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Abstract 

Machine learning and data mining coupled with molecular modeling have become powerful tools for 

materials discovery. Metal-organic frameworks (MOFs) are a rich area for this due to their modular 

construction and numerous applications. Here, we make data from several previous large-scale studies 

in MOFs and zeolites from our groups (and new data for N2 and Ar adsorption in MOFs) easily accessible 

in one place. The database includes over 3 million simulated adsorption data points for H2, CH4, CO2, Xe, 

Kr, Ar, and N2 in over 160 000 MOFs and zeolites, textural properties like pore sizes and surface areas, 

and the structure file for each material. We include metadata about the Monte Carlo simulations to 

enable reproducibility. The database is searchable by MOF properties, and the data are stored in a 

standardized JSON format that that is interoperable with the NIST adsorption database. We also identify 

several MOFs that meet high performance targets for multiple applications, such as high storage 

capacity for both hydrogen and methane or high CO2 capacity plus good Xe/Kr selectivity. By providing 

this data publicly, we hope to facilitate machine learning studies on these materials, leading to new 

insights on adsorption in MOFs and zeolites. 

 

1.  Introduction 

Metal-organic frameworks (MOFs) are porous crystals made of inorganic nodes connected by organic 

linkers.1 MOFs can be constructed from many different types of nodes and linkers, including various 

functional groups, and the building blocks can be arranged in a wide variety of topological networks. The 

modular nature of MOF construction and the vast assortment of available building blocks and topologies 

result in a combinatorial explosion in the number of possible unique MOF structures. To date, over 
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14 000 unique MOFs have been synthesized representing more than 350 topologies2, and hundreds of 

thousands more have been predicted computationally.3-7 The number of possible MOF structures is 

likely well into the millions or even billions.  

Owing to the vast chemical space represented by MOFs, many research groups have turned to 

computational high-throughput screening and machine learning to find candidates well-suited to 

specific applications.8-11 Computational screening has been used to identify promising MOFs for 

applications including gas storage,6, 12-13 separations,14-17 carbon capture,18-19 refrigeration,20-22 

catalysis,23-24 and chemical sensing.25-26 

These large-scale computational studies have generated an enormous amount of data for the 

adsorption behavior of different adsorbates in a huge number of MOFs. Some groups have successfully 

mined this data after it was originally published, leading to new and deeper insights. For example, 

Fernandez et al.27 analyzed previous methane adsorption data from Wilmer et al.3 to develop 

quantitative structure-property relationships that can accurately predict methane adsorption solely 

from easy-to-compute geometric properties of MOFs. Ahmed et al. assembled about half a million MOFs 

from various online databases and analyzed them for hydrogen storage, resulting in the synthesis of 

three MOFs that have storage capacity exceeding the previous record-holder IRMOF-20.28 Bucior et al. 

used previous data from Bobbitt et al.29 to train a machine learning model that can accurately and 

rapidly predict hydrogen storage capacity in MOFs.30  Iacomi and Llewellyn31  used a high-throughput 

methodology to process 32 000 adsorption isotherms from the NIST Database of Novel and Emerging 

Adsorbent Materials32 (NIST-ISODB) and predict materials with potential binary separation capabilities. 

Published databases of structures can also be used to generate data for new applications. For example, 

the original CoRE MOF database published by Chung et al. in 2014 contains about 4700 experimental 

MOF structures that have been organized and made ready for computational studies.33 This paper and 

an update from 20192 have been cited over 750 times, which is a testament to the usefulness of online 

databases. Similarly, the MOF subset of the Cambridge Structural Database, published by Moghadam et 

al., has been cited over 650 times since 2017.34 By reanalyzing previously published data to gain new 

insight or repurposing data to a new application, these studies maximize the value of the initial effort 

(both computation and human effort) required to generate this data. 

While data accessibility clearly has value, in reality most data are only available in scattered and 

disparate forms, if at all. The data published in journal articles is often selectively reported to include 

only the most relevant portions for a paper, while the full set of data might not be published. The data 

that is available is not provided in any standard format, typically a spreadsheet or PDF file posted in the 

electronic supplemental information of a journal article. These nonstandard formats are not amenable 

to automated data collection and require significant manual effort to organize into a form that can be 

combined with data from other groups. Furthermore, the details of how these data were generated 

might be incomplete, which is a challenge for reproducibility. Graduate students and postdocs who did 

much of the work eventually move on to other jobs and the original files and institutional knowledge are 

lost.  

A study on data availability by Vines et al. found that the probability of a data set being available fell 

17 % per year with the age of the article, and the probability of finding a valid email address for the 

corresponding author fell by 7 % per year.35 Some groups say they will make specific data available upon 

request; however, in practice this method is also unreliable. Authors may move or retire or simply be 
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too busy to respond to requests for data. Krawczyk and Reuben performed a social experiment by 

requesting data related to economics research from 200 groups via email.36 They received responses 

from only 64 % of the subjects, and even fewer (44 %) actually sent the data. Another recent study by 

Gabelica et al. found even more direct results: of the 1792 authors who were contacted with requests 

for data less than 7% (122 authors) actually provided the data.37 This highlights the need for data to be 

made publicly available. 

Many groups have realized this problem and made efforts to improve the situation. Some have 

published extensive datasets online with their published articles.3, 18, 38 This is a valuable step, but 

isolated sets of data are still of limited utility. Researchers who might want the data must first know 

where to find it, and the data might not be in an easily retrievable or accessible format. Also, data that is 

tied to specific journal articles might be hidden behind subscriptions or paywalls that are not accessible 

to the general public. There remains a need for more standardized and open databases of materials 

data. A recent survey by the American Chemical Society published in a Chemical & Engineering News 

white paper reports that over half of the nearly 700 respondents said that lack of standardization 

between data formats was the biggest pain point in their data management plan.39 

Coudert40 recently called for open, standardized databases for materials using a set of guidelines called 

“FAIR,” which is an acronym for Findable, Accessible, Interoperable, and Reusable.41 These guidelines 

require that data be 

1. Findable: data should be easily found, indexed, and searchable 

2. Accessible: data are retrievable using a standard protocol that is open and free 

3. Interoperable: data are organized in a well-defined format with metadata included 

4. Reusable: data contains all relevant metadata needed to reuse or reproduce it 

Here we present MOFX-DB (mof.tech.northwestern.edu), a new database of computational data for 

adsorption in MOFs based on numerous previous studies carried out by the Snurr group and other 

members of the Nanoporous Materials Genome Center. MOFX-DB meets all the FAIR guidelines 

described above: it is easily searchable, freely accessible, and all the data and metadata are available for 

download in a self-describing, computer-readable format.  

