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Modern density functional theory (DFT) is a powerful
tool for accurately predicting self-consistent material
properties such as equations of state, transport
coefficients, and opacities in high energy density
plasmas, but it is generally restricted to conditions of
local thermodynamic equilibrium (LTE) and produces
only averaged electronic states instead of detailed
configurations. We propose a simple modification to
the bound-state occupation factor of a DFT-based
average-atom model that captures essential non-LTE
effects in plasmas – including autoionization and
dielectronic recombination – thus extending DFT-
based models to new regimes. We then expand the
self-consistent electronic orbitals of the non-LTE DFT-
AA model to generate multi-configuration electronic
structure and detailed opacity spectra.

1. Introduction
Understanding the properties and responses of matter
at extreme conditions is a critical component of high
energy density (HED) science, relevant to diverse
plasma systems including stars, giant planets, and
inertial confinement fusion (ICF) [1]. Simulations and
diagnostics of these HED systems require wide-ranging
and accurate data for equations of state, transport
coefficients, and radiative properties such as emission
and opacity spectra, which must be known over a
wide range of conditions, from cold and warm dense
matter in local thermodynamic equilibrium (LTE) to hot,
small-scale, and highly transient non-LTE plasmas. Since
benchmark HED experiments are difficult to perform
[2], these properties are difficult to measure. They are
also difficult to calculate, since models must capture
a complex interplay of quantum, thermal, collective,
configurational, and non-equilibrium effects.
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Density functional theory (DFT) [3] offers a powerful predictive tool for HED. Multi-ion DFT
codes like the Vienna Ab-initio Simulation Package (VASP) [4] track both the classical motion of
multiple ions and the fully quantum dynamic response of electrons, predicting properties like
melt temperatures, pressures, and conductivities with high accuracy when averaged over many
ionic configurations. However, these multi-ion quantum codes are computationally expensive,
especially at high temperatures and for many-electron atoms. DFT-based average-atom (AA)
codes like Inferno [5] and Purgatorio [6] collapse the ionic configurations into a spherical
average but offer fully quantum all-electron calculations that remain computationally efficient
for arbitrarily high temperatures. Both of these DFT-based models predict averaged electronic
structure, rather than detailed electronic configurations. And both are generally restricted to LTE,
where ions, electrons, and photons all have equal temperatures and thermal energy distributions.

While LTE is a good approximation in long-lived systems like stellar interiors, it can be difficult
to achieve and maintain in HED experiments driven by transient pulses of particles, photons,
currents, implosions, or shocks. These drivers preferentially deposit energy into either electrons
(e.g. optical or X-ray lasers) or ions (e.g. implosions and shocks), leading to a transient non-
equilibrium between ion and electron temperatures. The associated material properties can still
be accurately modeled using DFT-based models, however, as long as the electron distribution
remains thermal.

Thermal equilibrium among electrons is enforced by detailed balance between upward and
downward rates. At low temperatures (< 10eV) and high densities (near solid), collisional
processes are extremely effective at thermalizing electron energy distributions. At higher
temperatures, lower densities, and especially for high-Z materials in which spontaneous radiative
decay rates are much larger than collisional excitation rates, recovering statistical equilibrium
through detailed balance requires high radiation temperatures. But thermal radiation fields carry
an enormous amount of energy: even the world’s largest HED experimental facilities [1] cannot
maintain Planckian radiation fields with temperatures Tr above several hundred eV. Thus, there
is a large class of non-LTE HED laboratory plasmas with Tr ≪ Te that cannot be modeled with
standard DFT-based models.

High-temperature non-LTE plasmas are typically modeled with collisional-radiative (CR)
codes [7–9], which solve sets of coupled rate equations among multiple electronic configurations.
These multiconfiguration (MC) models can also provide detailed spectra that can be directly
compared with experimental measurements. However, CR codes are typically based on isolated-
ion electronic structure and require ad-hoc corrections to account for dense plasma effects that can
change both the electronic structure and the associated rates.

