation level for
the mode is beyond the size of the tokamak, so saturation is not likely to be
obtained. Neither the large thresholds nor the large saturation levels presented
in the prior simulations should be construed as a generic part of neoclassical
MHD. In order to get the physics which has been described, rather extreme
parameter ranges have been required which are in general not realizable in
actual machines. However, this was required since the simulations are limited

by x./x)-
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Figure 3.53: After the neoclassical threshold, the island width grow rate is
proportional to the island width, until nonlinear effects begin to slow the island
growth. The simulation was terminated at an island width of 20% of the minor
radius due to numerical problems.
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Chapter 4

Summary and Future Work

The high S reduced magnetohydrodynamics (MHD) paradigm has been ex-
tended to include viscous force (V - 7:1’:) effects based on neoclassical closures.
This neoclassical reduced MHD model consists of evolution equations for the
perturbed flux, toroidal vorticity, and plasma pressure, through quasineutrality,
a parallel Ohm’s Law, a toroidal vorticity evolution, and a plasma pressure evo-
lution equation. The plasma pressure evolution includes an anisotropic pressure
diffusivity to account for rapid parallel energy transport. The viscous stress ten-
sor adds a bootstrap current contribution to the parallel Ohm’s law [Eq. (2.86)]
and a neoclassical viscosity to the vorticity evolution equation [Eq. (2.99)]. The
model is principally valid only in the large aspect ratio limit due to the assump-
tions of plasma incompressibility and the use of only a single stream function to
define the flow velocity (i.e., the velocity is an ExB flow), which are necessary
to derive reduced MHD. Both magnetic potentials are retained, but the incom-
pressibility assumption relates the poloidal magnetic potential to the plasma
pressure (p; = —By - Bp), which allows the model to be extended to high 8
and also eliminates the magnetosonic wave. Even though the model is strictly
valid only in a large aspect ratio limit, the equilibrium metric elements, which
describe the toroidal geometry, are retained to all orders to allow for poloidal
mode coupling.

This neoclassical reduced magnetohydrodynamics model has been numeri-
cally implemented based on the ORNL FARGO code. The numerical imple-
mentation uses a straight-field-line representation of the equilibrium, Fourier
decomposes perturbations in the poloidal (V@) and toroidal (V() directions,
and central finite differences in the radial/flux (Vp) direction. Linear terms
are implemented with an implicit time advance and nonlinear terms are imple-
mented with an explicit time advance. The code can be operated in either a
turbulent mode of operation where many thousands of harmonics are retained
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in the calculation, or, as has been done in this case, a nonlinear mode where
only a few key harmonics plus the equilibrium harmonics are time advanced.

Three nonlinear series of simulations have been completed with this neo-
classical reduced MHD solver: 1) The single helicity A’ tearing mode; 2) The
toroidal tearing mode; and 3) The single helicity neoclassical tearing mode.
The first two series have been used to qualitatively benchmark the code against
existing theory and also to identify current gradient driven instabilities which
may confuse the investigation of the neoclassical tearing mode. In the first se-
ries of runs (Section 3.2), basic features of a standard m/n = 2/1, A" unstable
tearing mode have been identified, which include a scaling of y7g ~ $%° in the
exponential phase, the existence of a Rutherford growth phase, quasilinear sat-
uration of the island growth by flattening of the equilibrium current gradient,
and pressure curvature stabilization as per the Glasser effect [31]. This simu-
lation also reflects a significant advancement in computer simulation over the
last decade which has extended the validity and accuracy of these simulations

to experimentally relevant regimes with magnetic Reynold’s numbers as large
as S = 108, and beyond.

In the second series of runs (Section 3.3), multiple helicity magnetic islands
with equilibrium pressure and q profiles reminiscent of TFTR are considered. In
this case, each of the single helicity modes are stable. However, the introduction
of multiple helicities generates an unstable m/n = 2/1 tearing mode at the q=2
rational surface which has similar features to a standard unstable A’ tearing
mode. Presumably, poloidal mode coupling, consistent with E-matrix theory
estimates with an unstable ballooning twisting-like structure at the q=3 and
q=4 surfaces, drives this tearing mode. However, this numerical implementation
extends beyond the E-matrix theory since coupling between all modes can be
retained with no explicit ordering assumptions. Also, as 3 is increased, the
coupled modes switch from evolving to a saturated state to unbounded growth,
i.e., a disruption (see Figure 3.32). The results of these simulations could provide
a new type of model for disruptions in tokamaks.

In the final series of simulations, single helicity, neoclassical MHD driven
tearing modes are demonstrated to exist. The neoclassical tearing mode is
driven by the elimination of the bootstrap current within the island separa-
trix due to the rapid relaxation of pressure gradients via fast parallel electron
heat transport along the closed helical magnetic field lines within the island.
However, since the parallel pressure diffusivity is finite, the pressure does not
completely equilibrate across the island separatrix. A minimum magnetic per-
turbation at the mode rational surface is then required to provide a sufficient
flattening of the pressure profile about the island to destabilize the island. The
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threshold is demonstrated to depend on the magnitude of the magnetic pertur-
bation as well as the plasma pressure 3 at modest levels of x|j/x. = 10°, the
ratio of the parallel and perpendicular heat diffusivities. However, numerical
stability constraints on the magnitude of the timestep from the nonlinear par-
allel heat transport preclude raising this ratio to realistic values, or of following
the mode to its nonlinear saturation

