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Abstract

The methodology described in this paper enables a type of holistic fleet optimization
that simultaneously considers the composition and activity of a fleet through time as
well as the design of individual systems within the fleet. Often, real-world system design
optimization and fleet-level acquisition optimization are treated separately due to the
prohibitive scale and complexity of each problem. This means that fleet-level schedules
are typically limited to the inclusion of predefined system configurations and are blind
to a rich spectrum of system design alternatives. Similarly, system design optimization
often considers a system in isolation from the fleet and is blind to numerous, complex
portfolio-level considerations. In reality, these two problems are highly interconnected.
To properly address this system-fleet design interdependence, we present a general
method for efficiently incorporating multi-objective system design trade-off information
into a mixed-integer linear programming (MILP) fleet-level optimization. This work
is motivated by the authors’ experience with large-scale DOD acquisition portfolios.
However, the methodology is general to any application where the fleet-level problem
is a MILP and there exists at least one system having a design trade space in which
two or more design objectives are parameters in the fleet-level MILP.
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1 Introduction

Planning the optimal acquisition strategy for a fleet of systems is a popular topic in the Op-
erations Research literature. Such problems are often challenging due to the large number
of systems being affected and the variety of complex governing behaviors being modeled.
Successfully solving these problems can be hugely impactful; at large scale, even incremental
improvements to extant solutions can translate into large cost savings and significant real-
world performance improvements. While no fully consistent nomenclature exists throughout
the literature, these problems come in a variety of flavors. For example, Fleet Assignment
Problems (Abara, 1989; Subramanian, Scheff, Quillianan, Wiper, & Marsten, 1994; Hane et
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al., 1995; Rushmeier & Kontogiorgis, 1997) are extensively used by the airline industry to
match airplanes with scheduled departure times and passenger loads. Portfolio Optimization
(Bertsimas, Darnell, & Soucy, 1999; Beaujon, Marin, & McDonald, 2000; Benati & Rizzi,
2007) generally refers to the acquisition of financial instruments or other assets to maximize
return on investment, minimize risk, or meet other financial goals. Fleet Optimization, Fleet
Scheduling, or Vehicle Fleet Mix Problems (Magnanti, 1981; Roy, 1989; Nulty & Ratliff,
1991; Powell & Perkins, 1997; Dondo & Cerda, 2007; Raa, 2015) typically involve opti-
mal procurement and routing of vehicles and are commonly seen in the transportation and
shipping industries. Fleet/Portfolio Modernization Problems (Brown, Clemence, Teufert,
& Wood, 1991; Hartman, 2000; Davis et al., 2016) often take a long-term, multi-decade
planning approach to optimal fleet or portfolio composition and are less concerned with
optimizing day-to-day operations.

While each of the above classes involves unique (often complex) modeling challenges, they
can broadly be categorized as determining optimal decisions about which systems should be
acquired, how many, and when. Of interest to this study are such problems posed with scalar-
valued objectives (e.g., maximize total profit, minimize total expenditures, or maximize
aggregate fleet value) under myriad complex constraints. Thus, due to 1) the large number
of inherently discrete decisions, 2) the variety of governing constraints and 3) the single-
objective function, these problems are typically linearized and solved via algorithms which
perform well on large-scale, highly-constrained, mixed-integer linear programs (MILPs).

In contrast to single-objective fleet problems, system-level design trade space optimiza-
tion is focused on providing a trade space of discrete, Pareto optimal system configurations
that balance competing design criteria. These diverse problems can also be difficult to solve,
but unlike fleet-level optimization problems whose difficulty is driven primarily by problem
scale and quantity of constraints, system design trade space optimization difficulties usually
arise from the fidelity, complexity, and nonlinearity of the physical processes and design
constraints being modeled. It is not uncommon to see computational fluid dynamics (CFD),
finite elements (FE), Monte Carlo, and other computationally expensive evaluation algo-
rithms embedded within a system design trade space optimization. Equally diverse are the
multi-objective optimization methods commonly employed to solve these problems, which
can range from simple Latin hypercube sampling (LHS), to population-based metaheuris-
tics such as genetic algorithms (GA) or particle swarm optimization (PSO), to hierarchical
multidisciplinary design optimization frameworks such as collaborative optimization or disci-
plinary analysis optimization, and even unique, hybrid combinations of multiple techniques.

To illustrate the considerable heterogeneity in system trade space problems, consider a
sampling of papers from the aerospace, maritime shipping, and automotive industries. Opti-
mizing supersonic aircraft design, for example, may involve exploration of various wing shape
parameters; Obayashi, Sasaki, Takeguchi, & Hirose, 2000 couples GAs and complex airflow
code to optimize super/transonic drag and bending moments, while Alonso, LeGresley, &
Pereyra, 2009 combines LHS, neural nets, and sonic boom propagation tools to minimize
ground noise and structural weight. Sea surface ship optimization might explore multiple hull
geometries and bulkhead designs; Tahara, Tohyvama, & Katsui, 2006 fuses GAs, successive
quadratic programming, and CFD code to maximize maneuver and propulsive performance,
while Cui & Turan, 2010 uses hybrid PSO and water-on-deck code to trade cargo capac-
ity and water-inundation survivability. Passenger vehicle safety is often concerned with the



thickness of panels, fenders, rails, and other structural components in order to minimize crash
deformation distance and reinforcement mass; Lio, Li, Yang, Zhang, & Li, 2008 does this
using LHS, surrogate models, and FE simulations while Yildiz & Solanki, 2012 combines
PSO and FE. Still other design optimization strategies treat the vehicle as a system-of-
systems and employ GAs to explore various combinations of subsystem alternatives: Desai
& Williamson, 2009 balancing fuel economy and emissions of hybrid electric vehicles, Henry
& Waddell, 2016 trading off load capacity, cost, and autonomy of small robotic transporters.
The critical takeaway here is that, unfortunately, no unifying optimization approach nor
common modeling tools exist across disparate system-level domains.