This work attempts to combine the strengths of DFT and CR models, describing an efficient
and self-consistent model that can account for both non-LTE and dense plasma effects on
plasma properties including detailed spectra suitable for comparison with experiment. In Section
2, we offer a simple modification of the occupation factors used in a DFT-based average-
atom model (DFT-AA) that captures the effects of imbalances between collisional and radiative
ionization and recombination rates in non-LTE plasmas with Tr ̸= Te. We also offer a new
approach to incorporating dielectronic recombination and excitation-autoionization processes
that further improves the non-LTE predictions. In Section 3, we use the self-consistent DFT-AA
electronic states to generate multi-configuration electronic structure and spectra suitable for direct
comparison with experiments. Section 4 concludes with a summary and discussion of future
work, including possible extensions to multi-ion DFT models, improvements to the DFT-AA-MC
model, and applications to transient plasmas.

2. Non-LTE average-atom model
Average-atom models distill the complexities of multiple ionic and electronic configurations
into a single, averaged ion with spherical symmetry and non-integer electronic occupations. In
this work, we follow previous implementations of fully quantum mechanical DFT-AA models
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[5,6] that solve for self-consistent electronic orbitals and electron-ion potentials Vei(r) within
a Wigner-Seitz sphere of radius r0 = (3/(4πni))

1/3, with ni the ion density. Our model solves
the Schrödinger equation in a semi-relativistic potential with the Kohn-Sham local density
approximation for exchange [3] and boundary condition Vei(r0) = 0. For a given potential,
this yields (negative) bound-state orbital binding energies εnℓ and both bound Pnℓ(r) and
continuum Pεℓ(r) radial electronic orbitals. Since the screened potential depends on the radial
electron density distribution, which is a function of the electronic orbitals Pa(r) and their
occupation factors, calculations of potentials and orbitals must be iterated until they converge.
At convergence, the orbitals self-consistently include dense plasma effects such as continuum
lowering and pressure ionization.

In LTE, the electronic orbitals are populated according to the product of their statistical weights
gℓ = 2(2ℓ+ 1) and Fermi-Dirac occupation factors f(ε) = (1 + e(ε−µ)/Te)−1, with the chemical
potential µ variationally constrained to enforce neutrality within the ion sphere. The total electron
charge density can be used to provide several plausible definitions for the average ionization
Z∗ [10]. Here, we count all positive-energy electrons as contributors to Z∗, integrating the product
of f(ε) and the quantum density of states over energy to obtain Z∗. The Fermi-Dirac occupation
factors are foundational to all DFT-based methods, and, with few exceptions ( [11–14]), LTE is a
standard assumption for AA models.

LTE occupation factors like f(ε) (and associated Boltzmann and Saha-Bolztmann statistics)
are enforced through detailed balance among collisional and radiative upward and downward
rates. When collisions alone do not enforce detailed balance, either because densities are small or
spontaneous radiative decay rates are large, Planckian radiation fields with Tr = Te can enforce
detailed balance among the radiative rates and recover LTE. When electron energy distributions
or radiation fields are non-thermal, non-LTE solution methods such as collisional-radiative (CR)
models are required to find state occupations. CR methods solve a set of coupled rate equations
for integer-occupied electronic configurations to obtain either steady-state or time-dependent
occupations [7] in non-LTE plasmas. Generalizing these CR methods for average atom models is
not trivial, however, largely because of the complexity of the two-step dielectronic recombination
and excitation-autoionization processes.

