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Photonic topological insulators exhibit bulk-boundary correspondence, which requires that
boundary-localized states appear at the interface formed between topologically distinct insulat-
ing materials. However, many topological photonic devices share a boundary with free space, which
raises a subtle but critical problem as free space is gapless for photons above the light-line. Here, we
use a local theory of topological materials to resolve bulk-boundary correspondence in heterostruc-
tures containing gapless materials and in radiative environments. In particular, we construct the
heterostructure’s spectral localizer, a composite operator based on the system’s real-space descrip-
tion that provides a local marker for the system’s topology and a corresponding local measure
of its topological protection; both quantities are independent of the material’s bulk band gap (or
lack thereof). Moreover, we show that approximating radiative outcoupling as material absorption
overestimates a heterostructure’s topological protection. As the spectral localizer is applicable to
systems in any physical dimension and in any discrete symmetry class (i.e. any Altland-Zirnbauer
class), our results show how to calculate topological invariants, quantify topological protection, and
locate topological boundary-localized resonances in topological materials that interface with gapless

media in general.

Recent advances in topological photonics [1-3] have
led to the development of novel technologies including
topological lasers [4-12] and devices that create and
route quantum light [13-20]. However, the utility of
many of these devices is predicated on the presence
of, and potential coupling to, scattering channels in
the surrounding environment that are degenerate with
the boundary-localized topological states that underpin
these devices’ functionality. Thus, even though these de-
vices can feature photonic crystals or other lattices with
complete topological band gaps in their interior, their
boundary-localized states are generally resonances, not
bound modes, which radiate into the surrounding envi-
ronment as free space is gapless above the light line.

Unfortunately, the fact that the typical environment
for topological photonic structures is gapless, rather than
gapped (i.e., insulating), presents a fundamental chal-
lenge to our understanding of these devices. Heuristi-
cally, topological boundary-localized modes form at the
interface between two gapped materials with different
bulk invariants as a resolution to the need for band con-
tinuity across the heterostructure’s interface; the band
gap must close in the vicinity of the interface so that
the different bulk invariants can be reconciled, yield-
ing interface-localized states [1], Fig. la. Indeed, tradi-
tional approaches to material topology have been highly
successful at predicting the interface phenomena in het-
erostructures featuring topologically non-trivial insula-
tors [3, 21-24] and semimetals [25-37]. But, if at least
one of the materials in a heterostructure is gapless, this
explanation fails, as the band gap must close in the vicin-
ity of the interface regardless (so as to satisfy bulk band
continuity between the two materials); any need to recon-
cile different bulk material topologies could occur as part
of this standard band closing process without resulting in

topological
gapped

trivial
gapless

—
5
Nad

trivial topological (b)
gapped gapped

*

e

Frequency, w

Position, x

FIG. 1. (a) Schematic of the local density of states as the
probed position is varied across the interface of a heterostruc-
ture formed by a trivial insulator and topological insulator
with a common bulk band gap. (b) A similar schematic, ex-
cept in which the trivial material is gapless.

topological interface-localized states or resonances, Fig.
1b. Note, in this context “gapless” specifically refers to
a d-dimensional material with (d — 1)-dimensional isofre-
quency contours over a given range of wavelengths (i.e.,
those wavelengths in the other material’s bulk band gap).
Thus, the plethora of photonic experiments that have ob-
served topological boundary-localized resonances in de-
vices that abut and radiate to free space suggests that
material topology must be definable in heterostructures
containing a gapless material, even if the lack of a global
bulk band gap prohibits the use of traditional theories of
physical topology.

Here, we identify topological boundary-localized res-
onances and quantify their protection in gapless het-
erostructures with radiative environments using a the-
ory of topological materials based on their real-space de-
scription. To do so, we construct the heterostructure’s
spectral localizer, a composite operator that combines a
system’s Hamiltonian and position operators with a Clif-
ford representation, and which provides local topologi-
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cal markers and a spatially resolved measure of protec-
tion even for non-Hermitian systems. We demonstrate
this topological classification approach on a 2D pho-
tonic Chern crystal embedded in free space with radia-
tive boundary conditions. Using this model, we also show
that radiative losses and material absorption have quali-
tatively different consequences for a system’s topological
protection, and approximating radiative outcoupling as
absorption will substantially overestimate the protection
of the boundary-localized resonances. Finally, we pro-
vide an example of how topological robustness against
system disorder manifests in this real-space classification
approach. Our results reveal that bulk-boundary corre-
spondence persists in gapless heterostructures, providing
a rigorous framework for understanding many types of
topological photonic devices.

We begin by considering a prototypical topological
photonic system consisting of a photonic Chern insulator
embedded in free space. In particular, we use a finite por-
tion of the 2D magneto-optic photonic crystal proposed
by Haldane and Raghu [38, 39] surrounded on all sides
by vacuum, with the radiative boundary condition im-
plemented using stretched-coordinate perfectly matched
layers (PML) [40], Fig. 2a. When an external magnetic
field is applied, a topologically non-trivial band gap opens
in the photonic crystal’s transverse electric (TE) sector
that supports chiral edge modes within this gap, Fig. 2b.
As the photonic crystal in our model system is finite,
all of its states, including its chiral edge modes, are reso-
nances as they decay due to radiative outcoupling. These
chiral edge resonances can be seen in the system’s local
density of states (LDOS) within the bulk band gap of
the photonic Chern insulator, Fig. 2c. Altogether, this
model system preserves all of the salient features of many
topological photonic systems that have been previously
experimentally observed [41, 42], but whose topological
protection cannot be quantified using topological band
theory because the materials that form the heterostruc-
ture lack a common bulk band gap.

