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Abstract

Interval Assignment (IA) is the problem of selecting the number of mesh edges (intervals) for each curve for con-
forming quad and hex meshing. The intervals x is fundamentally integer-valued. Many other approaches perform
numerical optimization then convert a floating-point solution into an integer solution, which is slow and error prone.
We avoid such steps: we start integer, and stay integer. Incremental Interval Assignment (ITA) uses integer linear alge-
bra (Hermite normal form) to find an initial solution to the meshing constraints, satisfying the integer matrix equation
Ax = b. Solving for reduced row echelon form provides integer vectors spanning the nullspace of A. We add vectors
from the nullspace to improve the initial solution, maintaining Ax = b. Heuristics find good integer linear combina-
tions of nullspace vectors that provide strict improvement towards variable bounds or goals. ITA always produces an
integer solution if one exists. In practice we usually achieve solutions close to the user goals, but there is no guar-
antee that the solution is optimal, nor even satisfies variable bounds, e.g. has positive intervals. We describe several
algorithmic changes since first publication that tend to improve the final solution. The software is freely available.
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1. Introduction

Intervals is the number of mesh edges on a curve.
Interval Assignment (IA) means deciding the intervals
on curves so the adjoining surfaces and volumes can
be meshed compatibly. This is a non-issue for simpli-
cial meshing, because any number can be chosen for
each curve, and there will be some conformal mesh
of each surface and volume. However, quad element
topology places fundamental constraints on the num-
ber of boundary edges [1]. All manifold quad meshes
are bounded by an even number of intervals. Certain
meshing algorithms impose additional constraints; see

Figure 1: Swept hex meshes. The side surfaces are mapped: opposite
sides have equal intervals. For volume sweeping constraints, the in-
tervals through the hole must be the same as on the outside; here two.
The top surface is meshed with paving. Any quad mesh must have an
even number of intervals. CUBIT’s [6] paving algorithm [7] is more

figs. 1 and 2 for some examples. Equality constraints
arise from structured meshing schemes, such as map-
ping with a rectangular grid of quads [2], and from re-
quiring volume sweep paths to have positive and consis-
tent lengths [3]. Midpoint subdivision [4] (related to the
discrete structure of Catmull-Clark subdivision [5]) im-
poses a form of triangle inequality. The constraints also
depend on algorithm parameters, e.g. when mapping a
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robust if the constraints are more restrictive: each boundary compo-
nent must be even, not just all of them in total. CUBIT will create the
mesh on the left, with 6 intervals around the hole, not the right with 5
intervals, unless forced.

surface, one may choose which curves comprise each of
the four sides. See section 2.1 for the formulas for the
three most common types of constraints.

Interval assignment is important for automation and
meshing independence, and also for mesh quality. Con-
forming meshes of assemblies, or even just single parts,
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Figure 2: Midpoint-subdivision of a pentagon using a three-sided
primitive. The three sides are between the right-angle marks: A =
{1,2}, B ={3,4},and C = {5}.

must agree on how many edges to place on each shared
curve. The meshing constraints form a globally-coupled
system of linear equations over integer variables; half
an edge is nonsense. The problem is to assign a natu-
ral number of intervals to each curve satisfying all con-
straints and bounds, and ideally close to user-desired
goals. Once IA is solved, each surface and volume can
be meshed independently and compatibly.

1.1. Contribution

Incremental Interval Assignment (ITA) is a discrete
algorithm over integers, the first IA method using inte-
ger linear algebra and nullspaces. IIA uses two passes:
a “mapping” or equality phase, and a ““sum-even” phase.
The first pass relaxes the problem by ignoring any even-
interval constraints; the second pass re-introduces them
and uses the first-pass solution as a warm-start. Inde-
pendent subproblems are solved independently. In each
pass, ITA uses variants of Gaussian elimination to find
an initial integer solution that satisfies Ax = b, and in-
teger nullspace vectors spanning Ax = 0. Combinations
of nullspace vectors are added to the current solution,
first to satisfy variable bounds such as x > 1, then to
find a solution close to the user’s goals.

ITA scales well, is more reliable, and produces bet-
ter quality output, than the prior approach of numerical
optimization followed by Branch & Bound (BB) for in-
tegerization. IIA runs at interactive speeds, less than
one second for reasonably-sized inputs.

The author presented an earlier version of this al-
gorithm at the 2021 International Meshing Roundtable
(IMR) [8].

1.2. Prior Approaches

The interval assignment problem is deceptively sim-
ple. After all, we are only considering edges, and for
most surface and volume meshing algorithms the con-
straints are straightforward. Some constraints, such as
requiring an even number of intervals on a paved (un-
structured quad) surface seem so mild and there are so
many solutions that finding one of them should be easy.
Indeed, it is easy for humans to look at one surface and
pick some intervals by inspection. The difficulty arises
when the model is large and the global system of con-
straints conspires against us. It is tempting to assign
intervals to surfaces one by one, but this can fail by
“painting yourself into a corner,” e.g., leaving a remain-
ing surface unmeshable because it has an odd number
of intervals on its boundary. For a manifold topology
composed of many surfaces, the parameters (e.g. map-
ping sides) can couple the constraints for two distant
surfaces in a non-obvious way. The combinatorial dif-
ficulty increases for 3D non-manifold models. A single
curve can be in many surfaces, and couples the chains
of constraint fanning out from all of them. Meshing the
adjoining volumes brings in yet more constraints. A
global problem must be solved. For this problem the
constraints are standard and necessary, but the objective
is a matter of mesh quality and there is some flexibility
in how to define it.

Interval assignment methods fall into several cate-
gories. Numerical optimization is a common approach,
e.g., floating-point linear or nonlinear programming fol-
lowed by integerization with branch and bound, branch
and cut, or some other technique. The key challenge for
floating point methods is obtaining an integer solution.
Greedy algorithms select the worst constraint violation,
then adjust the intervals to move closer to feasibility.
Once feasible, the worst quality can be improved while
maintaining feasibility.

1.2.1. Mesh Structure Interdependence

In many cases, such as our ITA, methods assume that
the mesh structure is given, and the only remaining de-
grees of freedom are the intervals. Other methods com-
bine IA with selecting the mesh structure. This may be
as limited as deciding where to put the four corners in
a five-sided surface. Network flows combine IA with
selecting the meshing templates within rectangular sur-
faces [9].

In the extreme, IA methods have the freedom to de-
fine the structured patches themselves. This approach is
common for smooth closed surfaces for some computer
graphics models [10]. Frame field methods combine



IA with partitioning the domain into structured quad
patches [11, 12, 13]. A frame field is a mathematical
field that defines a frame at each point of the domain,
where a frame is two orthogonal vectors in the local
tangent plane. A frame can be viewed as the dual of
a quadrilateral, so the field indicates the ideal quad ori-
entation. Frame fields are found by solving a PDE (Par-
tial Differential Equation). Then the numeric solution is
“integerized” by selecting discrete points representing
the centers (duals) of patches of quads, and matching the
frames of nearby points to indicate a shared quad-patch
edge. The matching introduces “singularities” (non-4
valent surface mesh vertices) wherever a patch vertex
is not surrounded by 4 quads patches, e.g. 3, 5, or 6.
As with the network flow approach and CFD (Compu-
tational Fluid Dynamics) meshing, a patch is not limited
to being mapped, and can be meshed with a variety of
templates. The choice of template is intertwined with
IA, in that the choice changes the IA problem and may
even change its feasibility.

CUBIT [6] has a way to automatically select which
meshing algorithm (“scheme”) to use on each surface
and volume [14]. It uses TA as part of that process. All
CUBIT IA solvers assume that the mesh structure and
scheme are fixed. However, candidate schemes are fed
to IA, and the feasibility and quality of the IA solution
determines which candidate to ultimately use. IA is run
on each surface individually for each available meshing
scheme, starting from the most restrictive. E.g., if the
mapping IA is infeasible, then a less structured surface
meshing scheme should be tried, say submapping; if the
submapping IA solution quality is poor, then we should
select an unstructured scheme like Paving [7]. In a simi-
lar way, IA is used to adjust the corners [15] of surfaces,
and edge types between surfaces, to set up the structure
of swept volumes [14, 3, 16].

1.2.2. Numerical Optimization

Tam and Armstrong in 1993 [2] described IA as an
optimization problem with linear constraints Ax < b.
Their choice of objective is also linear, a weighted sum
of differences between the goals and assigned intervals:
min, w’ (x—g) for constant vectors w and g. The weights
are inversely proportional to the goals. Intervals are
bounded below by the goals, and unbounded above.

The potential upside to Tam and Armstrong’s objec-
tive is that the simplex method’s solution is integer “for
free,” without recourse to expensive integerization tech-
niques, in many situations. It helps if the weights are
unique and the goals are integer. However, the variables
must have relatively-prime coefficients in A. This is bro-
ken by sum-even constraints. It is also broken when the

global structure of an assembly conspires to link con-
straints, such as the “radish” in fig. 3. Section 8.2 com-
pares simplex plus Branch & Bound (BB) to ITA over
these problems.

Figure 3: The “2-1 radish” assembly model circa 1997 from
Mitchell [17]. A radish is a mapped surface where opposite sides
have different numbers of curves, and all curves on a single side must
have the same number of intervals. In this example it arises from the
global structure of the assembly. The curves on the red side are linked
by mapping constraints to all have the same intervals: x; = x2. Thus
x3 = x1 + xp reduces to 2x; = 1x3. Other combinations are possible.

The potential downside is all of the deviations from
goals may be concentrated into a few curves. This
is because the objective is linear in the deviations,
and it is common for L; minimization solutions to be
sparse [18]. However, the authors of [2] do not ob-
serve drastic deviations and concentrations in practice,
per personal communication.

BBIA. “High Fidelity Interval Assignment” (BBIA for
Branch & Bound IA) [17] introduces an objective func-
tion designed to distribute any potential concentration:
lexicographically minimize the maximum weighted de-
viations. By lexicographic, we mean minimize the max-
imum weighted deviation, remove that variable from the
problem by fixing it at its current value, and recurse.
Such optimization objectives are known as lex min-max.
In principle, one can simply define the BBIA problem
and call a Linear Program (LP) solver with a Branch
& Bound (BB) postprocess as a black box. In practice,
the runtime of the integerization step is prohibitive. As
is typical of large optimization problems, exploiting the
problem structure was key.

In the first pass, we ignore the sum-even constraints
that the number of intervals bounding a surface must be
an even number (see eq. (1) in section 2.1). We do this
because these are relatively nonrestrictive and remov-
ing them often allows the global problem to be broken



up into many smaller problems. The LP finds a float-
ing point solution. We identify the variables stuck at the
maximum deviation, and use BB to force those to inte-
ger values. These are removed from the problem and
the process is repeated.