Most challenging is when system design choices and acquisition plans are both under
consideration simultaneously such that an interplay exists between the choice of solutions
from the system-level design trade space and their assignment to a fleet-level acquisition
strategy. Unfortunately, the many diverse constraints governing fleet operations often ob-
fuscate the effects that system design choices will have on the optimal fleet strategy. For
example, an expensive but highly capable system might add great value to a fleet, but a
cheaper, less-capable system could actually allow for higher fielding quantities within bud-
get constraints and thus provide a greater aggregate fleet value. Interactions such as this
mean that system-level and fleet-level problems are inextricably linked.

Typically, however, these two problems are approached separately due to the significant
challenge and complexity of each. In fact, we are not aware of any existing literature dis-
cussing their integration. Furthermore, the techniques commonly employed on fleet-level
and system-level problems are not amenable to unification. MILP approaches for fleet-
level optimization cannot readily incorporate the complex, nonlinear, and even black box
evaluation metrics common in system-level trade space optimizations. On the other hand,
metaheuristics and other multi-objective approaches cannot readily handle the scale and
highly-constrained nature of fleet-level problems. To enable “holistic fleet optimization”
that unifies system and fleet-level considerations into one formulation, this paper presents
a general framework that efficiently incorporates system-level multi-objective trade space
results into fleet-level MILP optimization formulations. The goal is to allow the fleet-level
optimization to down-select to a particular Pareto optimal system design that best con-
tributes to the overall objective of the entire fleet.

It is important to note that this approach is distinct from the extensive literature on
optimization over a Pareto set of solutions, which focuses on the problem of finding the
single Pareto optimal solution that optimizes some given real-valued utility function. The
methods described in these works are typically tailored to the structure of the underly-
ing multi-objective problem from which the Pareto set is generated. For instance, authors
have considered optimization over the Pareto set of solutions arising from multi-objective
linear programs (Yamamoto, 2002; Belkhiri, Chergui, & Ouail, 2021), multi-objective inte-
ger linear programs (Jorge, 2009; Boland, Charkhgard, & Savelsbergh, 2017; Cherfaoui &
Moulai, 2021), multi-objective integer linear fractional programs (Moulai & Mekhilef, 2021;
Chaiblaine & Moulat, 2022), and multi-objective nonlinear programs (Benson, 1984; An,
Tao, & Muu, 1996; Horst & Thoai, 1997; Thoai, 2000; Liu & Ehrgott, 2018). In contrast,
the holistic fleet optimization problem requires the selection of a Pareto optimal system
design that can best be incorporated into a complex fleet-level modernization plan. That
is, the choice of system design is just one of many interconnected factors affecting both the



objective function and constraints of the fleet-level problem. Furthermore, one holistic fleet
optimization problem could potentially involve many different system types, each with its
own corresponding multi-objective system design problem having a unique (potentially even
non-closed-form) structure.

To address this challenge, the proposed methodology utilizes the results of the multi-
objective trade space optimization, and is therefore agnostic to the system-level optimiza-
tion technique itself and does not require that the machinery of fleet-level and system-level
optimization be integrated. Instead, system-level trade space results are pre-computed us-
ing whichever technique is most appropriate for the given study. Once the Pareto optimal
system-level solutions are obtained, the convex hull of the performance space (i.e., the objec-
tive space) of these solutions is incorporated into the fleet-level MILP via bilinear reformu-
lations. The convex hull representation is used as an efficient approximation for the discrete
system trade space because a more obvious approach of allowing the MILP to select directly
from hundreds to thousands of discrete system design alternatives would be computationally
prohibitive — especially if done for multiple system types, each with its own system-level
trade space. But because the convex hull is an approximation of a discrete system-level
trade space, care must be taken to ensure the fleet-level optimization realizes values within
the convex hull that correspond to an actual Pareto solution of the system design problem.

The remainder of this paper is organized as follows. Section 2 provides real-world moti-
vation for holistic fleet optimization arising from large-scale fleet modernization and combat
system trade studies performed by the United States Army. Section 3 describes the method-
ology for capturing the convex hull of a discrete Pareto optimal frontier, reformulating the
bilinear terms that arise when the convex hull is incorporated within a fleet-level MILP,
and performing disjunctive iterations to ensure convex hull vertices are selected. Section
4 provides a full example that illustrates our methodology on a simplified fleet moderniza-
tion problem with two system design trade spaces. Section 5 uses real-world, large-scale
fleet modernization and system trade spaces from our motivating work to demonstrate the
computational efficiency of our method compared with direct representation of every sys-
tem design alternative within the MILP. Finally, Section 6 briefly summarizes this work and
considers avenues for future study.

2 Real-World Motivation

This paper is motivated by prior work in acquisition, modernization, and design trade space
decision support for Program Executive Offices (PEOs) within the United States Army. As
an example, PEO Aviation is responsible for a fleet of nearly 5,000 AH-64 Apache, UH-60
Blackhawk, and CH-47 Chinook helicopters as well as a variety of fixed-wing and unmanned
aircraft (GAO, 2020). Similarly, PEO Ground Combat Systems (GCS) is responsible for a
fleet of more than 20,000 specialized combat vehicles including the M1 Abrams Tank, the
M109A6 Self-Propelled Howitzer, and the Bradley and Stryker Families of Vehicles (Davis
et al,, 2016). PEO Combat Support and Combat Service Support (CS&CSS) manages a
portfolio of over 200,000 vehicles including Humvees, HEMTTs, HETs, unmanned ground
vehicles, bridge-building vehicles, and even watercraft transport systems (ASA-ALT, 2021).
As a key acquisition authority, PEOs are tasked with both 1) developing next-generation



systems and 2) implementing a long-term fleet modernization plan for all current and future
systems within their portfolio. At the fleet level, challenges emerge from a complex confluence
of political, budgetary, production, inventory, and industrial base considerations. At the
system level, each vehicle can be enormously complex with dozens of integrated subsystems
that combine to meet hundreds of (often competing) design requirements. To address these
significant PEO challenges, two existing capabilities have been developed that separately
address the fleet-level and system-level problems — reviewed briefly in the remainder of this
section.