MOFX-DB contains computational data for seven different adsorbates in over 160 000 MOFs and in 286 

zeolites. It includes textural properties for each structure (e.g., surface area and pore size) as well as 

metadata, such as force field parameters and simulation details. Users can quickly search the database 

using a built-in graphical user interface (GUI) to find MOFs with specific properties or data for particular 

adsorbates of interest. All of the data and structure files can be downloaded in a convenient format. 

Each data point is also linked to a digital object identifier (DOI) for the original paper (if previously 

published) so that the origin of all the data are documented. 

We also present here a standardized format for archiving isotherm adsorption data based on the 

JavaScript Object Notation (JSON) format used in the NIST-ISODB, which has been extended here to 

include simulation details such as number of Monte Carlo cycles and information about the force field. 

This format can be used for both single-component and multi-component isotherms. We encourage the 

nanoporous materials community to considering this format as a standard for reporting isotherm data. 
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We offer this data to the public in the hope that it will facilitate new data mining or machine learning 

studies that lead to greater understanding of adsorption in MOFs and possibly the discovery of useful 

materials for applications that have not yet been considered. In this paper we describe in detail the 

format and functionality of MOFX-DB to empower other research groups to access the data for their 

own projects and adopt the JSON format for reporting their own data.  

We also simulated nitrogen (at 77 K) and argon (at 87 K) isotherms for all of the CoRE MOFs and added 

these results into MOFX-DB. Comparison of computational and experimental N2 and Ar isotherms is a 

common characterization technique to determine if a MOF is fully activated or has experienced pore 

collapse. By comparing experimental isotherms to the nitrogen and argon isotherms we publish here, 

synthesis groups can have confidence that MOFs they have made in the lab are well-activated and have 

surface areas that are close to the maximum expected value for a perfect crystal.  

Finally, as an example of the useful, novel analysis enabled by this database, we present a study of MOFs 

that hit high performance targets for multiple applications simultaneously, which we believe might lead 

to greater commercial interest in MOF-based technology. 

 

2 Content and usage of MOFX-DB 

2.1 Contents of MOFX-DB 

MOFX-DB contains computed adsorption data for over 160 000 MOFs, both real and hypothetical, based 

on the work from the Snurr group at Northwestern University and collaborators.3-4, 16, 29, 33, 42-43 The 

specific adsorbates, MOF and zeolite structure databases, and corresponding references are 

summarized in Table 1. The hMOF3 and ToBaCCo4 structure databases were constructed by 

geometrically assembling MOF building blocks in silico. We note that originally 13512 ToBaCCo MOFs 

were reported, including a null structure with no atoms. Here we exclude this null structure and a total 

of 13 511 valid ToBaCCo MOFs are reported in MOFX-DB. The CoRE MOF database2, 33 contains MOF 

crystal structures originally derived from experiment with additional post-processing steps to become 

computation-ready. We included both the 201433 version and the 20192 version in MOFX-DB. For CoRE 

MOF 2014, a total of 4764 structures were available.44  For CoRE MOF 2019, a total of 12020 all-solvent-

removed (ASR_public) structures were taken from the original paper, which now corresponds to version 

1.1.0 in the Zenodo repository.45  
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Table 1: Summary of data included in MOFX-DB with original references. CoRE MOF, hMOF, and 
ToBaCCo databases are for MOFs, and IZA and PCOD-syn databases are zeolite structures. 

Database Adsorbate(s) P, bar T, K Reference 

CoRE MOF Ar 0-1 87 This work 

CoRE MOF N2 0-1 77 This work 

hMOF CO2 0.01, 0.05, 0.1, 0.5, 2.5 298 Wilmer et al.42  

hMOF H2 2, 100 77 Bobbitt et al.29 

ToBaCCo H2 6, 100 77 Gómez-Gualdrón et al.43 

ToBaCCo H2 5 160 Gómez-Gualdrón et al.43 

ToBaCCo H2 100 130, 200, 243 Colón et al.4 

IZA H2 
1, 2.71, 7.39, 20.09, 30, 

54.6, 148.4, 403.4 

77, 92.4, 
110.88, 
133.06, 

159.67, 191.6, 
229.92, 275.9 Sun et al.46 

PCOD-syn H2 
1, 2.71, 7.39, 20.09, 30, 

54.6, 148.4, 403.4 

77, 92.4, 
110.88, 
133.06, 

159.67, 191.6, 
229.92, 275.9 Sun et al.46 

hMOF CH4 35 298 Wilmer et al.3 

hMOF CH4 0.05, 0.5, 0.9, 2.5, 4.5 298 Wilmer et al.42  

ToBaCCo CH4 6, 65, 100 298 Colón et al.4 

hMOF N2 0.09, 0.9 298 Wilmer et al.42  

hMOF 
Xe/Kr 

(0.2/0.8) 1, 5, 10 273 Sikora et al.16 

ToBaCCo 
Xe/Kr 

(0.2/0.8) 1, 5 298 Colón et al.4 

 

For each of the isotherm points summarized in Table 1, the database provides all of the essential 

information needed to reproduce the simulation, including temperature, pressure, force field 

parameters, structure file (CIF), and Monte Carlo simulation details such as the number of cycles used. 