In the second pass, all constraints must be satisfied.
The integer solution from the first pass guides the LP
re-solve and subsequent BB. We define upper and lower
bounds on the integer variables containing the first-pass
solution. If an integer solution cannot be found quickly
enough, the bounds are widened and we try again.

It may be possible to update the BBIA method to
use modern solvers. Many current multi-objective op-
timization methods are based on the same ideas of solv-
ing a series of optimization problems. There are special-
ized lex min-max solvers, but these problems are still
generally expensive [19].

The general outline of IIA has some similarities to
BBIA. ITIA’s objective is also lex min-max, but of a non-
linear function of each deviation. IIA uses two passes,
the first one ignoring the sum-even constraints. Within a
pass, ITA successively concentrates on the worst-valued
variables.

NLIA. (NonLinear IA) [20] sought to improve the
speed and robustness of BBIA by switching the lex min-
max objective to a sum-of-cubes objective. This sped
up runtime, at the price of the optimal floating point so-
lution being farther from the goals. However, once it
is found, we switch the objective to a piecewise linear
function in a local neighborhood around it. The idea
is to exploit the same L; minimization integers-for-free
advantage as Tam and Armstrong [2], but keep it local
to avoid large deviations. This resembles the branch and
cut method for integerization, but in NLIA we apply it
to the objective rather than add it as a constraint. This
approach usually found a nearby integer solution very
quickly, but was challenged by the same types of prob-
lems that challenged BBIA, e.g. global structure such as
the “radish” in figs. 3 and 9, and by many curves with
equal sizes and goals. Such situations are called “degen-
eracies” in optimization, but are common in CAD mod-
els, e.g., many holes and bolts of the same diameter and
plates of uniform thickness. The method was deployed
in MeshKit [21] but has yet to be fully productionized
and extended to all available meshing algorithms.

Frame Fields. Bommes et al. [11, 12, 13] partitions
smooth graphics surfaces into structured quad patches
and assign intervals. The algorithm uses a series
of mixed-integer optimizations with linear constraints

and quadratic objectives, Mixed-Integer Quadratic Pro-
grams (MIQPs). The first MIQP fixes the number and
position of irregular vertices, the corners of the patches.
The second MIQP sets the mesh structure of the patches,
connecting the dual loops globally, and assigns inter-
vals. The cross field defines a background that deter-
mines the objectives of the MIQP, by considering the
orientation of the dual loops with respect to the surface
curvature and any sharp features. The irregular vertices
correspond to singularities in the cross field. Connec-
tions are made and variables are integerized by succes-
sive rounding. A key efficiency is using the solver as
a white-box instead of a black-box after each rounding:
the prior solution and internal state is updated and the
solver can continue from it, rather than restarting from
scratch. The observation that cross field design is re-
lated to the Ginzburg—Landau problem provides addi-
tional tools for boundary alignment [22].

A variation is to select irregular vertices and patches
without assigning intervals, leaving that to a later step.
But, in both variations, extending frame fields from 2D
to 3D is challenging because 3D solutions do not al-
ways correspond to hex meshes the same way that 2D
solutions correspond to quad meshes [23, 24].

1.2.3. Greedy Approaches

Guru—Protégé. Beatty and Mukherjee [25] present an
IA “guru—protégé” method, which identifies the next
curve whose interval assignment is most important, the
guru, and fixes its intervals next. Protégé edges follow
those assigned intervals. Each fixed edge reduces the re-
maining degrees of freedom. (From the ITA viewpoint,
each fixed edge reduces the dimension of the remain-
ing nullspace). When a remaining subsystem of equa-
tions has only one solution then it is applied. This can
be viewed as a greedy approach with similar goals to
lex min-max. The overall method first assigns corners,
which partitions the model into mapped regions with T-
junctions, and determines the IA constraints.

The BBIA framework was not used in Beatty and
Mukherjee’s context, automotive body panels, because
the runtime of LP and BB was prohibitive. Another is-
sue is that when an LP or BB solver reports that the
problem is infeasible, not enough feedback is available
for the user to know how to change the model to make
it feasible.

1.2.4. IA and Mesh Refinement

The problem of locally refining an existing quad
mesh is related to interval assignment: select the mesh
edges to split (increase intervals) subject to the con-
straints of the available refinement templates (meshing
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Figure 4: Mesh Scaling, courtesy Staten et al. [27].

schemes), with the goal of refining the mesh where the
user wants, and leaving the mesh unchanged elsewhere
(interval goals).

Binary  Optimization. “Cost Minimizing Local
Anisotropic Quad Mesh Refinement” [26] considers the
refinement problem, and adds the goal of introducing
few irregular vertices. They pose and solve this as
a binary optimization problem. They state that an
outstanding problem is to develop a specialized solver
that would solve the problem more quickly. They
would be satisfied with suboptimal solutions if it helps
runtime. The runtime is often several seconds for a
few thousand elements, and sometimes minutes, and is
unpredictable.

IIA for Mesh Scaling. A simple form of Incremental In-
terval Assignment (IIA) was previously developed for
the restricted context of “Mesh Scaling” [28, 27]. The
problem is to refine an existing mesh for verification
studies, but without simply splitting every hex, e.g., into
8, as that would produce too many elements. Instead,
the irregular vertices and block structure of the mesh
are identified, then we may remesh these blocks with
slightly increased intervals on their sides; see fig. 4.

IA for mesh-scaling is simpler than the general IA
problem for two reasons. First, the input mesh already
provides a feasible interval assignment, Ax = b, so we
only need to maintain feasibility as we adjust the solu-
tion closer to the goals. Second, we only have structured
blocks meeting face to face. It is unambiguous how a
change of intervals propagates throughout the mesh, so
there are few degrees of freedom and the choices are
simple. Unlike general IIA, there is no nullspace to
compute, and we do not have to consider combinations
of nullspace vectors to make progress. (A variant with
more degrees of freedom and choices allows re-paving
surfaces and re-sweeping volumes.)

The ITA Mesh Scaling (ITAMS) solution method fol-
lows. A priority queue selects the least-refined curve
in the mesh, and that curve’s intervals are incremented

by one. The selection criteria “least-refined” consid-
ers how refined a curve is, how refined the neighboring
area of the mesh is, and how much the element count
would increase. A series of queues prioritizes these dif-
ferently, with some passes increasing intervals and oth-
ers decreasing them, to hone in on a good assignment.

ITAMS was a dramatic improvement in both speed
and output quality compared to using BBIA for mesh
scaling. BBIA was failing after running overnight on
some problems with about a thousand curves. In con-
trast, IIAMS achieved success in less than a second on
all test problems. ITAMS’s element count is also closer
to the user request. [IAMS’s success was the inspiration
for researching a general ITA method.

2. Formal Definitions

2.1. Interval Constraints

The constraints typically have three forms: equality,
inequality, and sum-even.

Equality Constraints. For mapping surfaces we have
constraints that curves on opposite sides contain exactly
the same number of edges. Equality constraints also
arise from sub-mapping and some other templates, and
from ensuring that volume sweep path lengths are con-

sistent; see fig. 1.
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Inequality Constraints. For midpoint-subdivision and
similar primitives, we have triangle-inequality type con-
straints. A three-sided triangle primitive with sides
A, B, and C requires
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For example, the constraints in fig. 2 are

X1+ Xy + X3+ X4 — X5 > 2,
X|+ Xy — X3 — X4 + X5 > 2,
—X] — X3 + X3 + x4 + x5 > 2.
Inequalities with b # O can also be used to ensure that a

submapped mesh matches the geometry’s topology; see
fig. 5.



Sum-Even Constraints. For an unstructured scheme,
such as paving, we have the constraint that the sum
of intervals on a surface’s boundaries must be an even
number; see fig. 1. It takes some manipulation to ex-
press this as a linear constraint:

Zx—2y=0, (1)

A

where we introduce y as an integer slack variable. If
the sum must be at least 4, we can bound y to the range
[2, 00). For certain small shapes, a larger lower bound
can improve mesh quality; see fig. 8. For circular holes
in plates, often the user desires y € [3, o).

We also use slack variables to convert all inequalities
to equalities. These constraints are distinguished by the
slack variables having coeflicients of 1, whereas in sum-
even constraints their coefficients are 2.

h3 h3
v3 v4 v3 v4
h2 h2
h4 h4
v1 v2 v1 v2
h1 h1
h1 >h2+1 vl > v2+1
h3 h3
V3\ v4 v3 v4
h2 h2
h4 h4
v1 v2 v v2
h1 h1

h1 >h2+1 and v1 > v2+1 h1 2h2+1 and v1 £ Vv2+1
Figure 5: Submapping of a simple surface. Prior to interval assign-
ment, corners are picked, assigning each curve to be either horizontal
h or vertical v. The sum of the horizontal intervals must be zero; ditto
vertical. Beyond that, for this shape we required that 21 > h2 + 1
or vl > v2 + 1. If we require both to be satisfied, then the top row
solutions are excluded. If we require neither, then the mesh might
not match the topology of the geometry because it has a pinch point
(lower right) or worse, an overlap. A single surface may require many
non-overlap “or” constraints to exclude all bad-topology.

“Or” Constraints. These require only one of a set of
linear constraints to be satisfied. See fig. 5 for an exam-
ple of how these arise in submapping. “Or” constraints
are not linear, not convex, and can not be represented by
Ax = b x directly. Most approaches avoid these by pick-
ing one of the linear constraints to enforce a priori. This
reduces the degrees of freedom and may even cause the
problem to be infeasible depending on the global struc-
ture. For submapping, CUBIT instead solves IA with-
out enforcing either constraint, then checks the solution.
If neither constraint is satisfied, we pick the one that is
closer to being satisfied, with tie breakers, add it to A,
and re-solve.

2.2. Goals

We have an idea of the number of intervals we would
like for each curve, the goals. These may come from
a sizing function. E.g. if the user wants edges about
length 4, then a curve of length 10 has a goal of 2.5
intervals. Or the user may specify the goal directly. As
long as slack variables are above their lower bounds, we
are indifferent to their values; these have no goals.

There may be no feasible solution exactly matching
all of the goals, so we measure the deviation of the
achieved interval x; from its goal g;. In general, we have
some objective function f(x, g) of the deviations, where
f(g, g) is a minimum, preferably a unique minimum.