Instead, to show that the gapless heterostructure in
Fig. 2a must possess protected boundary-localized res-
onances due to the non-trivial topology of the central
lattice, we employ the spectral localizer [43—45]. For a
d-dimensional system, the spectral localizer is a compos-
ite operator that combines the system’s Hamiltonian H
and position operators X1, Xo, ..., Xy using a non-trivial
Clifford representation, and yields both a local topologi-
cal marker and local measure of protection. For the non-
Hermitian 2D system that we consider here, we can use
the Pauli matrices as the Clifford representation (as they
generate a representation of C¢3(C)) to write the spectral
localizer as [46]

L(a:,y,w)(X7}/aH) = (1)
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FIG. 2. (a) Schematic of a 2D photonic Chern insulator em-
bedded in free space €5 = 1 with radiative boundary con-
ditions. The topological photonic insulator is comprised of
dielectric rods €,0a = 14 with spacing a in a magneto-optic
background eme = (5} *f“). (b) Bulk band structure for the
photonic Chern insulator for the TE modes with v = 0 (light
red) and v = 0.4 (dark red), and the transverse magnetic
(TM) modes that are independent of v. (c,d) Local density of
states (c) and Local gap fi(g,y,w) (d) for the finite system at
w = 0.37(2mc/a), shown on the same spatial scale as (a). (e)
Spectral flow of the real parts of the 20 eigenvalues of L, .,
closest to 0 for y fixed to the center of the finite system (green
line in (d)), and at w = 0.37(27c/a). (d) and (e) are calcu-
lated using & = 0.04(2mc/a?).

Here, z,y,w are the choices of position and frequency
where the spectral localizer is evaluated, X and Y are
the 2D position operators, I is the identity matrix, and
K is a positive scaling coefficient with units of frequency
times inverse distance.

Intuitively, the spectral localizer can be viewed as a
composition of the eigenvalue equations (such as (H —
wl)|y) = 0) of the (generally) non-commuting operators
X,Y, H using the Pauli matrices. Despite the lack of a



joint spectrum for X,Y, H, the spectral localizer can be
used to determine whether a given choice of x, ¥y, w yields
an approximate joint eigenvector of X, Y, H, i.e. is there
some vector |¢) for which H|¢) ~ w|¢), X|d) =~ xz|d),
and Y|¢) =~ y|é) [47]. A measure of how good these
approximations are is given by

M(x.,y,w)(X’ Y, H) = min(‘Re[U(L(m,y,w) (X> Y, H))} |)a (2)

i.e., the minimum distance over all of the eigenvalues of
L(zy.w) from the imaginary axis, where o(L) is the spec-
trum of L. Smaller values of p(; .. indicate that z,y,w
are closer to yielding a joint eigenvector of X, Y, H. How-
ever, even if pi, ., ) (X, Y, H) =0, these approximations
do not become exact (non-commuting operators gener-
ally cannot be even partially simultaneously diagonal-
ized) [43, 47].

A physical picture of the spectral localizer’s connec-
tion to material topology can be built from the behavior
of atomic limits. In an atomic limit, [H (AL, Xj(-AL)] =0,
which stems from the system’s Wannier functions being
localized to a single lattice site [48]. This commuta-
tion relation, coupled with the fact that position oper-
ators commute [X;, X;] = 0, requires the eigenvalues of
L(4,y.w) to be equally partitioned between having positive
and negative real parts for any choice of x,y,w (i.e., for
atomic limits sig(L(,y..)) = 0, where sig denotes a ma-
trix’s signature, its number of eigenvalues with positive
real parts minus its number with negative real parts) [49].
However, just as 0D systems can be topologically clas-
sified based on the number of eigenvalues they possess
above and below a specified band gap [50], 2D systems
can be locally classified based on the partitioning of the
spectrum of Ly , ), assuming that iy, ) > 0 [43].

Thus, if a generic system with [H,X;] # 0 has
sig(L(z,y,w)) = 0, then it is continuable to an atomic
limit via a path of invertible matrices for that choice
of z,y,w, i.e., the system is locally topologically trivial.
Conversely, if sig(L(y,y..)) 7 0, there is an obstruction to
finding such a path, and the system is topologically non-
trivial at that x,y,w. As this classification approach is
not restricting the matrix continuation path to preserve
any system symmetries, the signature of L, , ) defines
a local Chern marker [43, 46],

Clo) (XY, H) = 35ig[L(a g0y (X, Y, H) € Z. (3)

L
(z,y,w)
equal to the Chern number [45]. Moreover, as the parti-

tioning of the spectrum of L(, , ) cannot change without
H(z,y,w) = 0, l(z,yw) is @ measure of the topological pro-
tection in a system and can be thought of as a “local
band gap.”

