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ABSTRACT 

The multi-harmonic balance method combined with numerical continuation provides an efficient framework to 
compute a family of time-periodic solutions, or response curves, for large-scale, nonlinear mechanical systems. 
The predictor and corrector steps repeatedly solve a sequence of linear systems that scale by the model size and 
number of harmonics in the assumed Fourier series approximation. In this paper, a novel Newton-Krylov iterative 
method is embedded within the multi-harmonic balance and continuation algorithm to efficiently compute the 
approximate solutions from the sequence of linear systems that arise during the prediction and correction steps. 
The method recycles, or re-uses, both the preconditioner and the Krylov subspace generated by previous linear 
systems in the solution sequence. A delayed frequency preconditioner refactorizes the preconditioner only when 
the performance of the iterative solver deteriorates. The GCRO-DR iterative solver recycles a subset of harmonic 
Ritz vectors to initialize the solution subspace for the next linear system in the sequence. The performance of the 
iterative solver is demonstrated on two exemplars with contact-type nonlinearities and benchmarked against a 
direct solver with traditional Newton-Raphson iterations.  

Keywords: periodic orbits; multi-harmonic balance; Newton-Krylov; delayed frequency preconditioner; Krylov 
subspace recycling    

1. Introduction 
Linear system theory has served as the cornerstone for analytical, computational, and experimental structural 
dynamics analysis for decades. Modal analysis of linear systems benefits from the property of orthogonality and 
superposition to decompose the response into the modal domain and treat vibrations as a summation of single 
degree-of-freedom (DOF) oscillators. Frequency response functions (FRFs) provide an invariant relationship 
between the excitation and response in the frequency domain thanks to homogeneity. Both mathematical models 
rely on the computation of periodic motions of the linear dynamical system. These foundational techniques 
necessitate linear approximations of the physics to mathematically model the vibration response with linear 
system theory. In practice, the linearity assumption may not be valid or justifiable. Structural nonlinearities persist 
across many engineering disciplines including aerospace, automotive, civil, and biomedical engineering. These 
nonlinearities arise from the presence of large deflections, frictional contact, or nonlinear material behavior, for 
example. Nonlinear dynamical systems demand the use of alternate mathematical models and solution methods 
[1] to predict response.  

The study of periodic orbits is important in understanding the behavior of nonlinear dynamical systems. There are 
many classifications describing the type of time-periodic solutions, whether the system is autonomous or non-
autonomous, and conservative or non-conservative. Examples of these include nonlinear normal modes (NNMs) 
[2, 3], limit cycle oscillations [4, 5] and nonlinear forced response (NLFR) curves [6]. Several analytical and 
computational techniques are available to calculate the time-periodic solutions of a nonlinear system including 
perturbation methods [7], averaging methods, harmonic balance [8], shooting [9, 10], and orthogonal collocation. 
In the age of digital engineering, the development of computational methods to compute the time-periodic 
solutions are needed, especially for large-scale computational mechanics models. The multi-harmonic balance 
(MHB) method provides a promising technique to efficiently calculate time-periodic solutions of the spatially 
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discretized equations-of-motion resulting from the finite element method. MHB approximates the assumed time-
periodic response with a finite Fourier series. The Fourier-Galerkin projection onto the nonlinear ordinary 
differential equation results in a nonlinear algebraic system, which is solved for the unknown Fourier coefficients. 
When the nonlinear algebraic equations are combined with numerical continuation [11, 12], a family of periodic 
orbits is computed to produce a branch of solutions that characterize the dynamics of the system. Typically MHB 
and continuation provide an adequate approximation to the time-periodic solutions for both smooth [13] and non-
smooth [14] systems depending on the number of harmonics in the Fourier series. 

Many researchers have utilized MHB with continuation to compute periodic orbits of nonlinear systems. Example 
include MHB for vibration problems, as discussed in the book by Krack and Gross [8], and applications to 
nonlinear electromagnetics [15]. For nonlinear vibration problems, MHB has found applications in rotating 
machinery [16-19], bladed disks [20-24], vibro-impact systems [25-29] and large deformation problems [30-34]. 
These references highlight the generalization of the approach to structural models with different forms of 
nonlinear physics. The alternating frequency-time (AFT) domain method [35] enables arbitrary nonlinear internal 
forces to be discretely sampled in the time domain and mapped into the frequency domain using the Fourier 
transform. For example, the papers by Detroux et al. [36] and Colaitis et al. [21] provide details of the 
computation of the nonlinear forces and Jacobians in the frequency domain using an adaptation of AFT using 
trigonometric collocation [37, 38]. Other approaches include analytical derivations of the nonlinear forces and 
Jacobians in the frequency domain, e.g. friction elements [39], but may be in general limited to certain types of 
nonlinearity and harmonic order. Although MHB is efficient and generalized to arbitrary types of nonlinearity, 
one notable challenge is the issue of scalability to large-scale systems, as noted in [40]. The system of equations 
derived from MHB scale linearly with the number of harmonics in the Fourier series, and thus the resultant linear 
systems become quite large for finite element models with many DOF and many harmonics in the Fourier series. 

Iterative solvers [41, 42] are widely available to solve a general class of large linear systems that arise in many 
areas of science and engineering, with Krylov subspace methods being one of the most popular variants. Krylov 
subspace methods seek to develop a sequence of Krylov vectors where the lower dimensional subspace 
approximates the solution to a larger dimensional system of equations. Newton-Krylov methods (and Jacobian-
free methods [43]) utilize Krylov subspace iterative solvers to approximate the inverse of the Jacobian matrix 
derived by the Newton-Raphson iteration scheme. Within path-following and continuation methods, the use of 
iterative solvers to approximate the solution within Newton-Raphson iterations provide opportunities to reduce 
the computational cost and memory usage compared to direct solvers [44]. Inexact Newton methods [45] provide 
a functional condition in which the approximate prediction and correction updates satisfactorily meets the 
required accuracy based on a numerical tolerance. There are several choices of iterative solvers [41, 42] whose 
performance depends on the specific problem and the properties of the system matrix. An important aspect of 
these solvers is the selection of a preconditioner to accelerate the number of iterations within the iterative solver 
[46].  

Several studies in different fields of engineering have demonstrated the use of Newton-Krylov methods for the 
computation of periodic orbits. Rizzoli et al. [47, 48] proposed to use the inexact Newton method [45] combined 
with a preconditioned iterative solver [49] to compute the steady-state response of nonlinear microwave circuits 
under multitone excitation. The authors report that the block-diagonal Jacobian matrix provides an excellent 
preconditioner for a broad class of microwave circuit problems. Rhodes et al. [50, 51] also proposed a parallel and 
scalable MHB simulation method for nonlinear circuits analysis that leverages the circuit substructure form.  
Later, Dong and Li [52] developed a parallel MHB approach to solve both forced and autonomous circuits using 
hierarchical preconditioning methods to partition the linearized problem into smaller subdomains. A study by 
Soveiko et al. [53] evaluated the performance of the parallel solver in [54] for different computing architectures 
and discussed several practical considerations when implementing algorithms on certain computing hardware. 
Mehrotra et al. [55] developed a specialized direct solver for the Jacobian that arises from the MHB discretization 
to overcome the known challenges with iterative methods. A dual-primal finite element tearing and 
interconnecting (FETI-DP) domain decomposition method was deployed in [56] to directly divide the large-scale 
problem into smaller subdomains that can be solved in parallel. Han et al. [57] proposed a graph sparsification 
approach to generate the preconditioner for use in iterative solvers. 
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A Newton-Krylov method was proposed by Sánchez et al. [58] with continuation to calculate the periodic orbits 
of Navier-Stokes flows. Later, Net and Sánchez [59] proposed the use of iterative Newton-Krylov methods to 
track bifurcations of periodic orbits for large-scale, extended systems. The methods use the shooting and restarted 
generalized minimal residual method (GMRES) [49] and the authors applied the approach to thermal convection 
problems. A matrix-free method was proposed in [60], which also combines the shooting method with 
continuation to track the limit cycle oscillations of thermoacoustic systems as the system parameters change. 
Recently, the authors in [61] proposed an accelerated Krylov-subspace method with a modified Newton-Raphson 
scheme to perform continuation of periodic orbits of smooth and non-smooth mechanical systems. The method 
addresses the inversion of the Jacobian matrix of the Poincaré map which is known to be a large computational 
bottleneck. Sierra et al. [62] utilize the Fourier-Galerkin method to approximate the stable and unstable time-
periodic motions and their sensitivities using adjoint methods and preconditioned Newton-Krylov methods. Other 
examples include the computation of flutter and limit cycle oscillations using time-spectral aeroelastic equations 
[63] and unsteady flows with oscillating shocks [64]. Blahos et al. [65] developed an approach based on parallel, 
sparse direct solvers to solve for nonlinear forced response of mechanical systems using sequential continuation.  