The Capability Portfolio Analysis Tool (CPAT) (Davis et al., 2016) is a MILP-based
capability that prioritizes acquisition and modernization plans to create an optimal fleet
composition schedule spanning multiple decades (see Figure 1). CPAT solution schedules
must satisfy a wide variety of constraints enforcing behaviors such as maximum and minimum
production rates, ramp-up and consistency of production lines, coordinated schedules across
disparate production lines, initial fielding dates, retirement or age-out schedules, deployment
cycles, upfront research, development, testing and evaluation costs, fixed production costs
and per-unit acquisition costs, multiple allocation budgets, earmarks allocated to specific
programs, and many other business rules. In total, the CPAT MILP formulation has 98
classes of constraints that enforce 45 unique scheduling behaviors (see electronic companion
to Davis et al., 2016).
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Figure 1: This CPAT screenshot depicts a notional ground combat fleet with optimized
composition changes over a 30-year time horizon where current-day “Status Quo” (SQ)
systems are replaced with new or Upgraded (Upg) variants that maximize cumulative fleet
value. All systems in CPAT are “point designs” with fixed cost and value parameters.

Along with these constraints, CPAT also includes a value model that constructs a single,
unique score (later called vy for each system s) for all current and future systems in the fleet.
These system scores define the coefficients of the formulation’s cumulative value objective



function. The CPAT value model draws from dozens of individual system attributes in
categories such as survivability, lethality, mobility, and any other consideration relevant to
the PEO. Each performance attribute is normalized using predefined walk-away, threshold,
and objective values (corresponding to 0, 0.7, and 1, respectively). These normalized system
attribute scores are then additively aggregated together using importance weights for each
attribute — these weights being elicited from subject matter experts (SMEs) via the Swing-
Weight methodology of Parnell & Trainor, 2009.

While it may seem oversimplified to represent the complexities of a system’s operational
value as a singular score vy, and perhaps even more simplistic to model group-level value
as linear addition of individual system wv,, PEO leadership preferred this compromise for
a number of reasons. First, neither CPAT nor the PEO is responsible for tactical mission
execution where the number of systems needed and most relevant characteristics can vary
wildly from scenario to scenario. Rather, the responsibility of the PEO (and thus of CPAT)
is to procure the most overall value for the largest number of systems. The construction of
v, with its consideration of many different value categories weighted by SME importance,
was deemed acceptable for this purpose. Second, PEO portfolios contain a large number
of identical system types within a relatively static, self-supporting force structure. Hence,
questions of value focus less on “What is the value of 1 tank vs. 50 tanks vs. 500 tanks?”
(where linearity assumptions are much more dubious) and more so around “What is the
value of upgrading 1000 existing tanks vs. purchasing 1000 new tanks?” (where linearity is
more accurate due to the averaging effect of the large quantities at play). Lastly and perhaps
most importantly, this approach was the considered most explainable to higher leadership
when the PEO was required to defend acquisition decisions.

Another advantage of linear value assumptions is the computational tractability this
affords to PEO problem scales. As one example of problem size, a typical PEO GCS model
spanning several decades requires roughly 70,000 constraints and 10,000 integer variables to
capture all modernization possibilities and complex business rules. Models for other PEOs,
such as the aforementioned CS&CSS, can be significantly larger. Even with a well-tuned
model, optimization run times typically require several hours or days to reach an acceptable
gap tolerance (often required to be very stringent) using the latest CPLEX or Gurobi solvers.

Switching to the topic of system-level trade spaces, the Whole System Trades Analy-
sis Tool (WSTAT) (Edwards et al., 2015) uses a multi-objective genetic algorithm (GA)
to explore the trade space of a future system design — mapping out the best possible de-
signs across a range of different stakeholder value dimensions. WSTAT has been applied
to a very broad range of systems across DOD portfolios, including ground vehicles, robotic
systems, watercraft, forward operating bases, intercontinental ballistic missiles, hypersonic
boost glide vehicles, and nuclear warheads. Each type of system has a unique 1) subsystem
decomposition, 2) selection of parts that can be chosen for each subsystem, and 3) set of
competing requirements and evaluation metrics. The number of possible unique solutions in
a system trade space typically ranges from 10% to 10'%° designs. The WSTAT GA examines
millions of subsystem combinations over successive generations using mutation, crossover,
and other specially-designed operators to converge on a set of hundreds or thousands of
Pareto optimal designs that best balance objectives such as value, cost, growth potential,
and schedule risk. (As in CPAT, value metrics can include survivability, lethality, mobility,
and any other stakeholder-relevant considerations.) Evaluating system designs based on the



choice of subsystem parts can involve calculations including simple equations, lookup tables,
or even nonlinear iterative subroutines with no closed form. Optimization times are usually
several hours to ensure the evolution of the GA population has converged to an adequate,
repeatable representation of the true Pareto frontier (see Figure 2).
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Figure 2: This WSTAT screenshot depicts a Pareto optimal trade space for a notional ground
vehicle. Each point on the scatter plot represents an optimal system design created from
a unique collection of subsystem parts. In this example, designs are optimized in the four-
dimensional performance space of value, procurement cost, growth potential, and schedule
uncertainty. Efficiently representing design performance spaces within an overarching fleet
optimization is the primary goal of this research.

Even with dedicated tools such as CPAT and WSTAT, these fleet and system-level prob-
lems can be quite difficult on their own — yet ideally should be integrated when system and
fleet applications overlap. However, this integration is challenging since these fleet formula-
tions assume a fized cost and value for every system type, while a system-level trade space
optimization provides thousands of Pareto optimal alternatives for that system. Simply
stated, the goal of this paper is to enable fleet-level optimization to utilize the rich set of
optimal system design alternatives to make choices that simultaneously consider both the
system and fleet perspectives. For example, if a system-level tradeoff exists between cost
and value, it may be preferable from a fleet perspective to choose a lower-value but cheaper
system in order to procure more of those systems within a fixed budget. This is but one ex-
ample of how a more thorough unification of system and fleet-level optimization can provide
better decision support to organizations responsible for both the operations of their fleet and
the designs of the systems therein.