Altogether, the spectral localizer can be understood
as a method for performing dimensional reduction con-
sistent with Bott periodicity [43]. After dimensional re-
duction, the local invariants for all ten discrete symme-
try classes (i.e. Altland-Zirnbauer classes [51-53]) become

For semi-infinite Hermitian systems, C is provably

essentially one of the three invariants introduced by Ki-
taev [50]: matrix signatures for Z invariants, or signs
of determinants or signs of Pfaffians for Zs invariants.
Additionally, one can consider L, , ) to be the Hamil-
tonian of a modified system, enabling the local gap and
local index to be experimentally observed [54].

To apply the spectral localizer to the photonic crystal
heterostructure considered in Fig. 2a, we first reformulate
Maxwell’s equations into a Hamiltonian, with

H(x) =M~ (x)WM/*(x), (4)

W= (z’VOx I ) and M(x) = (M(ox) 6(2())'

In doing so, we are assuming that the frequency depen-
dence of the permittivity € and permeability 7z tensors
can be neglected over the frequency range of interest,
and that both are semi-positive definite [55]. To use this
Hamiltonian in Eq. (1), it must be discretized so that it
becomes a bounded, finite matrix. Here, we use a 2D
Yee grid [56]. The discretization scheme also defines the
position operators X,Y’, which in the basis of Eq. (4) are
diagonal matrices whose elements [X];; and [Y];; corre-
spond to the spatial coordinates of the jth vertex in the
discretization. Note that the stretched-coordinate PML
makes W non-Hermitian.

Overall, the spectral localizer’s numerical approach
is similar to frequency-domain methods for solving
Maxwell’s equations because only a single frequency is
considered within a given simulation. However, as Eq.
(1) also requires specifying x,y for each simulation and
L(4,y.w) is connected to the approximate joint eigenvec-
tors of X, Y, H (i.e., their so-called multi-operator pseu-
dospectrum), the spectral localizer approach is better
classified as a “pseudospectral-domain” method. Thus,
our implementation of Eq. (1) is a finite-difference
pseudospectral-domain (FDPD) method and is publicly
available [57, 58].

Applying the spectral localizer to the topological pho-
tonic system considered in Fig. 2a shows, that for fre-
quencies within the topological band gap of the photonic
Chern crystal, the local gap i(;,y..) closes around the
boundary of the crystal, inside which the local Chern
number becomes non-trivial C’(ch7y7w) =1, Fig. 2d. More-
over, monitoring the spectrum of L, , ) near zero as
one of the coordinates is varied across the system (fixing
the other coordinate and w) reveals the lone eigenvalue of
L(4,y.w) responsible for the change in the system’s local
Chern marker, Fig. 2e. As locations where ji(, ) ~ 0
indicate the presence of an approximate eigenstate of H
(with eigenvalue near w that is simultaneously approxi-
mately localized near z,y), the local gap closing around
the topological photonic crystal is the manifestation of
bulk-boundary correspondence in the spectral localizer
framework. Thus, the spectral localizer demonstrates
that the boundary-localized resonances observed in topo-
logical photonic systems embedded in free space stem
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FIG. 3. Local gap and overlaid topological marker (C* = 1
bounded by a magenta line) for the system shown in Fig.
2a with added disorder with strengths |[WT6HW||/po = 1.40
(left) and || WTSHY||/uo = 41.73 (right) relative to the local
gap at the center of the ordered system pg = 0.0185(27c/a).
Disorder has been added to the high dielectric rod positions
and dimensions and the disorder strength is calculated using
the m = 370 eigenvectors of H closest to w, see Supplemental
Materials [58]. Both figures are shown using the same spatial
scale as Fig. 2d, with w = 0.37(27c/a) and x = 0.04(27wc/a?).

from the topological material, and the nonzero localizer
gap (Li(z,yw) > 0) in free space away from the interface
(despite free space’s gaplessness) is a measure of the res-
onances’ topological protection.

The spectral localizer’s dependence on the choice of k
in Eq. (1) can initially appear problematic. Indeed, for
k =0, L(z,y.w) is block-diagonal, and its spectrum is al-
ways evenly partitioned such that C* = 0. Conversely,
for k> 1, L4 4. simply reveals the (exact) joint spec-
trum of X and Y. However, in between these two limits
there is a broad range of xk over which a material’s topo-
logical properties can be correctly predicted and remain
effectively constant. In insulators, such a range always
exists [44]. Moreover, in practice we find for our model
system that x can be varied over more than two orders of
magnitude while C(I;E,y’w) remains unaffected and fi(, 4,0
only varies over a factor of two, see Supplemental Mate-
rials [58].