In this paper, the authors propose a novel Newton-Krylov method within the MHB and pseudo-arclength 
continuation algorithm to improve the performance and efficiency for large-scale models. The developments 
throughout are applied to harmonically excited, non-conservative systems, i.e. NLFR curves, but the strategy can 
be generalized and applied to other time-periodic solutions such as NNMs or limit cycle oscillations. The inexact 
Newton scheme [45] provides a conditional statement in which the approximate prediction and correction updates 
are solved using an iterative solver strategy that recycles information from previous MHB solutions along the 
curve. The delayed frequency preconditioner (DFP) [66] recycles the preconditioner that is factorized at a prior 
solution point and is updated periodically depending on the performance of the iterative solver. The GCRO 
iterative solver with deflated restarting (GCRO-DR) [67] is a Krylov subspace recycling method that successively 
solves a sequence of linear systems that arise from the prediction and correction updates, and has found many 
applications in various areas of scientific computing, for example [68-73]. The iterative method uses harmonic 
Ritz vectors corresponding to the harmonic Ritz values with the smallest magnitude and uses these as the initial 
basis in the next iterative solve. The performance of the iterative solver using these two recycling strategies are 
investigated and compared to direct solvers used to obtain the necessary prediction and correction solutions to 
continue along the solution curve. 

The paper is organized as follows. Section 2 reviews the MHB formulation and the resulting predictor-corrector 
algorithm when MHB is combined with pseudo-arclength continuation. Section 3 discusses the novel 
contributions to apply iterative solvers to the MHB algorithm. In particular, the GCRO-DR solver with DFP is 
adapted to the simulation framework to allow for the algorithm to recycle both the Krylov subspaces across a 
sequence of linear solves and the preconditioner factorized at a previous solution. Two numerical examples are 
provided in Section 4. The first model is a nonlinear electromechanical model of a mock pylon structure attached 
to a shaker and fixture with piecewise linear contact elements. The second example is a nonlinear beam assembly 
with bolt joints and frictional contact type nonlinearities that arise from a bolt preload simulation. These examples 
are used to demonstrate the speedup and performance of the iterative solver on moderately sized systems. 
Conclusions are provided in Section 5. 

2. Computation of Periodic Orbits using Harmonic Balance 

2.1 Frequency Domain Governing Equations 
Starting with the non-autonomous, second order differential equations represented by the finite element method, 

 𝐌𝐌𝐱̈𝐱 + 𝐂𝐂𝐱̇𝐱 + 𝐊𝐊𝐊𝐊 + 𝐟𝐟𝑛𝑛𝑛𝑛(𝐱𝐱, 𝐱̇𝐱) = 𝐟𝐟𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐟𝐟𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)  (1) 

the 𝑛𝑛 × 𝑛𝑛 matrices 𝐌𝐌, 𝐂𝐂, and 𝐊𝐊 correspond to the mass, viscous damping and linear stiffness, respectively. The 
nonlinear restoring force, 𝐟𝐟𝑛𝑛𝑛𝑛(𝐱𝐱, 𝐱̇𝐱), is an 𝑛𝑛 × 1 vector, along with the vectors 𝐟𝐟𝑝𝑝𝑝𝑝𝑝𝑝 and 𝐟𝐟𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡), which are the time-
independent preload force and time-varying harmonic force, respectively. The overdot represents the derivative 
with respect to time. The steady-state solution, i.e. assumed periodic motion, as well as the external excitation is 
approximated as a finite Fourier series as 
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 𝐱𝐱(𝑡𝑡) = 𝐜𝐜0𝑥𝑥

√2
+ ∑ [𝐬𝐬𝑘𝑘𝑥𝑥 sin(𝑘𝑘𝑘𝑘𝑘𝑘) + 𝐜𝐜𝑘𝑘𝑥𝑥cos(𝑘𝑘𝑘𝑘𝑘𝑘)]𝑁𝑁ℎ

𝑘𝑘=1   (2) 

 𝐟𝐟𝑛𝑛𝑛𝑛(𝐱𝐱, 𝐱̇𝐱) = 𝐜𝐜0𝑛𝑛𝑛𝑛

√2
+ ∑ �𝐬𝐬𝑘𝑘𝑛𝑛𝑛𝑛 sin(𝑘𝑘𝑘𝑘𝑘𝑘) + 𝐜𝐜𝑘𝑘𝑛𝑛𝑛𝑛cos(𝑘𝑘𝑘𝑘𝑘𝑘)�𝑁𝑁ℎ

𝑘𝑘=1   (3) 

 𝐟𝐟𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐜𝐜0
𝑓𝑓

√2
+ ∑ �𝐬𝐬𝑘𝑘

𝑓𝑓 sin(𝑘𝑘𝑘𝑘𝑘𝑘) + 𝐜𝐜𝑘𝑘
𝑓𝑓cos(𝑘𝑘𝑘𝑘𝑘𝑘)�𝑁𝑁ℎ

𝑘𝑘=1   (4) 

Here the fundamental harmonic frequency, 𝜔𝜔, of the external forcing is assumed to be unknown, along with the 
unknown Fourier coefficients of the displacements and nonlinear restoring force, which are gathered into 
(2𝑁𝑁ℎ + 1)𝑛𝑛 × 1 vectors 

 𝐳𝐳 = �(𝐜𝐜0𝑥𝑥)T (𝐬𝐬1𝑥𝑥)T (𝐜𝐜1𝑥𝑥)T … �𝐬𝐬𝑁𝑁ℎ
𝑥𝑥 �T �𝐜𝐜𝑁𝑁ℎ

𝑥𝑥 �T�
T

  (5) 

 𝐛𝐛 = ��𝐜𝐜0𝑛𝑛𝑛𝑛�
T �𝐬𝐬1𝑛𝑛𝑛𝑛�

T
�𝐜𝐜1𝑛𝑛𝑛𝑛�

T
… �𝐬𝐬𝑁𝑁ℎ

𝑛𝑛𝑛𝑛 �T �𝐜𝐜𝑁𝑁ℎ
𝑛𝑛𝑛𝑛 �T�

T
  (6) 

The known, prescribed time-independent and time-dependent forcing terms are stored in the same sized vectors as  

 𝐛𝐛𝑝𝑝𝑝𝑝𝑝𝑝 = ��√2𝐟𝐟𝑝𝑝𝑝𝑝𝑝𝑝�
T

𝟎𝟎T … 𝟎𝟎T�
T

  (7) 

 𝐛𝐛𝑒𝑒𝑒𝑒𝑒𝑒 = ��𝐜𝐜0
𝑓𝑓�

T
�𝐬𝐬1

𝑓𝑓�
T

�𝐜𝐜1
𝑓𝑓�

T
… �𝐬𝐬𝑁𝑁ℎ

𝑓𝑓 �
T

�𝐜𝐜𝑁𝑁ℎ
𝑓𝑓 �

T�
T

  (8) 

The continuous functions in Eqns. (2)-(4) are converted to discrete functions such that the sine and cosine 
functions are sampled over the fundamental period, leading to the discrete harmonic matrix,  

 𝐐𝐐(𝜃𝜃) =

⎣
⎢
⎢
⎡

⎣
⎢
⎢
⎡1 √2⁄
1 √2⁄
⋮

1 √2⁄ ⎦
⎥
⎥
⎤

�

sin(𝜃𝜃1)
sin(𝜃𝜃2)

⋮
sin(𝜃𝜃𝑁𝑁)

� �

cos(𝜃𝜃1)
cos(𝜃𝜃2)

⋮
cos(𝜃𝜃𝑁𝑁)

� … �

sin(𝑁𝑁ℎ𝜃𝜃1)
sin(𝑁𝑁ℎ𝜃𝜃2)

⋮
sin(𝑁𝑁ℎ𝜃𝜃𝑁𝑁)

� �

cos(𝑁𝑁ℎ𝜃𝜃1)
cos(𝑁𝑁ℎ𝜃𝜃2)

⋮
cos(𝑁𝑁ℎ𝜃𝜃𝑁𝑁)

�

⎦
⎥
⎥
⎤
  (9) 

Here 𝜃𝜃i = 𝜔𝜔𝑡𝑡i is discretely sampled between 0 and 2π-Δθ, where Δθ is the appropriate size of phase step [74]. 
The displacement, velocity and nonlinear restoring force are written in discrete form as 

 𝐱𝐱� = (𝐐𝐐(𝜃𝜃) ⊗ 𝕀𝕀𝑛𝑛)𝐳𝐳 = 𝚪𝚪𝐳𝐳  (10) 

 𝐱𝐱�̇ = �𝐐̇𝐐(𝜃𝜃) ⊗ 𝕀𝕀𝑛𝑛�𝐳𝐳 = 𝚪𝚪𝑣𝑣𝐳𝐳  (11) 

 𝐟𝐟𝑛𝑛𝑛𝑛(𝐱𝐱, 𝐱̇𝐱) = (𝐐𝐐(𝜃𝜃) ⊗ 𝕀𝕀𝑛𝑛)𝐛𝐛 = 𝚪𝚪𝐛𝐛  (12) 
where ⊗ and 𝕀𝕀𝑛𝑛 are the Kronecker tensor product and the identity matrix of size 𝑛𝑛, respectively. The linear 
operator 𝚪𝚪 represents the discrete inverse Fourier transform to obtain the time-domain displacement and nonlinear 
restoring force, while 𝚪𝚪𝑣𝑣 corresponds to the discrete inverse Fourier transform to obtain the time-domain velocity 
field. The latter is computed with the time derivative of the discrete harmonic matrix,  