Our approach is based on the observation that, by construction, the detailed balance of
collisional ionization and three-body recombination rates Rcion

Z→Z+1 and R3rec
Z+1→Z enforce LTE

statistics [16,17] between the populations XZ and XZ+1 of the ground configurations of adjacent
charge states with equal statistical weights:

XZ+1

XZ
=

Rcion
Z→Z+1

R3rec
Z+1→Z

= e(−εZ−µ)/Te . (2.1)

Here, εZ is the (positive) ionization potential of the ion with charge Z. In the DFT-AA formalism,
the ionization potential of a particular bound nℓ electron is εZ = |εnℓ|=−εnℓ. We thus propose
replacing the Fermi-Dirac occupation factor used to populate the nℓ orbitals of the DFT-AA model
as follows:

fLTE(εnℓ) =
1

1 + e(ϵnℓ−µ)/Te
→ fnon-LTE(εnℓ) =

1

1 +Rion
nℓ /R

rec
nℓ

(2.2)

with Rion
nℓ and Rrec

nℓ the total ionization and recombination rates per nℓ electron in the AA model.
These total rates should include not only collisional ionization and three-body recombination,
but also photoionization, radiative recombination (both spontaneous and stimulated), excitation-
autoionization, and dielectronic recombination. This approach is closely related to Rozsnyai’s
one-level continuum approximation [13]. When Te = Tr , Eq. 2 recovers the Fermi-Dirac
occupation factor and LTE. When electron or photon distributions are nonthermal (as in beam-
driven, photoionized or XFEL plasmas), additional ionization processes can decrease occupation
factors for bound electrons and drive the plasma ionization to higher Z∗ values. When Tr ≪ Te,
the excess radiative recombination will tend to increase occupation factors for bound electrons,
resulting in smaller Z∗ values.
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(a) Collisional ionization and photoionization
For collisional ionization, we use the simple Lotz prescription for the cross section per bound
electron [18]:

σcion = 2Ry2πa20
ln(εi/|εnℓ|)

εi|εnℓ|
= 3.3× 10−14 ln(εi/|εnℓ|)

εi|εnℓ|
cm2 (2.3)

with Ry the Rydberg energy in eV, a0 the Bohr radius in cm, εi the impact electron energy
in eV, and εnℓ the nℓ state binding energy in eV. The collisional ionization rate is calculated
by integrating this cross section over the electron energy distribution, and the three-body
recombination rate is obtained from detailed balance.

For photoionization, we use the Kramers semiclassical cross section per bound electron [19]:

σpion =Ryπa20
64α

3
√
3

|εnℓ|2

nω3
= 1.1× 10−16 |εnℓ|2

nω3
cm2 (2.4)

with α the fine structure constant, n the principal quantum number of the ionizing state,
and ω the incident photon energy in eV. The photoionization rate is calculated by integrating
this cross section over the photon energy distribution, and the radiative recombination rate
is found by integrating the associated radiative recombination cross section, σrrec = 1.1×
10−22|εnℓ|/(nεi)cm2, over the electron energy distribution.

For non-degenerate (Maxwellian) electron distributions and Tr = 0, the associated rates are:

Rcion = 2.2× 10−6ne
χ(β)e−β

|εnℓ|T
1/2
e

s−1 (2.5)

R3rec = 3.6× 10−28n2
e

χ(β)

|εnℓ|T 2
e

s−1 (2.6)

Rrrec = 7.0× 10−15ne
χ(β)|εnℓ|2

nT
3/2
e

s−1 (2.7)

with β = |εnℓ|/Te and χ(β) = ln[1 + (0.562 + 1.4β)/(β + 1.4β2)], Te in eV, and ne in cm−3. When
electrons are partially or fully degenerate, integrations over electron energy distributions should
be done numerically and include Pauli blocking factors [20].

These simple expressions provide a reasonable first estimate of non-LTE effects in any DFT-
based model from the straightforward substitution of the Fermi-Dirac occupation factor given in
Eq. 2. The resulting Z∗ for 0.01 g/cm3 krypton with Tr = 0 are given by the dark yellow line in Fig.
1. At high temperatures, the imbalance between Rrrec and Rpion = 0 leads to a dramatic difference
in Z∗ from the LTE calculation. The non-LTE DFT-AA model agrees relatively well with both a
screened hydrogenic CR model [8] that uses the same rate approximations and a hybrid-structure
model [9] that uses rate coefficients calculated from FAC [21], when those CR models exclude
autoionization and dielectronic recombination.