Having shown that the chiral edge resonances seen in
Fig. 2 are of topological origin, we now demonstrate their
topological protection. In general, a system’s topology at
x,y,w cannot change without p(; , .y — 0, as the local
gap must close for one (or more) of the spectral localizer’s
eigenvalues to cross the imaginary axis. For Hermitian
systems, one can prove that for a system perturbation
0H to close the local gap pi(z.y,u)(X,Y,H +0H) = 0,
this perturbation must be at least as strong as the lo-
cal gap is wide [|0H|| > (g, y.0)(X,Y, H) [43, 59]. For
non-Hermitian line-gapped systems, this same criteria
approximately holds [46]. However, this known limit
is not useful for evaluating the topological protection of
photonic systems. The problem is that Maxwell’s equa-
tions (prior to discretization) represent an unbounded
operator, for which the ¢2 norm is undefined. Thus, af-
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FIG. 4. (a) Local gap for the system shown in Fig. 2a for
increasing values of the free space environment’s dielectric
efs. (b) Similar to (a), except for increasing values of material
absorption in the high-dielectric rods of the photonic Chern
insulator, ;o4 = 14 + iy, and with e, = 1. Both figures are
plotted along the green path in Fig. 2d, with w = 0.37(27w¢/a)
and k = 0.04(2rc/a?).

ter discretization, even relatively modest perturbations
will generally still yield substantial changes in the eigen-
frequency of at least one high frequency state, yielding
a large |[0H|. Intuitively, the challenge is that (s y )
is a local measure of protection in both position and fre-
quency, yet |0 H|| is a global measure of the perturbation.

Here, we conjecture that the correct measure of a per-
turbation’s local strength is to project it into a subspace
near x,y,w. For our model system, let ¥ be an n-by-m
matrix whose m columns are the eigenvectors of H (which
is n-by-n) with eigenvalues that are closest to w where
H(z,yw) 15 calculated. Then, the local marker at z,y,w
cannot change so long as |UT6H|| < pi(z,y.m) (X, Y, H).
Note, this conjectured criteria is a necessary but not
sufficient condition. For example, changes to the high-
dielectric rods’ positions and ellipticity require a substan-
tially stronger perturbation to change the system’s local
topology (Fig. 3). In contrast, removing the external
magnetic field, v = 0 in €, makes the full system topo-
logically trivial and corresponds to | WT§HW||/ug = 1.81,
nearly saturating the conjectured bound.

Beyond predicting a system’s topological protection
against crystal imperfections, the spectral localizer can
also be used to approximate a system’s robustness to sur-
face roughness. In particular, while crystal imperfections
serve to decrease the system’s bulk band gap, the effects
of which can be captured using topological band theory,
the dominant effect of surface roughness is to increase a
system’s radiative outcoupling. Thus, surface roughness
cannot be considered without having a measure of topo-
logical protection for heterostructures lacking a global
band gap. Here, we artificially increase our model sys-
tem’s radiative outcoupling by increasing the dielectric
constant of the surrounding free space environment .
As can be seen in Fig. 4a, even for values of e greater
than any material in the photonic Chern insulator, the
spectral localizer is still able to predict the topology of



the crystal, as well as the decreasing robustness of the
chiral edge state. Given the connection between fi(, y )
and the approximate joint spectrum of the system’s op-
erators, the decreasing local gap outside of the system
for increasing eg is a manifestation of the increasing sup-
port of the chiral edge resonances outside of the photonic
crystal (i.e., decreasing localization). Moreover, the ap-
pearance of extra zeros in the local gap near the interface
for increasing egs is showing that additional, topologically
trivial modes are likely appearing at the boundary of the
photonic crystal, and these would serve to undermine
the transport properties of the chiral edge resonance by
allowing for backscattering (see also Fig. S5 in the Sup-
plemental Material [58]). In contrast, if one instead ap-
proximates radiative outcoupling as material absorption,
the topological protection of the chiral edge resonances
is overestimated, as this approximation does not prop-
erly capture the salient physics that the system’s chiral
edge resonances are leaking out of its boundaries, Fig. 4b
(still calculated for w € R to correspond to the topologi-
cal protection at an observable frequency).

In conclusion, we have shown that gapless topolog-
ical heterostructures still exhibit bulk-boundary corre-
spondence despite the absence of a global band gap and
have demonstrated how to determine the protection of
the resulting interface-localized resonances in radiative
environments. Moreover, the spectral localizer reveals
that treating radiative outcoupling as material absorp-
tion overestimates a system’s topological protection. As
the study of topological photonics turns towards devel-
oping devices for specific applications, the spectral local-
izer’s ability to accurately predict topological robustness
in radiative environments may enable new photonic de-
vice designs that are better protected against radiative
outcoupling. Although we have presented this classifica-
tion approach in a photonic systems, it is broadly ap-
plicable to topological materials in general, and in the
Supplemental Materials we provide examples of using
the spectral localizer to classify topology in gapless het-
erostructures formed from tight-binding models [58].
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SI. The role of the scaling coefficient

In the spectral localizer, Eq. (1) of the main text, k serves two roles: it ensures that the whole matrix has consistent
units, and it serves to tune the spectral localizer. This tuning is necessary because the two simple limits of x are not
useful. When s = 0, the spectrum of the spectral localizer is always equally partitioned about the imaginary axis as in
this limit L is block diagonal, with blocks (H —wI) and —(H —wI). In the opposite limit, when x — oo, the spectrum
of L simply identifies the joint spectrum of X and Y, which commute. This spectrum of L is also always symmetric
about the imaginary axis, for similar reasons as before. From this perspective, it is somewhat remarkable that there is
any regime of validity where the spectral localizer approach works at all, given that the two easily computable limits
do not contain any new information about the system in question.