 𝐐̇𝐐(𝜃𝜃) = ��
0
0
⋮
0

� �

𝜔𝜔 cos(𝜃𝜃1)
𝜔𝜔 cos(𝜃𝜃2)

⋮
𝜔𝜔 cos(𝜃𝜃𝑁𝑁)

� �

−𝜔𝜔 sin(𝜃𝜃1)
−𝜔𝜔 sin(𝜃𝜃2)

⋮
−𝜔𝜔 sin(𝜃𝜃𝑁𝑁)

� … �

𝑁𝑁ℎ𝜔𝜔 cos(𝑁𝑁ℎ𝜃𝜃1)
𝑁𝑁ℎ𝜔𝜔 cos(𝑁𝑁ℎ𝜃𝜃2)

⋮
𝑁𝑁ℎ𝜔𝜔 cos(𝑁𝑁ℎ𝜃𝜃𝑁𝑁)

� �

−𝑁𝑁ℎ𝜔𝜔 sin(𝑁𝑁ℎ𝜃𝜃1)
−𝑁𝑁ℎ𝜔𝜔 sin(𝑁𝑁ℎ𝜃𝜃2)

⋮
−𝑁𝑁ℎ𝜔𝜔 sin(𝑁𝑁ℎ𝜃𝜃𝑁𝑁)

��  (13) 

The displacement, velocity and nonlinear restoring force in the time-domain are collected as vectors stacked at 
each discrete time sample, 

 𝐱𝐱� = ��𝐱𝐱(𝜃𝜃1)�T �𝐱𝐱(𝜃𝜃2)�T ⋯ �𝐱𝐱(𝜃𝜃𝑁𝑁)�T�
T

  (14) 

 𝐱𝐱�̇ = ��𝐱̇𝐱(𝜃𝜃1)�T �𝐱̇𝐱(𝜃𝜃2)�T ⋯ �𝐱̇𝐱(𝜃𝜃𝑁𝑁)�T�
T

  (15) 
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 𝐟𝐟𝑛𝑛𝑛𝑛(𝐱𝐱, 𝐱̇𝐱) = ��𝐟𝐟𝑛𝑛𝑛𝑛�𝐱𝐱(𝜃𝜃1), 𝐱̇𝐱(𝜃𝜃1)��
T

�𝐟𝐟𝑛𝑛𝑛𝑛�𝐱𝐱(𝜃𝜃2), 𝐱̇𝐱(𝜃𝜃2)��
T

⋯ �𝐟𝐟𝑛𝑛𝑛𝑛�𝐱𝐱(𝜃𝜃𝑁𝑁), 𝐱̇𝐱(𝜃𝜃𝑁𝑁)��
T
�
T

  (16) 

Additionally, the discrete Fourier transform is calculated using the pseudo-inverse, ( )†, of Eqns. (10) and (12), 
leading to the form,   

 𝚪𝚪† = (𝐐𝐐(𝜃𝜃) ⊗ 𝕀𝕀𝑛𝑛)† = �𝐐𝐐†(𝜃𝜃) ⊗ 𝕀𝕀𝑛𝑛
†�  (17) 

The discrete Fourier transform can be obtained by performing the pseudo-inverse on the 𝑁𝑁 × (2𝑁𝑁ℎ + 1) matrix, 
𝐐𝐐(𝜃𝜃), and only needs to be computed once with a sufficient sample rate for the harmonic order of the Fourier 
approximation. A similar operator is defined for the velocity as well.  

The alternating time-frequency method [35] is used to approximate the Fourier coefficients in Eq. (6) from the 
time-domain nonlinear restoring force vector 

 𝐛𝐛 = 𝚪𝚪†𝐟𝐟𝑛𝑛𝑛𝑛 (18) 
In this way, the Fourier coefficients of the nonlinear force, 𝐛𝐛, can be computed numerically by sampling the 
nonlinear restoring force in the time domain using Eq. (16) and transforming to the frequency domain using the 
discrete Fourier transform, 𝚪𝚪†. This generally allows for the nonlinear functions to be implemented numerically in 
the time-domain and does not require an analytical derivation in the frequency domain. This formulation applies 
to all nonlinear constitutive elements of interest with an arbitrary number of harmonics in the Fourier series.   
Following the derivation in [21, 36], a Fourier-Galerkin projection onto the orthogonal set of discrete periodic 
functions, 𝐐𝐐(𝜃𝜃), results in the MHB frequency domain governing equations, 

 𝐫𝐫(𝐳𝐳,𝜔𝜔) = 𝐀𝐀(𝜔𝜔)𝐳𝐳 + 𝐛𝐛(𝐳𝐳) − 𝐛𝐛𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐛𝐛𝑒𝑒𝑒𝑒𝑒𝑒  (19) 

where 𝐀𝐀(𝜔𝜔) is the linear portion of the dynamic stiffness matrix of dimension (2𝑁𝑁ℎ + 1)𝑛𝑛 × (2𝑁𝑁ℎ + 1)𝑛𝑛     

 𝐀𝐀(𝜔𝜔) =

⎣
⎢
⎢
⎢
⎢
⎡
𝐊𝐊      
 𝐊𝐊 − (𝜔𝜔)2𝐌𝐌 −𝜔𝜔𝐂𝐂    
 𝜔𝜔𝐂𝐂 𝐊𝐊 − (𝜔𝜔)2𝐌𝐌    
   ⋱   
    𝐊𝐊 − (𝑁𝑁ℎ𝜔𝜔)2𝐌𝐌 −𝑁𝑁ℎ𝜔𝜔𝐂𝐂
    𝑁𝑁ℎ𝜔𝜔𝐂𝐂 𝐊𝐊 − (𝑁𝑁ℎ𝜔𝜔)2𝐌𝐌⎦

⎥
⎥
⎥
⎥
⎤

  (20) 

The roots of the residual function 𝐫𝐫(𝐳𝐳,𝜔𝜔) define the solutions to the nonlinear, algebraic system of equations that 
approximate the periodic solutions of Eq. (1). The pseudo-arclength continuation algorithm described in Section 
2.2 requires the Jacobian of the residual with respect to 𝐳𝐳 and 𝜔𝜔. Following the methodology in Colaïtis et al. 
[21], the Jacobian matrix is analytically derived as, 

 𝐫𝐫𝑧𝑧(𝐳𝐳,𝜔𝜔) = 𝐀𝐀(𝜔𝜔) + 𝜕𝜕𝐛𝐛
𝜕𝜕𝐳𝐳

= 𝐀𝐀(𝜔𝜔) + 𝚪𝚪† 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛
𝜕𝜕𝐱𝐱�

𝚪𝚪 + 𝚪𝚪† 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛
𝜕𝜕𝐱𝐱�̇

𝚪𝚪𝒗𝒗  (21) 

 𝐫𝐫𝜔𝜔(𝐳𝐳,𝜔𝜔) = 𝜕𝜕𝐀𝐀(𝜔𝜔)
𝜕𝜕𝜕𝜕

𝐳𝐳 + 𝜕𝜕𝐛𝐛
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝐀𝐀(𝜔𝜔)
𝜕𝜕𝜕𝜕

𝐳𝐳 + 𝚪𝚪† 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛
𝜕𝜕𝐱𝐱�̇

𝜕𝜕𝐱𝐱�̇
𝜕𝜕𝜕𝜕

  (22) 

The time domain Jacobians 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛
𝜕𝜕𝐱𝐱�

 and 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛
𝜕𝜕𝐱𝐱�̇

 can be calculated either analytically or numerically and transformed to 

the frequency domain using the discrete Fourier transform and its inverse. The Jacobians 𝜕𝜕𝐛𝐛
𝜕𝜕𝐳𝐳

 and 𝜕𝜕𝐛𝐛
𝜕𝜕𝜕𝜕

 do not need to 
be derived explicitly and again can be applied to arbitrary forms of nonlinearity and harmonic order. The general 
form of time-domain Jacobians of the nonlinear restoring force in Eqns. (21) and (22) is a block matrix, 

 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛
𝜕𝜕𝐱𝐱�

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃1)
𝜕𝜕𝐱𝐱(𝜃𝜃1)

𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃1)
𝜕𝜕𝐱𝐱(𝜃𝜃2) ⋯ 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃1)

𝜕𝜕𝐱𝐱(𝜃𝜃𝑁𝑁)
𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃2)
𝜕𝜕𝐱𝐱(𝜃𝜃1)

𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃2)
𝜕𝜕𝐱𝐱(𝜃𝜃2) ⋯ 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃2)

𝜕𝜕𝐱𝐱(𝜃𝜃𝑁𝑁)
⋮ ⋮ ⋱ ⋮

𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃𝑁𝑁)
𝜕𝜕𝐱𝐱(𝜃𝜃1)

𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃𝑁𝑁)
𝜕𝜕𝐱𝐱(𝜃𝜃2) ⋯ 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃𝑁𝑁)