Details of the simulations are also given in Error! Reference source not found.. Most entries also include 

the original input file for the simulation software RASPA47 if it was available. Each entry also contains a 

DOI reference that links to the original published paper. 

To demonstrate the expandability of the database, we also uploaded 2288 published adsorption 

isotherms (a total of 18304 data points) for simulated hydrogen capacity in zeolites46 to the MOFX-DB 

with a wide range of temperature and pressure conditions. The zeolite structures include 216 all-silica 

zeolites taken from the International Zeolite Association (referred to as “IZA” in MOFX-DB), and 70 

hypothetical all-silica zeolites with high predicted synthesizability (Predicted Crystallography Open 

Database, referred to as “PCOD-syn” in MOFX-DB). Due to the standardized format of the JSON files 

used in the database, adding data from other groups is convenient and fast. Data can be arranged into a 
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formatted comma-separated values (CSV) file and uploaded with database tools we developed (see 

Supporting Information Section S1). 

 

2.2 Using MOFX-DB 

The database can be accessed at mof.tech.northwestern.edu. The frontpage contains a GUI that can be 

used to search the database for materials with certain properties. The database contains many features 

to enable users to easily find the information they want. Users can search for data using the common or 

systematic (MOFid and MOFkey48) names of MOFs, ranges of textural properties, or specific atoms 

contained in the MOF (e.g., MOFs that contain the element Cl). Users can also search for MOFs that 

have adsorption data for specific adsorbates. Figure 1 shows an example of a search for data on 

methane adsorption in MOFs from the ToBaCCo database with void fractions ranging from 0.25 to 0.75, 

gravimetric surface areas ranging from 2500 m2/g to 5000 m2/g, volumetric surface areas ranging from 

2000 m2/cm3 to 5000 m2/cm3, with pore-limiting diameters (PLDs) above 4.0 Å and largest cavity 

diameters (LCDs) above 12.0 Å. The desired limits for properties like void fraction, surface area, and pore 

size can easily be input using the slider bars on the left of the screen. The search finds 8 MOFs that fit 

these criteria, which are summarized in the table on the right of the screen. More information about 

each MOF can be accessed by clicking the MOF name. Users also have the option to download a zip file 

with all the CIFs of these MOFs or an Excel sheet, PDF file, or CSV file with the adsorption and textural 

data.  

Note that the web page shows only 100 matches at a time, but if there are more results, they can all be 

downloaded in a zip file. Users who want all of the data for a specific database can also download those 

files from the “Databases” tab. 
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Figure 1: Screenshot of search results for methane adsorption data and specified geometric properties. The search criteria can 
be easily modified with the slider bars on the left of the screen. More information about each MOF can be seen by clicking on the 
MOF name. 

 

The webpage for each specific MOF shows a summary of textural properties (void fraction, surface area, 

PLD and LCD) that are associated with the original paper where the corresponding adsorption isotherms 

were reported, as well as a rotatable visualization of the MOF crystal structure. All the available 

adsorption data (including adsorption isotherms and heats of adsorption) for that MOF are also 

displayed. We note that because textural properties were collected from different publications 

published over a period of several years by various authors, they were calculated with inconsistent 

parameters, procedures, and programs. To ensure a fair comparison of MOFs across the entire MOFX-

DB, we re-calculated textural properties (referred to as “consistent set”) for all MOF structures using a 

set of consistent guidelines. We made this “consistent set” a separate data set, and they can be 

downloaded from the “Databases” tab on MOFX-DB website under the name “Download Textural 

Properties.”  See Supporting Information Section S2 for more details. The textural properties reported 

on zeolite pages were calculated using the same consistent rules detailed in Section S2.2 (because the 

textural properties are unavailable in the original paper) but with a different set of adsorbent force field 

parameters designed for zeolites.46 Clicking on a specific MOF or zeolite name on the front page search 

results brings up a more detailed page for that material. Figure 2 shows a screenshot of the landing page 

for tobmof-300, which was selected from the search results described in our previous example, along 

with adsorption data for methane (single-component) and Xe/Kr (mixture) in this MOF. Each page also 



8 
 

contains the unique MOFid and MOFkey identifiers,48 which are useful for cheminformatics and data 

mining. 

  

Figure 2: Screenshot of database page for the MOF tobmof-300 from the search results described in Figure 1. The page includes 
textural properties, a visualization of the crystal structure, and adsorption data. The simulation details and isotherm data can be 
accessed by clicking 'View JSON' in the upper right. 

 

Users can access more details about the simulation by clicking on the “View JSON” button on the upper 

right. The JSON file contains the CIF file for the MOF, all the adsorption data, searchable InChIKeys49 for 

the adsorbates, and information about the simulation and force field. Each entry also contains a DOI link 

to the original paper. 

These JSON files are compatible with the NIST-ISODB adsorption database but are also expanded to 

include simulation metadata. The structure of the JSON file is discussed in further detail in Section 3.2. 

Additionally, the isotherm JSON files can be obtained through a representational state transfer (REST) 

API to facilitate further analysis, as described in Section 2.3. 

The ability to search for MOFs based on properties can be used to find new MOFs that match textural 

properties that others have previously determined to be desirable for an application. The MOF literature 

is full of high-throughput studies in which researchers analyze the pore size, pore shape, surface area, 

and void fraction that offer the best performance for a given gas storage or separation application.8, 50 
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Here, we examine one such study on Xe/Kr separation and apply the design principles they suggested to 

find other MOFs in our database that also have outstanding Xe/Kr performance. 