However, even though these two limits are boring, for choices of k in between these two limits the spectrum of L
can be highly non-trivial, i.e., when the spectral localizer sees information from both the system’s Hamiltonian and
position operators with relatively equal strength. Moreover, this range of k where L is useful is relatively broad.
In Fig. Sla, we show the local gap fi(yy,.) over the same range of positions as is shown in Fig. 2e in the main
text, except calculated for values of k that span a factor of 20. As can be seen, while different values of k yield
modestly different values for pi(; 4 ), the variation in the values of the local gap is significantly reduced to being just
a factor of 2. Moreover, in Fig. S1b we show values of s chosen on a logarithmic scale, and we can confirm that the
system’s topological index is preserved against different choices of x over a range of at least x = 0.0005(27c/a?) to
k = 0.077(27wc/a?), i.e. a range in excess of two orders of magnitude.
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FIG. S1. (a) Local gap pi(y,y,.) calculated for the system from Fig. 2 in the main text along the same positions as is shown in
Fig. 2e (i.e., the green line in Fig. 2d). Here, we are using w = 0.37(27¢/a). The different colored lines are showing linearly
spaced values of k. (b) Similar to (a), except for logarithmicly spaced choices of x = [1-107°,3.6 - 107°,1.3 - 107*,4.6 -
107%,0.0017,0.0060, 0.022, 0.077, 0.28, 1](27c/a?).

But, if small values of the local gap fi(,y . are related to the appearance of localized states in the system, would
not the changes in the local gap due to different choices of x render this theory useless? No. The reason is that bounds
on the approximations discussed after Eq. (1) in the main text also depend on k. In particular, the quantities [H, K X]
and [H, kY] feature prominently in predicting the localization of states when g5, .,) = 0 [1, Prop. I1.4]. Thus, while
different values of £ change (4., they also change the bounds in a similar way, yielding a consistent picture.
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SII. An efficient method for calculating the local index in non-Hermitian systems

Numerically, it is important to approach the determination of the local topological index C’(Lw yw)

especially in photonic systems. For example, the matrices X,Y, H in the system shown in Fig. 2a each have size
~ 1.2-10% x 1.2 - 10° in our discretization. Attempting to calculate all of the eigenvalues of Ligyw)(X,Y, H) will
cause most computers to run out of memory.

In Hermitian systems, one can make use of Sylvester’s law of inertia along with a standard L(z)yyw) (X,Y,H) =
NDNT decomposition (called the LDLT decomposition) to substantially speed up this process [2, 3]. Here, N
is lower-triangular and D is diagonal (and D is not equal to a diagonal matrix of the spectrum of L, ,y). In
particular, Sylvester’s law states that sig(L(sy..)) = sig(D), and sig(D) is numerically trivial to calculate given that
D is diagonal. Thus, as there are fast methods available to perform LDLT decompositions of sparse matrices, it is
relatively easy to find a photonic system’s local index.

However, this presents a challenge in non-Hermitian systems where Sylvester’s law of inertia no longer applies.
Instead, to avoid needing to calculate the full spectrum of L, , ., we start by turning off the absorption from the
stretched-coordinate perfectly matched layer (PML), yielding a Hermitian system where the LDLT-based method
works. In particular, as our PML is implemented as

9 1 6
ox 1+W$(m>38x

with some care,

(S1)

LpmL

inside the absorbing boundary region, where oy.x is the maximum absorption achieved and Lpyy, is the length of
the absorbing layer, the system can be made Hermitian by setting oma.x = 0 (yielding a system bounded by Dirichlet
boundary conditions). A similar formula is used for the PML in y.

Thus, we can determine a non-Hermitian system’s local index by starting with a related Hermitian system whose
topological markers can be efficiently calculated, slowly turning on the non-Hermiticity, and monitoring the local gap
H(z,yw) tO ensure it remains open. Of course, if y(, , .,) > 0 along this path of different systems, the index at z,y,w
cannot change as no eigenvalues could have crossed the imaginary axis. For the system we consider in the main text in
Fig. 2, we show this evolution of the local gap as a function of the boundary’s absorption in Fig. S2. As can be seen,
the introduction of the absorption does not yield any new locations within the photonic crystal where pi; ..y = 0,
meaning that the index of the topological photonic crystal in the center of the system remains the same as its index
in a Hermitian version of the system.
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FIG. S2. Local gap fi(s,y,w) calculated for the system from Fig. 2 in the main text along the same positions as is shown in Fig.
2e (i.e., the green line in Fig. 2d). Here, we are using w = 0.37(27c/a) and x = 0.04(2rwc/a?). The different colored lines are
showing linearly spaced values of omax between 0 and 4, where omax = 4 is the value used in all of the other simulations of the
photonic system in this work.