𝜕𝜕𝐱𝐱(𝜃𝜃𝑁𝑁) ⎦
⎥
⎥
⎥
⎥
⎤

  (23) 
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 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛
𝜕𝜕𝐱𝐱�̇

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃1)
𝜕𝜕𝐱̇𝐱(𝜃𝜃1)

𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃1)
𝜕𝜕𝐱̇𝐱(𝜃𝜃2) ⋯ 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃1)

𝜕𝜕𝐱̇𝐱(𝜃𝜃𝑁𝑁)
𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃2)
𝜕𝜕𝐱̇𝐱(𝜃𝜃1)

𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃2)
𝜕𝜕𝐱̇𝐱(𝜃𝜃2) ⋯ 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃2)

𝜕𝜕𝐱̇𝐱(𝜃𝜃𝑁𝑁)
⋮ ⋮ ⋱ ⋮

𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃𝑁𝑁)
𝜕𝜕𝐱̇𝐱(𝜃𝜃1)

𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃𝑁𝑁)
𝜕𝜕𝐱̇𝐱(𝜃𝜃2) ⋯ 𝜕𝜕𝐟𝐟𝑛𝑛𝑛𝑛(𝜃𝜃𝑁𝑁)

𝜕𝜕𝐱̇𝐱(𝜃𝜃𝑁𝑁) ⎦
⎥
⎥
⎥
⎥
⎤

 (24) 

Note that for history independent nonlinearities, each off-diagonal matrix is zero and only the diagonal block 
matrices need to be computed.   

2.2 Predictor-Corrector Algorithm 
Pseudo-arclength continuation is combined with the MHB discretization in Eq. (19) to trace the NLFR curves of 
the system. This is done by appending an additional constraint equation to the MHB residual equation as,  

 𝐑𝐑(𝐲𝐲) = �
𝐀𝐀(𝜔𝜔)𝐳𝐳 + 𝐛𝐛(𝐳𝐳) − 𝐛𝐛𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐛𝐛𝑒𝑒𝑒𝑒𝑒𝑒

𝐕𝐕T�𝐲𝐲 − 𝐲𝐲(𝒌𝒌=𝟏𝟏)�
�  (25) 

The first row in the residual function, 𝐑𝐑(𝐲𝐲), is the MHB residual in Eq. (19), while the second row is the 
additional constraint enforcing the solution, 𝐲𝐲, to lie along a hyperplane tangent to a prediction vector, 𝐕𝐕. The 
(2𝑁𝑁ℎ + 1)𝑛𝑛 + 1 × 1 vector 𝐲𝐲 = [𝐳𝐳T 𝜔𝜔]T is the collection of unknown variables and 𝐲𝐲(𝒌𝒌=𝟏𝟏) is the initial 
predicted solution along the tangent of the curve. The following subsections discuss the implementation of the 
prediction and correction steps. 

2.2.1 Prediction Step 
Starting with a known solution along the branch, i.e. the jth solution, 𝐲𝐲(𝑗𝑗), the prediction vector is computed 

tangent to the residual function, 𝐫𝐫�𝐲𝐲(𝑗𝑗)�.  Mathematically, the tangent vector, 𝐕𝐕(𝒋𝒋) = �𝐕𝐕𝐳𝐳,(𝑗𝑗)
T 𝑉𝑉𝜔𝜔,(𝑗𝑗)�

T
, is solved as, 

 �
𝐫𝐫𝐳𝐳�𝐲𝐲(𝑗𝑗)� 𝐫𝐫𝜔𝜔�𝐲𝐲(𝑗𝑗)�
𝐕𝐕𝐳𝐳,(𝑗𝑗−1)
T 𝑉𝑉𝜔𝜔,(𝑗𝑗−1)

� �
𝐕𝐕𝐳𝐳,(𝑗𝑗)
𝑉𝑉𝜔𝜔,(𝑗𝑗)

� = �𝟎𝟎1�  (26) 

The resulting predictor is normalized using the l2 norm of the tangent vector such that �𝐕𝐕(𝑗𝑗)� = 1. An 
approximation to the next solution along the NLFR branch is obtained by taking a step along the direction of the 
prediction vector, whose magnitude, ℎ(𝑗𝑗), is automated based on the step size control algorithm presented in [75]; 
this is discussed further in Section 2.3. The magnitude controls the distance from the current solution, 𝐲𝐲(𝑗𝑗), based 
on the number of correction steps required to obtain a solution. The predicted solution along the curve is 
computed as, 

 𝐳𝐳(𝑘𝑘=1) = 𝐳𝐳(𝑗𝑗) + ℎ(𝑗𝑗)𝐕𝐕𝐳𝐳,(𝑗𝑗)  (27) 

 𝜔𝜔(𝑘𝑘=1) = 𝜔𝜔(𝑗𝑗) + ℎ(𝑗𝑗)𝑉𝑉𝜔𝜔,(𝑗𝑗)  (28) 

2.2.2 Correction Step 
A Newton-Raphson correction scheme is derived by taking a Taylor series expansion of the residual, 𝐑𝐑(𝐲𝐲), in Eq. 
(25) and truncating higher order terms. The initial guess for the correction scheme is provided by the predictions 
in Eqns. (27) and (28).  This leads to the following linear system of equations,  

 �
𝐫𝐫𝐳𝐳�𝐲𝐲(𝑘𝑘)� 𝐫𝐫𝜔𝜔�𝐲𝐲(𝑘𝑘)�
𝐕𝐕𝐳𝐳,(j)
T 𝑉𝑉𝜔𝜔,(j)

� �∆𝐳𝐳 
(𝑘𝑘)

∆𝜔𝜔(𝑘𝑘)
� = −𝐑𝐑 �𝐲𝐲(𝑘𝑘)�  (29) 

where 𝐕𝐕𝐳𝐳,(j) and 𝑉𝑉𝜔𝜔,(j) are the prediction vectors computed at the jth solution. The corrections are then used to 
update the variables 

 𝐳𝐳(𝑘𝑘+1) = 𝐳𝐳(𝑘𝑘) + ∆𝐳𝐳(𝑘𝑘)  (30) 

 𝜔𝜔(𝑘𝑘+1) = 𝜔𝜔(𝑘𝑘) + ∆𝜔𝜔(𝑘𝑘)  (31) 
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The correction steps are repeated until the solution converges to satisfy the relative residual to a prescribed 
numerical tolerance, 

 �𝐑𝐑�𝐲𝐲(𝑘𝑘+1)��
�𝐛𝐛𝑝𝑝𝑝𝑝𝑝𝑝+𝐛𝐛𝑒𝑒𝑒𝑒𝑒𝑒�

< 𝜀𝜀𝑅𝑅  (32) 

where ‖ ‖ corresponds to the l2 norm of a vector. Once this convergence tolerance is satisfied, the new solution 
along the curve is stored as 

 𝐳𝐳(𝑗𝑗+1) = 𝐳𝐳(𝑘𝑘+1)  (33) 

 𝜔𝜔(𝑗𝑗+1) = 𝜔𝜔(𝑘𝑘+1)  (34) 

and the tangent vector, 𝐕𝐕(𝑗𝑗+1), is updated using Eq. (26) to predict the next solution along the curve. 

2.3 Step Size Control and Branch Switching 
The step size controller automatically adjusts the magnitude of the prediction step in Eqns. (27) and (28) based on 
the number of iterations to obtain a converged solution, 𝑘𝑘(𝑗𝑗), and the optimal number of iterations specified by the 
user, 𝑘𝑘∗, 

 ℎ(𝑗𝑗+1) = � 𝑘𝑘∗

𝑘𝑘(𝑗𝑗)
� ℎ(𝑗𝑗)  (35) 

where the sign of the step size is determined as 

 sign�ℎ(𝑗𝑗+1)� = sign�ℎ(𝑗𝑗)𝐕𝐕(𝑗𝑗+1)
T 𝐕𝐕(𝑗𝑗)�  (36) 

The sign of the step size prevents the solution from turning back on itself. Within the continuation algorithm, a 
minimum and maximum step size is specified to provide reasonable bounds on ℎ(𝑗𝑗+1). Suboptimal, small step 
sizes lead to an excessive number of calculations to resolve the curve while excessively large steps lead to 
convergence issues and may not adequately resolve the important features of the forced response branch. As 
discussed in [12], the optimal number of iterations will depend on the solver used within the correction step. 
Depending on the solver, a less (more) accurate method will typically require a higher (lower) optimal number of 
iterations. 
An additional check is performed prior to initiating the correction step from the predicted solution in Eqns. (27) 
and (28). The value of the residual at the predicted solution is enforced to be below a specified tolerance, such that 

 �𝐑𝐑�𝐲𝐲(𝑘𝑘=1)��
�𝐛𝐛𝑝𝑝𝑝𝑝𝑝𝑝+𝐛𝐛𝑒𝑒𝑒𝑒𝑒𝑒�

< 𝜀𝜀𝑉𝑉  (37) 

If the residual is below this tolerance, then the correction step is initiated from the prediction. If not, then the step 
size is reduced successively until this condition is met. The purpose of this constraint is to prevent the prediction 
step from being too far from the solution curve and to avoid unnecessary correction iterations. This has been 
observed to occur for branches with sharp transitions, for example, with piecewise linear type nonlinear elements.  