3 Methodology

This section outlines a methodology for incorporating Pareto optimal design alternatives
from one or more system-level trade spaces into a fleet-level MILP formulation in order to
capture the full spectrum of system design possibilities without compromising the tractability
of the fleet modernization optimization. While the PEO portfolios mentioned in Section 2
are a classic application space, this methodology is general to any portfolio ecosystem having
the following key properties:

e the portfolio scheduling problem is solved via a MILP formulation,

e the design of at least one system in the portfolio is not yet finalized and multiple
discrete alternatives are available, and

e at least two dimensions of the objective space of the system-level design problem are
equivalent to system parameters in the fleet-level formulation.

Since 1) real-world system design trade space problems often produce thousands of
Pareto optimal solutions and 2) large-scale fleet-level MILPs are often near the bound-
ary of tractability, it is generally impossible to individually incorporate all Pareto optimal
system designs as separate alternative systems within the fleet problem. Instead, we intro-
duce the new concept of “adaptive” systems whose performance parameters (such as cost
and value) vary within bounds determined by the optimized system-level trade space. The
fleet-level MILP then chooses a particular instantiation of the adaptive systems’ parameters
to best meet the optimization goals of the entire fleet — the essence of the holistic fleet op-
timization problem. By design, the fleet-level choice of adaptive systems’ parameters is a
post hoc decision independent of (but obviously informed by) the system-level design prob-
lem(s); fleet-level choices do not change the optimal system-level trade space. Thus, the
holistic fleet-level problem is still a MILP, rather than a more complex multiobjective bilevel
optimization problem (as described, for example, in Sinha et al., 2018).

Our methodology is as follows. First, we acquire the set of Pareto optimal system designs
using whichever technique is most appropriate for the given study. For the U.S. Army
applications discussed in Sections 2 and 5, we use the WSTAT GA to approximate the
Pareto set for the non-linear, multi-objective system design problem. Then, for each adaptive
system, we acquire the convex hull representation of the performance space of the Pareto
optimal solutions - providing a bounding polytope within which the design parameters of
each adaptive system can vary. Next, these convex hull constraints are appended to the fleet
formulation and new continuous variables are introduced to represent the adaptive systems’
design parameters — allowing the fleet-level MILP to optimally choose each adaptive system’s
design. With the creation of these new adaptive parameter variables, nonlinearities are
introduced into the fleet formulation in the form of bilinear products of existing discrete
fleet decision variables and continuous adaptive parameter variables. These bilinear terms
are then linearized via the introduction of new auxiliary variables and constraints to enable
solution by standard MILP solvers. Finally, if the adaptive parameter variables chosen by
the fleet optimization do not match one of the original configurations from the system-level
trade space, we iteratively disjunct the convex hull representation and re-optimize until each
adaptive system’s parameters correspond to a Pareto optimal system configuration. Key
steps are explained in more detail in the following subsections.



3.1 Acquiring the Convex Hull of a Pareto Set

The convex hull of a set of discrete points S in R?, denoted conv(S), is the smallest convex
set that contains all points in S. Stated another way, the convex hull can be represented
as the set of linear constraints that most tightly envelops S. As an example, the left side of
Figure 3 shows a set of system design configurations that optimally balance two performance
objectives, cost and value; on the right, the convex hull constraints form the tightest possible
linear bounds around the performance space of the design alternatives. The convex hull
allows approximation of a set of discrete configurations from multi-objective optimization
with a set of simple linear constraints.
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Figure 3: This figure shows an example Pareto optimal performance space of cost vs. value
(left) and its convex hull (right). Pareto solutions that form vertices of the convex hull are
filled in black.

By representing the performance parameters of the adaptive systems (e.g., cost and value
in Figure 3) as new continuous decision variables bounded within the convex hull constraints,
the fleet optimization can determine the best realization of these variables that is realistic
for the system and best satisfies the optimization goals of the entire fleet. In Figure 3 for
example, the 12 discrete system design alternatives on the left can be approximated on
the right by 6 convex hull constraints and a continuous cost and value variable. Various
techniques (Barber, David, & Huhdanpaa, 1996; Chazelle, 1993; Graham, 1972) are readily
available to generate convex hull constraints given a set of discrete points. Section 5 leverages
a Python implementation of the Qhull library (Barber et al.; 1996) in order to acquire convex
hulls for the computational study. Although this convex hull computation would become
computationally intractable for large numbers of adaptive parameter variables (i.e., a high-
dimensional system performance space), most real world applications limit the number of
competing objectives within a system design trade space optimization to less than six.



While appending new convex hull constraints to an existing fleet-level MILP formulation
is trivial, a complication arises in dealing with the new adaptive parameter variables (e.g.,
cost and value in Figure 3). In defining the convex hull, what would previously have been
fizxed data about a discrete set of alternatives, is now a set of continuous variables that will
likely be multiplied by other existing discrete variables in the fleet formulation (e.g., total
cost might be calculated as the number of adaptive systems procured times the adaptive
system cost). This gives rise to nonlinear terms, and the next subsection outlines the use of
bilinear reformulations to model such products of continuous and discrete variables.

3.2 Linearizing Bilinear Terms

Bilinear terms (e.g., a continuous variable times a binary or integer variable) are a natural
result of introducing convex hulls of the performance spaces of system design alternatives
into a fleet-level MILP. Expanding on the example of Figure 3, if v, gives the value of system
s and x4 determines how many systems s are in the fleet at time ¢, then stt VsTg gives the
cumulative fleet value — a natural choice for a fleet-level objective function. When vy is a
fixed parameter, as in typical fleet MILP formulations, this cumulative fleet value expression
is linear. But when v, is a continuous variable, reformulation is needed to accommodate
the bilinear term. Many techniques to linearize such bilinear terms are available in the
optimization literature (Bergamini, Grossmann, Scenna, & Aguirre, 2008; Gupte, Ahmed,
Cheon, & Dey, 2013; Liberty & Constantinos, 2006), and the technique of Gupte et al.,
2013, detailed below, is employed for its computational efficiency and minimal creation of
new auxiliary variables and constraints.

