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Abstract

Efficient operation of battery energy storage systems requires that battery tem-
perature remains within a specific range. Current techno-economic models ne-
glect the parasitic loads heating and cooling operations have on these devices,
assuming they operate at constant temperature. In this work, these effects are
investigated considering the optimal sizing of battery energy storage systems
when deployed in cold environments. A peak shaving application is presented
as a linear programming problem which is then formulated in the PYOMO
optimization programming language. The building energy simulation software
EnergyPlus is used to model the heating, ventilation, and air conditioning load
of the battery energy storage system enclosure. Case studies are conducted for
eight locations in the United States considering a nickel manganese cobalt oxide
lithium ion battery type and whether the power conversion system is inside or
outside the enclosure. The results show an increase of 42% to 300% in energy
capacity size, 43% to 217% in power rating, and 43% to 296% increase in capital
cost dependent on location. This analysis shows that the heating, ventilation,
and air conditioning load can have a large impact on the optimal sizes and cost
of a battery energy storage system and merit consideration in techno-economic
studies.

Keywords: battery energy storage system, sizing, thermal management,
energy storage

Nomenclature
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m Time period (e.g month)
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1. Introduction

Energy storage is one of the technologies driving current transformation of
the electric power grid toward a smarter, more reliable, and more resilient future
grid [1I]. Reducing consumption of fossil fuels requires increased integration of
renewable generation which becomes more reliable when paired with energy
storage due to their intermittency [2]. The versatility of energy storage systems
(ESSs) adds flexibility to the electric grid in the face of distributed generation
[3]. ESSs can provide a range of services from grid level applications, such as
energy arbitrage and frequency regulation, to individual customer support by
providing back-up power generation, renewable generation firming, and peak
shaving [4]. Optimal sizing of these devices remains challenging because of
technology characteristics, location, and expected lifetime. Current techno-
economic battery energy storage system (BESS) models neglect the effects of
battery and enclosure thermal management.

Sizing ESSs in techno-economic studies is widely researched. Optimal siz-
ing of BESSs with a photo-voltaic (PV) plant is presented in [5] to maximize
revenue of the PV-BESS pair. In [6], PV-BESS size, operation, and energy
management is optimized to generate revenue with consideration of the capac-
ity of grid connection. A multi-objective optimization framework was developed
in [7] to size ESSs considering peak shaving, PV utilization, and ESS cost. A
Pareto front is obtained to compare the value of ESS cost with both reducing
the demand charge and improving PV utilization. A Discrete Fourier Trans-
form (DFT) approach is proposed in [8] to size a hybrid ESS containing battery



energy storage and pumped hydropower to mitigate wind power fluctuations.
In [9] a comprehensive study was performed on the optimal size, technology,
and depth of discharge of battery energy storage to reduce the microgrid oper-
ational cost and improve reliability. This work builds on the results in [I0] to
improve the expected lifetime of a BESS and analyze the effects of microgrid
participation in energy markets.

A comparison between stand alone and grid supplemented PV with BESS is
investigated in [I1] with respect to optimal sizing and energy management of the
system. The main findings are grid supplemented systems provide lower costs
at the expense of higher life cycle emissions. In [I2], optimal sizing of a hybrid
concentrated solar photo-voltaic (CSP), PV, and wind system supplemented
with BESS and thermal energy storage (TES). The electric system cascade
extended analysis is developed to determine optimal system configuration based
upon the loss of power supply probability (LPSP) and the levelized cost of
electricity (LCOE). A techo-economic analysis of a solar PV and direct current
BESS in a community sharing scenario is analyzed in [I3], maximizing the energy
generation and penetration while minimizing costs at the optimal size.

The joint placement and size of wind turbines and BESSs is investigated in
[14] particularly considering the reactive power support the BESS can provide
for the system. The proposed optimization improved voltage profiles of load
buses, reduced active and reactive power losses, and reduced costs in a 36 bus
distribution system. In [I5], a two layer optimization approach is proposed to
optimally size a BESS considering a virtual energy storage system as an air
conditioned home and high PV penetration in a smart microgrid. In the first
layer an initial BESS size is determined based upon the VESS participation,
then the second layer determines the optimal BESS size considering system
constraints. A dynamic programming method is used to obtain the optimal size
of BESS in a wind turbine BESS system in [I6]. The authors compared a rules-
based method, genetic algorithm, a dynamic programming method considering
degradation, and a dynamic programming method without degradation and are
able to show the dynamic programming method considering degradation reduces
costs by extending the lifespan of the BESS and reducing operating costs of the
wind plant.