SIII. Additional details on the crystal disorder

In Fig. 3 of the main text, the local gap pi(4,y,.) and local invariant C" are shown for two disorder configurations
with different disorder strengths. In Fig. S3, we show the dielectric distribution for these two disorder configurations.
These configurations are generated by changing the width, length (major and minor ellipse axes), and position of
the dielectric rods (which are circular in the ordered system). In particular, for each rod we generate four uniformly
distributed random numbers §; € [—0.5,0.5]. Two of these random numbers are used to shift the  and y coordinates
of the rod’s center, Tpew = o + W& and Ynew = Yo + wésa, respectively. The other two random numbers treat the



rod as being an ellipse, and change the length of its major and minor axes by w¢; /2. Here, w parameterizes the
geometric strength of the disorder. However, given that the inverse square root of € is what appears in the system’s
Hamiltonian, see Eq. (4) in the main text, there is no simple relationship between w and | UTSHY||.

(a) w = 0.025 (b) w = 0.450
PML PML

Position, y
Position, y

Position, = Position, x

FIG. S3. Schematics showing the geometry of the disordered systems discussed in Fig. 3 of the main text, with geometric
disorder strength w = 0.025 and w = 0.45. These schematics are shown on the same scale as Fig. 2a of the main text.

Additionally, in the calculation of the strength of these disorder configurations, one must make a choice for how many
eigenvectors of the ordered system H to retain in W for calculating |[WT§ H V|| (this number of retained eigenvectors is
m in the relevant discussion surrounding Fig. 3 in the main text, while the total number of possible eigenvectors is n).
Of course, || U6 HY| must be dependent on m — clearly as m — n, |[WTSHW|| — ||§H|| as the 2 matrix norm is basis
independent. However, for a broad range of choices of m > 180 that retain only a few hundred eigenvectors of H, we
find that ||UT§H V| is nearly independent of m, see Fig. S4. This justifies our choice of spectral truncation for the
disorder strength calculation, and the values quoted in the main text use the largest m shown in Fig. S4, m = 370. For
this value of m, a disorder parameter of w = 0.025 corresponds to a disorder strength of |UT6H| = 0.026(27c/a),
and w = 0.45 corresponds to |[UT6HW¥|| = 0.77(27c/a). In the main text, these values are compared against the
local gap at the center of the ordered system, pg = 0.0185(27¢/a), which is calculated at w = 0.37(27w¢/a) using

k = 0.04(2mc/a?).
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FIG. S4. Dependence of the disorder strength || TS H¥| on w, the magnitude of the random numbers chosen to implement
the disorder for different choices of m, the number of retained eigenvectors in W. The choices of m are linearly spaced between

10 and 370 in steps of 10.

SIV. Additional plots for increasing free-space dielectric

In Fig. 4a of the main text, we show a series of plots of the local gap as a function of position for increasing
free-space dielectric, eg. In the main text, these are overlaid to show how the local gap decreases in the system’s
outer region (with constant ) for increasing outcoupling (i.e., increasing ;). However, this makes it difficult to see
the appearance of the extra zeros in the local gap at the interface between the two regions. Here, in Fig. S5, we show
these same curves separated out so that the formation of these extra locations where p(, , .,y = 0 can be seen directly.
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FIG. S5. Local gap for the system shown in Fig. S6a for increasing values of the free space environment’s dielectric eg. All
figures are plotted along the green path in Fig. 2d of the main text, with w = 0.37(27wc/a) and k = 0.04(2mc/a?).

SV. Classifying the topology of gapless tight-binding heterostructures

While the main text focuses on applications of the spectral localizer to non-Hermitian photonic systems the spectral
localizer can be applied to any crystalline system. To demonstrate the broader applications of these methods we
consider examples of gapped and gapless topological heterostructures in tight-binding models. Note, unlike the
photonic system discussed in the main text, all of tight-binding models we discuss here are Hermitian with open
boundary conditions.

To begin, we must first assemble the topological heterostructures. A standard choice of topological insulator is the
Chern insulator realized via Haldane’s model [4]. The Haldane lattice has the following Hamiltonian:

H = MY (al, namn — bl nbmn)

—t Z (b;rn/,n’am,n + G‘In,nbm/yn')

((m;n),(m’,n"))

e Z (ewain, nOmon + eii(ﬁain,nam/,n/ + embin, o Omon + efid’bin’nbm/’n/) . (S2)
({((m,n),(m’,n")))

This model has two sites per unit cell that form a hexagonal lattice, with annihilation (creation) operators of these
sites given in the (m,n)th unit cell by aun, ,, and by, , (a:[n’n and bjnn) with nearest neighbor coupling ¢, onsite energy
M = 0, and next-nearest neighbor coupling ¢c. Here, () denotes a sum over nearest neighbors, while (()) denotes
the sum is over next-nearest neighbors. To push the Haldane lattice into one of its topological phases, we set t; = ¢,
M =0,tc =t/2, and ¢ = 7/2, see Fig. S6b. For a strip of this material we can calculate the ribbon band structure as
seen in Fig. S6b, where the chiral edge states are clearly visible crossing through the system’s bulk band gap. However,
to form topological heterostructures, we need to create a material to interface with this topological insulator.