Consider the general bilinear term xy, which is the product of a bounded non-negative
integer variable x < U and a bounded non-negative continuous variable y < V. Linearization
requires replacement of xy with a single continuous variable w that always realizes the desired
product. This is achieved by enforcing the linear constraints found in
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where ¢ = [log, U] and where the final inequality denotes that e! is less than or equal
to both Vef and y. In this formulation, the binary variables e are used to find a binary
expansion of the integer variable x while the continuous variables e? set the correct value
of the continuous variable w. As is demonstrated in Gupte et al., 2013, the variable w as
represented in L, will always equal the product zy for 0 <z < U and 0 <y < V. It is
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in this manner that we linearly represent terms such as v,r, within the fleet optimization
problem.

3.3 Iterative Process for Non-Vertex Cases

Although the performance space convex hull provides the tightest possible convex envelope
constraining an adaptive system’s parameters, it is possible that the fleet-level optimization
may choose an instantiation that does not correspond to one of the discrete solutions from
the original system trade space (i.e., a solution that is not a vertex of the convex hull). This
possibility arises because fleet-level constraints can cut into the system-level trade space.
For instance, in the illustrative example of Section 4, fleet-level budgetary restrictions cause
the optimization to choose a system design that does not correspond to a vertex of the
convex hull of the system’s cost-value trade space. In fact, depending on the structure of
the fleet-level constraints, the optimal adaptive system parameters may not even fall on the
boundary of the convex hull. For example, in addition to budget constraints that would cut
through the cost axis, some applications might involve requirements from treaties or other
international agreements that put limits on the total value or capability of a fleet.

In such cases, the fleet-level plan may not be valid as the characteristics of the adaptive
system do not represent one of the realizable Pareto optimal designs. Empirical evidence
from our computational experiments suggests this happens relatively rarely. Nevertheless,
this possibility must be addressed. In some analyses, it may be acceptable to simply choose
the Pareto optimal system configuration whose parameters most closely match the adaptive
parameters selected by the fleet-level optimization (especially if within some pre-defined
acceptable neighborhood). Although this technique is computationally trivial, there is no
guarantee that it will provide an optimal fleet-level solution.

Another possibility is to take advantage of the valuable new information that the fleet
desires a system that is not currently available from the system-level problem. With this
new information in hand, we could revisit the system design optimization with a focus
on generating additional solutions whose parameters (closely) match the chosen fleet-level
adaptive parameters — both to determine engineering feasibility of those fleet-level choices
and generate attractive new system options. However, the non-vertex issue may still persist
with the introduction of these new options.

For the purposes of this paper, we assume that an exact solution is ultimately required.
We therefore strictly enforce that the fleet-level optimization must choose all adaptive pa-
rameters to correspond exactly with an existing system-level Pareto optimal design. To
accomplish this, we introduce a simple iterative procedure to employ if any adaptive param-
eters do not fall on a convex hull vertex. Suppose, as shown on the left of Figure 4, that the
fleet optimization chooses a non-vertex point. Note that any hyperplane passing through
this point can be used to partition the Pareto solutions into two subsets with disjoint convex
hulls, as shown on the right side of the figure. Using this insight, we can re-solve the fleet-
level optimization, this time enforcing that the adaptive system parameters must fall in the
union of the partition convex hulls. If the optimization still does not choose a vertex we can
iteratively disjunct and re-solve until a corner point is chosen. This procedure will certainly
converge — at worst, once each partition contains exactly one solution — and computational
experiments suggest that multiple iterations are rarely needed for realistic problems.
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Figure 4: When a non-vertex solution is chosen from the convex hull (left), the first iteration
of the procedure re-frames the trade space as the union of two convex hulls (right) of the
Pareto points separated by a hyperplane through the chosen non-vertex solution.

To model the union of disjoint convex hulls within a MILP, we employ the classic dis-
junctive approach (Balas, 1988). In particular, let S be a partition of the set S of discrete
points in R‘i where S = {S,...,5,} and the convex hull of each subset S; is defined by
conv(S;) = {x € R? : A;x < b;} as discussed in Section 3.1. Then using the Balas, 1988
method, the union of each subset’s convex hull, U?_,conv(sS;), can be formulated linearly as

unionconv(S) = {(w,X,y) € R x R x {0,1}" :
Zyz - ]-a
i=1
D Xu=w,
i=1

AiX*,i < bzyl Vi € {].,...,TL},

0<X.,, <My Vie{17...,n}} (2)

where X, ; is the i column of X and M € R? is a vector of upper bounds on the values
in S. In this formulation, the binary y; indicator variables select exactly one of the subset
convex hulls to be “activated.” Each column of continuous variables, X, ;, either 1) falls
within the selected convex hull constraints for that ¢ which is activated or 2) equals 0 for
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any other ¢. Finally, the continuous x variables always match that column X, ; which falls
within the activated convex hull.

3.4 Holistic Fleet Optimization Algorithm

Our approach to holistic fleet optimization is summarized in the algorithm presented in Fig-
ure 5. The algorithm begins with a MILP formulation that plans the optimal composition
and activity of a fleet of systems, as well as multi-objective optimization problems for the
design of one or more of the systems (called adaptive systems) within the fleet. The opti-
mization performance dimensions, such as cost and value, of the system design problems are
referred to as adaptive parameters. The output of the algorithm is an optimized fleet-level
plan that also prescribes which design alternative should be used for each adaptive system.
Note that the algorithm is agnostic to the method by which a Pareto optimal trade space
of designs (or an approximation thereof) is obtained for each adaptive system. In the next
section, we provide an illustrative example that demonstrates the use of this algorithm.