In [I7], a multi-stage framework is developed to optimally size and operate
a hybrid electrical-thermal storage system. Case studies show that the hybrid
system is more reliable and cost-effective than a stand alone storage system of
either type and the multi-stage framework lowers overall costs of the system
compared to a rules based approach. A two-step cost based method is used in
[18] to optimally size a BESS in a micro-grid and is shown to reduce costs com-
pared to the particle swarm algorithm and genetic algorithm. The authors in
[19] proposes the improved cayote optimization algorithm to optimally size and
locate BESS to reduce power losses in the distribution grid and is shown to im-
prove the efficiency when compared to the firefly algorithm, whale optimization
algorithm, and particle swarm optimization.

None of the aforementioned techno-economic studies consider the parasitic
losses associated with heating and cooling loads of the ESS enclosure. In par-



ticular, BESS must be kept within an operating temperature range to ensure
optimal performance and in many cases maintain the warranty. Control models
often consider heating and cooling of the device when it can affect battery oper-
ation. The work in [20] presents a two stage optimal control strategy for a BESS
in a microgrid considering the battery temperature. The first stage determines
the optimal battery and fan operations to manage the battery temperature
within thermal limits, while the second optimizes the microgrid operation. The
thermal model includes internal resistive heating with conductive and convective
cooling terms for each battery cell. This strategy is shown to keep the battery
temperature within thermal limits at a slightly higher operational cost.

An equivalent circuit model considering thermal effects for Vanadium Redox
Flow (VRB) BESSs is developed in [2I] using a third order Cauer network for
the thermal circuit. The model is experimentally validated with a 5kW/3kWh
system and then used in a simulation supporting a wind power plant. In [22]
an electrothermal coupling model is developed considering battery aging for
electric vehicles. A nonlinear model predictive control (NMPC) heating opti-
mization strategy is proposed using this electrothermal model at low tempera-
tures. Simulation results show an improvement in both heating time and energy
consumption when this method is compared to using an electric heater. A ther-
moelectric coupled model specific to lithium-ion batteries is developed in [23]
for an NMPC optimal charging method suitable for the temperature range -5°to
45°C. This model is shown to reduce energy loss and temperature rise during a
similar charging time period when compared with a constant current charging
method. A comparative study of control-oriented thermal models for lithium-
ion batteries in vehicle and grid applications is presented in [24]. The models
are evaluated in situations where both core and surface temperature are known
and also where only the surface temperature is known using simulations and
experimental data sets of lithium iron phosphate batteries. The polynomial
approximation is found to be the best model in practical applications when
considering model assumptions, model fidelity, computational cost, and model
sensitivity. In [25], a comprehensive review of optimal battery control strategies
is presented. Section IV in [25] describes temperature modeling and shows that
optimal control of the battery and heating, ventilation, and air conditioning
(HVAC) unit setpoints provide an electricity bill reduction while keeping the
battery temperature within operating range.

The objective of this paper is to offer a techno-economic sizing method which
considers the parasitic loads due to HVAC operation. The proposed method
calculates the optimal size of a BESS in techno-economic studies based on the
application, battery type, and local climate. This method is coded in python and
uses the PYOMO optimization programming language [26] [27] and the building
energy simulation software EnergyPlus [28] [29]. Eight locations are considered
and the objective is to identify the system size that meets the performance
requirements and reduces capital and operational costs. Optimization of the
capital costs of a BESS and energy bill is formulated as a Linear Programming
(LP) problem for peak shaving using a linear energy reservoir model (ERM). An
EnergyPlus model is created to determine the electric load due to heating and



cooling the BESS enclosure using a non-linear ERM, which is then incorporated
into the optimization framework. This offers an improvement to the techno-
economic studies discussed, which do no consider the parasitic loads due to
HVAC operation. The specific contributions of this paper are 1) a new energy
storage sizing algorithm that performs better than current models in extreme
climates, and 2) a quantitative estimate of the cost savings achievable in different
locations by including the power conversion system (PCS) inside the battery
enclosure to reduce net heating load.