Banerjee et al. screened over 125 000 MOFs from the literature (including the hMOFs and CoRE MOFs 

included in this database) for high Xe/Kr selectivity using simulated and experimental Henry constants.51 

They concluded that the MOF SBMOF-152 (KAXQIL in the CSD) had the best performance due to its ideal 

LCD of 5.1 Å. In fact, many of the MOFs in their study with LCDs near this size showed high Xe selectivity 

over Kr. However, they observed that their chosen MOF, SBMOF-1, has relatively low Xe capacity 

compared to other MOFs due to its low gravimetric surface area (145 m2/g). The measured capacity of 

Xe in SBMOF-1 at 298 K and 1 bar is 1.38 mmol/g. Therefore, we hypothesized that if we could identify 

additional MOFs with a similar pore size and higher surface area, they would likely have similarly high 

selectivity and better Xe capacity. The databases screened by Banerjee et al. included the hMOFs and 

CoRE MOFs, which are in our database, but they did not include the ToBaCCo MOFs, so we started our 

search there. 

Using the interface on the website, we searched for all MOFs from the ToBaCCo database that have LCD 

between 4.8 Å and 5.4 Å and surface areas greater than 200 m2/g. The kinetic diameter of Xe is 3.96 Å, 

so we also limited our search to MOFs with a PLD greater than 4.0 Å to permit diffusion of Xe into the 

pores. This search resulted in eight MOFs that fit these criteria, and from these eight MOFs there are 

four with Xe capacity equal to or above 2.0 mol/kg for a 20/80 gas-phase mixture at 1 bar and 298 K as 

shown in Table 2. The most promising MOF, tobmof-4188, has a Xe capacity of 3.9 mol/kg with 

selectivity of 15.6 at these conditions. This is significantly greater than the reported saturation capacity 

of SBMOF-1, which was about 1.4 mol/kg for pure Xe, and the predicted selectivity is comparable to the 

measured value of 16 for SBMOF-1.  

 

Table 2: Textural properties and Xe/Kr adsorption data for 4 MOFs from the ToBaCCo database that fit the prescribed properties 
from Banerjee et al.51 Adsorption properties for ToBaCCo MOFs are computed for a 20/80 Xe/Kr mixture at 1 bar and 298 K. 
Sorted by Xe capacity. 

Name Void Fraction SA (m2/g) 
PLD 
(Å) 

LCD 
(Å) Xe (mol/kg) Kr (mol/kg) Selectivity 

SBMOF-1 0.25* 145* 4.2* 5.1* 1.2 (0.2 bar)** 0.9 (0.8 bar)** 16** 

SBMOF-1 (sim) 0.25* 120^ 3.9^ 4.5^ 1.45^^ 1.43^^ - 

tobmof-4188 0.47 230 4.0 5.0 3.9 1.0 15.6 

tobmof-4906 0.46 353 4.7 5.3 2.5 0.8 12.5 

tobmof-4199 0.44 266 4.2 5.2 2.4 1.0 9.6 

tobmof-4905 0.48 247 4.2 5.0 2.0 0.8 10.0 

 

* Surface area, PLD, and LCD for SBMOF-1 are taken from Benerjee et al.  Void fraction for SBMOF-1 was computed for this work 

using He insertions in RASPA. **Adsorption and selectivity values for SBMOF-1 are taken from experimental single component 

isotherms (Banerjee et al.) ^Surface area, PLD, and LCD were computed in Zeo++ using a probe radius of 1.86 Å and high 

accuracy flag. ^^Simulated in RASPA using single component at 298 K and 0.2 bar for Xe and 0.8 bar for Kr to match the 

experiments reported by Banerjee et al. 
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2.3 Automated data retrieval 

In addition to the web-based GUI for interacting with the database, users can also run automated 

queries using an application programming interface (API).  We follow the conventions of RESTful web 

services53 to allow users to query the database for MOFs matching certain textural properties or to 

download isotherm data. Per REST API conventions, software can issue the GET verb (as opposed to 

POST, DELETE, or PUT) to retrieve data from a source. Using GET is supported in many programs such as 

the curl project, the requests module in Python, or by visiting the URL for the API endpoint in a web 

browser. For example, to run the same search query from Figure 1, a program could issue a GET request 

as  

https://mof.tech.northwestern.edu/mofs.json?database=Tobacco&vf_min=0.25&vf_max=0.75&sa_m2g

_min=2500&sa_m2g_max=5000&pld_min=4.0&lcd_min=12.0&gases=Methane  

to encode all the relevant parameters and receive a filtered list of MOFs. Not all of the search criteria 

are required: the API will only filter by properties that are specified in the query. For example, to search 

the ToBaCCo database by surface area, a program could use a query of 

https://mof.tech.northwestern.edu/mofs.json?database=Tobacco&sa_m2g_min=2500&sa_m2g_max=5

000 

Data from the databases can also be sorted and downloaded using a requests module in Python 3, such 

as in the following example. 

 

A native Python package called “MOFX-DB_client” has also been developed to facilitate the data 

retrieval from MOFX-DB. Further details are available on the website: 

https://mof.tech.northwestern.edu/api. 

 

3 Structure of MOFX-DB and isotherm JSON files 

3.1 Structure and design of MOFX-DB 

The underlying organizational structure of MOFX-DB is shown in Figure 3, along with the types of 

information stored in each field. In general, the database tables contain information about the MOFs, 

their textural properties, adsorbate identification, and adsorption isotherm data including simulation 

details. We store the relevant tables of data in a MySQL database, which facilitates specification of the 

relationships between the different types of data and rapid data storage and retrieval using standard 

relational database tools. Specifically we are using the Ruby on Rails framework and its conventions for 

our database schema. Rails uses a “convention over configuration” mantra to facilitate consistent 

normalized schemas. 

https://mof.tech.northwestern.edu/mofs.json?database=Tobacco&vf_min=0.25&vf_max=0.75&sa_m2g_min=2500&sa_m2g_max=5000&pld_min=4.0&lcd_min=12.0&gases=Methane
https://mof.tech.northwestern.edu/mofs.json?database=Tobacco&vf_min=0.25&vf_max=0.75&sa_m2g_min=2500&sa_m2g_max=5000&pld_min=4.0&lcd_min=12.0&gases=Methane
https://mof.tech.northwestern.edu/mofs.json?database=Tobacco&sa_m2g_min=2500&sa_m2g_max=5000
https://mof.tech.northwestern.edu/mofs.json?database=Tobacco&sa_m2g_min=2500&sa_m2g_max=5000
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Figure 3: Schematic of the organizational structure of MOFX-DB. The solid lines indicate dependencies between two tables, and 
the dashed lines indicate associations. The direction of the arrows indicates the directionality of the relationship between two 
tables (e.g., MOFs have associated isotherms, which consist of isodata). Tables are grouped together and highlighted as a guide 
to the reader, indicating the key concepts of MOF materials, adsorbates, and simulation data for isotherms and heats of 
adsorption. 