(b) Autoionization and dielectronic recombination
Previous efforts to modify quantum average-atom models to account for non-LTE effects [13,14]
have been complicated by the difficulty of accounting for the two-electron, two-step processes of
excitation-autoionization (EA) and dielectronic recombination (DR). Both of these processes are
mediated by Auger decay (autoionization) rates, Aa, which describe the decay of inner-shell or
multiply excited states in an ion with charge Z whose excitation energy is larger than its ground-
state ionization potential εZ . In the Auger decay process, one excited electron (i) in the ion with
charge Z decays to the ground state (f ) of the ion with charge Z + 1, giving its decay energy to
the other excited electron (j), which is ejected into a continuum state c. Dielectronic capture is
the reverse process, in which an electron captured from the continuum excites a second electron
in the capturing ion. Autoionizing states can be generated by either dielectric capture from the
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Figure 1. Average ionization Z∗ for 0.01 g/cm3 Kr from the DFT-AA model described in the text for LTE (Tr = Te) and

non-LTE (Tr = 0) conditions, compared to two collisional-radiative models: a screened-hydrogenic super-configuration

model (CR-SC) [8] and a more detailed hybrid-structure model (CR) [9]. For all models, the non-LTE Z∗ are given with

(blue) and without (yellow) excitation-autoionization and dielectronic recombination.

Z + 1 or multiple excitation from Z, and they can decay by either (radiationless) autoionization
into Z + 1 or radiative decay into a non-autoionizing state in Z.

These processes can be difficult enough to model in a CR formalism with integer-occupied
configurations that explicitly track electron transitions and configuration energies, and many
CR models simplify the calculation by invoking approximations based on one-electron oscillator
strengths [22]. The two-step processes are even more challenging in average-atom models, whose
one-electron orbitals and non-integer shell occupations preclude explicit tracking of multiply
excited configurations. Quantum DFT-AA models, however, have the advantage of providing
self-consistent radial wavefunctions, Pnℓ for bound states and Pεℓ for continuum states, which
enable a perturbation-theory calculation of Aa.

Following [23], we directly compute Auger decay rates from the time uncertainty (lifetime) of
interacting DFT-AA states i, j, f , and c:

Aa
ijf =

2π

ℏ
|Rk(ij, fc)|2 = 2.6× 1017|Rk(ij, fc)|2 s−1, (2.8)

with |Rk(ij, fc)|2 is in Hartree atomic units and radial integrals

Rk(ij, fc) =

∫r0
0

{
1

rk+1
2

∫r2
0

rk1P
∗
i Pfdr1 + rk2

∫r0
r2

1

rk+1
1

P ∗
i Pfdr1

}
P ∗
j Pcdr2 (2.9)

Here, the states i and j are the active DFT-AA orbitals of an autoionizing state (e.g. 2p and 2s in
the doubly excited 2s2p configuration of an He-like ion), f is the DFT-AA orbital of the final bound
state after autotionization (e.g. H-like 1s), and c is the continuum state with energy εc = εi + εj −
εf . We enforce dipole selection rules and conservation of angular momentum: |ℓi − ℓf |= 1 and
ℓc = ℓj + ℓi − ℓf .

To estimate the two-step EA and DR processes, we must also calculate radiative decay rates:

Ar
if =

α3Ry

ℏ

(
εi − εf
Ry

)2

fosc
fi = 4.3× 107(εi − εf )

2fosc
fi s−1 (2.10)
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with dipole oscillator strengths

fosc
fi =

1

3

(εi − εf )

Ry

∣∣∣∣∫r0
0

P ∗
i rPfdr

∣∣∣∣2 (2.11)