The paper is organized as follows. Section [2] presents the algorithm structure
along with the optimization formulation. Section [3|discusses the results of each
scenario. Concluding remarks are found in section

2. Methodology

Energy storage models have been widely developed for a variety of economic
applications, optimal control, and system sizing. In this section, an ERM is
described along with the economic structure of a peak shaving scenario. ERMs
describe the system in terms of energy flow between battery, generation, and
load. These are the simplest models, but well suited for economic studies [25].
Fig. [1] shows the iterative method proposed in this paper as a flow chart.

This method is devised such that the optimization model is exchangeable so
long as there is a charge and discharge profile of the BESS as an output and
HVAC power as an input. Similarly, so long as there is a suitable location for the
BESS any EnergyPlus input file is usable. The location will determine weather
data and rate structure. Battery type will determine the battery model used
to calculate heat loss from battery to enclosure. PCS placed inside or outside
the enclosure will determine whether to include PCS inefficiency in the heat
balance. PYOMO and EnergyPlus models are created for the optimization
and heat balance respectively. Sections and define the PYOMO model,
while Sections and define the EnergyPlus model. The PYOMO sizing
model is first solved with no consideration for the HVAC load to provide the
BASE solution. The charge-discharge profile is taken from the BASE solution
and used in an EnergyPlus simulation, which solves for the HVAC load that
is used to update the PYOMO model. Convergence is not guaranteed as the
relationship between BESS parameters and HVAC load solution is nonlinear and
non-convex. Therefore, the process is repeated until both the energy capacity
and power rating of the BESS meet convergence criteria or a maximum number
of iterations are run. However, in Fig. [2] the BESS parameters are seen to
rapidly converge in the first few iterations. This provides the minimum sized
BESS to provide the service required at a certain location.

2.1. Linear Energy Reservoir Model

The ERM assumes a linear relationship between system power and stored
energy. As the ERM is affine, it is widely used in convex economic optimization
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Figure 1: Iterative solution flow chart.

problems [30] and is formulated as follows:
S; =nSi_1 +ntrpf —pdVie A (1)

where S; is the state of energy (MWh) at the "' timestep of length 7 (hr).
The storage efficiency n® and round trip efficiency n'™ are assumed constant
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Figure 2: Power Rating and Energy Capacity of BESS in Minneapolis, MN, at each iteration.
The values converge quickly at the fifth iteration.

while the charge power p¢ (MW) and discharge power p? (MW) are the average
value over the time step and defined to be nonnegative. The ESS device is also
constrained by

0<qg+ql<QVieA (2a)

Smin S Sz S SmaxaVi S A (2b)
> n"tgf —qf =0. (2¢)
€A

where the equivalent energy terms, 7p, have been replaced with energy variables
q. The constraint ensures charge and discharge profile is within the capa-
bilities of the ESS. The constraint requires the state of charge of the system
to be within a specified minimum and maximum amount. The constraint
requires the net charging to be zero, or the initial and final state of charge (SOC)
to be equal. The complimentary slackness constraint is not included because it
is assumed any simultaneous charging and discharging would be settled within
the time period.

2.2. Battery Energy Storage System Sizing Problem Formulation

The optimization seeks to minimize the BESS cost and the energy bill. The
BESS capital cost is proportional to the energy capacity and power rating. The
energy bill is calculated using the utility rate structure for a particular location.
A simple rate structure may have a flat rate energy charge the entire year,
while time of use (TOU) rate structures may have energy charges that vary by
hour, day, and season. Customers may also have a demand charge per kW of
the highest power consumption for a specified duration, typically 15 minutes.
These demand charges may also vary by hour, day, and season. Rates are set
in advance and are not subject to change during the contract period. Higher



energy and demand rates during peak time periods offer customers the incentive
to decrease consumption at times of high load allowing utilities to manage their
total peak loads. However, these customers must have the ability to reduce
or shift their load. While it may be possible to reduce consumption in peak
times for residential customers, often commercial and industrial customers do
not have that flexibility. Energy storage devices offer a solution to that problem
by discharging during peak periods and charging in the off peak periods. This
demand response strategy saves the customer money, while helping the utility
manage their peak load. The cost minimization problem can be formulated as
a LP [31]:

min{CPF5S 1 CF} (3a)

st (1), @), @), @9,
q,d + qigrid _ qlc — qlload + q?vac7vi cA (3b)
qic+qigrid S qmax,vz‘ cA (30)

where,
CESS — Cpﬁ‘i‘ ng (Sd)
CF =" (¢™™ch + > (¢ +qf)cs,). (3e)
meM i€EA,,

where CPFSS and OF are the capital costs of the BESS and cost of electricity.
The excess energy bought from the grid, energy consumed by the load, and
energy consumed by the HVAC device are represented by qigrld ¢ ¢°*d and
qi“’"‘c, respectively. The maximum allowable energy to be drawn from the grid
in each time step is represented by ¢nq:- The power rating and energy capacity
of the BESS is represented by p and S. The capital cost per kW is represented
by P, while the capital cost per kWh is represented by ¢?. The demand charge
of each month is represented by c? and the electricity cost of each month is
represented by cf,. M is the set containing all months of the year while A,
is the set containing all time steps within the month m. The constraint
requires that there be enough energy between the grid and ESS to provide for
the load and HVAC energies. The constraint limits the energy drawn from
the grid at each time step, 7, within the time period below the maximum value,
i.e. the peak load constraint. Then, the above problem seeks to minimize the
capital cost of the ESS along with the energy bill for a peak shaving scenario.
This approach assumes perfect foresight and thus gives the best case solution.

2.3. Energy Plus

Energy Plus is a building simulation software used to model energy consump-
tion developed by the US Department of Energy’s Building Technology Office
and first released in April of 2001. The software has been widely adopted as
a leader in building energy simulation. EnergyPlus is a console-based program



that can be run from the command line with specified input files. Compre-
hensive graphical interfaces are available along with the software development
kit OpenStudio [32]. In release 9.3 [28], EnergyPlus was updated with an ap-
plication programming interface (API) that allows users to write scripts in C
or Python to run and manipulate EnergyPlus simulations. The inner work-
ings of EnergyPlus have been well documented and the readers are directed
[28, 29, B3, B4] for more information. The following is an explanation of the
features important to the work presented.

The Energy Plus input file (IDF) contains all of the details pertaining to the
building’s energy and mass transfer. Many options are available [34], however
a simple description of the BESS enclosure is presented. Typically, standalone
battery energy storage devices are housed in shipping containers. Standard high
cube units are constructed with lengths of 10’, 20°, and 40’, with a standard
width and height of 8’ x 9°6”. The walls and doors consist of a 2mm layer corten
steel while the floor is a 28 mm layer of marine plywood fastened on top of steel
crossbars [35]. The relevant characteristics of each material is listed in Table
The roughness property corresponds to a keyword in Energy Plus related
to convection coefficient calculations [34]. Thermal and solar absorptance are
ratios and default values are used where the information could not be found.

Table 1: Characteristics of shipping container materials.

Property Corten Steel [35] Marine Plywood — Steel
Roughness MediumRough Smooth Smooth
Thickness {m} 0.002 0.028 0.127
Conductivity {-2=}  16.00 0.12 45.28
Density {24} 8000 540 7824

: J
Specific Heat {z} 500 1210 500
Thermal Absorptance 0.89 - -
Solar Absorptance 0.913 - -

HVAC units are compound objects built with individually modeled compo-
nents in EnergyPlus. The complete objects in EnergyPlus become very complex
to create in the IDF, however HVAC Template objects allow for more simple
design choices such as heating or cooling capacity while the basic layout of the
HVAC is already packaged. For this study, a packaged terminal air conditioner
(PTAC) is modeled within the shipping container enclosure.