To simplify the choice of interface coupling we use a Haldane lattice in its trivial phase as the topologically distinct
insulator and a trivialized metallized Haldane lattice for the topologically distinct gapless material. To trivialize either
Haldane system we set tc = 0 and set the onsite energy M = 42+/3 for the trivial insulator and M = ++/3/2 for the
trivial metal. To metallize the Haldane system we couple it to a trivial metallic triangular lattice (so that there are



(a) trivial gapless (b) topological insulator  (c) topological heterostructure
Tv,
o
A

TM - tin/2 y

tl_ tri T tce
% (d)Local density of states () Localizer gap () Localizer index (8 ) ,
5 0.5 gap, Mx.E) index, Cf,
&)
£ - 2.0
-
< g = 0.8 ——
= 0.0 0.0 0
&) Position, = Position, x
g <h>Local density of states (i) Localizer gap (J) Localizer index (k) ) ,
2 - 0.5 gap, g index, C,
O ¢
g - 2.0
+~ = S
8 | = 1.6 1
56' '9 /g\ - 1 .2
ol B &
< |8 = 0.8
2 |~
% CL =0 0.4
s 0.0 0.0 0
&) Position, = Position, x

FIG. S6. (a) Schematic and ribbon band structure for a honeycomb lattice (red and blue vertices) with an interstitial triangular
lattice (gray vertices), with honeycomb site couplings ¢1, triangular site couplings ¢, and honeycomb-triangle couplings tint.
The ribbon band structure is calculated using ¢, = t, tc = 0, toi = 0.2¢, tiny = 0.3t, M = ++/3/2, and M = 0. (b) Schematic
and ribbon band structure of a Haldane topological insulator with direction-dependent next-nearest neighbor couplings tce®"/2.
The ribbon band structure is calculated using t1 = ¢, M =0, tc = 0.5¢, ¢ = 7/2. (c) Schematic and ribbon band structure for
a heterostructure formed between the lattices in (a) and (b). (d-f) LDOS (d), localizer gap (e), and local index (f) at £ = 0 for
a heterostructure formed by a trivial insulating Haldane lattice described by Eq. (S2) with t1 = ¢, tc =0, and M = +44/3 /2,
surrounding a Haldane topological insulating lattice with ¢t1 = ¢, M = 0, tc = 0.5¢, ¢ = w/2. All three plots are shown on the
same spatial scale, with a system surrounded by open boundary conditions. (g) Horizontal line cut of the localizer gap and
index through the system’s center at F = 0. (h-k) Similar to (d-g), except with a gapless outer lattice described by Eq. (S3)
with t1 = ¢, tc = 0, ti = 0.2¢, tingy = 0.3t, M = £++/3/2, and My, = 0. For all calculations using the spectral localizer, k = t/a
is used.

now 3 sites per unit cell, i.e., the grey, red, and blue sites in Fig. S6), with an inter-lattice coupling strength ¢;,; = 0.3¢
[5, 6]. We set the coupling strength within the triangular lattice to be t,; = 0.2¢. Altogether, the Hamiltonian for a
metallized Haldane lattice is written as

H =M Z (a1n7nam7n - bl—n,nbmﬂz) + Mtri Z (Cl—n,ncmﬂl)

m,n
_ tl Z (bin/m/llm,n + ain,nbm/yn/> — ttri Z (Cjn’,n’cm,n —+ cIn,ncm/,n’>
((m,n),(m’,n")) ((m,n),(m’ ,n"))
—to > (ei‘z’afn/,n/am,n e 9al, nam + O, b+ 6’i¢bin,nbm/,n/>
{((m,n),(m’,n’)))
_ tint Z (G/In/’nlcm,n + Cjn,nG’M',n’ + bjn,)n,cm,n + C'LL,nb’m’,n') . (83)

((m;n),(m’,n"))

Here, ¢pmn (cf, ) is the annihilation (creation) operator for the triangular lattice site in the (m,n)th unit cell. A
strip of the trivial metallic Haldane lattice is used to calculate the ribbon band structure in Fig. S6a.

Concatenating both systems from Fig. S6a and Fig. S6b into a gapless topological heterostructure forms a system
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FIG. S7. (a-c) Show the LDOS (a), localizer gap (b), and localizer index (c) at E = 0 for a gapless heterostructure formed
with an inner Haldane topological insulator (same as Fig. S6), and a gapless topological outer lattice described by Eq. (S3)
that incorporates direction-dependent next-nearest neighbor couplings with ¢1 = ¢, ¢ = 0.2¢, ting = 0.3t, M = 0, M = 0,
tc =t/2, and ¢ = w/2. All three plots are shown on the same spatial scale, with open boundary conditions. (d) Horizontal line
cut of the localizer gap and index through the system’s center and at £ = 0. For all calculations using the spectral localizer,
Kk =t/a is used.

with a band structure that reproduces the challenge associated with gapless topological heterostructures discussed
in the main text, see Fig. S6¢c. In the band structure calculations, the bands corresponding to interface-localized
states are obscured by the degenerate bulk bands from the interstitial triangular lattice. Within this energy range,
it is not possible to use topological band theory to identify the existence of interface-localized chiral modes — the
heterostructure does not exhibit a common bulk band gap between the two constituent materials so band theory
cannot be used to predict a measure of protection, and the edge states cannot be uniquely identified at some energy
and wavevector.