The website user interface and API routes are hosted using an application stack consisting of Phusion 

Passenger for the application server, Ruby on Rails for application and view logic, and MySQL as a 

database server. The website’s backend code is an open source project on GitHub at 

https://github.com/snurr-group/MOFdb 

 

3.2 Format of the isotherm JSON file and compatibility with NIST 

MOFX-DB outputs isotherm data in a format informally known as the “JSON isotherm file.” This format 

for descriptively encoding adsorption isotherm data and metadata was introduced by NIST as part of NIST-

ISODB,54 originally for single-component isotherms and later expanded to describe multicomponent 

isotherms. For a full description of the JSON isotherm file and its thermodynamic basis, please see the 

Supporting Information, Section S3; we provide a summary of the JSON isotherm file format here. We 

note that another isotherm standard file, the “adsorption information file,” has been proposed recently,55 

primarily to aid archiving and comparison of isotherms from different adsorption instruments. 

The JSON isotherm file represents an isotherm via a set of key-value pairs that identify the relevant 

metadata about an isotherm as well as the adsorption data, while avoiding ambiguity about the meaning 

https://github.com/snurr-group/MOF
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of those data and metadata. In short, the isotherm file describes the conditions of the adsorptive phase56, 

the adsorption measurements, and the identity of the adsorbent material and adsorbate species. It is 

compact, self-describing, and readable by both humans and computers, as the key-value pairs are 

composed of unencoded text or arrays of key-value pairs. For example, the following text block is an 

artificial example of a JSON-encoded isotherm that exemplifies the key-value pairs necessary to describe 

an adsorption isotherm: 

 

In this format, there is unambiguous identification of the adsorbent, adsorbate, measurement/simulation 

conditions, and adsorption isotherm data (uptake), such that the isotherm can be reproduced by another 

research group. (We point out that this is a minimal set of key-value pairs for describing an isotherm; 

other explanatory metadata may be added to the JSON file, such as more specific identifiers for the 

adsorbent and adsorbate(s), other relevant measurement conditions, etc.) In this example, we are 

showing single-component data, so the mole fraction of CO2 is reported as 1. 

MOFX-DB builds on the JSON isotherm file from NIST-ISODB by introducing additional key-value pairs 

related to the molecular simulations that are ultimately the source of isotherms herein. Specifically, the 

MOFX-DB JSON file carries key-value pairs that describe the forcefields for both the adsorbate(s) and 

adsorbent (‘molecule_forcefield’ and ‘adsorbent_forcefield’, respectively), references to the exact 

representation of the adsorbent material structure, and a full writeout of the RASPA input file for the 

source simulation. Consequently, the isotherm given in the JSON file should be reproducible by another 

research group based on the metadata stored therein. 

The JSON file output by the MOFX-DB API is compatible with that used by NIST-ISODB and can be used 

interchangeably following straightforward conversions related to adsorbent identification and units of 

measurement. This use demonstrates the flexibility and adaptability of the JSON format, in that it can be 

adapted to a use case where isotherm measurements are communicated in a consistent fashion, while 
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carrying metadata specific to the intentions of the particular project. The JSON isotherm format has the 

potential to be a field-wide, consistent format used by the adsorption community to ensure clarity and 

consistency in the description of adsorption isotherm measurements, while allowing for group- or project-

specific adaptations. 

3.3 MOFX-DB Versions 

We expect to add more data to the database over time, and it is possible that mistakes will be found and 

corrected in the published data. Similarly, we expect that, in the future, researchers may perform 

validation simulations for the same sorbent structure and the same force field, but potentially using longer 

simulation trajectories or different software that may supplant a previous version of this isotherm. To 

maintain a record of edits and revisions to MOFX-DB, there is an archival repository on Github that 

automatically collates changes. The current version number of MOFX-DB is shown on the website footer 

and is included in any JSON files or bulk file downloads. Previous versions can be found using the command 

“git checkout version.” We encourage all researchers using MOFX-DB data to include the version of MOFX-

DB they used for their work to ensure transparency and reproducibility. More details are given in the 

Supporting Information. 

 

4 Results 

4.1 Comparison of simulated and experimental data 

4.1.1  Nitrogen and argon isotherms 

We performed simulations for N2 (at 77 K) and Ar (at 87 K) to calculate isotherms for all of the CoRE 

MOFs2 and included this data in MOFX-DB. Nitrogen and argon isotherms at those temperatures (their 

boiling points) are commonly used in experiments to characterize MOFs after synthesis. Comparison of 

experimental isotherms to simulated isotherms for ideal crystals can provide insight into the activation 

of the MOF (i.e. completeness of solvent removal) and also possibly indicate if the pores have collapsed. 

Experimental isotherms that agree with simulated isotherms provide a high degree of confidence that 

the MOF structure corresponds with what is expected. By providing this data, we hope it will be useful 

to synthesis groups to quickly benchmark their measured results. Unlike some of the data provided in 

the database, this is new data that has not been previously published elsewhere. 

Nitrogen or argon adsorption data for a specific MOF can be accessed from MOFX-DB by typing the 

name of the desired MOF in the search box. As an example, we searched for “XOVPUU” which is a MOF 

from the CoRE MOF 2019 database and has relatively high surface area.57-58As shown in Figure 4, we 

were able to directly visualize the nitrogen and argon isotherms in the MOF, both of which exhibited 

pore filling and saturation loading at the high pressure. 