2.3. Problem Definition

TA in standard matrix-vector notation is

min f(x, g) :
Ax=D>
X, €Z
I<x<u. 2

This arises because an equality constraint has the fol-
lowing form, where we allow the possibility of arbitrary
integer coefficients a, and some intervals prescribed to
be specific numbers that add up to b,

alx=b.
For inequalities, we have

a’x > b,

but these are converted to equalities by introducing a
slack variable x” and constraining x" > 0 :

HAHR



Here, most A coefficients are +1, except the sum-even
slack variables have coefficient 2. Thus, A is not to-
tally unimodular, but it is close, and this special struc-
ture is helpful when performing Gaussian elimination
and other steps.

For ITA, we choose the objective f(x, g) to be the lex-
icographic max vector R(x, g), where R is the ratio be-
tween the assigned intervals and the goals. Slack vari-
ables have no goal and do not contribute to the objec-
tive. Recall lex min-max means we minimize the max-
imum ratio amongst all edges. Then, we conceptually
ignore this worst edge and minimize the maximum ratio
amongst all remaining edges, etc. We define

x/g=1 ifx>g
R=1g/x>1 ifg>x>0 3)
10002 — x)R(1,g) ifx<0

Note R(x,g) > 1 with R(g,g) = 1 for integer g. If
the bounds in eq. (2) are not satisfied, we may measure
their signed distance away from being satisfied by

I-x>0 ifx<lI
B=1{0 ifl<x<u )

u—-x<0 ifx>u

The sign of B indicates whether incrementing or decre-
menting improves the solution. We use |B| as an objec-
tive when trying to improve variables to make them in
bounds, and R afterwards.

Discussion. R in eq. (3) has a unique minimum at | g|
or [g], except for g = /(k + 1)k for integer k, in which
case R(k) = R(k + 1) = +/(k+ 1)/k. If a variable has a
goal we require it to be positive, and suggest 10 > g >
107 for numerical stability. If the user requests a mesh
size larger than the length of a curve, the floating point
goal for that curve is less than 1. Our implementation
represents “no goal” internally with g = 0. For variables
without goals, we define R = 0, depending on context.
The last case in eq. (3) ensures that R(0,g) > R(1,g)
and R(x — 1,8) > R(x, g) for integer x < 0. Defining R
for x < 0 is a numerical safety measure for unexpected
problem instances, since in the context of CUBIT all
x with a goal also have a lower bound of 1, and until
bounds are satisfied R is only relevant as a priority tie-
breaker. Intermediate solutions to Ax = b may have
x < 0, but the final solution does not.

3. Solution Method

Overall method. See also section 7.

o Define integer ideal values for variables.

— Interval variables: close to goals.

— Dummy variables: a value that satisfies (or
nearly satisfies) their constraint given interval
variables at ideal values.

o First-phase, mapping-phase. Ignore sum-even con-
straints.
— Separate into independent subproblems.
— Solve each subproblem using the core below.
o Update ideal values for variables.
— The ideal value of a variable that was in a
first-phase problem is its first-phase solution.
— Sum-even and other new dummy variables
are recomputed from these new ideal values.

e Second-phase, even-phase. Solve full problem.

— Separate and solve as in the first-phase, using
the core with slight variations.

e Re-solve. If new constraints arise (e.g. submap
overlaps need to be eliminated):

— Augment A with additional constraints,
breaking Ax = b.
— Add slack variables y to re-satisfy Ax = b.

— Increment x to satisfy y = 0 and improve
f(x, g) using the core, skipping its first stage.

The Core.
e Solve integer Ax = b for x.
— Try Reduce Row Echelon Form (RREF) as a

heuristic; see section 3.2.

— Use Hermite Normal Form (HNF) if needed;
see section 3.3.

— Assign ideal values to independent variables,
in both cases.

o Satisfy bounds [ < x < u.

— Find integer vectors N spanning the nullspace
of A using RREF.

— Iteratively increment x by adding integer
combinations of nullspace vectors.

e Improve ratios f(x, g).

— Via the same methods as “satisfy bounds.”



Solving Ax = b is described in section 3.5. We try to
solve Ax = b using RREF first, because we tend to get
a final solution that is closer to the goals.

When we increment x, we select the worst-quality x;
as the target for improvement. For satisfying bounds,
quality is defined by how far out-of-bounds the variable
is: |B| from eq. (4). For improving f(x, g), quality is
defined by R, the ratio of x; to g; from eq. (3). We track
the sorted quality of x using a form of priority queue
that supports fast replacement.

We accept only strict improvements: post-increment
the quality for all modified x; must be strictly better
than the quality of x; pre-increment. If incrementing
x by some nullspace row makes x; worse than that,
then we say x; blocks improving x;. The run-time ef-
ficiency of incrementing depends heavily on tracking
the blocking variables, and identifying when no further
improvement is likely; see section 5.1. We use Gaus-
sian elimination to find nullspace vectors without those
variables, or at least with variable coefficients with non-
blocking signs. The success rate of incrementing de-
pends strongly on the initial nullspace vectors, which
are determined by the choice of pivots during the RREF
process. Solving constraints Ax = b uses one pivot
criteria in the mapping-phase, and a second criteria in
the even-phase. Satisfying bounds and improving ratios
uses a third pivot criteria; see section 4.

3.1. Improvements Since [8]

To guide readers familiar with the prior version [8],
here we summarize the algorithmic improvements since
then; and section 8.5 summarizes their effect on solution
quality. Other readers may skip to section 3.2.

e Augmented nullspace. For the second pass, the
nullspace is augmented by short and local vectors.
These are the first-pass equality-only nullspace
vectors extended to include the sum-even vari-
ables. For huge coarse models, these extra search
directions can enable finding a solution that is in-
bounds, where otherwise the algorithm would fail;
see section 8.4.

e HNF goals. The Hermite Normal Form (HNF)
solution to Ax = b sets the free-variable values
to their compound ideal values; see section 3.5.3.
This often make the initial solution closer to the
optimal solution, which can improve the final so-
lution found.

e Best improvement. The best vector is now used,
instead of the first one, when satisfying bounds and

improving the solution. Amongst all the vectors
that improve the primary variable, the “best” is the
one that improves a secondary variable that is far-
thest from its bounds or goals, or degrades a sec-
ondary variable closest to its bounds or goals.

e Goal-based pivots. We select a variable with the
largest goal to pivot on in RREF in the even-phase;
see section 4.1. Thus the independent variables
tend to have small goals, which is desirable be-
cause the solution quality is more sensitive to them,
and we can keep them at their mapping-phase solu-
tion values. The prior selection rule avoided fill-in.

e Goal-based rounding. When RREF has no inte-
ger solution, we round fractional values in hopes of
finding integers close to a good solution; see sec-
tion 3.5.2. We round in the direction that tends to
be most helpful to the bounds and goals. Previ-
ously, such fractions were always rounded up.

o Improve currently-worst. The quality of the
current solution value, f(x,g), instead of what it
would be after incrementing it, f(x = 1, g), is used
for the priority queue that selects the next variable
X; to improve towards its goal; see section 6.

e Circumventing blockers in even-phase. Sec-
tion 8.4.1 outlines two strategies for combining
nullspace rows in the even-phase to handle block-
ing variables. Instead of doing Gaussian elim-
ination, flipping signs of blocking variable is
achieved by adding a nullspace row with sum-even
variables and a 2-coefficient for the blockers. For
future work, we also describe how we might select
pairs of such rows systematically.

3.2. Reduced Row Echelon Form (RREF)

RREF is a generalization of diagonalization of square
matrices to matrices with extra columns and redun-
dant rows [29]. It is what you get when you perform
Gaussian elimination on a matrix with more columns
than rows. If you are restricted to integer operations,
then Gaussian elimination is the right approach to solve
Ax = 0, because floating point alternatives can lead
to errors [30]. For a full explanation of getting the
nullspace from RREF, and some easy-to-follow exam-
ples, see Mitra [31]. We summarize the operations here,
and provide a small concrete example at the beginning
of section 3.4.

RREF(A) =M = [D }8] andAx=0o Mx=0



We allow swapping columns (and the corresponding
edge variables) so the upper left of the RREF matrix, D,
is diagonal. Note F' is a matrix and the 0’s are matrices.
We discard the zero rows; they do not matter.

We can now “read off” the nullspace vectors from the
columns of F, with minimal computation as follows.
Let L = lem(D) be the least common multiple of the
entries of D. Each column of F contributes a nullspace
vector. For each column F'; of F', we multiply each entry
Fj; by —L/D;;. We append the elementary unit column
vector e;, where the length of e; is chosen so that the re-
sultant vector has same length as the number of columns
of A. The transpose is a nullspace row vector.

If the matrix is totally unimodular, then we can al-
ways have D be the identity. This is not the case for us,
e.g., the sum-even dummy variables have coefficient 2.
However, most of our coefficients are +1, so heuristics
for selecting the pivot entry can often get us something
close to the identity. This helps us find nullspace vectors
with small coefficients, by keeping L small, and avoids
some numerical issues with very large integers.

3.3. Hermite Normal Form (HNF)

We use Hermite Normal Form (HNF) to solve integer
Ax = b; see Kopparty [32] for a more complete descrip-
tion. We use the column-form of HNF. Readers may
be familiar with using Gaussian elimination and RREF
to solve floating point Ax = b; see section 3.4 for an
explanation of why this is insufficient when restricted to
integer operations. (HNF also arises in integer program-
ming: do floating point computations, then use HNF for
integer cuts to attempt to find a nearby integer solution
[331)

An interpretation of solving Ax = b is finding some
integer linear combination of the columns of A that add
up to b. HNF is basically Gaussian elimination on the
column space of A, rather than its row space, so that the
transformed system of equations is easy to solve. The
operations preserve the column space of A, but trans-
form the variables x. Finding HNF(A) means finding H
and U such that

H=AU

where U is unimodular, square invertible with deter-
minant +1; and H is lower triangular with any zero
columns on its right, and its diagonal entries are larger
than other entries in the same row, and all entries non-
negative.

If we solve Hc = b for ¢, then x = Uc is a solution to
Ax = b, because

Ax=AUc=Hc=b.

Moreover, solving Hc = b is easy by back-substitution
because H is triangular, and the other properties ensure
¢ will be integer.

We compute H and U as follows. Since RREF(A)x =
Ax, we start with RREF(A) instead of A, and discard
any zero rows so we are dealing with matrices of full
rank. We initialize H = RREF(A) and U = I and then
perform matrix operations to achieve the necessary H
properties. All the while we preserve H = AU: when-
ever we perform a column operation on H, we perform
the corresponding operation on U.

We iterate over the columns j of H and perform the
following three steps.

