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ABSTRACT

All valid constitutive equations must satisfy two general invariance
principles as well as several other principles. In this paper, the MDCF
(Multimechanism Deformation Coupled Fracture) model for rock salt is shown to
be thermodynamically consistent, coordinate invariant, frame indifferent, and
physically admissible. Additionally, the stress rates used in the formulation are
shown to be kinematically consistent with the Cauchy stress rates.

MDCF MODEL

In the MDCF formulation (Chan et al. [1992], [1994],[1996a], [1996b]), the
Green-Naghdi stress rate (Johnson & Bammann [1984]) is given as a function of
the difference between the rate-of-deformation tensor, D and the inelastic rate-of-
deformation tensor, DI.2 The latter is decomposed into contributions from various

deformation mechanisms and is described by the generalized kinetic equation
(Chan et al. [19964]),
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where T, ag4 0‘:;, 0‘;;, Eogr é‘;;, 8(;’; are Cauchy stress, conjugate
equivalent stress measures and equivalent inelastic rates of deformation for
dislocation creep (), shear damage (o,), and tensile damage (»,) mechanisms,
respectively. The conjugate equivalent stress measures play the role of flow
potentials for each deformation mechanism, and the derivative with Cauchy stress
gives the flow direction. The equivalent inelastic rates of deformation play the roles
of kinetic functions. Damage development is modeled with the use of the Kachanov
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damage variable (Kachanov [1958]) determined from an evolution equation. The
functional dependencies of the various MDCF components are as follows.
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where ¢, F, F®, F®, &, {, denote steady-state rate-of-deformation, the
transient function for dislocation creep, the transient function for shear-induced
damage, the transient function for tensile-induced damage, the damage evolution
equation and the strain-hardening evolution equation, respectively; I » 18 the first
invariant of Cauchy stress; T}, and T} are the maximum and minimum principal
Cauchy stresses respectively; and © is absolute temperature.

THERMODYNAMIC CONSISTENCY

The MDCF model is formulated in terms of conjugate pairs for which a sum
of products gives the rate of stress-work per unit volume. It has been shown
(Fossum et al. [1988]) that the rate of entropy production per unit volume, in terms
of total and reversible stress work per unit volume, from dissipation is
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5 = W-e W °eqeeeq @)

Since this quantity must be non-negative for a closed system,

W= ol el 50 @
where W’ denotes the rate of increase of inelastic stress work per unit volume. The

MDCEF expressions for oiqééq satisfy Eq. (4) and thus the MDCF equations do not
violate the laws of thermodynamics.

COORDINATE INVARIANCE

There is an importance difference between coordinate invariance and frame
indifference; it is not necessary to define a frame with a coordinate system.
Coordinate invariance will be satisfied if the physical quantities in constitutive
equations are described directly as scalars, vectors, or tensors without reference to
coordinate systems. For example, the equivalent stress measures of the MDCF
equations are written in terms of Cauchy principal stresses and the first Cauchy
stress invariant without reference to a specific coordinate system. Because of this
and because the kinetic equations of the MDCF equations are written in terms of
coordinate invariant scalars and scalar functions of invariants, the MDCF
equations are coordinate invariant.




FRAME INDIFFERENCE

Frame indifference implies that a quantity is invariant under all changes
of frame defined by the following (Truesdell [1965]):

x*=c®) + QDX -%), tT=t-a )]

where c(f) represents a time-dependent point; Q(t) is a time-dependent orthogonal
transformation; x, is a fixed point; and a is a constant. The principle of material
indifference (PMI) (Truesdell & Noll [1965]) states that for reference frames (0%,
x*) and (0, x) defined through Eq. (5), the stress tensors T" and T are related by
7* = QTQ%tand the constitutive equation is invariant. The PMI says that
indifferent quantities, except for a rotation, are independent of the reference frame.
Indifferent scalars and vectors transform respectively as £* = £, v* = Qv.The
material time derivative of the Cauchy stress tensor is given by

T* = QFQ* + QTQ* + QTQ" ©)
and thus is not frame indifferent because of the existence of the second and third
terms on the right-hand side of Eq. (6). For this reason, a different time derivative,
called the Green-Naghdi stress rate, @, is used in the MDCF equations. The
Green-Naghdi stress rate is given by

& = T - RR'T + TRR* O
in which Ris the rotational component tensor of the deformation gradient, F = RU
where U is the positive definite and symmetric right stretch tensor. The Green-

Naghdi rate of Cauchy stress can be envisioned to evolve as follows. First, the
Cauchy stress, T, is de-rotated with a proper orthogonal rotation tensor, R, from

the current configuration to an intermediate configuration, = R*TR. Then a
material time derivative is taken of the de-rotated Cauchy stress, i.e.,

T = R*TR + R'TR + R'TR ®
The rate of de-rotated Cauchy stress is then rotated back to the current

configuration, & = RTRt. Note that in the absence of rigid-body rotations, the
Green-Naghdi stress rate reduces to the Cauchy stress rate.