The isotherms were computed using the multipurpose molecular simulation code RASPA.47 The 

interatomic interactions used Lennard-Jones parameters from UFF59 for the MOF framework atoms and 

the TraPPE force field60 for nitrogen. The TraPPE N2 force field includes Lennard-Jones sites on the 

nitrogen atoms and 3 charge sites ( -0.482 on the nitrogen atoms and 0.964 on the center of mass). 

Argon was treated as a single Lennard-Jones sphere using the parameters ε/kB = 115 K and σ = 3.407 Å.61 

Lennard-Jones interactions between adsorbates and framework atoms beyond a cutoff of 12.8 Å were 
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neglected, and we used a simulation box that was at least twice the cutoff (25.6 Å) in all dimensions. No 

charges were included on the framework atoms, and the N2/N2 electrostatic interactions were treated 

with the Ewald method. For Ar-Ar interactions, we included tail correction beyond the cutoff radius. 

Isotherms were computed at pressure points ranging from 0 bar to 1 bar at 77 K for nitrogen and at 87 K 

for argon. We used 7500 (15 000) initialization cycles and 7500 (15 000) production cycles for N2 (Ar), 

thus 15 000 (30 000) total cycles.  A cycle includes N Monte Carlo moves, where N is the number of 

molecules in the system at the beginning of the cycle, or 20 moves if N is less than 20. Details of 

simulations are given in Error! Reference source not found.. 

 

 

Figure 4: Screenshot of database page for the MOF with CSF refcode “XOVPUU" 
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4.1.2 Comparison with experimental methane data from NIST 

A benefit of having a large set of adsorption data available online is that future researchers can easily 

check their results against known quantities. In the field of MOF synthesis, incomplete activation or 

partial pore collapse are common issues that can affect the amount of gas adsorbed in a MOF due to 

reduced surface area or pore volume. Simulations, of course, give ideal results considering adsorption 

into a perfect crystal. Therefore, comparing experimental results to simulated data can give researchers 

insight into whether their MOF is fully activated or perhaps if there were problems during the synthesis 

or activation.  

Figure 5 shows an example of simulated methane data in IRMOF-1 (also called MOF-5 or in this database 

hMOF-0) at 298 K from Wilmer et al.42 compared with several experiments.62-65 The experimental data 

are taken from the NIST adsorption database, which is also compatible with our database. Two of the 

experimental isotherms agree well with the simulated one, while one has significantly lower methane 

adsorption. This might be an example of pore collapse or incomplete activation during the synthesis of 

that MOF. Figure 5 also shows a isotherm from GCMC simulations using a structure file derived from x-

ray diffraction experiments66-67 (downloaded from the Cambridge Structure Database,68 CCDC # 256965), 

for comparison with the idealized hMOF-0 structure generated in silico used in Wilmer’s calculations. 

The difference between these two simulated isotherms highlights the importance of reporting exact 

structures (e.g. as CIF files in Supporting Information) along with published data. There can be significant 

differences in simulated or experimental crystal structures that are nominally the same material. 

Computer-generated structures can also differ if, for example, they are minimized using different force 

fields or minimization routines. A benefit of MOFX-DB is that users can download a file with the exact 

structure that was used for a simulation, along with other important metadata to enable reproducibility. 
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Figure 5: Simulated isotherms overlaid on experimental results taken from the NIST adsorbent data base. Units are converted to 
mol/kg from the units originally reported. All isotherms are at 298 K. Simulation data in black solid circles were taken from 
Wilmer et al.42  GCMC data from an XRD structure (block hollow circles) were computed in this work using a structure file from 
Eddaoudi et al.68 Expt 1 taken from Pillai et al.62 Expt 2 taken from Li et al.63 Expt 3 taken from Furukawa et al.65  
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4.2 A usage example: Searching for MOFs suitable for multiple applications 

4.2.1 Motivation 

While most of the data contained in MOFX-DB has already been thoroughly analyzed for some specific 

application described in the original papers, the data are also a valuable resource for identifying MOFs 

that might be suitable for other adsorption applications that might have different performance 

requirements or figures of merit.  

One of the great and oft-cited benefits of MOFs is their tremendous customizability. By choosing the 

best combination of nodes and linkers, MOFs can be optimized to maximize desired performance 

metrics for various applications. One alternative to producing bespoke MOFs for each application of 

interest is to focus on developing MOFs that can meet the requirements of multiple applications. This 

could potentially reduce the production costs by allowing larger quantities of MOF to be synthesized at a 

facility without having to retool the equipment for different products. In short, it might be more 

economical to manufacture a few MOFs that meet acceptable--if not record-setting--performance 

targets for several applications instead of one “ideal” MOF for each application.  

Here we demonstrate how MOFX-DB can help to identify such MOFs. Instead of finding the single best 

MOF for a specific application (e.g., methane storage or carbon capture) we search the database of 

published data for MOFs that have good performance for two applications, thereby increasing the utility 

and commercial attractiveness of that MOF. We offer two examples: MOFs that have high capacity for 

both hydrogen and methane storage and MOFs with high capacity and selectivity for Xe/Kr separations 

as well as good capacity for removing CO2 from natural gas. 

 

4.2.2 Hydrogen and methane storage 

Methane and hydrogen are viewed as possible energy storage alternatives to gasoline and batteries for 

automobiles and heavy duty vehicles. Considerable research effort in the last decade has been devoted 

to finding adsorbent materials that offer high storage density for methane69-70 or hydrogen.29, 71 Here we 

search the database of computer-generated ToBaCCo MOFs created by Colón and Gómez-Gualdrón4 for 

candidates that provide high capacity for both hydrogen and methane under relevant conditions as 

prescribed by the Department of Energy.72-73 

The figures of merit for this study are the deliverable capacity of gas, defined for hydrogen as storage at 

100 bar and 77 K with delivery at 5 bar and 160 K and defined for methane as storage at 298 K and 65 

bar with delivery at 298 K and 6 bar. The deliverable capacity is the difference in the amount of gas 

adsorbed between the delivery and storage conditions. Here we focus on volumetric measures of 

capacity (g/L for hydrogen and cm3(STP)/cm3 for methane) because volumetric density is typically the 

greatest challenge for gas storage.74 The DOE target for hydrogen storage72 is 50 g/L and 6.5 wt% (based 

on total system weight), and the target for methane storage73 is 263 cm3(STP)/cm3, which we consider 

highly ambitious, as no material to date has come close to this target. 