1. For each remaining column k > j of H, we ensure
the uppermost non-zero coefficient is positive; if
not already positive, we multiply the column of H
(and U) by -1.

2. Forrow j, we get one non-zero in columns k > j by
adding integer multiples of columns together. We
find a non-zero as small as possible in a brute force
way: find the column with the smallest-magnitude
non-zero, then subtract it from (or add it to) all
other columns to make them have smaller magni-
tude. We stop when no more reduction is possible
(because they are the same or zero). We then swap
the smallest column into j. (Again, all operations
are also done on U.)

3. We ensure off-diagonal entries are non-negative
and smaller than the diagonal. If any off-diagonal
is too big, we add a multiple of the diagonal entry’s
column to the off-diagonal column to reduce it; see
“Algorithm: ReduceOffDiagonal” [32] for details.

At the end of the iterations, H has the necessary prop-
erties. The steps that reduce coefficients are done both
to ensure c is integer, and for numerical reasons along
the way. They keep integer values from blowing up and
overflowing the size of the integer representation on the
computer. Since our sparse-matrix data-structures are
designed to be efficient for row operations, we imple-
ment all of the above using row operations on the trans-
pose, instead of column operations.

3.4. Discussion: Why RREF and HNF?

RREF Example. We begin with a simple concrete ex-
ample of RREF. Consider four faces of a cube meeting
curve to curve, and we wish to map each face. Inter-
vals on the two curves on opposing sides of a face must
be equal. Each face has one constraint that is an inde-
pendent subproblem, and there is one subproblem that
couples the other constraint for each face. In it there are
four curve variables, and four equality constraints. Thus



1 -1
1 -1
A= 1 -1 ©)
1 -1
which RREF reduces to

1 -1
1 -1
M= 1 -1
00 0 O

RREF reduced the constraints to a minimal indepen-
dent set. Creating (discovering) rows of zeros at the
bottom of the matrix identifies the presence of redun-
dant constraints. There is one, because the problem is
the same whether the four cube faces form a cycle, or
are cut into a chain.

From M, we have D = I3 and F = [-1 -1 - 1],
Since D has one fewer column than M, there is one in-
dependent variable, in the fourth column of M. Let us
assume we did not do any column swaps so it is still xj3.
Assigning x3 to its ideal value, back substitution using
the identity assigns xg ;> the same value.

RREF allows the generation of vectors spanning the
nullspace of A as follows. From M, we have D = I3
so L = lem(D) = 1. Observe F = [-1 -1 -1
has only one column, so there is only one nullspace
vector. The number of rows of F is one less than
the number of columns of A, so the elementary col-
umn vector we need to append to the column of F has
length one: ey = [1]. Thus the one nullspace vector is
[=FooL/Doo,—Fo,1L/D11,—Fo2L/Ds3,e0] = [1111].
This makes sense, because whatever the initial solution,
we can always add or subtract one interval from all of
the curves and still map the sides of the cube.

HNF Example. Sometimes RREF is insufficient to
solve Ax = b. As an example, consider the fictional
RREF system

2 1 2 212 7
4 2 3 1
1 21 2 |l ©
3 2 —4 2 5

There is no integer solution using just the first 4 col-
umn variables, because 2 does not divide 7, and 4 is
greater than 1, etc. But, there are many degrees of free-
dom provided by the five variables whose coefficients
are not diagonalized. They enrich the integer column
space of A, filling in the lattice of possible solutions.

Is it possible to chose some combination of values for
them so that the system is solvable? This is the ques-
tion that HNF answers for us. HNF makes the diago-
nal terms as small as possible, which allows us to visit
the necessary integer lattice points to solve Ax = b.
Our RREF implementation has heuristics which choose
small coefficients for the diagonal entries, but they are
not guaranteed to be 1. In our fictitious example, for the
first row, simply swapping the 1st and 5th columns and
negating provides a 1 on the diagonal. For the second
row, subtracting the last column from the second pro-
vides a 1 on the diagonal. In general, we get the gcd
(greatest common divisor) of the coefficients of each
row on the diagonal; in this example they are all one.
HNF for eq. (6) is

1 0 0
1 0 0

H= 10 0
10 0

Now, the first four variables (columns) are in a trans-
formed space. Each is a complicated linear combina-
tion of the original variables (columns), as captured by
U. When we solve Hc = b, then transform back to
the original space with x = Uc, the original variables
Xx may not be so sparse. What about the extra ¢ vari-
ables, columns 5-9? We can set them to any values we
like. They represent the degrees of freedom inherent
in A being short-and-long rectangular. Going back to
our 4-sides-of-a-cube example, eq. (5), there is one ex-
tra variable, c4, which represents the constant we can
add to each of the four curves and still be feasible. That
is, U contains nullspace vectors which are activated by
non-zero values of the extra ¢ variables.

3.5. Solve Integer Ax = b

We attempt to find a solution to Ax = b using back-
substitution in the RREF we found. If this succeeds,
then we have saved the expense of computing HNF, and
usually find a better solution than HNF yields. If we are
stuck with something resembling eq. (6), then RREF
will not succeed and we must do back-substitution on
HNF. To compute HNF, we want to first compute RREF
anyway, because RREF identifies the rank of A, and
allows us to use methods for generating HNF that de-
pend on the matrix being full rank. That is, there is little
wasted computation if solving Ax = b using RREF fails.

3.5.1. Ideal Values

To take advantage of the extra degrees of freedom
in RREF and HNF, we set the independent variables x



equal to their ideal values g’. In the first phase, an ideal
value follows from the goal: the integer value that min-
imizes R(x, g) from eq. (3) subject to satisfying bounds.
In the second phase, an ideal value is the first-phase so-
lution value: these satisfy constraints and were chosen
to provided low values of R globally.

When doing back substitution with RREF, the depen-
dent variables x are derived from the ideal values of the
independent variables, and may be far from their own
ideal values or bounds. For their use in HNF, see sec-
tion 3.5.3.

In detail, the following procedure calculates g’. An
edge variable starts with its goal. If a goal is fractional,
we round it to the integer that minimizes R. Specifically,
leth = [gland £ = |g]. If g > Vhthen g’ = h, else
g =C

For tied variables, section 7.2, an x is associated with
multiple goals {g;}, so finding the value of x that mini-
mizes the maximum R is slightly more involved. We let
g" = max{g;} and g, = min{g;}. Then m = \/gh_gf and
h=[mland € = lm). X m > Vhethen g = h, else
g ="

If g’ is below x’s lower bound, we adjust g’ to its
lower bound. If it is above its upper bound, we set it
to its upper bound. For tied variables, the limits are the
maximum lower bound and minimum upper bound.

For a dummy variable, its ideal value g’ is the one that
satisfies its row constraint when the edge variables are
at their ideal values. If the dummy variable coefficient
is not 1 then sometimes there is no integer value that
satisfies the row constraint: e.g., if the coefficient is 2
and the row sum is odd. In this case its ideal value is
rounded to an integer.

3.5.2. Rounding Direction

In an earlier version of this work [8], these fractional
values were always rounded up to the next larger in-
teger. This was usually a good choice, but for coarse
meshes (goals near 1) this sometimes led to worse so-
lutions. Our new heuristic rule considers bounds and
goals. We round towards getting the dummy variable in
bounds. If it stays in bounds regardless, then we con-
sider the bounds and goals of the other variables in its
row.

The motivation is to consider how rounding the
dummy variable requires the edge variables to change,
whether it would move them in aggregate closer to their
goals or farther away. For example, for a sum-even vari-
able, if the edge interval sum is odd, then rounding the
dummy variable up will cause one of the edge variables
to increment. Rounding down causes a decrement.

This is the minimum change required. We do not
know if other constraint rows will produce a more com-
plicated change, such as two variables incrementing and
one decrementing. Moreover, we know which variables
are dependent and will change immediately, but perhaps
these changes can successfully be sent to more favorable
variables during the step that adds nullspace vectors.

Hence we consider whether incrementing or decre-
menting is more favorable on average over all the row
variables. For each variable we compute the signed de-
viation from its bounds, or goals if it is in bounds. De-
pending on the signs of the coefficients, the variable is
correlated or anti-correlated with the sum-even one; for
anti-correlated variables we flip the sign of the devia-
tion. We sum these signed deviations. This is a mea-
sure of how far the edge variables are in aggregate from
the floating point values that minimize R. If the sum
is greater than O, then the sum of the variables is be-
low the sum of their goals, and a good guess is to round
in the direction that forces an increment. Empirically,
rounding up more often than this works best: specifi-
cally, rounding up when the sum is greater than -3.

3.5.3. Ideal Values Used in HNF

The ideal values were used for RREF but not HNF in
an earlier version of this work [8]. Specifically, when
solving Ax = b via HNF, each extra ¢ variable was set
to “1” before back substitution. Thus the solution was
not influenced by the goals or bounds on x, and could
be very far from both. The fix for this follows.

For HNF, some values of ¢ are constrained by Hc = b,
but others may be independent. We would like to set the
independent variables so that x are equal to g’. Since
x = Uc, we assign independent ¢ variablestoc = U~'g’.
The additional cost is that we must compute U~!, since
otherwise HNF has no need for an explicit U~!. We
accumulate U~! by applying the corresponding inverse
operation when accumulating U. (Recall in the imple-
mentation we actually accumulate U7 since row oper-
ations are more efficient than column operations.) We
initialize U = U~! = I. The inverse of negating a col-
umn of U is negating a row of U~!. The inverse of swap-
ping columns of U is swapping the corresponding rows
of U~!. The inverse of subtracting a multiple of a col-
umn, is swapping indices and adding that multiple of a
row. Le., using Matlab notation U[:, c] to denote col-
umn c¢ of U, the inverse of U[:,c] = U[:,c] — mU[:,d]
isUd,:1=U"[d,:]+mU [c,:].



4. Pivot Selection Heuristics

When forming the RREF we have the freedom to
choose which variable to pivor on (a.k.a. reduce, elim-
inate from all other rows) at each Gaussian elimina-
tion step. We have two different selection criteria, one
for the constraint phase, and one for the bounds and
goals phases of the core. For satisfying constraints, we
want an RREF that allows back-substitution. For satis-
fying bounds and goals, the choice of pivot affects the
nullspace matrix and the success rate of the subsequent
increment attempts. Ideally, we would like nullspace
vectors that allow us to increment the out-of-bound vari-
ables while keeping other variables in bounds, and gen-
erally prefer sparse vectors.