3. Iterative Solvers for Sparse Large-scale Systems 
The focus of this research is to address the computational bottleneck associated with the MHB and pseudo-
arclength continuation algorithm when solving large systems. During the continuation steps, a sequence of linear 
systems are solved, i.e. for the prediction vectors in Eq. (26), followed by a sequence of corrections in Eq. (29).  
The advantage of the scheme outlined in Section 2 is that the Jacobian matrices have the same form in the 
prediction and correction steps, each with linear systems of dimension (2𝑁𝑁ℎ + 1)𝑛𝑛 × (2𝑁𝑁ℎ + 1)𝑛𝑛. Direct solvers, 
such as those based on lower-upper (LU) or QR factorizations (see [76]), can efficiently and robustly calculate 
solutions to linear systems of small or moderate size. However, large-scale finite element models often possess 
many degrees of freedom in which case 𝑛𝑛 is expected to be large. The resultant linear system further scales by the 
number of harmonics assumed in the finite Fourier series. Models relevant to computational structural dynamics 
require the solution to large-scale, linear systems for which direct solvers are inadequate due to memory 
limitations and poor scaling. 
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Krylov subspace-based iterative methods are a popular choice in a wide range of scientific applications to solve 
large-scale systems, and it is well understood that the speed and robustness of iterative solvers depends on many 
factors, including the selection of an appropriate preconditioner to accelerate convergence. In this work, a 
Newton-Krylov approach is developed to utilize a preconditioned iterative solver combined with an inexact 
Newton method to iteratively solve the sparse linear systems of the general form 𝐀𝐀�𝐱𝐱� = 𝐛̅𝐛 in Eqns. (26) and (29). 
A schematic of the Jacobian matrix structure is shown in Fig. 1, which has a nonsymmetric, block-bordered form. 
The size of the matrix is dominated by the upper left quadrant, 𝐫𝐫𝑧𝑧(𝐳𝐳,𝜔𝜔) = 𝐀𝐀(𝜔𝜔) + 𝜕𝜕𝐛𝐛

𝜕𝜕𝐳𝐳
, which is a sparse matrix 

that is also nonsymmetric. In the absence of the nonlinear terms, 𝜕𝜕𝐛𝐛
𝛛𝛛𝛛𝛛

, the matrix 𝐀𝐀(𝜔𝜔) is a block diagonal matrix 
since all the coupling terms across the harmonics of the Fourier series originate from the nonlinearity. The 
following subsections detail the preconditioned iterative solver utilized to repeatedly solve the sequence with this 
matrix form.   

 
Figure 1. Schematic of the Jacobian 𝐑𝐑𝐲𝐲. 

3.1 Inexact Newton Method 
In general, the inexact Newton method [45] seeks to iteratively solve Eq. (25) by approximating the updates at 
each iteration, ∆𝐲𝐲(𝑘𝑘), by satisfying the inequality,  

 �𝐑𝐑�𝐲𝐲(𝑘𝑘)� + 𝐑𝐑𝐲𝐲�𝐲𝐲(𝑘𝑘)�∆𝐲𝐲(𝑘𝑘)� ≤ 𝜂𝜂𝑘𝑘�𝐑𝐑�𝐲𝐲(𝑘𝑘)��  (38) 

The forcing term, 𝜂𝜂𝑘𝑘 ∈ [0,1), determines the required accuracy of the kth correction ∆𝐲𝐲(𝑘𝑘). In the limit of the 
forcing term where 𝜂𝜂𝑘𝑘 = 0, the method reduces to the Newton update. Any non-zero forcing term used is 
essentially a measure of the “inexactness” of the correction, allowing for the update to be approximated with a 
local linear model that reduces the norm of the residual function. The choice of forcing term can influence the 
efficiency and robustness of the method and several researchers have proposed various schemes for automating 
the forcing term [77, 78]. These methods lead to superlinear convergence, as opposed to quadratic convergence 
achieved with standard Newton-Raphson corrections. The inexact Newton method is a general framework to 
select the accuracy required for the correction at each iteration but does not specify how to obtain such 
approximation. The next subsection describes the GCRO-DR iterative solver to obtain the corrections, ∆𝐲𝐲(𝑘𝑘), in 
Eq. (38) as well as the predictions in Eq. (26) for an arbitrary level of accuracy dictated by the choice of forcing 
term.  

3.2 GCRO with Deflated Restarting 
The MHB with continuation algorithm relies on a repeated sequence of linear solves that consists of a single solve 
for a prediction step, followed by several solves within each correction iteration. A schematic of a single instance 
of the repeated process is shown in Fig. 2. In general, this results in a long sequence of linear systems where both 
the Jacobian matrix, 𝐑𝐑𝐲𝐲, and the right-hand side, generally written as the vector 𝐛̅𝐛 in Fig. 2, are changing from one 
iterative solve to the next. Furthermore, the next linear system in the sequence is dependent on the prior one, and 
thus the matrices and vectors cannot be known simultaneously, leading to a serial process. Krylov subspace-based 
iterative solvers rely on the subspace, 



9 
 

 𝛫𝛫𝒓𝒓(𝐑𝐑𝐲𝐲,𝐛𝐛�) = span(𝐛𝐛�,𝐑𝐑𝐲𝐲𝐛𝐛�,𝐑𝐑𝐲𝐲2𝐛𝐛�, … ,𝐑𝐑𝐲𝐲r−1𝐛𝐛�)  (39) 
where the subspace can be generated by the sequence of linear matrix-vector operations (assuming a zero initial 
guess). The approximate solution to the linear system is then sought within the r-dimensional subspace. 

  

 
Figure 2. Sequence of linear solves within prediction and correction steps. 

A straightforward implementation of iterative solvers generates a Krylov subspace that is, in theory, generated for 
each linear system solved in the sequence. This can be accomplished by approximately solving the linear system 
with, for example, the preconditioned GMRES solver originally developed by Saad et al. [49]. This method is 
known to work well for large, sparse, nonsymmetric linear systems such as the Jacobian matrix of interest here. 
As outlined in the next subsection, the preconditioner for the sequence of linear systems can be reused, or 
recycled, across the sequence of linear solves and refactorized periodically based on the performance of the 
algorithm. Additionally, assuming the linear system does not change significantly from one solve to the next, a 
portion of the Krylov subspace generated by the previous linear system can be recycled and reused for the next 
linear system. This is referred to as Krylov subspace recycling and can further speed up the convergence by 
reducing the number of iterations. The review paper by Soodhalter et al. [79] provides an overview of subspace 
recycling methods.   

GCRO-DR [67] is used to successively solve the sequence of linear systems that arise in Fig. 2. The method 
utilizes 𝑘𝑘�  harmonic Ritz vectors corresponding to the harmonic Ritz values with the smallest magnitude. This 
subspace is computed from the previous system of equations to provide an initial subspace for the iterative solver 
of the next system. The optimal solution is determined based on the initial subspace followed by a successive 
generation of additional Krylov vectors that augment the ones formed by the harmonic Ritz vectors. This process 
is repeated for each successive linear system in the sequence of solves associated with the MHB code. The 
interested reader is referred to the details in [67], particularly the pseudo code the authors provide in the appendix. 
In the results section that follows, the method will be described as GCRO-DR(𝑚𝑚� , 𝑘𝑘�), where 𝑚𝑚�  is the maximum 
size of the subspace generated by the iterative solver, and 𝑘𝑘�  is the number of eigenvectors to utilize in the 
subspace recycling between linear systems. These values must be selected based on the expected size of the 
subspace needed to solve the linear system; one approach to achieve this is to solve the system with arbitrarily 
high values first to approximate the number of iterations/vectors generated for each solution. 

3.3 Delayed Frequency Preconditioner 
An ideal preconditioner for iterative solvers of sparse linear systems is one that is inexpensive to compute and 
reduces the spectral condition of the general system matrix 𝐀𝐀�. Furthermore, a preconditioner that can be reused or 
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recycled is advantageous since the factorization of the preconditioner can be costly, especially if it is recomputed 
for every correction and prediction step. In this study, the concept of the DFP from [66] is used to recycle the 
factorization of the matrix, 𝐑𝐑𝐲𝐲, and the preconditioner is reused for several prediction/correction cycles along the 
NLFR branch in Fig. 2. Note that the recycled harmonic Ritz vectors in GCRO-DR are discarded at each 
refactorization. Within this framework, any type of preconditioner can be deployed to represent the approximate 
inverse of the Jacobian, 𝐑𝐑𝐲𝐲

−1. As discussed in [66], the efficiency of the preconditioner often deteriorates as the 
solution moves away from the point on the curve at which the factorization occurred. Therefore, the 
preconditioner is periodically updated and re-factorized depending on the logical conditions requiring an update.  