Unlike the approximate collisional ionization and photoionization rates given above, these
quantum evaluations significantly increase the runtime of the DFT-AA convergence loop. Thus,
for each nℓ state f , we restrict the present calculations to include only EA and DR processes
associated with the dominant dipole transition f → i= nℓ→ (n+ 1)(ℓ+ 1). Then, for every
bound electron state j, we calculate total Auger rates Aa

f =Aa
ijf +Aa

jif and total radiative decay
rates Ar

f =Ar
if +Ar

jf (but if i= j, we do not double the rates).
To approximate the two-step EA process from each state f , we estimate the double collisional

excitation rate R2cx
fi+fj as a product of single excitation rates and an average excited state lifetime,

Rcx
fjR

cx
fi/(A

r
f/2). Assuming Mewe cross sections and a Maxwellian electron energy distribution,

the single-excitation collision rates are:

Rcx
fk = 1.6× 10−5nef

osc
fk

[0.15 + 0.28χ(β)]e−β

∆εjkT
1/2
e

s−1, (2.12)

with ∆εjk = εk − εf and β =∆εjk/Te. To account for the possibility that the doubly excited state
can radiatively stabilize rather than complete the EA process, we multiply the double excitation
rate R2cx

fi+fj of each j by its value of the branching ratio Aa
f/(A

a
f +Ar

f ) and find the total effective
ionization rate per electron in state f by summing over the contributions from all j. This ionization
rate is then added to the total Rion

nℓ of Eq. 2.
Similarly, to approximate the two-step DR process into each state f , we again assume a

Maxwellian distribution electron energy distribution and estimate a dielectronic capture rate for
each j using its associated Aa

f value:

Rdc
f = 1.66× 10−22neA

a
f

e−εc/Te

T
3/2
e

s−1, (2.13)

The total DR rate into state f is then the sum over j of Rdc
f Ar

f/(A
a
f +Ar

f ), and this effective
recombination rate is added to the total Rrec

nℓ of Eq. 2.
Incorporating these additional ionization and recombination terms into the non-LTE

occupation factor used in the self-consistent DFT-AA model results in even lower ionization
values than using only collisional and radiative processes, as shown by the dark blue lines in
Fig 1. This trend follows the results of CR models that include explicit calculations of excitation,
radiative decay, dielectronic capture, and autoionization among a large set of integer-occupied
electronic configurations. While including EA and DR processes also tends to increase the
disagreement among non-LTE models [7], the present approach offers a relatively good starting
point for a multi-configuration expansion of the AA model – and it provides self-consistent, fully
quantum electronic orbitals and screening that can be used to inform constitutive and response
properties.

3. Non-LTE opacities
Opacities in HED plasmas control the flow of radiation and mediate energy exchange
between plasma and atomic electrons. In careful benchmark experiments [2], detailed opacity
measurements offer a rigorous test of atomic models. In this section, we describe two approaches
to generating opacities from our non-LTE DFT-AA model: a Kubo-Greenwood approach that uses
the self-consistent orbitals from the AA model, and a multiconfiguration (MC) approach that uses
the AA orbitals as a basis set for energy integrals that are Taylor-expanded to provide detailed
integer-occupied electronic configurations and opacity spectra.
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(a) Kubo-Greenwood
The Kubo-Greenwood (KG) approach offers a baseline for investigations into self-consistent
frequency-dependent (dynamic) response functions. For the DFT-AA model, [24] have derived a
relatively straightforward expression for the optical conductivity based on dipole cross sections
between every pair of quantum AA orbitals. The KG dynamic conductivity includes bound-
bound, bound-free, and free-free contributions, and is given by:

σr(ω) =
2πni

ω

∫
dε[f(εa)− f(εa′)]

∫
d3qa

∫
d3qa′ |⟨Pa|v|Pa′⟩|2δ(εa − εa′ − ω) (3.1)

The imaginary part of the KG dynamic conductivity (or any other dynamic response function)
can be calculated using the Kramers-Kronig dispersion relation: σi(ω) =− 2