Holistic Fleet Optimization Algorithm

begin
Formulate the fleet-level optimization problem as a MILP
for each adaptive system
Generate the Pareto optimal trade space of system designs
Acquire convex hull constraints of the Pareto optimal performance space (Section 3.1)
end-for
Update the MILP to represent the performance trade space of each adaptive system:
1) Substitute a continuous variable for each adaptive system parameter
2) Linearize any resulting bilinear terms using Equation 1 (Section 3.2)
3) Append convex hull constraints for each adaptive system
Optimize the updated fleet-level MILP
while adaptive system parameter variables do not match an original discrete solution
Disjunct the convex hull of that adaptive system with Equation 2 (Section 3.3)
Re-optimize the updated fleet-level MILP
end-while
end

Figure 5: This figure presents our holistic fleet optimization algorithm, which summarizes
the methodology of Section 3.

4 Illustrative Example

To illustrate the ideas described in Section 3 and summarized in the algorithm of Figure
5, we present a simple, example fleet modernization problem (not approaching the true
complexity of a real-world application such as Davis et al.; 2016) wherein each system has

two key performance parameters of cost and value. Note that in general, our approach
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works with any number of adaptive system parameters, but for clarity we will illustrate our
approach using two-dimensional system trade spaces.

Consider the following simple fleet modernization problem over a collection of time pe-
riods T and a collection of system types S. First, we will assume that each system s € S
has a fized value v, and purchase cost cs. Fleet parameter b; gives the budget at time ¢, and
ry represents the required number of systems in the fleet at time ¢. The integer variable x4
represents the number of systems of type s assigned to the fleet in time ¢ while the integer
variable pg tells how many systems of type s are purchased at time ¢. Production limits
UP, and assignment limits UZ% put an upper bound on the number of systems of type s in
time ¢t that can be purchased or placed in the fleet, respectively. The goal of maximizing the
cumulative fleet value is accomplished by this fleet modernization problem (FMP).

FMP: Max sz%t
ses
tel
s.t. Zl’st =T Vit eT
ses
chpst S bt \V/t € T
seS
Tt < Dare VseSteT
1<t
v < Ug VseS,teT
pstSUft Vse S;iteT
ZESt,pStGZ+ VSES,tGT

For a small example over five years (7" = {1,2,3,4,5}) with two system types (S =
{1,2}), suppose we have the following parameters:

Year 1 2 3 4 ) System 1 2
T4 5 10 10 20 20 Cs $21.5k  $25k
by | $120k $120k $120k $120k $120k Vs 0.5 2.5

Furthermore, each system type has a production limit of four systems per year and a
loose assignment limit of 20 (i.e., UL, =4 and UZ = 20 for all s € S and ¢t € T'). The optimal
fleet schedule of this simple problem is outlined in Figure 6 having an optimal cumulative
fleet value of 124.5.

Now suppose that instead of having a fized value and cost, each of the two system types
is adaptive with a simple cost-value trade space. The Pareto optimal configurations for these
systems, along with the bounding convex hull constraints (see section 3.1), are shown in
Figure 7. The cost-value Pareto optimal design parameters of the systems are listed in the
tables below, where P ; is the i*" Pareto solution for system type s.

System 1 P171 PLQ P173 System 2 Pg,l PQ,Q Pg,g P274
c $21.4k $21.5k $24k Co $21.75k $22k $23k $25k
V1 0.2 0.5 1.95 Vg 0.4 1.2 1.8 25
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Figure 6: For FMP, this schedule is optimal given yearly budgets and production limits.
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Figure 7: This figure shows the Pareto optimal cost-value trade spaces for System 1 and 2
designs, along with the bounding convex hull constraints.

Note that for FMP, the cost and value parameters were fixed at P o and P 4. We will
show by the end of this section that such a pre-selection of system parameters does not result
in the best possible fleet plan.

To capture these adaptive system trade spaces within the fleet modernization problem,
we require only a minor modification to FMP — accomplished by defining ¢; and v, as new
continuous variables and enforcing that they satisfy their associated convex hull constraints.
Here, conv(s) represents the convex hull of the discrete set of Pareto optimal configura-
tions for system type s. These modifications are captured in the holistic fleet modernization
problem (HEMP).
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HFMP:

Max

s.t.

E VsTst

sES
teT

E Tst = T

seS

Z CsPst S bt

seES

Tt S Zpst*

t*<t

x

Tst S Ust
14

pst S Ust

(cs,v5) € conv(s)

cs, Vs € Ry
Tsty Pst S Z+

VteT
VteT

Vse S,teT

Vse S,teT
Vse S;iteT
Vs e S
Vs e S
Vse S,iteT

HEMP is nonlinear due to the bilinear product terms v,z and c,pg. To linearize each of
these terms, we employ the reformulation £ provided in Equation 1 of Section 3.2. In doing

so, we replace vsxs and csps with continuous variables w}, and w

<, respectively. This gives

the equivalent linear holistic fleet modernization problem (LHFMP).

LHEFMP:

Max

s.t.

2: v
wst

seS
teT

E Tst = Ty

seS

Z wey < by

seS

Tst S Z Dst~

t*<t

T

Tst S Ust
P

pSt S Ust

(w;)ﬂ eUS? exSf) S Lvs,mst
(wgﬁ ecs’ epSt) € Ecsapst

(cs,v5) € conv(s)

Cs, Vs € Ry
Tsty Pst € ZJr

vteT

VteT

Vse S,teT

Vse S;teT
Vse S,teT
Vse S;teT
Vse S;teT

Vse S
Vs e S

Vse S;teT

Solving LHFMP using the system trade spaces of Figure 7 results in the choice of adaptive
system design parameters and new optimal fleet modernization schedule shown in Figure 8.
Here the optimization chooses to keep P o, but chooses a non-vertex solution for System 2
(near P4, but slightly cheaper in order to purchase 4 per year). This new schedule achieves



a cumulative value of 140.8875, which is more than 13% higher than the 124.5 value of
the original FMP solution, but since System 2 was not chosen at a vertex, this plan is not
guaranteed to be realizable.

3 System 1 Tradespace 3 System 2 Tradespace
25 25 (24.625,2.36875)
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Figure 8: For LHFMP, where (cg, v5) are continuous variables bounded by the convex hulls,
the optimization chooses a non-vertex solution for System 2.