The PTAC is a single unit, similar to what may be placed under the window
in a hotel room, with both heating and cooling capabilities. Outside air is mixed
with the exhaust air, which is blown through the heating or cooling elements to
provide conditioned air to the space. The configuration consists of an outdoor
air mixer, electric heating coil, direct expansion cooling coil, and fan. Design
specifications are listed in Table
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Table 2: Specifications of Packaged Terminal Air Conditioning Unit

Property Rating

Fan Placement Draw Through
Fan Efficiency 70%

Fan Pressure Difference 75 Pa

Fan Motor Efficiency 90%

Cooling Coil Rated Capacity 15000 W
Cooling Coil Coefficient of Performance 3

Heating Coil Rated Capacity 25000 W
Heating Coil Efficiency 100%

2.4. Non-linear Energy Reservoir Model

A technology specific non-linear energy flow model proposed in [36] is used to
describe the heat loss of the battery. Energy flow models, as used in the energy
storage system model in Section [2.1] are well suited for techo-economic studies
because they describe battery energy storage behavior over suitable time periods
for market operation. Real batteries lose energy at rates that depend on the
state of charge, temperature, and charge or discharge power [37] which makes
the efficiency terms non-linear. The non-linear formulation of is expressed
as [36]:

Si =081 + 7f{ (0, Sic1) — T (P, Sim1) (4)

where f¢ and f? represent the average charged and discharged power over a time
step, respectively. The rate of energy loss for Lead-acid and Li-ion batteries
during charge and discharge can be characterized with system level quantities
as [36]:

W, 4 kS| i\,  kS(S—S)p!

pem L By BEZ BB, )
lcNi kS P,C\2 kS(S_SZ) P C
P = T)S[(T"‘ G- SZ)(" pi) + s " Pi] (6)

where S as the rated energy capacity of the system, ¢ as the rated ampere-
hour capacity of a battery cell, v as the rated voltage of a battery cell, r as the
internal resistance of a battery cell, n? as the power conversion system efficiency,
and the model coefficient k£ can be calculated from nameplate or testing data
[36]. Then the charged and discharged power at each time step is the sum of
consumed power and power loss:

d Pd Id
Ii= o + Dy (7)
i =nPp§ —pif (8)
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Table 3: LG 18650 Characteristics [38], [39]

Chemistry NMC

q 2.5 Ah
v 3.6V

r 0.02 Q

k 0.005

Temperature Range 15-40 °C

The energy lost as heat to the enclosure is given by the first terms in equations
and (@ related to the ohmic and polarization resistances. Using the En-
ergyPlus API, the heat energy is released into the enclosure model using the
Electric Equipment object [34].

A lithium nickel manganese cobalt oxide (NMC) battery is considered with
characteristics shown in table Bl For each location a scenario in which the PCS
is considered to be inside the enclosure is also simulated, where the inefficiency
is considered to be lost as heat. The enclosure temperature is kept between the
operating range of each battery shown in Table [3]

3. Results

In this section, the results of running simulations for the eight locations
shown in Table [4| are presented. A load profile representing a warehouse is used,
accessible from [4I] and shown in Fig. [3| All weather files are TMY3 available
from the EnergyPlus website [28].

The cost of lithium ion batteries are estimated on a per kW (¢?), and per
kWh (c?) basis as described in (3d). These costs are determined using a re-
gression algorithm on the data presented in [42] as 132.36 % and 360.38 %
The storage efficiency and round-trip efficiency of are 100% and 83.32%,
respectively, while the PCS efficiency is 93.32%.

Spmin and Sy,q. are set to 5% and 95% of battery capacity due to the asymp-
totic relationship between power loss and charging when the battery is near a
full charge or discharging when near fully discharged. In the former case battery
voltage is high due to low current, while the opposite is true in the latter. Both
scenarios result in poor battery performance with high losses. This means S
represents the cell-level capacity of the system while the operating range of the
system is between S,,;, and Sy,q.. Therefore, the AC nameplate capacity of
the system is Sy,q, minus Syin.

Table 4: Location Climate Zones [40]

Location AKA AKF CO MA MN MT ND NY
Climate Zone 7 8 7 5 6 6 6 5
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Figure 3: From top to bottom: outdoor and enclosure temperature of January 3rd and June
6th, battery SOC of January 3rd and June 6th, hourly load of January 3rd and June 6th,
hourly load of January 3-9 and June 5-11, and hourly load of the entire year.

The peak shaving case studies presented assume the customer desires to limit
the total load to 70 kW. The rate structure of AKF is used in each simulation,
which has a constant energy charge of 0.12638 M;Vih and constant demand charge
of 22.27 5 throughout the year [43].

Fig. [] shows the resulting optimal battery sizes for each location and PCS
heat loss scenario. The solution in which parasitic losses are not considered,
BASE, is independent of location, shown at 86.9 kWh, 13.6 kW. This is be-
cause, by choice, the weather data and consequently the HVAC load is the only
variation between simulations, isolating the climate effects.