For each, we select RREF pivots using a hierarchy
of criteria. By “hierarchy,” we mean we pick the vari-
able with the best primary criteria value. We use the
secondary criteria to break ties. We iteratively pick the
“best” remaining variable to pivot on at each step. Note
that pivoting on a variable changes the matrix and may
change the desirability of other variables in the pivot’s
rows, so their priorities must be updated. If no desir-
able variables are left, we pivot on an arbitrary variable,
using the row in which its coefficient is smallest.

4.1. Pivots For Satisfying Constraints

We desire a RREF system that can be solved by back-
substitution, where HNF is not needed.

e We select variables with a coeflicient of 1 in some
row.

If any such variable is in only one row, it is already in
RREF form and pivoting on it requires no work. For
variables in more than one row, we choose amongst
them in two different ways.

In the mapping phase, we use the following criteria:

1. The primary criteria is the number of rows it ap-
pears it; fewer is better.

2. The secondary criteria is we find the ser of vari-
ables in all of its rows and prefer smaller sets. (A
variable in more than one row just counts once.)

3. The tertiary criteria is we prefer variables with no
goal, followed by variables with a larger goal. Note
sum-even variables have an initial coefficient of 2
and are thus rarely selected even though they have
no goal. But slack variables can be selected here.

In the sum-even phase, we use the following criteria:

1. The primary criteria is we prefer variables with no
goal followed by variables with a larger goal.

2. The secondary criteria is we prefer variables with
larger f(x, g), where x is the mapping-phase solu-
tion, its ideal value g’.

o If the variables with a 1 coefficient are exhausted,
we select variables based on the ged of its coeffi-
cients. The motivation is that if the ged is 1, then it
is possible to combine rows to get a leading coeffi-
cient of 1.

Selecting 1-coefficient variables helps us find a RREF
system that yields an integer solution more often. Recall
that if we do not find an integer solution, then we resort
to HNF, with the RREF as the starting matrix.

In the mapping phase, choosing a variable in the
fewest rows is desirable because it reduces fill-in, and
leads to sparser nullspaces. In the sum-even phase,
choosing a variable with a large goal is desirable be-
cause chosen variables are dependent, and when the
goal is larger the solution quality is less sensitive to the
number of intervals. This leaves the small-goal vari-
ables as the independent ones, who can retain their ideal
mapping-phase solution values. Both tend to lead to a
better-quality final solution.

4.2. Pivots For Bounds and Goals

We seek to deter fill-in and keep rows short, i.e.
few non-zeros. We dislike rows with many sum-even
dummy variables, since these couple multiple paving
surfaces. We use the following pivot selection criteria.

1. The primary criteria is the number of rows a vari-
able appears in; fewer is better. We pick all vari-
ables that are only in 1 row, including inequality
slack variables. When all remaining variables are
in multiple rows, then if a row has a sum-even
dummy variable we penalize it as if it were three
TOWS.

2. As a secondary criteria, we prefer variables with a
small coefficient magnitude, ideally 1.

3. As a tertiary criteria, we prefer variables with no
goals, followed by variables with larger goals.

4.2.1. Small Subspaces

If we are unable to get a variable in bounds, then we
have no useful solution to give the user. So, if the opti-
mization gets stuck in this situation, it is worth the com-
putational effort to try harder. We attempt to find a small
submatrix containing that variable that gives us sparse
and local nullspace vectors. We augment the nullspace
with these vectors to increase the chances of being able
to improve the solution.



To ensure the submatrix’s nullspace is contained
in the matrix’s nullspace, we must select complete
columns from the matrix, but have the freedom to not
select full rows. We initialize with the column of the
out-of-bounds variable. All other variables in the rows
of the selected columns are candidates. If some such
row has only one selected variable, then that variable is
not in a nullspace vector. So we first select columns to
ensure every such row has at least two variables. The
primary criteria is to prefer columns that add fewer new
rows. The secondary criteria is just the total number of
rows. Once every row has two variables, we continue
adding more columns according to the same primary
and secondary criteria. We stop when we have more
columns than rows and are able to find a non-trivial
nullspace containing the stuck variable.

5. Solution in Bounds

Once we have solved Ax = b, and have found vec-
tors spanning the nullspace N using the criteria for the
RREEF pivots in section 4, we are ready to increment x
with (combinations of) nullspace vectors in an attempt
to obtain [ < x < u. We have a priority queue with re-
placement for selecting which variable x; to improve.
The primary criteria is how far a variable is below its
lower bound (or above its upper bound): eq. (4). The
secondary criteria is its goal; we improve variables with
larger goals first.

Once we have selected x; for improvement, we check
whether any existing nullspace row gives strict improve-
ment with respect to its variables bounds. ILe., the new
values of all changed x; must be closer to in-bounds
than how far the old value of x; was out-of-bounds. Re-
quiring strict improvement prevents infinite loops, and
often prevents stuck cases that arise from shifting the
limiting variable from x; to some other variable that is
difficult to improve.

If possible, we pick a row which changes variables
in unbounded directions. E.g., all non-zeros row coef-
ficients are positive and correspond to x; with no upper
bound. Otherwise, we accept a row that gives strict im-
provement with respect to how far variables are out of
bounds. In the current version we pick the best row in
terms of bounds, and if several rows tie, we pick the best
one in terms of their goals. In a prior version we picked
the first acceptable row we encountered.

Once we have a nullspace vector n that provides strict
improvement, we continue to increment x by »n as long
as it provides a strict improvement over the prior incre-
ment’s values. This is stronger than requiring it to be
a strict improvement over the original x. Without this

stronger requirement we tend to go from one x; far from
its bounds, to many x; just outside their bounds, which
require many subsequent iterations to fix.

If no nullspace vector provides strict improvement, it
is because they are blocked by variables that would get
worse. We search for some combination of nullspace
vectors that provide improvement and are not blocked;
see section 5.1. If we find a new vector that provides
strict improvement, we save it by appending it to the
nullspace, so we can check it in future iterations for
other x;. If no vector provides improvement, the vari-
able is stuck, and we attempt to improve the remaining
variables.

At the end this process, if some variable is stuck out
of bounds, we attempt to find some small nullspace vec-
tors containing it and try to get it in bounds as before;
see section 4.2.1.

5.1. Blocking Variables

When checking incrementing by existing nullspace
vectors, whenever a changed variable x; would be as
bad or worse than x;, we save it in the set of blocking
variables K.

We copy the original nullspace once, at the very be-
ginning of the satisfy-bounds stage. We perform Gaus-
sian elimination (partial RREF) on this copy and pivot
on the blocking variables, so they each appear in only
one row and are removed from all other rows. Among
these other rows, the ones containing x; are our candi-
dates for improving x;. We continue by checking these
candidates to see if they provide strict improvement. If
not, then we accumulate more blocking variables and
eliminate them, until we either find an improvement
vector or no further elimination is possible.

In future iterations, when attempting to improve Xx;
farther, or improving some other x;.;, we continue to
work with the same copy of the nullspace that we have
already eliminated some blocking variables from; this
is essential for efficiency. When we successfully incre-
ment x we mark any improved variable as no longer be-
ing a blocker, and unmark its row and column as a pivot
so future Gaussian elimination steps may undiagonalize
it; this is essential for robustness.

Further, we save the sign of the blocking variable in-
crement. E.g., if a blocking variable is below its lower
bound, then we cannot decrease it, but increasing it
is acceptable, indeed desirable. Thus when perform-
ing Gaussian elimination we do not need to eliminate
a blocking variable k with coefficient ny if it has a fa-
vorable sign relative to the sign of n;, and again may
undiagonalize x;. This also improves robustness.



6. Optimization Towards Goals

The procedure to improve variables towards their
goals is essentially the same as the procedure to improve
them so they lie within bounds. The differences are the
following.

We define strict improvement in terms of the value
of f(x,g) = R(x, g) from eq. (3), and all variables must
continue to stay in bounds, i.e. B = 0 in eq. (4). We do
not check for unbounded improvement directions, since
goals are finite.

We use a priority queue for selecting the next variable
X; to improve, choosing the one with the largest f(x, g)
value, except if it is already optimal. It is optimal if it
is equal to its goal, or nearly equal to its goal and incre-
menting or decrementing it makes f worse. We say that
such variables “self block.” Sometimes, we are unable
to increment a variable that is farther from its goal be-
cause all of its non-zero coefficients are large (not 1) in
the nullspace vectors. Reducing the coefficient may be
sufficient to enable improvement. We do not search for
small subspaces; because it is expected that the global
constraints may prevent some variables from achieving
their optimal values and searching small subspaces for
these would waste time.

“Incremental interval assignment for mesh scaling”
[28] gets better quality solutions by selecting the next
variable x; to improve based on what the quality of the
solution would be after it was incremented, f(x + 1, g),
rather than its current quality, f(x, g). Because of that,
initially ITA also used f(x + 1,g), but we have since
determined empirically that f(x, g) gives higher quality
solutions.

7. Other Efficiencies

The following efficiencies reduce the overall runtime
because runtime is superlinear in problem size. We di-
vide the problem into smaller ones, and remove redun-
dant variables when possible. We solve the problem in
two passes, first ignoring sum-even constraints, and sec-
ond including all constraints. The first pass allows us to
start the second pass closer to optimality. This improves
runtime because the first pass contains more-but-smaller
problems, and the second fewer-but-larger problems.

7.1. Independent Subproblems

It is straightforward to partition the matrix into inde-
pendent rows and columns. We treat variables as graph
nodes, and the non-zero entries in a row as edges be-
tween the nodes. Then a simple (depth first) search over
the graph will identify connected components. In the

first pass, it is key to ignore rows that contain a sum-
even dummy variable and not include the corresponding
graph edges. This approach is essentially the same as in
BBIA [17].

7.2. Tied Variables

We search for rows of the form x; — x; = 0 and
then mark x; and x; as tied because they must have
the same value. Chains of the form x; — x, = 0,
xp—x3 = 0, x3 —x4 = 0,... form sets of tied vari-
ables. We replace each set with just one variable, x;,
in the matrix. The lower bound of x, is the maximum
lower bound of its constituents, and its upper bound
the minimum upper bound. We save the maximum
gn and minimum g; goal of the constituents, and use
Sf(xi, g) = max(f(x:, gn), f(x;, g1)) when optimizing to-
wards the goals.

It would be possible to reduce the number of variables
farther by considering other types of constraints, such
as when the b coefficient is not zero. However, in our
context, searching for just this simple equality provided
a large runtime benefit and it is unclear whether it would
be worth the additional complexity to search for other
types of constraints.

8. Applications and Experiments

ITA is in production use in CUBIT. We demonstrate
that ITA succeeds on an academic challenge problem
called a “radish.” We study the runtime scaling of IIA,
and highlight some runtime and robustness challenges
with extreme-scale models.