Since we assume that rounding a non-vertex solution to its nearest Pareto neighbor (or
trying to find a new system configuration near the non-vertex solution) is not sufficient for
our methodology, at this stage we must employ the iterative disjunctive procedure described
in Section 3.3, and partition the trade space of System 2. Note that for this small example,
testing the twelve combinations of Pareto optimal System 1 and System 2 designs would be
computationally trivial; however, this enumerative method would not scale well to hundreds
or thousands of Pareto solutions.

Let Sy denote a partitioning of Pareto solutions for system type s at the k™ iteration
of our procedure with ngj denoting the number of subsets in Sgj (so nso = 1 for all s).
Recall that any hyperplane passing through the non-vertex solution for System 2 will create
a valid partitioning of the Pareto solutions. For simplicity, we employ a vertical plane to
achieve the partitioning So1 = {{FP21, %2, Po3, },{F4}}. The convex hull for System 1
does not need to be partitioned since the adaptive parameters were chosen at the vertex
P 5 — hence S1; = {{P11, P12, P13, }}. This means that n;; = 1 and ny; = 2. Now
we introduce our final, general formulation for the disjunctive holistic fleet modernization
problem (DHFMP},), where k represents the current iteration of the disjunctive procedure
so that DHFMPy is equivalent to LHFMP.
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DHFMP;:  Max Y w}

sSES
teT
s.t. stt =1 VteT

seSs

ngt < b VteT

seES

xstSZpst* Vse S,teT

<t

xstSUft VSES,tGT

pst < UL Vse S;teT

(Wi, €™, ™) € Py, Vse S tel

(wgt’ eCS? epSt) 6 P537pst vs E S, t 6 T
s ; Col 777 Come .Y, | € unionconv(Syy) Vse S
Vs Us,l Tt Us,n&k

Cs, Vs € Ry Vs e S

Tst, Pst € Loy VseS,teT

Here unionconv(S;y) is the linearized union of partition convex hulls from Equation 2 of
Section 3.3.

For our example, the solution to DHFMP; is shown in Figure 9. Here the partitioning Sy ;
disallows the previous non-vertex solution for System 2 and causes the fleet-level optimization
to choose P, 4. This more expensive realization of System 2 necessitates a reduction in
yearly production to 3 systems - freeing up some budget and allowing for a more expensive
instantiation of System 1. Unfortunately, this new System 1 design is not a realizable Pareto
optimal configuration, and we must iterate again, this time partitioning the System 1 designs
as S1o = {{P11, P12}, {P13}} as seen in Figure 10.

Our procedure terminates after solving DHFMP5, since both adaptive systems now choose
a Pareto solution from their trade spaces as shown in Figure 10. Notice that the solution
of DHFMP; represents a drastic departure from the original solution of FMP, both in the
system designs chosen and the optimal fleet purchases and assignment schedules — improving
cumulative fleet value by 0.96% (125.7 vs 124.5). Interestingly, the holistically-suboptimal
solution to the original FMP is the same as if we had ignored the disjunctive iterations at
DHFMP, and simply rounded the non-vertex realization of System 2 to its nearest neighbor,
P, 4. It is only by solving the holistic fleet modernization problem with the disjunctive
programming iterations that we discover that it is optimal from a fleet perspective to produce
a majority of System 1.

5 Computational Results

To investigate optimization run times, we tested our methodology on a realistic complex
MILP model based on the real-world PEO GCS fleet (as described in Section 2), incorporat-
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Figure 9: For DHFMP;, where the trade space for System 2 is represented by the union of
two convex hulls, the optimization chooses a non-vertex solution for System 1.
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Figure 10: The procedure converges (with all system solutions at vertices) in DHFMP,,
where both system trade spaces are represented by a union of two convex hulls.

ing a realistic system design trade space of potential modernization options for the Bradley
Infantry Fighting Vehicle. The MILP schedules the optimal modernization of a fleet of nearly
12,000 individual systems over 35 years, with over 70 possible system types (one of which is
the Bradley modernization effort). The Bradley trade space contains over 400 solutions that
are Pareto optimal in the four dimensions of value, purchase cost, R&D cost, and year first
available.

Letting N denote the number of Pareto solutions to be included in the fleet problem,
we compare the optimization run time of our adaptive methodology (using the convex hull
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of these N designs) against an “obvious” approach that represents each of the N designs
as a separate, discrete system and includes a constraint enforcing that at most 1 of the N
systems may be selected for investment and inclusion in the fleet. To compare the compu-
tational scalability of these equivalent representations, we select various values for N and
compare the average run time of 10 replications each of our adaptive methodology and the
obvious approach. All optimization runs were performed on an Intel Xeon E5-1603 v3 CPU
(benchmark score of 4449') using 32-bit CPLEX 12.6 and 16Gb of RAM.
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Figure 11: Variable count (after CPLEX preprocessing) increases roughly linearly with num-
ber of design options for the obvious method, but is constant for the our adaptive method.

Figure 11 shows the number of variables in our adaptive formulation versus the obvious
formulation after CPLEX preprocessing has produced an equivalent, smaller MILP. Not
surprisingly, for small N, the new variables introduced in the bilinear reformulations (1) of
our approach outnumber the variables in the obvious approach. However, as N increases,
the variable count for the obvious method grows linearly since each solution is represented as
a separate system with its own variables (about 35 per each new system). For our adaptive
method the number of variables remains constant, as the convex hull requires the same
number of variables regardless of how many solutions are being enveloped.

Figure 12 similarly shows that the obvious approach has fewer constraints for small values
of N (again, counted after CPLEX preprocessing) but gives up this advantage as N grows.
For the obvious method, each new Pareto solution adds roughly 100 new constraints to the
preprocessed formulation. Our method, on the other hand, requires roughly 1 new constraint
for every 3 new Pareto solutions, since some Pareto solutions lie within the interior of the
convex hull and do not induce new facets. Thus, in both variable and constraint count, for
N > 16 our adaptive method has a clear advantage in terms of formulation compactness.