The Green-Naghdi stress rate can be shown to be frame indifferent as
follows. It is required by the PMI that &* = QG Q°¥. By using the fact that
R* = QR (Truesdell [1965]), from which it follows that R* = QR + QR, we find

& = T* - R*R*T* + T"R*R*= QTQ"' + QTQ' + QTQ’
- (OR + QRR'QQTQ* + QTQ*(QR + QRR'Q" ©
= T - RR'T + TRRHQ* = Q&Q"*

thereby showing that 6* = Q8 Q ¢ isrecovered, and hence the Green-Naghdi stress
rates are frame indifferent.
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The MDCF equations take the functional form & = £(D - D) and the
PMI requires that 6* = £(D* - D**) = Qf (D - DT) Q¢ = QG Q¢. The rate-of-
deformation tensor, D, is frame indifferent (Truesdell [1965]) and so D* = QDQE®.
The inelastic rate-of-deformation tensor, D/, given by Eq. (1), comprises the sum
of products of kinetic functions and Cauchy stress derivatives of conjugate
equivalent stress measures for each of the mechanisms. Kinetic functions are
scalar-valued tensor functions and are invariants since their forms as functions of
components are the same for all bases related by orthogonal transformations. Thus,

€eqg = oy (I =cC, @, ©,).By the same reasoning, each of the conjugate
equivalent stress measures is an invariant. As invariant scalar-valued tensor
functions, the conjugate equivalent stress measures are isotropic and

o (T) = oL (T) = 0’ (QTQ") (i=¢, 0, ©,) (10)
The stress derivatives of the invariants, oég (T) , are consequently isotropic tensor-
valued tensor functions (Truesdell & Noll [1965]) and

aoi; _ aoiq n oo aoiq ¢
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From Egs. (1), (11), and the fact that éi; = éiq (i=c, o5 o, wefind
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aT ‘e aTeq €,Q" = QDIQ* (i =¢, 0, ©) (12)
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Thus, we see that £ [D*-D**] = £ [Q(D-D*) Q¢]. It follows that the PMI
requires fto be an isotropic tensor-valued function of the tensor, D - DY, such that

Qf(D - DHQ* = fIQ(D - DHQ'] (3)
A representation of an isotropic tensor-valued function (Truesdell & Noll [1965])
can then be used to define the algebraic form of £, as

fD - D) = I + §,(D - DY) + §,(D - D'y’ (14)
where I is the unit tensor. If we now choose
$p = Atr(D - DY), ¢ =2p, ¢, =0 (15)

where A and p are Lame's constants and ir denotes the trace, we recover the frame
indifferent MDCF equations,

6 = Atr(D - DO + 2p(D - DY) (16)
We have chosen a linear form of Eq. (14) since the difference, D - D", is expected
to be small, representing elastic lattice strain.

PHYSICAL ADMISSIBILITY

A constitutive equation is said to be physically admissible if the dependence
of deformation and rate-of-deformation at time ¢ on the stress or stress-




temperature history in the interval 0 < ¢ is continuous. This means that given two
stress-temperature histories I(x), ©(z) and 7' (z), ®'(x) the following must be true,

|E* - E| -0, |[T*-T]|~0, [ -6] -0 amn

where E denotes some inelastic strain measure such as Green strain and the
double vertical lines denote a supremum norm, i.e., the greatest value of the
argument for some < lying in the interval 0 < ¢. In the limit, the difference between
the two stress-temperature histories becomes negligible. Yet, if the strains were
not continuous at time t they would depend upon which of the two stress-
temperature histories were used to describe the load path.

Let two nearby stress-temperature histories be denoted by T’ © and T+ AT,

© + A® in the time interval 0 < ¢,. Correspondingly, ¢, Gegr Gf:;, 025, ® and

[0 [0 « @
C+AL, 05,+A0g,, s+ AGey, Oop+ Ay, @ +Aw are defined.

Let the initial conditions for A{, AT, Aw, A® be zero when t = 0. It
follows immediately that A, AcgZ, Acet = 0 when ¢ = 0. The evolution
equations, from Eq. set (2), then become

dZ 0Z

> _ 0Z c oZ 0Z (18)
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+ —Aw + — A8
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Ao = —Aw + Ao, + Ag,, + — A8 (19)
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Now if we specify T and © as functions of time, then 6S;, Ges, Gof are known

functions of time and consequently » and ¢ are known functions of time through
integration. Then, if we specify A® and AT as functions of time,

Aag,, Ao‘;’(;, Aa:’; will also be known functions of time. Moreover, the second
and third terms on the right-hand side of Eq. (19) become known functions of
time. Thus, Eq. (19) can be integrated to determine Ao with initial condition Ao
=0 at ¢ = 0. Now, with Ao known, the second, third, and fourth terms of Eq. (18)
are known functions of time. Thus, Eq. (18) can be integrated to determine AC with
initial condition A = 0 at ¢ = 0. The solutions to Egs. (18) and (19) become

_ t OZ t|[ oz c 07 o7 _[*9Z
AC(t)—exp(fo —aEdt)fo{ (—B}—Aoeq+£Aw+%A6}exp( /; acdc)}dt (20)
eq
o¥ , o, ¥ , o ¥ < 9F

Aw@® =exp( ot%dt)fot{

Ac,,+ Ac,,+— A8 exp(— —dC) dv
3 0:’; aﬁeqw' o8 0 dw (21)