The results vary significantly between locations and whether the PCS is
considered to be contained in the enclosure. AKF, residing in the subarctic
thermal climate zone, nearly triples the required energy capacity and power
rating of the battery to 261.6 kWh, 29.6 kW with PCS outside of the enclosure.
When PCS is considered inside of the enclosure the sizes are reduced to 220.1
kWh, 28.4 kW. MT has the smallest optimal battery sizes at 131.4 kWh, 21.8
kW with PCS outside the enclosure and 123.7 kWh, 21.2 kW with PCS inside
the enclosure.

The results show large differences between locations in the same climate
zone designation. AKF, the only location in climate zone 8, requires the largest
BESS. AKA and CO, both residing in climate zone 7, differ by roughly 30 kWh,
1 kW with PCS both inside and outside. ND, MN, and MT all are classified in
climate zone 6, however ND requires the second largest BESS while MT requires
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(a) BESS energy capacity sizes when PCS is out-
side the enclosure on map of North America.
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Figure 4: Optimal BESS sizes in each location.

the smallest optimal BESS. The two locations in climate zone 5, NY and MA,
differ by 10 kWh with PCS outside and 10 kWh, 1 kW with PCS inside the

enclosure.

Optimal BESS sizes vary by the climate location, but are also dependent on
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Figure 5: Battery usage during peak winter months in AKF, AKA, CO, and ND with PCS
inside the enclosure. (a) and (d) daily energy usage of BESS, (b) and (e) daily enclosure HVAC
energy consumption, (¢) and (f) daily mean temperature. (a), (b), and (c) span January and
February while (d), (e), and (f) span November and December.
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the load profile shown in Fig. The load consistently peaks during weekdays
to 83 kW in January, November, and December while the rest of the year has
peaks of 74 kW. The BESS size will then depend on HVAC consumption during
these peak winter months.

Fig. [p| shows the daily battery usage, enclosure HVAC consumption, and
mean outdoor air temperature during the peak winter months in the three ex-
treme locations by climate zone AKF, AKA, and CO, with the addition of ND
since it has the second largest size. Cold temperatures drive HVAC consump-
tion, which in turn drives the battery usage. AKF has extended periods of
extremely low temperatures driving high HVAC consumption and battery us-
age during weekdays. AKA and ND, while not as extreme, also have periods of
low temperatures and high HVAC consumption during the first weeks of Jan-
uary and December. ND particularly, peaks nearly as high as AKF in HVAC
consumption in January, however this falls on the weekend when the load is low
therefore the battery is not in use. CO has the least extreme temperatures and
HVAC consumption displayed, resulting in the least battery usage. While not
displayed in the figure, similar results are obtained for the other four locations.

Parasitic HVAC loads of the enclosure affect the amount of battery energy
able to be used toward the load. Fig. [6] shows the percent of charged battery
energy used to power the load and Fig. [7]shows the percent used toward heating
and cooling the BESS enclosure. In each location these parasitic loads require
a significant amount of battery energy from 8% in MA with PCS inside the
enclosure to 34% in AKF with PCS outside the enclosure. In the extreme
case of AKF, this reduces the amount of energy used toward the load to 49%.
Placing PCS inside the enclosure reduces the usage of energy toward the HVAC
by roughly 2% in each location. The percent of battery energy used toward
parasitic loads corresponds to relative optimal battery sizes with the exception
of AKA which has the second largest portion of battery energy consumed by
the enclosure HVAC load, while having the third largest battery size.

Fig. [§]shows the capital cost of the optimal BESS in each location. Since the
cost of energy capacity is higher and the power ratings have less variation, the
cost among locations follows the energy capacity size. The savings associated
with having PCS inside the enclosure is also higher as the battery size is larger.
AKF with PCS outside the enclosure is the most expensive battery at $98,211.
Placing PCS inside the enclosure reduces capital cost of the battery to $83,061
saving $15,150.