The question remains whether the smaller formulation size translates into shorter opti-
mization times. Figure 13 shows the mean optimization run time (averaged over 10 replica-
tions) of our adaptive method versus the obvious approach. In this figure, we plot the average
time taken for CPLEX to achieve a strict 0% gap using full parallelism (error bars denote

Thttps://www.cpubenchmark.net/
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Figure 12: Constraint count (after CPLEX preprocessing) increases roughly linearly with
number of design options for both methods, but much more slowly for our adaptive approach.

the standard deviation). Note that the obvious and adaptive approaches incur very similar
run times (consistently around 300 seconds) up to about N = 25. Beyond this, however,
the mean run time and run-to-run variation of the obvious method drastically increases,
while the time for our adaptive approach remains relatively consistent. For N = 35, the
obvious method breaks down and we experience numerous CPLEX crashes as the branch-
and-bound tree becomes too large for memory (the best-case run reached 0.0005% gap after
over 8 hours - labeled in Figure 13 as DNF for “did not finish”). Meanwhile, our adaptive
approach remains consistently tractable at N = 35. While direct comparison of the obvious
and adaptive formulations is not possible for N > 35, testing has shown that our adaptive
method still remains tractable (times less than 10 minutes) even for N > 400. As expected,
since formulations for both methods are equivalent and were run to 0% gap?, both methods
achieve the same objective function value for each N < 35.

Computation time for our adaptive method includes 1) the time taken to calculate the
Pareto convex hulls (which is nearly instantaneous even for N > 400) and 2) the time
spent performing disjunctive iterations. However, for every adaptive run in Figure 13, the
optimization chooses a vertex of the convex hull on the initial iteration and never requires
additional disjunctive iterations. Encouragingly, this suggests that it is naturally desirable
(at least for our particular fleet formulation and system trade space) for the MILP to choose
adaptive system parameters corresponding with a realizable Pareto optimal system design.
If disjunction were required, each iteration would add 1 variable and at least 2 constraints.

These results appear to indicate that our adaptive method is a much more scalable
formulation than the more obvious approach. The adaptive method solves efficiently even
when including many Pareto designs, allowing larger, richer system design trade spaces to
be represented — which ultimately enables better overall fleet modernization schedules. The

2A 0% gap may seem excessively tight, however, the primary CPAT use case is to compare multiple
acquisition strategies under different input conditions (such as different budgets, production capacities, etc.)
against a baseline plan and then justify the best strategy under those conditions. Unfortunately, these
problems often have nearly alternate optimal solution strategies, hence the need for very small solution gaps.
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Figure 13: Our adaptive method remains tractable out to (and well beyond) N = 35, at
which point the obvious formulation becomes computationally unstable.

method provides for the first time a scalable, holistic fleet optimization capability that unifies
large-scale, real-world fleet and system trade space applications.

6 Summary

This paper illustrates a new framework for performing holistic portfolio optimization where
the composition of the portfolio and the properties of the items therein are simultaneously
optimized to achieve the overall best performance. This methodology was designed to per-
form at the large problem scales necessary to incorporate real-world system design trade
spaces (with hundreds of individual Pareto optimal configurations) into real-world MILP
fleet optimizations (with hundreds of different system types, some of them with trade spaces,
respecting dozens of business rules), and has been successfully shown to efficiently unify full-
scale trade space and fleet optimization models. Our approach hinges on three key ideas: 1)
the use of convex hulls to efficiently capture linear approximations of discrete trade spaces, 2)
the use of efficient reformulations to linearize the resulting bilinear terms, and 3) an iterative
application of disjunctive programming in the cases where adaptive system parameters do
not correspond to an actual Pareto solution. A simple fleet optimization example demon-
strated the technique and showed how small changes to the properties of individual systems
can substantially alter the overall optimal fleet plan and cumulative value. This important
insight highlights the significant potential of holistic portfolio optimization.

This work suggests several avenues for further research. While the disjunctive procedure
we discussed works with any hyperplane cutting through the selected non-vertex system
design, it is possible that some choices of cutting plane may be more efficient or effective
than others. Similarly, although the linearization method employed generates the most
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compact linear representation of the bilinear problem, other linearizations may produce
problem structures more amenable to efficient solution by large-scale MILP solvers.

Given the somewhat unexpected result in Section 5 that disjunctive steps are never
needed in our large-scale computational examples, it is natural to ask under what general
conditions is LHFMP=DHFMP, guaranteed to select convex hull vertices. While this would
certainly be the case when no constraints from the fleet problem cut into the convex hull
of the adaptive system(s), it is neither a necessary nor sufficient condition. In general,
hyperplanes defining fleet constraints may intersect with system convex hulls in any manner,
yet as long as at least one original vertex remains in the intersection, it still might or might
not be chosen. A generalization of these conditions may be very challenging but also very
useful, as it would guarantee the holistic fleet problem could be solved via a single MILP
run.

Another possible avenue for further study centers around system-level optimization to
find solutions within a neighborhood of a non-vertex system solution chosen by the MILP.
On one hand, if additional system designs could be discovered that better match the desired
requirements of the non-vertex MILP solution, this is enormously beneficial and diminishes
the challenges of the disjunctive procedure. On the other hand, if no system designs can
be recovered near the non-vertex solution, this tells decision makers that the fleet-level
desires are at odds with the physical constraints of the system design. In either case, further
developing this idea could lead to interesting insights.

Finally, although we have demonstrated computational efficiency on a realistic, large-
scale problem as the number of Pareto solutions is increased, the case study presented in
Section 5 involved a single adaptive system with four Pareto dimensions. It would be inter-
esting to see how this method scales in a number of other respects. For instance, further
investigation of cases with 2 or more adaptive systems each having 5 or more dimensions
within their trade spaces may uncover additional insights and possibilities for computational
improvement. Additionally, it would be interesting to develop at-scale examples that require
multiple iterations of the disjunctive process to test how that technique performs computa-
tionally.
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