8.1. CUBIT Production Use

BBIA was implemented in CUBIT in 1996-1997,
and was run for every CUBIT quad and hex mesh, in-
cluding autoscheme selection, from that time forward.
ITA replaced BBIA as the default method in CUBIT at
the beginning of year 2020. IIA is in production use
by thousands of CUBIT users. IIA succeeds on ev-
ery problem within CUBIT’s extensive regression test
suite, with hundreds of models and thousands of mesh-
ing problems. Users provided many of the models and
meshing scripts when they encountered problems with
earlier versions of CUBIT. On these realistic models,
ITIA performs well.

ITA often has slightly different solutions than BBIA,
because of its slightly different and nonlinear objective,
and the method often succeeds in coming closer to the
optimal solution. In some cases in the test suite, inter-
vals or sizes were manually adjusted to get good quality



meshes. This arose from two reasons. First, the geome-
try of the meshing problem is not explicitly represented
within the IA abstraction, so some geometric require-
ments are not captured by the IA constraints and goals.
Second, certain research methods such as multi-sweep
are fragile, and their success is unpredictable depending
on the exact numbers of intervals in surface meshes and
how the projection of one quad mesh overlays another.

For sweeping models, usually there are a handful of
paving surfaces forming the source surfaces, bounded
by submap surfaces forming the sides of the sweep.
There are many such models in the CUBIT test suite, in-
cluding assemblies of interlocking swept volumes; see
fig. 7 for an example. The test suite also contains many
surface-meshing problems; see fig. 6 for an example.

An open problem is modifying eq. (2) to capture gen-
eral mesh quality criteria, such as element stretch or
skew. Concurrent with IIA development, we developed
some geometric reasoning algorithms in CUBIT to add
interval lower bounds for small surfaces with curved
curves or sharp angles. Without these, paving some-
times created poor meshes with flat or reflex angles.
These new constraints were easy to pass to IIA, but up-
dating the legacy BBIA solver to support them was pro-
hibitive; see fig. 8.

8.2. Radishes

We demonstrate that IIA has superior robustness and
solution quality for a family of challenge problems
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Figure 6: IIA with quad mesh paving 181 surfaces with the “skeleton”
sizing from the open CUBIT regression tests.

called “radishes.” They are challenging for floating
point methods because the space of integer solutions is
sparse.

By radish we mean a mapped surface where opposite
sides have different numbers of curves, and all curves
on a single side must have the same number of intervals.
The term “radish” is a nickname for a particular assem-
bly where the global geometry and meshing schemes
give rise to this type of constraint; see fig. 3. While it is
easy to see how the “2-1 radish” of fig. 3 occurs in real-
world assemblies, we can extend this concept to create a
series of academic problems that are increasingly chal-
lenging, albeit increasingly unlikely to be encountered
in the real world. The “3-2 radish” in fig. 9 has one
side with three curves, and its opposite side has two,
and again all the curves on a given side have to have the
same number of intervals. The only solutions are when
the number of intervals for each side is an integer mul-
tiple of 6. This is because the first side’s intervals must
be divisible by 2, and the opposite side’s intervals must
be divisible by 3, and the least common multiple (Icm)
of 3 and 2 is 6. Feasible solutions are pairs {3, 2}k for
integer k, i.e. {3,2},{6,4},{9,6},{12,8},...

It is easy for IIA to find a feasible solution for any
radish, because HNF finds an integer solution directly,
and the nullspace contains vector {r, s} for an r-s radish,
which is an unbounded direction for making the solu-
tion positive. Radishes may be challenging for floating
point methods, because the feasible integer solutions are
a sparse subset of the integer lattice, and may be far
from the relaxed solution.

3-2 Radish. See figs. 9 and 10. If the mesh size is se-
lected so that the goal for each curve is g = 8.5, the
ideal intervals for the side with three curves is 25.5, and
the ideal intervals for the side with two curves is 17.0.
So, for floating point methods, some compromise be-
tween 25.5 and 17 will be the relaxed solution for each
side. Using minmax R as our objective, the optimal
intervals for each side are g V6 ~ 20.82. Hence two
curves will have x; = 10.41 and the opposite three will
have x; = 6.94. Good integer solutions are {9, 6} and
{12, 8}. Both are farther than distance 1 away from the
relaxed solution {10.41, 6.94}, but still close enough for
branch and bound methods to work well. For the 30-20
radish, pairs {3, 2}k are also feasible solutions, so this is
also easy for BBIA. From fig. 10, we see that both BBIA
and ITA produce reasonable solutions, with BBIA being
sub-optimal and coarser for some borderline sizes.

7-5 Radish. For the 7-5 radish, the solutions are {7, 5}k;
see fig. 9c. For very coarse sizes, when the initial float-



Figure 7: IIA with hex mesh sweeping 56 interlocking volumes, exercising auto scheme selection, sweeping constraints and verification. The
problem is made more constrained for IA because some curves’ intervals are user-prescribed and cannot change. Front and back view. From the

open CUBIT regression tests.

Figure 8: IIA supports interval lower bounds based on geometric rea-
soning. Mesh quads are linear and solid color; nonlinear CAD curves
appear outside the elements. CAD vertices are surrounded by a small
colored box. From the open CUBIT regression tests.

ing point solution is < {7, 5}0.5, BBIA fails because the
relaxed solution is too far from the nearest integer so-
lution; see fig. 11. BBIA has a search factor cutoff of
2 in one of its steps to avoid large runtimes for other
problems, especially infeasible ones.

79-74 Radish. Here 79 and 74 are relatively prime, so
the only solutions are {79,74}k. This model has the
same problems with coarse solutions as the 7-5 radish:
BBIA fails when the relaxed solution is < {79, 74}0.5.
Further, BBIA also fails for some intermediate sizes.
We speculate that failure is due to the sparsity of the
integer solutions and the heuristic bounds on BBIA’s
search distance, runtime, or both. The relaxed solution
is g{ V79/74, /74/79}. For example, for g = 100.1, we
have Xeelaxea = {103.4,96.9}, and BBIA finds neither

{79,74} nor {158, 148}, and returns “no solution” after
three seconds of runtime. For other goals where BBIA
does succeed, it takes at least 2 seconds. In contrast, IIA
takes microseconds. See fig. 12.

8.3. Runtime

We discuss runtime on “typical” problems, and in-
clude a scaling study to show the range of models for
which the method is practical. All problems were run
on a modest laptop, a MacBook Air, Early 2015, 2.2
GHz Intel Core i7, and 8 Gb memory.

IA runs at interactive speeds for today’s models and
runtime is insignificant. ITA runs in a fraction of a sec-
ond for test-suite models. Serial runtime is fast enough
that it is simply a non-issue. It takes CUBIT about 2—
3% longer to decide how to define the IA problem than it
takes to run the IIA solver. Other steps such as loading
the CAD model, performing geometric Booleans, ac-
tually generating the mesh, or even just displaying the
mesh graphics, take significantly longer.

IIA’s runtime is often linear in the output mesh size,
but unfortunately Gaussian elimination (for RREF and
HNF) runtime is cubic, so IIA runtime can be cubic in
the input assembly size. For typical model sizes, the
linear factor dominates.

Before we judge IIA too harshly for cubic asymp-
totic complexity, let us recall BBIA’s runtime is often
observably cubic in the input assembly size, and some-
times exponential, e.g. when the BB step has many al-
ternatives to consider. And, lest we shift our derision to
BBIA, let us recall that we are performing integer op-
timization, and for many integer optimization problems



(a) 3-2 radish, g =1

(b) IIA & BBIA x = (3,2}

7-5 radish
10 10

14

14 14
(c) 7-5 radish x = {14, 10}

(d) 3-2 radish, g = 9

(e) HA x = {12, 8}

(f) BBIA x = {9, 6}

Figure 9: Radish meshes for different goals and algorithms. Subfig. (a—b): The 3-2 radish in (a) has g = 1.0. Both IIA and BBIA produce the
solution x = {3,2} in (b). Subfig. (d—f): The 3-2 radish in (d) has g = 9.0. IIA produces x = {12, 8} in (¢) and BBIA produces x = {14, 10} in
(f). BBIA is worse. Subfig. (c): The 7-5 radish has one side with 7 curves and opposite side with 5, and feasible solutions {7, 5}k for any natural

number k.

sub-exponential complexity bounds are difficult to ob-
tain.

Our scaling challenge is the heat-sink mock-up in
fig. 13, where we purposely do not take shortcuts
to exploit the obvious symmetry. Many surfaces are
submapped, with many curves on each side. If two
long curves are constrained to have a fixed number of
intervals, say equal to the number of opposite curves
times 1.5, this forces the solver to decide which half of
the small opposite curves to give 2 intervals and which
half to give 1. All such solutions are symmetric and
equally desirable from an algebraic viewpoint. Hence,
BBIA can take a long time, 20 minutes. CUBIT with
ITA solves it 6000x faster, in a fraction of a second.

For the realistic models we considered, the ITA run-
time was not the bottleneck. As we shall see in the
next section, for the heat sink the majority of the inter-
val assignment time was actually spent in the overhead

of setting up and applying the solution, not in the IIA
solver itself! It is possible to construct extreme models
where the cubic runtime of Gaussian elimination dom-
inates the ITA runtime. The next section explores these
limits.

8.3.1. Scaling to Extreme Models

We scale the problem by doubling the heat sink model
size. In the “Fin” scaling, we copy the model along one
axis to create more fins, but each individual fin surface
remains the same. That is, we increase the number of
surfaces but not their complexity (except the one surface
on the underside). In the “Cren” scaling, we copy the
model on the other axis to create more crenellations per
fin surface: we increase the complexity of the crenel-
lated surfaces, but not how many there are. (The num-
ber of small trivial mapping surfaces on the top of the
crenellations does increase, but these are all removed
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Figure 10: 3-2 radish solution and quality for different goals. The so-
lution is k{2, 3}, e.g., the solution for g = 7.51is k = 3 and x = {6,9}
for both IIA and BBIA. For each constant-x IIA-solution interval,
the quality R is best toward the middle of the interval, and worst at
the ends, where the selected solution and the next k value are nearly
equally desirable. For many ranges of goals, the BBIA solution is
smaller than the ITA solution, and has worse quality. In exceptional
ranges the BBIA solution is larger, e.g, near g = 28.4, and also has
worse quality. The bottom “Resia-Rua” curve shows how much worse
the BBIA solution is than the IIA solution. The exception is a very
small, 0.05-neighborhood around g = 15.80 where the IIA solution is
slightly suboptimal and the BBIA solution is better.

by the “tied variables” step from section 7.2.) We also
study scaling the model in both ways at the same time:
“Both”.