π P
∫
dω′σr(ω

′)ω/(ω′2 −
ω2) , where P is the principal value (avoiding the poles). The complex dynamic conductivity can
then be used to generate a wide range of dynamic material properties including the dielectric
function ϵ(ω), the index of refraction η(ω), and the absorption opacity κ(ω) [25,26]:

ϵr(ω) = 1− 4π

ω
σi(ω) (3.2)

ϵi(ω) =
4π

ω
σr(ω) (3.3)

η(ω) =
1

21/2
[|ϵ(ω)|+ ϵr(ω)]

1/2 (3.4)

κ(ω) =
4π

η(ω)c
σ(ω). (3.5)

Figure 2. Absorption coefficients for Te = 2 keV, 0.01 g/cm3 krypton from Kubo-Greenwood calculations based on

self-consistent LTE and non-LTE DFT-AA orbitals (dashed lines) compared against absorption from a hybrid-structure

collisional-radiative model (solid lines). Both models show profound non-LTE effects.

Figure 2 shows Kubo-Greenwood absorption coefficients based on the self-consistent non-LTE
DFT-AA orbitals and compares them against the results of the hybrid-structure CR model SCRAM
[9]. The one-electron DFT-AA-KG transitions are given broad Lorentzian line profiles with
arbitrary line widths of 50 - 100 eV, while the detailed model has an imposed spectral resolution
of E/∆E = 500. Both models show profound non-LTE effects, including order-of-magnitude
differences in bound-free absorption and large shifts in the energies of bound-bound absorption
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envelopes. Although the DFT-AA model reproduces the trends of the CR model, it gives a
much simpler bound-bound spectrum in which every one-electron transition is represented as
a single line (e.g. 2s− 3p), while the CR model is composed of thousands of spin-orbit-split
(2s1/2[nℓj ...]− 3p1/2[nℓj ...] and 2s1/2[nℓj ...]− 3p3/2[nℓj ...]) and fine-structure transitions from
a large number of ions and configurations with spectators [nℓj ...]. The DFT-AA-KG spectrum
also significantly overestimates M- and N-shell absorption, since our non-LTE treatment does not
account for the imbalance between collisional excitation and radiative decay within the average
atom.

(b) Multiconfiguration DFT-AA
While the non-LTE DFT-AA model presented so far gives a reasonable estimate for Z∗, it does
not provide the detailed multiconfiguration (MC) electronic structure necessary for either a full
CR rate matrix calculation or generation of detailed spectra. However, its self-consistent orbitals,
which natively include plasma and density effects, offer a promising basis set that can be used
with standard atomic physics methods [31] to generate detailed electronic configurations.

To systematically move from the AA orbitals to detailed MC electronic structure, we first
enumerate real integer-occupied configurations about the average configuration. Starting with
the integer-occupied ground configuration of an ion with the integer charge closest to Z∗, we
excite one electron from each occupied bound orbital into all orbitals with vacancies. This gives
us a set of singly excited configurations, including inner-shell excitations. From each of these new
configurations, we repeat the systematic excitation of electrons from occupied states into states
with vacancies, avoiding duplicate configurations, to obtain a set of doubly excited states. This
process can be iterated as often as desired, although the combinatorics can quickly lead to an
intractable number of configurations (see [7]) so we here limit this expansion to triply excited
states.

We then calculate the energies of each of those configurations using stored quantities
calculated from the DFT-AA orbitals Pnℓ(r). Following [30,31], we set the configuration-average
binding energy of each i= nℓ electron in each [(nℓ)N ...] configuration to be Ei =Ei

k + Ei
nuc +∑

j ̸=i E
ij , the sum of its kinetic energy, its nuclear interaction energy, and its interaction energies

with all other electrons in its configuration. The kinetic energies are:

Ei
k =

1

2

∫RWS

0
P ∗
i

[
−d2

dr
+

ℓi(ℓi + 1)

r2

]
Pi dr, (3.6)

the electron-nuclear potential energies are:

Ei
nuc =

∫RWS

0
(−Znuc/r)|Pi|2 dr, (3.7)

and the interaction potential energies Eij are given in terms of Slater integrals F k(ij) =

Rk(ij, ij) and Gk(ij) =Rk(ij, ji), with the radial integrals Rk(ij, ba) given in Eq. (2.9), with

Eij = F 0(ij)− 1

2

∑
k

(
ℓi k ℓj
0 0 0

)2

Gk(ij) (3.8)

The configuration-average total binding energy of each N -electron configuration is Ec =∑
i(E

i
k + Ei

nuc +
1
2

∑
j ̸=i E

ij). Note that since we restrict the integrals to the ion sphere, we
capture the effects of pressure ionization as states dissolve into the continuum. Including
quasibound (resonant) continuum states [27] ensures we capture orbitals that may be bound in
one ion or configuration and unbound in another.

A significant deficiency of this first multiconfiguration model is that it does does not account
for orbital relaxation, that is, how the orbital wavefunctions (and therefore Slater integrals,
Ei
k, Ei

nuc, Eij , Ei, and Ec) change in response to changes in the configurations. This effect
can be included by re-optimizing the self-consistent orbitals for each configuration (e.g. [32])
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and recomputing the energies and Slater integrals for each. But this becomes computationally
daunting for complex ions with many active electrons that may have many thousands of
configurations. Instead, we modify the approach of [28]: after convergence is achieved in the
DFT-AA model, we systematically move ∆N ≈ 0.2 electrons from each significantly occupied
(Nk = o(nkℓk)> 1) bound orbital k into the continuum, re-converge the self-consistent field
equations on that depleted AA configuration and supplemented continuum, recompute new
Slater integrals and energies ai =Ei

k + Ei
nuc and bij =Eij , and then define coefficients for a

Taylor expansion of the energies under changes ∆ok in each orbital:

a′(ik) =
(aAA

i − aAA−∆ok
i )

∆ok
(3.9)

b′(ijk) =
(bAA

ij − bAA−∆ok
ij )

∆ok
(3.10)

This requires only a handful of re-optimizations that do not require particularly stringent
convergence and allows us to generate reasonably accurate Ec for any configuration using
ai = aAA

i + 1
2

∑
k a

′(ik)∆Nk and bij = bAA
ij + 1

2

∑
j,k b

′(ijk)∆Nk. We have tested the accuracy
of the expansion by verifying that the predicted Ec for a given integer-occupied configuration
changes by less than 0.1% even when it is several ionization stages or excitations removed
from the reference DFT-AA configuration. Including orbital relaxation in this way is extremely
efficient and gives transition energies that are slightly more accurate than those derived using the
intermediate coupling approach described in [29].

To include the effects of the plasma electrons on the configuration energies [30], we perform
one last re-optimization of the average-atom orbitals that retains the converged AA bound-state
occupations but excludes all continuum electrons from the Wigner-Seitz sphere. For each orbital
i, this gives an isolated-ion binding energy of ε0nℓ and a change in energy due to plasma electrons
of ∆Ei

p = εAA
nℓ − ε0nℓ. Adding

∑
i E

i
p to each configuration energy Ec gives a reasonable estimate

for plasma density effects such as continuum lowering.

Figure 3. Charge state distributions for 0.01 g/cm3 Kr at Te = 2keV from the DFT-AA-MC model described in the text

(dashed lines) compared to a hybrid-structure CR model (solid lines).

To compute detailed spectra, we need not only the configuration energies but their
occupations. We obtain ground-state occupations X0 for each ion using factors derived from
Eq. 2. Within each ion, we then assign excited-state occupations using Boltzmann factors: Xc =

X0
gc
g0

exp[−|Ec − E0|/Teff ] with an effective temperature derived from a two-level CR model
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[34]:

Teff =
−|Ec − E0|

ln Rex

Rdex

. (3.11)

Here, Rex is the total collisional and photoexcitation rate from the ground to the excited
configuration and Rdex is the total collisional, spontaneous, and stimulated decay rate. This yields
not only the average ionization Z∗ but also charge state distributions, as illustrated in Fig. 3. We
then calculate the dipole matrix elements among just the DFT-AA orbitals to obtain oscillator
strengths for each nℓ→ n′ℓ′ transition, and assign radiative decay rates among configurations
with occupation and vacancy factors as we would for a simple screened hydrogenic model [8].