The approach in [66] required that the preconditioner be re-computed if the number of solver iterations exceed a 
fixed value. This works reasonably well for linear systems and favorable speedups are observed with this 
approach. In the current research, which applies DFP to nonlinear systems, it has been observed that the 
performance of the preconditioner within the GCRO-DR solver depends on the strength of the nonlinearity, which 
changes along the solution branch. Using a pre-determined and fixed value for the number of iterations that 
require a refactorization presents a challenge since this performance metric is problem dependent, potentially 
leading to suboptimal conditions that cause the preconditioner to be updated too frequently. To circumvent this, a 
new algorithm is proposed to adaptively update the preconditioner and is described in the pseudo code in Table 1.    

The logical conditions proposed to update the preconditioner in Table 1 is an adaptation of the approach in [66] 
and is based on the average number of iterations within a single predictor-corrector step. The threshold for the 
number of iterations changes along the solution path and is updated throughout the simulation. The scale factor, 
𝜁𝜁 > 1, dictates the threshold as to when the preconditioner should be recomputed for the previously determined 
number of iterations at the last re-factorization. The larger the value of 𝜁𝜁 means that the preconditioner will be 
updated less often. Higher values of 𝜁𝜁 should be used in cases when the cost of the factorization is high, and vice 
versa. This heuristic approach for selecting an optimal scaling factor, 𝜁𝜁, is also problem dependent based on the 
cost associated with the factorization, but allows for an adaptive method within the MHB algorithm so that the 
method adapts to the solution along the branch (e.g. in strongly nonlinear versus nearly linear regions). 

Table 1. Algorithm for updating preconditioner 

1:     Perform preconditioner factorization of 𝐑𝐑𝐲𝐲 using initial guess; define 𝜁𝜁 

2:     Perform initial correction and prediction, record total number of solver iterations as 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,(1) within the predictor and 
corrector step. 

3:     𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜁𝜁 �
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,(1)

𝑘𝑘(1)+1
� where 𝑘𝑘(1) is the number of correction steps; update = 0 

4:     for j = 2 to number of solution points     
5:         Compute corrections with preconditioned GCRO-DR and check convergence per Eqns. (29) and (32) 

6:         If converged, calculate the prediction step per Eq. (26) using preconditioned GCRO-DR 

7:         Record total number of solver iterations needed to perform correction and prediction in lines 5 and 6 as 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,(𝑗𝑗) 

8:         if update = 1; then 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜁𝜁 �
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,(𝑗𝑗)

𝑘𝑘(𝑗𝑗)+1
�; update = 0; end 

8:         if �
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,(𝑗𝑗)

𝑘𝑘(𝑗𝑗)+1
� > 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; then update preconditioner factorization and discard recycled subspace in GCRO-DR; 

update = 1; end   

9:     end 

 

In this study, four different preconditioning strategies are used within the DFP algorithm in Table 1. Each method 
creates sparse lower and upper triangular matrices, generically denoted 𝐋𝐋 and 𝐔𝐔, which form the matrices of the 
preconditioner. The book by Saad [42] provides excellent overview regarding the solution of sparse linear 
systems using iterative methods. Chapter 10 covers a variety of preconditioning techniques, including incomplete 
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lower-upper (iLU) factorization. Variations of the iLU factorization include zero fill-in method, denoted iLU(0) or 
iLU(p) which account for some fill-in. Within MATLAB, there is an option to perform the Crout version of the 
iLU factorization, which is denoted as iLUC. In addition to the options available for preconditioning, it can be 
advantageous to reorder the Jacobian matrix prior to factorization to produce triangular matrices with more 
sparsity. This has been observed to improve both the cost of the iLU factorization as well as the cost of evaluating 
the preconditioner within each iterative solve. The results in the next section utilize the LU factorization, the 
iLU(0) and iLUC variants for incomplete factorization, as well as an iLUC factorization on each block-diagonal 
(BD-iLUC) matrix shown in the upper left quadrant in Fig. 1. For the LU and iLU factorizations on the full 
Jacobian matrix, the matrix is sorted using the nested dissection permutation [80], which is a multilevel graph 
partitioning algorithm. The BD-iLUC preconditioner was calculated in serial using a single processor but could 
readily extended to multi-core parallel processing.  

4. Numerical Results  

4.1 Mock Pylon with Electromechanical Shaker 
The first numerical example is a mock pylon structure attached to a test fixture, as shown in Fig. 3. A 5-DOF 
model of an electromechanical shaker is coupled to the fixture-pylon model to capture the dynamics of the shaker-
structure interaction. The input into the system is modeled as a sinusoidal voltage source supplied from a data 
acquisition system with a fixed voltage amplitude of 0.025 V. The source of nonlinearity in the model comes from 
the unilateral contact defined at the small gap between the thin strip and the two upper blocks of the pylon. A total 
of 90 node pairs are defined and the unilateral contact elements are power-function-based nonlinear penalty 
springs [81, 82] with 𝑚𝑚 = 2 being the exponent and 𝑘𝑘𝑛𝑛 = 3.5 ∙ 1010 𝑁𝑁/𝑚𝑚 being the penalty stiffness. The finite 
element model of the fixture and pylon were reduced to a Hurty-Craig/Bampton (HCB) model [83, 84] with a 
total of 50 fixed-interface modes, and 189 boundary DOF. When coupled to the shaker, the total size of the 
nonlinear reduced order model is 243 DOF. Within the 189 boundary DOF set, 180 DOF were selected for the z-
displacement of the contact nodes, and the remaining 9 correspond to the x, y, and z displacement of the fixture 
attachment node and two accelerometer nodes on the swinging mass. The material list and properties of the pylon 
and fixture are listed in Table 2, while the parameters of the electrodynamical shaker match those reported in [85].  

 
Figure 3. Schematic of mock pylon component attached to fixture block and electromechanical shaker. 

 

Table 2. Isotropic linear elastic material properties 

Material Young’s Modulus Poisson’s Ratio Density Assigned Blocks 

6061-T6 68.9 GPa 0.30 2885 kg/m3 Thin strip, mounting 
blocks, fixture 
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304 Stainless Steel 207 GPa 0.29 7790 kg/m3 Swinging mass, 
washers 

 

The NLFR curves for the shaker-fixture-pylon system are computed around the first resonance of the pylon, 
which is a bending mode with a linearized frequency of 8.8 Hz. For reference, the following parameters have been 
fixed for the MHB and continuation algorithm. The accepted relative tolerance of the residual from the 
corrections in Eq. (32) is 𝜀𝜀𝑅𝑅 = 1 ∙ 10−6 while the residual tolerance for the acceptable predicted solution is 𝜀𝜀𝑉𝑉 =
10 in Eq. (37). A total of 2048 time steps are used in the AFT method to sample the nonlinear force vector and the 
derivatives, and a total of 400 solution points are calculated along the NLFR branch. For the step size controller, 
the optimal number of iterations in Eq. (35) are 𝑘𝑘∗ = 4 while the maximum number of iterations is 8. For the 
iterative solvers, the relative tolerance of 10−6 is used to approximate the correction updates, while 10−8 is used 
for the predictions. 

The NLFR curves are calculated around the first pylon resonance and are shown in Fig. 4. At low response 
amplitudes, the contact nonlinearity does not engage between the thin strip and upper blocks since the motion 
amplitude is not large enough to close the small gap that exists in the model. At high enough responses, however, 
the contact engages and thus there is a hardening effect on the resonance of the fundamental pylon mode. The 
plots in Fig. 4 show the resulting responses computed using MHB of different orders of Fourier series 
approximation. In these results, the direct solver in MATLAB used the mldivide function, which calls the 
CHOLMOD package. The solver is a supernodal Cholesky factorization method for sparse symmetric and 
nonsymmetric matrices [86]. Here the notation in the legend, i.e. k = 1: 𝑁𝑁ℎ, corresponds to the number of 
harmonics of the approximate Fourier solution in Eqns. (2)-(4). Increasing the number of harmonics scales the 
size of the linear system solved within the prediction and correction steps by 2𝑁𝑁ℎ𝑛𝑛, where in this case the model 
size is 𝑛𝑛 = 243. For example, when approximating the response with 80 harmonics, the coefficient matrix of the 
linear system is 38,880 × 38,880. The results in Fig. 4a show the resulting peak acceleration predicted at the 
output location in Fig. 3, while Fig. 4b shows the peak load cell force, which represents the reaction force 
between the fixture and load cell mass in the coupled shaker-structure model. Visually the results appear to 
converge with a harmonic order up to 𝑁𝑁ℎ = 80. These three simulation cases and their performance serve as 
references when comparing the computational cost of the direct solver to the iterative solvers. 

 
(a) 

 
(b) 

Figure 4. NLFR of the first resonance using the direct solver with increasing number of harmonics showing the 
(a) peak acceleration and (b) peak load cell force versus excitation frequency.  