The results from our screening analysis are shown in Figure 6A. We find 135 candidates that exceed both 

45 g/L hydrogen storage and 180 cm3(STP)/cm3 methane storage. Both of these metrics would be 
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competitive with the highest-performing MOFs reported for each respective application.50, 69, 71 Refining 

our search further, we find four materials that exceed both 50 g/L for hydrogen storage and 190 

cm3(STP)/cm3 for methane storage. Additionally, all four of these MOFs exceed the DOE gravimetric 

hydrogen target of 6.5 wt%, with the highest being 17.5 wt% (tobmof-3115, Figure 7A). This MOF also 

has a predicted deliverable hydrogen capacity of 38.5 g/L at 77 K using only a pressure swing from 100 

bar to 5 bar and no temperature swing. Therefore, it could be used for methane storage as well as 

hydrogen storage at multiple storage conditions. The four top MOFs are shown in Figure 7, and their 

topological and gas adsorption properties are summarized in Table 3. The data and structure files are 

also available in the online database. The four MOFs have similar textural properties: they all have void 

fractions ranging from 0.82 to 0.86 and LCDs ranging from 10.5 Å to 15.6 Å. This suggests that if we are 

looking for MOFs with high capacity for both hydrogen and methane storage, we should start by 

focusing on materials with properties in this range. Additional plots with more textural properties such 

as surface area and void fraction are shown in Error! Reference source not found.. 

4.2.3 Xe/Kr separations and natural gas upgrading 

Separating CO2 from methane is of great interest for upgrading natural gas and biogas, which can both 

contain significant levels of CO2. Xe and Kr are both valuable gases used in applications such as medical 

imaging and lighting. They are present in the atmosphere in trace quantities and are typically separated 

from air via energy-intensive cryogenic distillation. Xe/Kr separation is also of interest for nuclear fuel 

processing. Here, we searched the database of hypothetical MOFs devised by Wilmer et al.3 for 

candidates with high capacity and selectivity for Xe/Kr separations as well as high capacity for natural 

gas upgrading using data from Sikora16 and Wilmer.42 

Natural gas upgrading and carbon capture are complex, multifaceted problems, so we will not attempt 

in this example to rigorously consider every aspect of the issue, such as economic cost, MOF stability, 

and process level considerations. Others have discussed these topics elsewhere.18-19, 75-78 Here the 

figures of merit we use are absolute CO2 adsorption in mol/kg at 298 K and 2.5 bar (single-component 

data), absolute Xe adsorption capacity in mol/kg at 10 bar and 273 K (mixture data), and Xe/Kr 

selectivity at 10 bar and 273 K (mixture data). 2.5 bar is a reasonable pressure for natural gas 

upgrading,79-80 so the data from Wilmer’s work is relevant. 

 Xe/Kr simulations were done for a 20/80 mole fraction binary mixture in the adsorptive (gas) phase, and 

selectivity is computed using S=(xXe/yXe)/(xKr/yKr), where xi represents the adsorbed phase mole fraction 

and yi is the gas phase mole fraction. Note that many of the MOFs in this particular database are 

catenated structures with multiple interpenetrating lattices. Controlling catenation during MOF 

synthesis is a challenging problem, so in order to avoid complications with the synthesis regarding 

catenation, we restrict our search to MOFs with only one crystal lattice (no catenation). 

Results for this screening are shown in Figure 6B and Figure 6C. We find 13 MOFs that exceed both 10 

mol/kg Xe capacity and 14 mol/kg CO2 capacity. 14 mol/kg is higher than the capacity of some of the top 

MOFs reported for CO2 adsorption, including 8.6 mol/kg in Mg-MOF-74 and 8.4 mol/kg in HKUST-1 at 1 

bar19, although our data are at a higher pressure of 2.5 bar. 

Of these 13 MOFs, 12 have Xe selectivity above 6, which matches the selectivity of the commercial 

zeolite NaX81 and is better than NaA, which has a reported selectivity around 4 at 10 atm and 300 K.82 

Three of these structures have Xe selectivity above 8. The textural properties of these three most 
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promising candidates that meet all three criteria (CO2 capacity above 14 mol/kg, Xe capacity above 10 

mol/kg, and Xe selectivity above 8) are shown in Table 4. Visualizations of these three MOFs are shown 

in Figure 8. All three MOFs have void fractions ranging from 0.80 to 0.85 and LCDs between 7.25 Å and 

9.75 Å. They also have gravimetric surface areas ranging from 2750 m2/g to 3700 m2/g. Notably the PLDs 

(5.25 Å to 8.25 Å) are larger than the kinetic diameter of Kr (3.6 Å), suggesting that the Xe/Kr separation 

is thermodynamically driven and not based on size exclusion. 
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A 

Figure 6: Screening of ToBaCCo MOFs. Conditions are described in the text. A) Deliverable capacity of methane in 
cm3(STP)/cm3 vs deliverable capacity of hydrogen in g/L. Each dot represents a single MOF, and the color scale 
indicates the deliverable capacity of hydrogen in wt%. The vertical and horizontal black lines indicate our criteria 
for determining the top candidates (50 g/L hydrogen and 190 cm3(STP)/cm3 methane capacity). B) Xe capacity in 
mol/kg vs CO2 capacity in mol/kg. The color scale indicates the selectivity for Xe over Kr in a binary mixture. The 
black lines indicate our criteria for determining the top candidates (14 mol/kg CO2 capacity and 10 mol/kg Xe 
capacity). C) Xe capacity in mol/kg vs Xe selectivity over Kr in a binary mixture. The color scale indicates the CO2 
capacity, and the black lines indicate the criteria for determining the top MOFs (Xe selectivity greater than 8 and Xe 
capacity above 10 mol/kg). 