The challenges involved in identifying the topology of the gapless heterostructure remain apparent in the system’s
local density of states (LDOS). In Fig. S6d and h, we show the LDOS within the topological insulator’s bulk band
gap E = 0 for finite gapped and gapless heterostructures, respectively. For both systems, the inner material is a
topological insulator, the outer material is topologically trivial, and the outer-most boundary of the outer material
has open (Dirichlet) boundary conditions. While the chiral edge states at this energy can be clearly identified in
the gapped heterostructure’s LDOS, Fig. S6d, the states due to the interstitial triangular lattice’s band in Fig. S6h
prohibit the numerical observation of any chiral edge states.

We can use the spectral localizer [7-9] to prove that the gapless topological heterostructure in Fig. S6h-k still
possesses boundary-localized resonances that are connected to the non-trivial topology of the central lattice. For a
2-dimensional Hermitian tight-binding model, the local marker and protection at position x and energy F are found
by first forming the spectral localizer:

Lix,p)(X, H) = k(X1 —211) @ 0y + K(Xo —22]) @0y + (H — EI) ® 0, (S4)

where X = (X1, X5)T, X; is the j'" position operator, x = (z1,72)T, x; is the j** position coordinate, o; are the
Pauli spin matrices, k is a positive scaling coefficient with units of energy times inverse distance, and [ is the identity
matrix.

Using the spectral localizer gap and index, we resolved the local Chern numbers for both topological heterostructures
shown in Fig. S6, and numerically observe that all substructures are comprised of materials with different invariants in
their bulk. Moreover, for the gapless system, applying the spectral localizer and plotting the local gap versus position
shows the closing of p(x, g) near the heterostructure’s interface where the local marker changes, which requires the
system to possess topological edge resonances even if they are obscured in the LDOS. Finally, we note that the
small, but non-zero, local gap pi(x, ) on both sides of the heterostructure’s interface guarantees the edge resonance’s
protection against modest system perturbations. As tight binding models are not unbounded operators, they are
not subject to the considerations discussed in the main text surrounding the difficulty of defining the strength of a
perturbation through its matrix norm. Instead, we are left with the standard topological protection predicted by the
spectral localizer: a perturbation 0 H that is weaker than the local gap, ||0H|| < ji(x, k), cannot change the system’s
local topology at (x, E) [7].

To further prove that the interface-localized resonance in a gapless heterostructure can be attributed to the change
in the materials’ bulk invariants, i.e., that bulk-boundary correspondence still holds for gapless heterostructures, we
slightly modify the gapless material on the exterior of the heterostructure to possess the same bulk invariant as the
central insulating material, see Fig. S7. This is constructed from the same topological Haldane lattice that is then
coupled to the trivial gapless triangular lattice. The result is a gapless topological structure with degenerate bulk and
a topological edge state protected by a local gap [10].



Now, we see that the system is no longer a topological heterostructure; the local gap fi(x, ) no longer closes at the
interface between the two materials, indicating the disappearance of the topological interface-localized resonances,
while the local maker is seen to be uniform across the entire crystal. Furthermore, the local gap closes around the
system’s perimeter due to the use of open boundary conditions, indicating a topological phase transition between the
outer lattice material and the surrounding (insulating) vacuum.

SVI. Relationship between the Hermitian and non-Hermitian spectral localizers

The spectral localizer for Hermitian systems, Eq. (S4), is similar to its non-Hermitian generalization, Eq. (1) in the
main text, except that the conjugate transpose of the lower right-side block —(H — ET) is not taken (or equivalently
can be dropped, because —(H — EI)' = —(H — EI) when the system is Hermitian). Nevertheless, the non-Hermitian
spectral localizer in Eq. (1) has been mathematically proven to be the correct generalization of Eq. (S4) to line-gapped
non-Hermitian systems such that all of the Chern-related topological properties are correctly counted [11].

Here, we conjecture that Eq. (1) in the main text is the correct non-Hermitian generalization of Eq. (S4) for two
physically motivated reasons. First, Eq. (1) reduces to Eq. (S4) when H becomes Hermitian. Second, because this
specific change introduces information contained in the non-Hermitian Hamiltonian’s left eigenvectors. To see this
second reason, note that if x = 0, the eigenvectors of L(, , ., come in two varieties

(5 o ) () = ()
(0 o) (o) =m0 (4))

where H,, = w,p,, and Hi,, = w*, d,,. But, as (HTd,,)t = & H = ¢ w,,, b is aleft eigenvector of H. While
in a Hermitian system, the left and right eigenvectors of H are related by d)jn = wjn, this is not generally true for
non-Hermitian systems, d)jn #+ 1|)In. Moreover, in many non-Hermitian systems, there is relevant information carried
in the system’s left eigenvectors that is generally not present in the system’s right eigenvectors, for example, in parity-
time symmetric systems [12] that can exhibit exceptional points. Thus, it seems reasonable that the non-Hermitian
spectral localizer (with x # 0) would need access to this information to correctly determine a system’s topological
properties, given that quantities like the non-Hermitian Chern number (calculated via band theory) typically make
use of both a non-Hermitian system’s left and right eigenvectors [13].
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