The solutions from Fig. 4 were recomputed using the iterative solver outlined in Section 3. The GCRO-DR(𝑚𝑚� , 𝑘𝑘�) 
method is utilized with different values for 𝑚𝑚�  and 𝑘𝑘� . When these two parameters are set to arbitrarily large values 
(i.e. greater than the number of iterations needed to approximately solve the linear systems), the solver becomes 
the non-restarted version of GMRES. At lower values of 𝑚𝑚�  and 𝑘𝑘� , the solver then recycles the Krylov subspace 
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and can restart depending on the value of 𝑚𝑚� . In this way, two iterative solvers are compared, namely non-restarted 
GMRES and GCRO-DR. In addition to the two iterative solvers, four types of preconditioners are utilized, 
namely the zero fill-in iLU(0) and the Crout version iLUC, as well as the LU and BD-iLUC factorizations. All of 
these preconditioners are readily integrated into the DFP algorithm in Table 1.  

Prior to comparing the performance of the different solvers and preconditioners, a series of simulations were 
performed using non-restarted GMRES with both iLU preconditioners (iLU(0) and iLUC) to evaluate the 
computational cost with respect to the heuristic scale factor, 𝜁𝜁, in Table 1. This value dictates how frequently the 
preconditioner should be updated. The computational cost for the two preconditioners used with the non-restarted 
GMRES algorithm are evaluated in Fig. 5 for a range of 𝜁𝜁 between 1.5 and 5 with a fixed number of harmonics, 
𝑁𝑁ℎ = 40. The total solver cost for iterative solvers involved both the cost of the iterative solver plus the added cost 
to initialize and recalculate the preconditioner along the solution branch. Based on the results with the iLUC 
preconditioner, there is a trend where the cost of the solver increases with increasing 𝜁𝜁 but the cost of the 
preconditioner decreases since it is recomputed less frequently. For 𝜁𝜁 > 3, these costs balance each other such 
that total cost for the iLUC preconditioner appears to be constant, at least in the range of values shown. For the 
zero fill-in iLU(0) preconditioner, the total cost coincides with the solver cost, since the cost of the preconditioner 
is relatively negligible. Because of this, the total cost is driven by the performance of the solver, which appears to 
be constant for 𝜁𝜁 > 4.  

 
Figure 5. Performance of scale factors in Table 1 for GMRES with 𝑁𝑁ℎ = 40. 

The results in Fig. 6 show the breakdown of the solver costs as a function of the number of harmonics in the MHB 
Fourier approximation for both non-restarted GMRES and GCRO-DR with subspace recycling. All 
preconditioner and iterative solver combinations provide favorable performance speedups relative to the direct 
solver. For the direct solver, the computational cost is only associated with the linear solves within the prediction 
and correction steps whereas the iterative solver accounts for the solver cost in addition to the cost to factorize the 
preconditioner. With the non-restarted GMRES solver, the LU, iLUC and iLU(0) preconditioners used a scale 
factor of 𝜁𝜁 = 4, while BD-iLUC used 𝜁𝜁 = 2. With GCRO-DR, the LU and iLUC preconditioners used a scale 
factor of 𝜁𝜁 = 4, while iLU(0) and BD-iLUC used 𝜁𝜁 = 2. Table 3 reports all the speedups achieved for each order 
of the Fourier series approximation, which is defined as the ratio of the direct solver cost over the indirect solver 
cost.  

The LU and iLUC preconditioners are considered the more accurate representations of the system matrix, and 
thus have higher computational cost associated with their computation. The LU factorization provides only about 
2x speedup for both non-restarted GMRES and GCRO-DR, compared to up to 9x speedup for the iLUC 
preconditioner. When using these two preconditioners with the GCRO-DR solver with  𝑘𝑘� = 5 and 𝑚𝑚� = 1000, 
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there is no favorable computational gain with the use of Krylov subspace recycling. The other two 
preconditioners, namely iLU(0) and BD-iLUC, are considered less accurate representations of the sytem matrix, 
and thus are less costly to compute compared to the LU and iLUC counterparts. Note that the cost of these 
preconditioners are negligible and thus the only visible cost in the bar plots correspond to the solver cost. The 
non-restarted GMRES solver with iLU(0) and BD-iLUC showed speedups ranging from 2x to 5x. When 
leveraging the subspace recycling with GCRO-DR, there was a significant improvement in the computational 
performance, resulting in speedups ranging from 4x to 7x. The iLU(0) and BD-iLUC preconditioners used 
subspace sizes of 𝑘𝑘� = 75 and 𝑚𝑚� = 150, except for the case when 𝑁𝑁ℎ = 80 with iLU(0), in which 𝑘𝑘� = 50 and 
𝑚𝑚� = 200. (The latter settings are adjusted since the solver stalls with the other settings.) These results highlight 
the performance variability with iterative solvers and their dependence on preconditioning. 

 
(a) 

 
(b) 

Figure 6. Solver cost comparison for (a) non-restarted GMRES and (b) GCRO-DR with different preconditioners 
applied to the pylon. Iterative solver costs decomposed into solver cost (lower bar) and preconditioner cost (upper 

bar). 

Table 3. Speedups for each solver and preconditioner. 

 GMRES 

 LU iLUC iLU(0) BD-iLUC 

𝑁𝑁ℎ = 20 2.06 8.93 3.01 2.26 

𝑁𝑁ℎ = 40 1.90 9.03 5.15 3.35 

𝑁𝑁ℎ = 80 2.05 8.75 2.61 2.58 

 GCRO-DR 

𝑁𝑁ℎ = 20 1.98 9.16 4.16 2.44 
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𝑁𝑁ℎ = 40 2.05 7.94 6.21 4.79 

𝑁𝑁ℎ = 80 2.05 7.02 5.86 7.57 

 

The performance of the solvers in Fig. 6 are further evaluated by comparing the total number of iterations for all 
the preconditioners and solvers, as listed in Table 4. The LU and iLUC preconditioners show that each solution 
required between 20,000 to 40,000 total iterations for both the GMRES and GCRO-DR solver. In these cases, the 
use of subspace recycling did not accelerate the convergence of the solver significantly, thus explaining the lack 
of computational performance gains observed in Table 3. An additional cost is embedded in the solver to calculate 
the harmonic Ritz vectors and orthogonalize these with each linear system, so these added costs slightly increase 
the total solver cost. The subspace recycling does not provide any apparent advantage in the case of the LU and 
iLUC preconditioning. Another notable observation is the similarity of the number of iterations between LU and 
iLUC, but the iLUC preconditioner significantly outperformed the LU factorization. This is due to the sparsity of 
the incomplete factorization and the reduced number of computations associated with the matrix-vector products. 
For the case of iLU(0) and BD-iLUC with non-restarted GMRES, the solver iterations that were an order of 
magnitude higher than the LU and iLUC versions. The use of subspace recycling showed a significant 
improvement in the solver convergence by significantly reducing the number of iterations when using GCRO-DR. 
This performance improvement provides an explanation to the computational speedups reported in Table 3. These 
results highlight that the accelerated convergence properties of subspace recycling are best achieved with less 
accurate preconditioners, which often are less costly to compute. For cases in which the preconditioner is highly 
accurate (e.g. LU factorization), the subspace recycling does not provide favorable performance improvement.   

Table 4. Total number of iterations for each solver and preconditioner. 

 GMRES 

 LU iLUC iLU(0) BD-iLUC 

𝑁𝑁ℎ = 20 19,498 23,795 126,261 115,093 

𝑁𝑁ℎ = 40 28,412 23,097 163,278 170,019 

𝑁𝑁ℎ = 80 40,182 37,198 750,248 493,455 

 GCRO-DR 

𝑁𝑁ℎ = 20 19,691 19,492 47,840 54,511 

𝑁𝑁ℎ = 40 23,151 23,319 76,313 59,482 

𝑁𝑁ℎ = 80 34,748 33,676 362,368 133,701 

 

4.2 C-Beam with Small Deformation Frictional Contact 
The next exemplar demonstrates the method on a reduced order model of the C-beam assembly shown 
schematically in Fig. 7. A finite element mesh of the beam is generated using CUBIT [87] followed by a HCB 
reduction [83, 84] using the Sierra/SD finite element software [88]. The finite element model assumes that the 
beams are made of steel with a Young’s modulus of 200 GPa, density of 7,800 kg/m3, and Poisson’s ratio of 
0.285. The beam assembly is suspended by soft suspension springs with a stiffness of 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3,065 N/m 
applied in the three displacement directions to mimic free-free boundary conditions. A total of 25 fixed-interface 
modes are generated for the HCB reduction basis, along with a total of 3,675 boundary DOF. The latter DOF set 
corresponds to a total of 1,220 total nodes defined within the contact surfaces of the beam interfaces, each with 
three translational DOF in x-, y- and z-directions. There are four nodes that correspond to the ends of the beam 
elements to apply the external preload, and a single node at the mid-point of one of the beams at which the 
harmonic time-varying force is applied.   
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Figure 7. Schematic of C-beam assembly with node-to-node Jenkin’s elements at contact node pairs. 