 

  

B 

C 
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Table 3: Textural and adsorption properties of the top four MOFs with both high hydrogen and methane storage 

capacity. The deliverable capacity is reported for two sets of conditions for hydrogen: loading at 100 bar and 77 K 

with delivery at 5 bar and 160 K and loading at 100 bar and 77 K with delivery at 5 bar and 77 K. Methane storage 

is considered at 298 K with loading at 65 bar and delivery at 6 bar. SA indicates the surface area. PLD indicates the 

pore limiting diameter, and LCD indicates the largest cavity diameter. Sorted by methane capacity.  

 

A B 

C D 

Figure 7: Visualizations of the top four ToBaCCo MOFs for hydrogen and methane storage based on the criteria 
described in this work. A) tobmof-3115, B) tobmof-4253, C) tobmof-7773, D) tobmof-7776. Color key: grey atoms 
are C, orange atoms are Cu, red atoms are O, dark blue atoms are N, light blue atoms are Zr, purple atoms are Zn, 
and green-gray atoms are Si. 

MOF Void 
Frac. 

SA 
(m2/g) 

SA 
(m2/cm3) 

PLD 
(Å) 

LCD 
(Å) 

H2 Deliverable 
Capacity 

H2 Deliverable 
Capacity 

Methane Deliv. 
Capacity 

[100 bar, 77 K] 
- [5 bar, 160 K] 

[100 bar, 77 K] 
- [5 bar, 77 K] 

[65 bar, 298 K] 
- [6 bar, 298 K] 

(g/L) (wt%) (g/L) (wt%) (cm3(STP)/cm3) 

tobmof-7773 0.86 4556 2214 8.5 10.5 51.6 8.9 24.9 4.1 196 

tobmof-4253 0.84 4971 1942 9.2 12.7 51.9 11.2 37.7 7.8 193 

tobmof-3115 0.82 3582 2016 7.3 15.6 51.3 17.5 38.5 12.5 192 

tobmof-7776 0.85 4711 2066 9.0 12.5 51.1 10.3 34.3 6.6 191 
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Table 4 Textural and adsorption properties of the top three MOFs that meet our criteria for high CO2 capacity, high 

Xe capacity, and high Xe/Kr selectivity. SA indicates the surface area. PLD indicates the pore limiting diameter, and 

LCD indicates the largest cavity diameter. Xe and Kr capacity and selectivity are at 10 bar and 273 K under mixture 

conditions (20/80 Xe/Kr). CO2 capacity is at 2.5 bar and 298 K under single-component conditions. Sorted by Xe 

selectivity. 

 

  

MOF name Void Frac. SA 
(m2/g) 

PLD (Å) LCD (Å) Xe Cap. Kr Cap. Xe select. CO2 Cap. 

(mol/kg) (mol/kg) (mol/kg) 

hMOF-056488 0.80 3703 5.25 7.25 10.1 4.2 9.7 14.5 

hMOF-36162 0.83 2754 8.25 9.75 10.4 4.9 8.4 14.7 

hMOF-5067108 0.85 2842 8.25 9.75 10.1 4.9 8.2 14.6 
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A 

 
B 

 
C 

Figure 8: Visualizations of the top three hMOFs for natural gas upgrading and Xe/Kr separation based on the 

criteria described in this work. A) hMOF-5056488, B) hMOF-36162, C) hMOF-5067108. Color key: grey atoms are C, 

orange atoms are Cu, red atoms are O, dark blue atoms are N, and purple atoms are Zn. 

 

5 Conclusions 

In this paper, we present MOFX-DB, a freely available and user-friendly database of simulated 

adsorption data. MOFX-DB contains adsorption data and textural properties for over 160 000 MOFs and 

for 286 zeolites, both real and theoretical, as well as all the metadata necessary to reproduce the 

original simulations, such as GCMC details, force field parameters, and structure files. This database also 

serves as an archive containing structure files and simulation details that will improve the reproducibility 

and transparency of research on nanoporous materials. Going forward, we plan to update it regularly 

with new data. The database also contains (previously unpublished) nitrogen and argon isotherms for 
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CoRE MOFs (including 4764 structures from 2014 version and 12020 structures from 2019 version), 

which have all been experimentally synthesized. 

The data are presented in an accessible format that is already in use in the NIST-ISODB and has been 

considered as an informal standard by other groups.83 We encourage the adsorption community to 

consider the adoption of this JSON isotherm format as a standard for reporting isotherm data in a way 

that facilitates data exchange between researchers and is conducive to large-scale data mining and 

machine learning studies in the future.  

We have used MOFX-DB here to identify some MOFs that have exceptional performance for multiple 

applications. We suggest four MOFs with both hydrogen storage capacity above 50 g/L and methane 

storage capacity exceeding 190 cm3(STP)/cm3, which are among the best capacities for both gases 

reported in the literature. We also identify three MOFs with CO2 capacity above 14 mol/kg and Xe/Kr 

selectivity above 8, which is better than zeolites NaA and NaX. MOFs such as these that can meet 

performance targets for multiple applications might be a viable route for encouraging more rapid 

commercialization of MOFs by broadening markets for a given material and reducing manufacturing 

costs. 

While this paper has been in preparation, a working version of this website has been active for public 

use. Between January 1, 2020, and July 1, 2022, MOFX-DB has been accessed by over 3500 independent 

users from 72 countries. Several publications have already been published using data available from this 

database, which we believe demonstrates its usefulness to the community.84-87  

Machine learning and data science have made significant contributions to materials science in recent 

years. We have made this data available to the community in the hopes that it will encourage more 

studies using data science and yield valuable insights from this data beyond what was included in the 

original papers.  
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