Fig. [0 shows the change in the expected energy bill from installation of the
optimal BESS. The BASE solution predicts $659 of savings, highlighting that
peak shaving is not a financially viable use case for energy storage in itself.
Including the parasitic HVAC losses in the solution increases the energy bill in
each case. AKF has the largest increase, paying an excess bill of $5,104 when
PCS is inside the enclosure and $5,479 when PCS is outside the enclosure. AKA,
ND, and CO follow with about half the relative utility bill of AKF, while the
more mild climates of NY and MA have a smaller increase in bill. Given that
each location has the same rate structure in the simulations, the increase in
energy bill is attributed to the increased HVAC usage due to the extremity of
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Figure 7: The percent of energy charged by the battery consumed by the enclosure HVAC.
The light shaded colors indicate the PCS inside the enclosure, while the darker shade indicates
PCS outside the enclosure.
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the climate. Thus, without considering heating and cooling loads a BESS owner
would have thought they would save money, when in fact they would have paid
at least a thousand more in each case.

These results show that locations with extreme cold climates are the most
affected in terms of battery size, resulting in more expensive capital costs and
energy bills. The regional climate zone as defined in [40] did not directly pre-
dict relative battery size in each location. AKF has the most extreme climate
resulting in the largest BESS and costs, however the next largest BESS was
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located in ND which is in climate zone 6. The optimal BESS in CO, in climate
zone 7, is among the lowest in sizes. This supports the usefulness of the method
presented in this study as the local climate strongly impacts BESS sizes. TMY3
files contain representative annual weather data for a location useful for com-
parative results. However, they will not capture all of the extremities associated
with each location, in which a stochastic study may provide more insight.

Topics not considered in this study include varying the load profile, rate
structure, use case, and enclosure. The load profile has an impact on BESS
sizes, however a similar locational dependence would be expected for other cases.
Insulating the shipping container or considering different building enclosures
may enhance thermal management and provide advantages not considered in
this study. Using local rate structures adds further complexity and may only
significantly alter the results when the BESS heat loss and HVAC consumption
are comparable, in which case the BESS operation will affect when the largest
parasitic loads occur. Different use cases of the BESS would likely affect the
overall economics and would be interesting future work, however it is beyond
the scope of this paper.

4. Conclusion

The effects of parasitic heating and cooling loads on BESS sizing are in-
vestigated in this paper. Sizing problems are formulated for the peak shaving
case as a linear program with the PYOMO python package. HVAC loads are
incorporated using EnergyPlus to model a BESS enclosure, namely a shipping
container with a PTAC unit in eight U.S. locations considering an NMC lithium-
ion battery type and whether the PCS is inside or outside the enclosure.

100 4

ESS Cost (thousands §)

20 1

AKA AKF 8] Ma MN MT ND NY

Figure 8: Optimal BESS cost in each location. The light shaded colors indicate the PCS
inside the enclosure, while the darker shade indicates PCS outside the enclosure. The green
horizontal line represents the BASE BESS capital cost at $33,137.
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Figure 9: Annual energy bill at each location relative to the case without BESS. A negative
relative bill indicates saving money while a positive relative bill indicates a more expensive
bill. The light shaded colors indicate the PCS inside the enclosure, while the darker shade
indicates PCS outside the enclosure.

Results show that locations with extreme winters, such as Fairbanks, AK,
require a significantly larger battery capacity than would be anticipated without
considering parasitic HVAC loads. Given that all operating conditions are kept
constant besides the local climate, Fig[5|illustrates this point. The locations with
the largest required battery size, AKF and ND, have the coldest winter months
driving higher HVAC consumption. The BESS is then required to provide more
energy to keep the total load under the prescribed 70 kW. However, even the
case with the smallest resulting battery sizes, MT with PCS inside the enclosure,
requires an increase of 42% in energy capacity, 56% in power rating, and 43%
in the capital cost as compared to the BESS models currently used in techno-
economic studies. Placing the PCS inside the BESS enclosure results in savings
of roughly 6% on capital costs in every location except AKF where the savings
are roughly 18%. While predicting a modest return in annual energy bill savings
in the BASE case, Fig. 9 shows the increase in energy bill due to the HVAC
loads costs the end user more money in each case. This result is not unexpected,
but can be improved upon with model predictive control methods [25].

These results suggest that HVAC loads have a significant effect and war-
rant consideration in techno-economic studies. Future applications of this work
would consider different built enclosures and HVAC technologies, off-grid sizing,
economic use cases, and thermal management schemes.
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