A total of 610 Jenkins elements [89] are added to the a priori defined node pairs in the reduced HCB model prior 
to the application of the bolt preload forces. Each element has a normal penalty stiffness of 𝑘𝑘𝑁𝑁 = 1∙109 N/m, 
tangential stiffness of 𝑘𝑘𝑇𝑇 = 5∙108 N/m, and static coefficient of friction of μ = 0.6. Prior to the MHB simulations, a 
bolt preload of 58.9 kN is applied to the model to capture the preload equilibrium state, which is needed to 
initialize the NLFR solution. The NLFR curves for the C-beam are computed around the second elastic mode 
corresponding to an in-phase bending mode of the two beams, which activates a softening nonlinearity due to the 
tangential slip regions developed through the shear stresses. The natural frequency of the system linearized about 
the preloaded equilibrium is 346.9 Hz. The following parameters are fixed for the MHB and continuation 
algorithm.  The accepted relative tolerance of the residual from the corrections in Eq. (32) is 𝜀𝜀𝑅𝑅 = 1 ∙ 10−6 while 
the residual tolerance for the acceptable predicted solution is 𝜀𝜀𝑉𝑉 = 0.1 in Eq. (37). A total of 2048 time steps are 
used in the AFT scheme to sample the nonlinear force vector, and a total of 150 solution points are calculated 
along the NLFR branch. For the step size controller, the optimal number of iterations in Eq. (35) are 𝑘𝑘∗ = 3 while 
the maximum number of iterations was 6. For the iterative solvers, the relative tolerance of 10−6 is used to 
approximate the correction updates, while 10−8 is used for the predictions. 

The plots in Fig. 8 show the NLFR solution with the direct solver around the second resonance, showing the peak 
acceleration at the drive-point location in the y-direction. The solution is computed for harmonics up to fifth 
order, which visually converge near the resonance peak. These solution cases serve as the reference solution when 
comparing the performance to the iterative solvers. The model size is 𝑛𝑛 = 3,712, so when approximating the 
response with 𝑁𝑁ℎ = 5 harmonics, the coefficient matrix of the linear system is 40,832 × 40,832. Note that this 
system scales as (2𝑁𝑁ℎ + 1)𝑛𝑛 since an additional DC term is needed to capture the preload equilibrium state of the 
model. In these results, the direct solver in MATLAB used the mldivide function, which calls the UMFPACK 
package. The solver is a multifrontal LU factorization method for nonsymmetric sparse linear systems [90]. 
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(a) 

 
(b) 

 

Figure 8. (a) NLFR near the second elastic mode with increasing number of harmonics; (b) zoomed in near the 
resonance peak.  

The plots in Fig. 9 show the computational cost comparison between the two iterative solvers and the four 
preconditioners, which are again compared against the costs of the direct solver. Table 5 lists a summary of the 
speedups achieved with each solution and method. For these simulations, the scaling factor of 𝜁𝜁 = 2 is used for 
iLU(0) and BD-iLUC and 𝜁𝜁 = 4 for LU and iLUC. For the iLU(0) preconditioner with GCRO-DR, the following 
settings are used respectively for 𝑁𝑁ℎ = 1,3,5: 𝑚𝑚� = 100, 200, 400 and 𝑘𝑘� = 50, 100, 200. The case of LU, iLUC, 
and BD-iLUC with GCRO-DR uses 𝑚𝑚� = 40 and 𝑘𝑘� = 20 for all harmonics. Contrary to the previous pylon model, 
the non-restarted GMRES with LU and iLU(0) performs worse than the direct solver, reporting speedups < 1, 
highlighting the fact that iterative solvers do not necessarily outperform direct solvers. When using iLU(0) with 
the GCRO-DR subspace recycling, there is a significant improvement in the performance and results in favorable 
speedups compared to the direct solver. Contrary to this, the use of subspace recycling (GCRO-DR) with the other 
preconditioners (LU, iLUC, BD-iLUC) deteriorates the performance of the iterative solver compared to using 
them with the non-restarted GMRES solver.   

 
(a) 
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(b) 

 

Figure 9. Solver cost comparison for (a) non-restarted GMRES and (b) GCRO-DR with different preconditioners 
applied to the C-Beam. Iterative solver costs decomposed into solver cost (lower bar) and preconditioner cost 

(upper bar). 

Table 5. Speedups for each solver and preconditioner. 

 GMRES 

 LU iLUC iLU(0) BD-iLUC 

𝑁𝑁ℎ = 1 0.32 2.31 0.33 3.05 

𝑁𝑁ℎ = 3 0.44 3.33 0.47 6.04 

𝑁𝑁ℎ = 5 0.39 4.63 0.73 12.05 

 GCRO-DR 

𝑁𝑁ℎ = 1 0.33 1.73 1.57 1.94 

𝑁𝑁ℎ = 3 0.38 2.35 2.42 3.30 

𝑁𝑁ℎ = 5 0.33 1.99 3.34 4.43 

 

The computation costs and relative speedups are further analyzed by investigating the total number of iterations 
for the NLFR branch as shown in Table 6. The LU and iLUC preconditioners show that each solution required 
between 10,000 to 20,000 total iterations for both the GMRES and GCRO-DR solver. The BD-iLUC 
preconditioner outperformed these two preconditioners by reporting approximately 5,000 to 13,000 iterations for 
the two solvers. It can be observed from Table 6 that the LU, iLUC, and BD-iLUC preconditioners with GCRO-
DR subspace recycling did not accelerate the convergence of the solver significantly, thus explaining the decrease 
in computational performance listed in Table 5. With the iLU(0) preconditioner with non-restarted GMRES, the 
solver iterations were again an order of magnitude higher than the LU and iLUC versions, along with  BD-iLUC 
for this example. The use of subspace recycling showed a significant improvement in the solver convergence by 
significantly reducing the number of iterations when using iLU(0) GCRO-DR, reducing it to a range between 
20,000 to 60,000 iterations. Again, this reduction in iterations provides evidence for the computational speedups 
with subspace recycling reported in Table 5. As observed with the pylon model, the subspace recycling method 
works best with less accurate preconditioners. In the C-Beam example, the BD-iLUC preconditioner 
outperformed the other variants, contrary to the pylon model. The block-diagonal preconditioner neglects the off-
diagonal block matrices, which are the coupling terms between the harmonics due to the nonlinearity. This 
preconditioner is more accurate for weaker nonlinearity types compared to stronger nonlinearities where these 
couplings are more dominant in the Jacobian matrix.  

Table 6. Total number of iterations for each solver and preconditioner. 
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 GMRES 

 LU iLUC iLU(0) BD-iLUC 

𝑁𝑁ℎ = 1 11,745 11,716 151,535 5,604 

𝑁𝑁ℎ = 3 14,250 14,620 305,963 7,910 

𝑁𝑁ℎ = 5 17,841 18,175 464,212 9,381 

 GCRO-DR 

𝑁𝑁ℎ = 1 9,753 9,536 19,634 4,527 

𝑁𝑁ℎ = 3 14,380 14,907 33,360 7,463 

𝑁𝑁ℎ = 5 17,985 17,265 59,850 13,183 

 

5. Conclusion 
This work presents the development of a novel Newton-Krylov iterative method within a multi-harmonic balance 
and pseudo-arclength continuation algorithm to efficiently compute the time-periodic motions of large-scale, 
nonlinear mechanical systems. The algorithm uses pseudo-arclength continuation to trace the periodic orbits of 
the harmonically excited equations. An inexact Newton method is used to determine the approximate corrections 
and predictions of the system, and these approximations are calculated using Krylov subspace iterative solvers. 
Two methods are combined to efficiently solve for the sequence of linear systems from the predictor and corrector 
steps, namely the delayed frequency preconditioner, and the GCRO-DR iterative solver with Krylov subspace 
recycling. Both methods recycle data from previous linear systems along the solution branch, providing overall 
cost savings within the solver. The recycled preconditioner is only refactorized when the performance of the 
iterative solver deteriorates. Krylov subspace recycling uses harmonic Ritz vectors from the previous linear 
system and provides an initial subspace for the solution of the next linear system. This enables improvements in 
the performance of the iterative solver by requiring fewer iterations to satisfy the approximate solution to the 
desired numerical tolerance.  

Two example problems with contact type nonlinearities demonstrate the performance of the iterative solver 
strategy. Within each model, the non-restarted GMRES and GCRO-DR solver are utilized, along with four 
variants of preconditioners, namely LU factorization, two versions of iLU preconditioning (zero fill-in and Crout 
version), and a block-diagonal preconditioner with Crout iLU factorization. In many of the cases presented, the 
iterative solvers provided favorable speedups compared to the direct solver, but certain combinations of solvers 
and preconditioner led to worse performance. The best performance observed is for the C-Beam model with 
Jenkins elements, in which there is a 12.05x reduction in solver cost when using BD-iLUC and non-restarted 
GMRES. It was observed that the use of subspace recycling improves the computational performance only when 
using a less accurate preconditioner. When the preconditioner accurately represents the system matrix, there is no 
observed acceleration in the convergence of the solver, and it was more advantageous to use the non-restarted 
GMRES solver without subspace recycling.  

Krylov subspace iterative solvers are known to provide significant speedups when solving large-scale linear 
systems, and the performance is highly dependent on the problem of interest along with the type of preconditioner 
and solver. This study demonstrates how these techniques can be effectively leveraged to speed up calculations 
associated with multi-harmonic balance and continuation algorithms. Future studies will be motivated by the 
generalized framework in which other solvers and preconditioners can be explored to achieve even better 
improvements in solver performance.     
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