The next stage of exploration of the neoclassical MHD tearing mode is to
consider the role poloidal mode coupling and toroidicity have in exciting modes
beyond the neoclassical MHD threshold. The m = 1/n = 1 sawtooth oscillation
may be particularly important for the destabilization of the mode. Simulations
including both sawteeth oscillations and neoclassical tearing modes could pro-
vide additional insight into the observations of neoclassical tearing modes on
TFTR and the discrepancy between the lack of a 2/1 neoclassical mode, but
the presence of 4/3 or 3/2 neoclassical tearing modes—yet never more than
one neoclassical mode simultaneosuly. Also, an enhancement to the numerical
technique needs to be introduced which would allow for large values of xj;/x1,
so that the nonlinear saturation of the mode can be identified. In conjunction
with the destabilization threshold, the addition of a rotating field error should
also be introduced to test the observed dependence of a critical 3 versus field
error observations of DIII-D [18]. The present simulations are suggestive that
such a threshold could be described by the neoclassical MHD model. Finally,
the observation should be made that such a neoclassical MHD threshold could
place strong limitations on the allowed field errors on ITER, which is designed
for high B and hence large bootstrap currents in a high temperature plasma
with a very large xy/x. (> 10%).
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Appendix A
Equilibria

This appendix is devoted to detailing the equilibria used in the numerical
simulations. The numerical results are based on the ORNL (Oak Ridge National
Lab) equilibria solver RSTEQ. Input to the solver includes plasma major (245
cm) and minor radius (80 cm), plasma [ on axis, toroidal magnetic field strength
(5 T), and pressure and q profiles as a function of the flux variable t.,. The
variable 1., is related to the initial value code’s coordinate p by

dipeg pl
— = ——. Al
P . (A.1)

The first three subsections of this Appendix assume different equilibrium q
profiles based on the parameter A as detailed in Section 3.1, but share similar
pressure profiles. The q value on axis is 1.01 and at the plasma edge is 5.0. The
final subsection is an equilibrium designed to generate a large current gradient
at the g = 2 surface.
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A.1 Equilibrium A1l

Parameters: A = 2.0, ¢go = 1.01, ¢, = 5.0, p. = —1.0.

Solver
Script

g

APPENDIX A. EQUILIBRIA

€

Current

(A)

run_eq8001.a
run_eq8000.a
run-eq8002.a
run-eq8005.a
run_eq8006.a
run-eq8003.a
run_eq8004.a

6.034E-04
6.034E-03
1.810E-02
4.526E-02
6.789E-02
9.052E-02
1.086E-01

3.281E-01
3.283E-01
3.287E-01
3.291E-01
3.203E-01
3.204E-01
3.206E-01

1.248E4-06
1.280E4-06
1.374E+06
1.607E+06
1.791E+06
1.961E4-06
2.070E+-06

o0 b J§ profile §
AN :
f Increasing B
-2 Ed ; ] ) i =
0 0.2 0.4 0.6 0.8 1
P

Figure A.1: Normalized pressure, g, and an___o /n=o Profiles. -
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Figure A.2: Poincare plot for equilibrium run.eq8000.a
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Figure A.3: Poincare plot for equilibrium run_eq8005.a




A.l. EQUILIBRIUM Al 105

1.0

0.5F

/
o

ol v e
-1.0 -0.5 0.0 0.5 1.0

) x/a

Figure A.4: Poincare plot for equilibrium run_eq8003.a
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A.2 Equilibrium A2

Parameters: A = 1.0, ¢g = 1.01’.% =5, p, = —1.0.

Solver
Script

B

€

Current

(A)

run_eq8101.a
run_eq8100.a

6.034E-04
6.034E-03
1.810E-02

3.281E-01
3.283E-01
3.287E-01

1.243E+-06
1.276E+06

run_eq8102.a
run_eq8103.a
run_eq8104.a

1.376E+06
1.994E+-06
2.037E4-06

9.052E-02
1.086E-01

3.295E-01
3.300E-01

Increasing B Y

.2 = 1 L] i 1 L=
0 0.2 0.4 0.6 0.8 1

Figure A.5: Normalized pressure, q, and Ji:o /=0 profiles.
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A.3 Equilibrium A3

Parameters: A = 3.0, ¢o = 1.01, ¢, = 5, p, = —1.0.

Solver
Script

B

€

Current

(A)

run-eq8301.a
run-eq8300.a

run-eq8302.a

run_eq8303.a
run-eq8304.a

6.034E-04
6.034E-03
1.810E-02
9.052E-02
1.086E-01

3.281E-01
3.283E-01
3.287E-01
3.294E-01
3.296E-01

1.249E+06
1.280E-+06
1.373E+06
1.949E+06
2.057E+06

Increasing B

0.6 0.8 1

Figure A.6: Normalized pressure, q, and an=0 Jm=o Profiles.
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A.4 Equilibrium A4

APPENDIX A. EQUILIBRIA

Parameters: a = 80em, Ry = 320cm ¢go = 1.86, ¢, = 5, p',' = -1.0.

Solver
Script

B

€

Current

(A)

1.029E-04
1.029E-03
4.118E-03
6.177E-03
8.235E-03
1.029E-02
2.059E-02

run_req9506.b
run_req9501.b
run_req9505.b
run.req9504.b
run_req9502.b
run_req9500.b
run_req9503.b

2.497E-01
2.497E-01
2.498E-01
2.499E-01
2.499E-01
2.500E-01
2.501E-01

8.790E+05
8.813E+05
8.906E+05
8.980E+05
9.061E+05
9.149E+05
9.639E+05

q profile
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J§ profile
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Figure A.7: Normalized pressure, q, and J_, /=0 Profiles.
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