Finally, we include relativistic effects in the spectrum by returning to the reference DFT-AA
orbitals and computing the spin-orbit interaction:

Ei
so =

α2

2

∫RWS

0

∂V (r)

∂r
|Pi|2dr (3.12)

for states with ℓ > 0, which leads to splitting of the transitions into j = ℓ− 1
2 and j = ℓ+ 1

2

components. Before computing the detailed spectra, we statistically weight the occupations
and oscillator strengths of each of these components to preserve the total strength of the non-
relativistic transitions. Here we also include correlation effects following Cowan. Together, the
orbital relaxation, spin-orbit, and correlation modifications to the DFT-AA-MC model provide
transition energies that have good agreement with detailed CR models like SCRAM [9] and
experimental transition energies [2]. The results for krypton are given in fig. 4, where the DFT-
AA-MC model reproduces not only the profound non-LTE effects seen in the detailed SCRAM CR
model but also gives good agreement in line positions and significantly improves the DFT-AA-KG
model’s overprediction of M-and N-shell absorption.

Figure 4. Absorption coefficients for Te = 2 keV, 0.01 g/cm3 krypton from the DFT-AA-MC model (dashed lines)

compared to a hybrid-structure CR model (solid lines).

4. Conclusion
We have presented an approach to generating non-LTE Z∗, charge state distributions, and
detailed, multiconfiguration emission and opacity spectra based on the self-consistent electronic
orbitals of a DFT-based average atom model. Our proposed simple modification to the Fermi-
Dirac occupation factor approximately accounts for the imbalance in collisional and radiative
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ionization and recombination in non-LTE plasmas with analytical rates that could be incorporated
into any DFT-based model – including multi-ion DFT-MD. Extending the occupation factor to
account for excitation-autoionization and dielectronic recombination based on the self-consistent
quantum orbitals from DFT models offers a further refinement of the self-consistent Z∗. We have
then used the non-LTE DFT-AA orbitals as a self-consistent basis set for multiconfiguration atomic
structure, which, along with approximate effective temperatures allows us to obtain non-LTE
level populations, charge state distributions, and detailed spectra.

This work significantly expands the useful range of DFT-AA models to non-LTE plasmas with
Te ̸= Tr and extends their predictive power to the generation of detailed spectra suitable for direct
comparison with experiments. Other constitutive and response properties, such as pressures,
internal energies, and conductivities, can also be derived from the self-consistent orbitals of the
non-LTE DFT-AA model, which will natively include dense plasma effects such as continuum
lowering (see [30]). This reduces the need for external models and ad-hoc approximations for
dense plasma effects and will help ensure internal consistency among calculations of a wide
variety of material properties.

The non-LTE DFT-AA model could be improved by explicitly accounting for the imbalance
between collisional excitation and radiative decay rates within the DFT-AA model and by
replacing the effective temperature approach in the DFT-AA-MC model with a full collisional-
radiative solver. The self-consistency could be enhanced by recomputing the DFT-AA orbitals
using fixed occupations obtained from the CR solution (see [15]. The detailed spectra could
be improved with the inclusion of configuration interaction effects and more sophisticated line
broadening. Possible extensions to the non-LTE DFT-AA model could include explicit time
dependence to account for transient ionization and energy partitioning of the continuum electron
distribution to explicitly track non-thermal free-electron distributions (e.g. populations of high-
energy Auger or photoionized electrons in XFEL experiments) and their self-consistent effects
on the average electronic structure. These modifications, which can be enormously expensive in
traditional CR models, would be much more tractable in the AA model.
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