In the first study we mesh the surfaces and volume
with submapping. The heat sink has 1266 curves and
424 surfaces. This leads to 2532 non-zeros in the con-
straint matrix A. Doubling the problem size in either
direction about doubles the number of non-zeros, al-
though in the Fin case we are adding equal rows and
columns, and in the Cren case we are adding more
columns than rows.

“CUBIT” is the time it takes CUBIT to set up the
IA problem and pass it to IIA, and, after it is solved,
check for submap parameter space overlaps and to apply
the solution to the model. “RREF” is the time it takes
to create all the RREFs during the course of the solve:
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Figure 11: 7-5 radish solution and quality for different goals. BBIA
fails for g < 2.5. When the BBIA and IIA solutions differ, the BBIA
solution is almost always of poorer quality. Here the exception is a
very small, 0.06-neighborhood around g = 8.44. But, in contrast to
the 3-2 radish, the BBIA solution is often /larger than the ITA solution.
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Figure 12: 79-74 radish solution and quality for different goals. BBIA
fails for g < 38.5, and for some intervals around where the optimal
solution transitions from & to k + 1. The BBIA solution is usually at
least as large as the IIA solution. The IIA solution is better than the
BBIA solution, except for a small neighborhood around g = 187.49.

for this problem, there are three, one for each of the
submap axes. There are no sum-even variables so no
RREFs are needed for that phase. In these examples
HNF was not needed, but its runtime would scale the
same as RREF’s, just with the trending in the number of



Figure 13: Heat sink mock-up. With the long curves constrained to
fixed intervals, BBIA takes 20 minutes to solve this problem, but CU-
BIT with ITA can solve it in 0.2 seconds. This is a 6000 speedup.
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Figure 14: Runtime scaling (seconds) for multiplying the heat sink by
creating more fins.

rows and columns swapped. “IIA solve” is the time that
ITA takes excluding “RREF.”

See Figures 14 to 16. The vertical axes are time
in seconds. The horizontal axes are the problem size
in multiples of the heat sink. Note the log-log scale.
A straight line indicates a constant polynomial scaling,
with the slope indicating the exponent of the polynomial
complexity. For example, the “CUBIT” time in fig. 14 is
roughly linear in problem size up until the largest mod-
els. “RREF” is cubic for fig. 14 and quadratic for fig. 15.
For each of Fin and Cren “IIA solve” is close to linear
up to about size 8 (20k non-zeros) and close to quadratic
above it.

“Both” Scaling. “RREF” and “TIA solve” performed
better when scaling “Both” compared to scaling either
one. It appears that for the same number of non-zeros,
performance is better if the rows and columns are bal-
anced and A is square, compared to tall and skinny or
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Figure 15: Runtime scaling (seconds) for multiplying the heat sink by
making the fins longer, with more crenellations.

[
N

4 8 16 32 64

16

Both More and Bigger Surfaces
Runtimevs. Problem Size

8

4

2

1

0.5
0.25
11A solve
0.125
0.0625
RREF

0.03125
0.015625
0.0078125

0.0039063

Figure 16: Runtime scaling (seconds) for multiplying the heat sink by
both creating more fins and making them longer.

short and wide.

Fin Scaling. For reasonable-size problems the runtime
of RREF is trivial. The crossover for Fin is about
30,000 non-zeros. Below this, performing the “opti-
mization” steps take longer: selecting linear combina-
tions of nullspace vectors for downhill improvement.
Above this, generating the initial nullspace via RREF
takes longer. While the runtime of RREF in the final
Fin case is large compared to the rest of IIA, it is still
dwarfed by the runtime of other meshing steps. For ex-
ample, doubling the geometry from the prior size takes



1.3x as long, and actually creating the mesh takes 11.5x
as long. Simply displaying the surface quads for the first
time takes 2.5% as long. This problem has 80k curves,
27k surfaces, and A has 161k non-zeros. We generate a
coarse mesh with 58k hexes.

8.3.2. Runtime Scaling Future Work

For IIA to scale well beyond 100,000 non-zeros, gen-
erating the RREF on the entire matrix must be avoided.
Alternatively, generating the entire RREF using implicit
numerical methods may also be possible, but comes
with the challenge of obtaining integer nullspace vec-
tors. Possible heuristics include manually dividing the
model into independent pieces, or ordering pieces so
that one piece of the model can be meshed before the
next piece. Perhaps one could construct only some of
the vectors in the nullspace, and these could be suffi-
cient for the optimization step.

The typical approach to deal with polynomial scal-
ing issues in linear algebra is to switch from an ex-
plicit discrete solver to an implicit floating point solver
which scales much better. The challenge in our set-
ting is that the whole approach is predicated on having
only integers in the nullspace. It may be possible to
use the floating point nullspace vectors to find nearby
integer nullspace vectors. Recall that we do not need
a nullspace basis; redundant vectors are useful and we
just need sufficient vectors to make progress.

One typical approach to deal with scaling issues in
optimization is to break the problem into subproblems
and solve each one. The subproblems are designed so
that their solutions are expected to be nearby to the so-
lution of the global problem. These nearby solutions are
used as a warm start to solving the original global prob-
lem, perhaps with heuristics to find a feasible solution
and not an optimal one. This is exactly IIA’s approach
to solving the mapping constraints first before the sum-
even variables are considered. It may be possible to use
this idea in another way.

A second typical approach in optimization to keep
problem size small is to only add some of the constraints
and solve the problem. Then check all of the constraints,
and if any are violated add them into the problem def-
inition. Then re-solve the updated problem, using the
prior solution as a warm start. This is what ITA already
does for submap overlap constraints. We could consider
extending this approach to other constraints, such as the
sum-even ones. In our context we would have the added
step of updating the nullspace based on the violated con-
straints.

8.4. Improvements for Sum-even Constraints

Performing the heat-sink scaling study with pave-
and-sweep, and also with all-paving surfaces, uncov-
ered a robustness issue. For large models or very coarse
mesh sizes, sometimes IA failed to find a solution in
bounds. All of the sum-even constraints are satisfied by
the HNF step, but not all of the intervals are positive
and not all of the sum-even variables are at least two.
There were two root causes. First, using a poor initial
value for the HNF c variables caused the initial solution
to Ax = b to be out of bounds: not all of the intervals
were positive and not all of the sum-even variables were
at least two. Second, the RREF nullspace computation
creates vectors with multiple sum-even variables with
coeflicients of opposite sign. This causes an accumu-
lation of blocking variables and the satisfy-bounds step
gave up. We fixed the first root cause and mitigated the
second; either was sufficient in our heat-sink tests.

These improve the satisfy-bounds step so that it no
longer gets stuck for large heat-sinks. One can observe
that for a curve shared by two paving surfaces, the vec-
tor [y, y» 2x] is in the nullspace, where y; is a sum-even
variable and x is the shared-curve variable. If the two
paving surfaces are connected by a chain of mapping or
submapping surfaces, vectors like this still exist, with
“2x” replaced by a nullspace vector we found during
the first pass when sum-even constraints were ignored.
RREF nullspace vectors such as these are now identified
and gathered in a second matrix N’. (For efficiency, any
vector that is in both N’ and N is removed from N’.)

Searching N’ and N. When checking existing
nullspace vectors, we search through the concatenation
of N’ and N. This occurs when satisfying bounds
and improving the solution, checking for existing
improvement directions. If no existing direction works,
then we do Gaussian elimination on a copy of N for the
blocking variables. We do not do Gaussian elimination
on N’, as this would be largely redundant.

Searching through just N’ is insufficient. In lim-
ited tests, we have observed that every vector of N’ is
spanned by integer combinations of vectors of N. How-
ever, the converse is not always true. Our pivot heuris-
tics for RREF on N produces nullspace vectors with
small coefficients, for example, some vectors contain
a sum-even variable but have edge variables with a 1-
coefficient, not a 2. In contrast, N’ vectors for a sum-
even variable always have a 2 coefficient for the edge
variables. Thus these small-coefficient N vectors are
not spanned by integer combinations of N’. Specifically,
they are spanned by fractional 1/2 multiples of N’ vec-



tors. Alternatively, 2 times such an N vector is spanned
by an integer combination of N’.

We experimented on a coarsely paved heat sink with
just 10 crenellations for each of its 32 fins. We paved
all surfaces with a requested mesh size four times larger
than the shortest edges. IIA now succeeds and takes less
time. Previously IIA failed to find a solution in bounds
after 81 seconds. Now, either the HNF or nullspace im-
provement enables IIA to find an in-bound solution suc-
cessfully. The total solution time when enabling just the
HNF improvement is 17 seconds. When augmenting the
nullspace it drops to 12 seconds.

8.4.1. Alternatives to Eliminating Blocking Variables

The blocking variable strategy, totally eliminating
variables whose increment makes the solution qual-
ity worse, is not as effective in the even-phase as the
mapping-phase. Specifically, in the mapping-phase,
variables are correlated (opposite sides of a mapping
face) or anti-correlated (same sides of a mapping face).
Hence if they block in one direction, the only recourse
is to eliminate them. However, in the even-phase, if an
edge in a sum-even surface is incremented, some other
edge can be either incremented or decremented and the
sum-even constraint will still be satisfied. Thus, Gaus-
sian elimination of a variable is overkill, as it is possible
to add other rows to change the sign of a blocking vari-
ables coefficient. Requiring elimination causes an ex-
cess accumulation of eliminated variables and the algo-
rithm stops making improvements even when it could.
See the following “Example” for a concrete illustration
of this issue and alternative strategies.

Flipping Signs Using N’ Vectors. Nullspace N’ con-
tains short vectors with coefficient 2 for many edge vari-
ables, and coeflicient 1 for sum-even variables. We can
use these to flip the sign of blocking variables. Specifi-
cally, when attempting to improve x; by adding a vector
from n € N to the solution, n may have a variable x;
that blocks with coefficient 1. If x; is not blocked in
the negative direction, then we may subtract some vec-
tor n € N’ from n to obtain a coefficient of -1 for x;. A
basic capability following this strategy has been imple-
mented and improves the output quality of some tests in
the CUBIT test suite. For future work, we would like a
more robust strategy for selecting which nullspace vec-
tors to add, and to handle coefficient values other than
+1.

Fairs of N’ Vectors. For future work, when attempting
to improve an edge variable x;, we would like to system-
atically consider pairs of nullspace vectors n from N’.

