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ABSTRACT

The two-dimensional resonances in the problem of two Coulomb centers are dis-
cussed. The ab inttio calculation of electron energy and angular distributions of
saddle-point and S-promotion electrons for ionization in proton-hydrogen atom
collisions are presented. The calculation is based on an outgoing wave Sturmian
expansion in the frequency domain. It goes beyond the usual Born-Oppenheimer
separation of electron and nuclei motions and displays the “s/2” peak and the
continuum cusp, missing in previous theories.

1. Introduction

In an exact numerical calculation of the S-matrix poles of the problem of two
Coulomb centers Ovchinnikov and Solov'ev! discovered new quasistationary states
with a small width, whose origin was unclear since they could not be related to
any features in the behavior of the effective potential. Later they? showed that,
despite the exact separation of variables in the Schrodinger equation, these narrow
resonances cannot be explained in terms of the quasi-radial one-dimensional problem
exclusively, and therefore the multidimensional nature of the system plays a key role.
The effective potential of the quasi-radial equation after separation of variables in
spheroidal coordinates has the same form as the radial potential of the hydrogen atom
for which there are no known quasistationary states. Nevertheless quasistationary
“tates appear. This is completely due to the energy dependence of the separation
ronstant (this energy dependence naturally arises from the quasi-angular equation),
which reflects the multidimensionality of the problem.
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The resonances are associated with capture of classical particles by unstable equi-
librium states. In this case scattering occurs in such a way that paths of particles
approach the internuclear axis asymptotically and reach this axis in the limit ¢ — oo
after an infinite number of oscillations. Such paths, resulting in capture of particles
have been discussed for the problem of two centers in celestial mechanics back in the
last century.

From the point of view of ionization these quasistationary states are related to
the S-promotion of diabatic states to the continuous spectrum. In order to calculate
total ionization cross sections it is sufficient to know the characteristics of these qua-
sistationary states. The problem of calculating the spectrum, which we shall consider
below, is more complicated.

Present theories usually cannot calculate energy and angular distributions of elec-
trons and especially cannot get the continuum capture cusp which should be present
in the spectra. Previous calculations of total cross sections have identified two ion-
ization mechanisms**® at low-energy collisions, called T-promotion and S-promotion,
but have not been able to compute the corresponding eleciron distributions on an ab
initio basis.

The electrons promoted to the continuum via a T -promotion are called ‘saddle-
point’ electrons. This reflects the fact that the electrons are picked up in the saddle
region of the potential energy and promoted to the continuum as the two charges
recede from each other. The electrons locate in space at the saddle point of the
collision system in between the nuclei. For equal charges, their velocities k will
be distributed around one-half of the velocity of the incoming particles. Recent
calculations® obtain such a distribution for saddle-point electrons, but employ an
adjustable parameter Rj,,, where adiabatic and diabatic approaches are matched.
One objective of the present calculations is to eliminate this arbitrary parameter.

The S-promotion electrons are associated with classical, periodic, unstable tra-
jectories which represent electron motion along the axis joining the charges. The
kinetic energy of electrons on these trajectories increases when the charges approach
each other. The increase of kinetic energy leads to ionization even when the relative
velocity is insufficient to ionize electrons in a single binary collision. A simple analog
of this mechanism is the acceleration of elastic balls bouncing between two walls that
slowly approach each other. Present theory cannot compute the complete distribu-
tion of these electrons. We will show that the S-mechanism is the responsible for the
continuum capture cusp, missing in previous theories.

2. Outgoing wave Sturmian expantions and coupled equation in the
frequency domain

We consider the time-dependent Schrddinger equation used in the theory of ion-
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atom collisions
a

[-E — H(R(), r)] B(t,r) = 0. (1)

Following Solov’ev® we introduce scaled variables q = r/R. In addition to this change
of variables, the wave function % is transformed according to

o6,0) = B exp i3 30| w0 @

and a new time variable dr = df/R*(t) is introduced. Then the time-dependent
$chrodinger equation in the case of straight-line motion of nuclei becomes

['%—Ho(qHR(r)V(q)] ¥(rna)=0, 3)
where
Ho(q) = —% T2 +bvl, + (b;)zq’,
V@)= ( la —Z;‘z/zl “la +Z§/2|) ’
:
RY) =~ @

and where b is the impact parameter, v is the incident velocity, £; is the projection
of the angular momentum operator for the electron on the axis perpendicular to the
scattering plane, and Z; and Z, are the charges of the two nuclei®. Note that this
equation contains an extra potential term (bvg)?/2, which arises from the transfor-
mation to scaled coordinates.

In standard theories (7, q) is expanded in fixed-nucleus basis states, i.e. eigen-
states of Hg + RV. These states cannot represent the ionization spectrum correctly
and the continuum capture cusp is always absent in standard fixed-nucleus calcula-
tions. To incorporate dynamic variations of R(r) we write the wavefunction as the
Fourier transform (Solov’ev® used the Laplace transformation in r-space),

$(r,q) = @moi) ™ [ dosexp(—iwr)b{w,q) (5)

and consider the Schrédinger equation in the frequency domain w. In the frequency
domain the wavefunction 1;{w. q) that corresponds to the initial bound state is ex-
i panded in terms of eigenfunctions with fixed w, i.e. Sturmian eigenfunctions:

1xzi(“"v q) = Z ¢ﬂ(w’ Q)B;(w) ] (6)
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where the Sturmian basis set {§,} is defined by

[Ho(q) + Ba(w)V(q)l$n(w, q) = wéa(w,q) (M
with outgoing wave boundary conditions at w > 0
3én(w)

dq

$n(w)

where pv/20. In Eq.(7) R.(w) are the Sturmian eigenvalues and ¢, (w, q) are Sturmian
eigenfunctions. normalized according to

—+ ip, asq— o0,

< n(W) |V (w) >= 6, - (8)

The wavefunction ¥ (w, q) that corresponds to the initial continuum state cannot
be completely represented by outgoing wave Sturmians. The incoming part of the
wavefunction should be added explicitly:

exp (—iplq + ¥|)

3/2,7 =
(27) Yy (w, q) QX

+ 3 én(w, Q) BE(w) - 9

n

There are some exactly solvable problems where one Sturmian gives the exact
solution (e.g., if V is a projection operator!® or two zero-range potentials!*). Thus we
have the remarkable result that while the set of Sturmians is not complete in that it
may have only one member for a fixed w, it is nonetheless complete enough to solve
the original time-dependent Schrédinger equation.

To illustrate the approach, consider the case with b =0,i.e. R = vt = —1/vr. By
the usual manipulations, one obtains for the expansion coefficients

. __Ai(w) }. v diw' K, Ak (w) l ;ll_‘_"__
B) = B [u/o Rn(w")] wd 5= 3@ [v/: Rn(w')]

a set of coupled equations

94 (w) < Ga(w)gw(w) > i J o1
B0t 2 ol ~ Rl) exp{;/: & [m e ]}An'(“’) 00)
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with initial conditions
A:n(—m) =6;n and AE(—OO) =0.

There are two different subsets of Sturmians related to S and T' promotions. The
$eurmians associated with the S-promotion are defined only forw > 0 and R3(0) #0.
[n contrast the T-promotion Sturmians exist for all w and R%(0) = 0. The coupling
torms between n and n’ = n+1 in Eqs.(10) and (11) have pole singularities at w = 0.
\l} other coupling terms are small. The coefficient An/(w) and Af,(w) are obtained by
«olving Eqs.(10) and (11) using a transformation that remove the singularities in the
coupled equations. The resulting equations are solved in a one channel approximation.

3. Differential ionization probabilities

Figure 1. The differential ionization probabilities ITk',-Iz at v = 0.4 a.u. for S-promotion.

The transition amplitude to the continuum is given by the matrix elements!!
Tis =< P2 OR(E) > . (12)

U'sing the fact that the transition amplitude does not depend on the time and the
Sturmian eigenstates may be written in the form (see Eq.(4.10) in Ref.* )

$n(w, q) = Ca(w)xn(w,q) (13)

where y,(w.q) is a wavefunction normalized to the § function on the energy scale w
and C,(w) is a normalization constant, we obtain
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Two spectra of ejected electrons associated with two different kinds of Sturmians
are displayed in Fig. 1 and Fig. 2. Figure 1 shows a spectrum related to the
S-promotion for v = 0.4 a.u. The spectrum has two cusp peaks at k, = 0 and

ky = £v/2 in the center-of-mass frame. The energy distribution of the fast electrons
is exponential.

Figure 2. The differential ionization probabilities |Tb'P at v = 0.4 a.u. for T-promotion.

Figure 2 shows a spectrum related to the T-promotion of the 2px-state for v = 0.4
a.u. The two peaks at zero center-of-mass velocity are associated with the r-symmetry
of the To;-promotion.

4. Conclusions

Our formulation in terms of outgoing wave Sturmian eigenfunctions present a
complete ab initio theory of ionization in low energy jon-atom collisions. First cal-
culations show that the two previously identified ionization mechanisms give dra-
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matically different electron distributions. The T-promotion mechanism gives a peak .

at the center-of-mass velocity, equal to u/2 in lab frame, as in earlier calculations,
but without arbitary adjustable parameters. The S-promotion mechanism gives rise
to two cusps where electron velocities match the ion velocities. These calculations
show how measured electron distributions may be interpreted in terms of identifiable

physical mechanisms, using our new representation Eq.(9). If measurements of the .

electron energy and angular distributions of emitted electrons could be performed for
small impact parameters b, than these calculations for b = 0 can quantitatively be
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ompared with spectra presented at Fig. 1. However, measurements integrated over
the impact parameter should still show the feature described here.
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