The first vector +n; of the pair is any one that contains
x;, with the sign selected so that it improves x;. For the
second vector n,, we may use any of them that contain
the same sum-even variable. We may predetermine how
adding or subtracting n, would affect its variables qual-
ity, e.g. assuming a positive coefficient, a variable might
be above its goal so adding is not allowed, but subtract-
ing ny would actually improve quality. We may then
compute n; + ny, divide by two, and thus have a vector
that has a 1-coefficient for x; and any blocking variables
have the opposite sign in which they are blocked. This
algorithm is expected to produce better solutions com-
pared to eliminating blocking variables, and be faster.

Example. We illustrate the problem of excessive block-
ing and how the future work could overcome it. Con-
sider paving a single surface bounded by three curves.
Thus Ax = bis —xg — x; — x, + 2x3 = 0. Let goals
8012 =3, and x3 € [2, 00).

The RREF M of

A=[-1 -1 -1 2]

is A itself, with x( as the reduced (dependent) variable.
This RREF can be solved via back-substitution, with no
HNF needed. Since xq;, are free, they get assigned
their ideal values: 3. The ideal value of x3 is 5, since
X1 + x2 + x3 = 9 and the algorithm wisely chooses to
round 9/2 up to 5. Thus, using the ideal values for x; 5 3,
we assign xo = —x; — xp + 2x3 = =3 =3 + 10 = 4. This
solution [4, 3, 3, 5] is already optimal, but our purpose
is to illustrate how the algorithm could get stuck, and
how the nullspace could be explored more thoroughly,
in a more complex problem. So let us suppose that we
somehow started the even-phase with the suboptimal so-
lution [4, 4,4, 6].

For N, we read off the dual vectors from the RREF.
Each contains the dependent variable xg.

1 -1
N=|1 -1
2 1
Note this representation implies that x, is anti-

correlated with x; and x,, and misses that they can also
be correlated.

For N’, there are no mapping constraints, hence no
explicit mapping nullspaces. However, each free vari-
ables that was in no mapping constraint constitutes an
elementary nullspace vector in the mapping subprob-
lems.



Ninap = 1 (N
1

Each of these contain a variable that is in a sum-even
row of M, hence we get

0 row: 2
N =1 row: 2
2 row: 2 1

If this were a more complex problem with submap-
ping surfaces, then in the first row instead of “2x,” we
would have “2n” where n is some more complex map-
phase nullspace vector containing xo. Indeed, we get
one row for each mapping-phase nullspace vector n con-
taining xo. If this were a more complex problem with
multiple paving surfaces, each nullspace vector would
contain the sum-even variables of the paving surfaces
containing each of the edge-variables in #. In this sim-
ple problem, N’ illustrates that each of xg;, could be
incremented (decremented) by 2 independently. It ex-
plicitly represents the symmetry of xo with x; that is not
explicit in N.

Other useful information not explicitly represented in
vectors of N and N’ includes

e how to increment x; and x, by 1, if possible;

e freedom to choose any pair of xo; and either in-
crement them both or increment one and decre-
ment the other.

These are all explicitly represented if we take any pair
of rows from N’, then add them and divide by 2, and also
subtract them and divide by two. This expansion is

(0+1 row)/2: 1 +1 1

(0-1 row)/2: 1 -1

(0+2 row)/2: 1 +1 1 ®)
(0-2 row)/2: 1 -1

(1+2 row)/2: 1 +1 1

(1-2 row)/2: 1 -1

This expansion has quadratic size: 2(9 = 0(r?),
where r is the number of rows of N’. Hence explicitly
expanding and searching all these vectors could be pro-
hibitively expensive, especially if we consider that the
current algorithm would do this for each of x¢;,, and
have cubic complexity.

Our proposed “Pairs of N’ Vectors” subroutine may
be more efficient. We may test each vector of Npygp
in eq. (7) to determine whether incrementing or decre-
menting it improves quality. If we find two such vec-

tors, we may apply them in tandem provided any lower
bound on x3 is not violated. In our example, the solu-
tion [4, 4,4, 6] can be improved by —(0+1 row)/2: =
—Xp — X1, giving the optimal solution [3, 3,4, 5].

If this were a more complex problem with multiple
paving surfaces, then the expansion in eq. (8) might
contain other sum-even variables with coefficient 1/2.
Thus we could not apply an expansion vector immedi-
ately, but would also have to find a vector in the expan-
sion for that other surface, and apply it as well, in or-
der to maintain integer coefficients. Conceptually, this
involves finding a chain of map-phase nullspace vec-
tors that form a closed loop, or terminate at the domain
boundary curves (if any). A form of breadth-first-search
that limits branching by solution quality may be effec-
tive.

We now illustrate how the current algorithm of elim-
inating blocking variables regardless of sign can get
stuck at a non-optimal solution. Given the solution
[4,4,4,6], the priority queue selects x, with R = 4/3
to improve. Of the existing N’ vectors, —2x; — x3 would
make x, = 3, with worse R: 3/2 instead of 4/3. Hence it
self-blocks with coefficient 2; this is correct and causes
no problems. Of the existing N vectors, +1xg — 1x,
would make xp worse than x, already is, with R = 5/3.
Hence “xo blocks x,” with coefficient +1. We have ex-
hausted all the existing rows of N’ and N with x; in
them, so we do Gaussian elimination on N to remove the
blocking variable x( from x;’s rows. This yields a new
nullspace vector, x; — x, which unfortunately has the
same issues as xy— x». Hence x; also blocks with coeffi-
cient +1. Gaussian elimination only produces x, vectors
without xg or x, and none of these can improve the so-
lution. Gaussian elimination lacks the mechanisms for
reintroducing xo or x; with opposite sign, and will not
find the nullspace vectors —xy — x, or —x; — x, which
would improve the solution. The next variable in the
queue to improve is xj, which fails in the same way, as
does xp.

“Flipping Signs Using N’ Vectors” instead of elimi-
nation will get us out of this state. Again, the priority
queue selects x, to improve (decrement). Adding N’s
middle row, n = xyp—x,, would improve x, but is blocked
by xo with coefficient 1. Selecting n’ = 2xy + x3, then
n—n' = —xy—x,—x3 can be added to the current solution
[4,4,4, 6] to obtain an optimal solution [3,4, 3, 5].

8.5. Quantified Improvement Effects.

Figure 17 shows how the algorithm improvements af-
fect the solution quality of the 2700 IA problems that
arise during the course of the CUBIT regression test
suite. Quality is measured by the lexicographic-max



vector of R(x,g) values. The baseline is the released
version from 19 March 2020. “Incidental updates (A)
are a few bug fixes and robustness improvements; the
other improvements are defined in section 1.1 and de-
scribed throughout this paper. The individual results all
include (A), and (F) includes (E), by necessity.

Incidental updates.

Improve currently-worst.
Goal-based rounding.
Goal-based pivots.
Augmented nullspace.
Flipping signs.

Best improvement direction.
HNF goals, c = U'g’.
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Figure 17: The effect of the algorithm improvements, both individu-
ally (bars) and cumulative (lines), in terms of the number of tests with
changed outputs. For a single algorithm improvement, the blue bar is
the number of tests whose solution quality is better than the baseline,
and the orange bar the number with worse quality. The lines represent
the net effect of applying all of the improvements up to that letter, e.g.,
applying A, B, C, and D improves 25 tests and degrades 5.

H, using the goals for the HNF solution to Ax = b via
c=U"! g’, has a dramatic effect when it is used. How-
ever, for the test suite RREF finds an integer solution in
almost all cases, and in the remainder the improvement
steps recover from the poor initial solution, rendering H
moot. If we force the algorithm to always use HNF on
the test suite, then setting ¢ = 1 results in 45 better and
209 worse solutions compared to the baseline. In con-
trast, setting ¢ = U~'g’ results in 21 better and 21 worse
solutions; it’s almost as good as RREF. This may help
other users of the library besides CUBIT.

The improvements change different steps of the algo-
rithm. H and C change the initial solution to Ax = b in
each phase. B selects which variable to improve next.
D, E, F and G select how the current solution is incre-
mented, which vector is added. The most volatile (i.e.

both improving and degrading) change is using the best
improvement direction; the others improve many more
tests than they degrade. The improvements do not take
a significant amount of time to run. They speed up the
overall algorithm in the cases where the improvements
find better solutions.

8.6. Carefree Software

ITA is freely available for any use under a BSD-
like license. Clone IntervalAssignment from github,
https://github.com/samitch/IntervalAssignment/.
ITA is C+11 and has no compile or link dependencies
or required flags. Just compile it into your code.

The executable driver code test.cpp gives examples
of setting up and solving a problem. A trivial “CMake-
Lists.txt” file is provided.

The interface is pointer-free, template-free and de-
fined by the header files “IA.h” and “IAResult.h”. The
interface is about 50 methods. The vast majority are
for flexibility in defining the problem and retrieving the
solution. To actually solve the problem, simply call
“solve(),” or one of its other three argument-free vari-
ants, e.g., if you only want to know if the problem is
feasible, or if you are resolving but want to discard the
prior solution and solve from scratch. The entire code
is about 10,000 lines, including comments, braces, and
blank lines.

Conclusion

We have shown that Incremental Interval Assignment
(ITA) is practical on today’s problems, with insignifi-
cant runtime compared to the other steps of the quad/hex
meshing process, up to about 100,000 non-zeros in the
constraint matrix. The software is flexible and freely
available for any use.

Combining Nullspace Vectors. For future work, ro-
bustly finding integer combinations of nullspace vectors
that point in downhill directions could improve the ro-
bustness and solution quality. Doing this for general
problems is a longstanding open problem in integer op-
timization. We do not need to solve the general prob-
lem, and may instead exploit sum-even variables be-
ing in only one constraint row. Heuristics for subdi-
viding the problem, or finding and using a subset of the
nullspace vectors, might improve scalability for future-
size models.



Explaining Infeasibility. Interval assignment can easily
be infeasible. For example, the corners of mapped sur-
faces on the sides of sweeps might not be aligned with
the sweep direction, or the user might have set a few
curves to have some fixed values that are incompati-
ble. If IA simply reports “infeasible” for a model with
hundreds of surfaces and curves, the user is reduced to
trial and error. If the constraints are feasible, but no
solution was found that satisfies the bounds, IIA will re-
port which variables are out of bounds, but not the con-
straints that are causing this. For future work, it would
be wonderful if ITA could give the user actionable guid-
ance about what to change to make the problem solv-
able. Describing a maximal problem that is feasible and
a minimal subproblem that is infeasible has often been
helpful in this regard. There are an exponential number
of subproblems, so it would be ideal if these maximal
and minimal subproblems could be found directly by
integer linear algebra, rather than combinatorial explo-
ration.
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