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Abstract

A method for the nonintrusive and structure-preserving model reduction of canonical and
noncanonical Hamiltonian systems is presented. Based on the idea of operator inference,
this technique is provably convergent and reduces to a straightforward linear solve given
snapshot data and gray-box knowledge of the system Hamiltonian. Examples involving sev-
eral hyperbolic partial differential equations show that the proposed method yields reduced
models which, in addition to being accurate and stable with respect to the addition of basis
modes, preserve conserved quantities well outside the range of their training data.
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1. Introduction

In recent years, Digital Twins (DTs) have emerged as a new paradigm in the field of
modeling and simulation. A DT is a computational model of a physical asset, such as a
component, system or process, that evolves continuously in real or near-real time, so as to
persistently represent the ever-changing structure and behavior of the underlying physical
asset. In order for DT's to achieve their full potential as enablers of beyond-forward analyses
such as optimal experimental design (OED), control and uncertainty quantification (UQ), it
is essential that these computational models are: (1) capable of incorporating real-time data
as it becomes available, (2) computationally efficient enough to provide predictions in real
or near-real time, and (3) equipped with rigorous mathematical convergence, stability and
accuracy guarantees.

Particularly helpful in establishing the above criteria is making appropriate use of well-
studied mathematical structure inherent in the underlying partial differential equations
(PDEs) when such structure is available. In the case that the system modeled obeys a
variational principle, there are centuries of knowledge regarding dynamical properties (e.g.,
conservation laws) which can be leveraged to produce accurate and realistic simulations. Of
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particular interest at the present time are Hamiltonian systems, which form compact models
of reversible, potentially chaotic dynamics. Since many common systems relevant to digital
twins have a Hamiltonian form (e.g, Hénon-Heiles, n-body motion, idealized MHD, solid dy-
namics), it is becoming increasingly necessary to have useful ways of building relatively cheap
Hamiltonian surrogates which can be used to inform a high-quality digital representation.

Projection-based model order reduction (PMOR) is a promising strategy for reducing
the computational cost of high-fidelity simulations, making projection-based reduced order
models (ROMs) ideal candidates for constructing DTs. The key idea in PMOR is to learn
a low-dimensional trial subspace by performing a data compression on a set of snapshots
collected from a high-fidelity simulation or physical experiment, and to restrict the state
variables to reside in this subspace. This effectively projects the high-fidelity dynamics
into a much smaller function space, which must be carefully imbued with sufficient infor-
mation for accurate reconstruction of the high-fidelity solutions. Traditionally, affine (or
linear) approaches have been employed for constructing the low-dimensional trial subspace
in which the ROM solution is sought, e.g., Proper Orthogonal Decomposition (POD) [1, 2],
Dynamic Mode Decomposition (DMD) [3, 4], balanced POD (BPOD) [5, 6], balanced trun-
cation [7, 8], and the reduced basis method (RBM) [9, 10]. While all such methods have
their own strengths and weaknesses, without loss of generality, this work restricts attention
to the POD approach for calculating reduced bases due to its prevalence, flexibility, and
simplicity. Beyond linear techniques, it is interesting to note that, in recent years, the idea
of employing trial subspaces defined by nonlinear manifolds has started to be explored by
a growing number of authors; see, e.g., [11, 12, 13, 14, 15, 16, 17] and references therein
for nonlinear manifold approaches based on convolutional autoencoders, and [18, 19] for
quadratic manifold approaches. Nonlinear approximation approaches have the advantage
of mitigating the so-called Kolmogorov n-width barrier [20], which reduces the efficacy and
efficiency of linear manifold ROMs for convection-dominated problems!. However, they are
often more difficult to train and can exhibit poor convergence behavior when compared with
their linear counterparts [14, 11].

Once a low-dimensional trial subspace has been constructed, the mathematical operators
defining a ROM are obtained through a projection of the corresponding full order model
(FOM) operators onto the reduced subspace. Performing this projection step is in general a
very intrusive process, as it requires access to the FOM code used to generate the snapshot
data. This intrusive nature of the projection step in PMOR limits the class of problems to
which the approach can be applied, precluding the application of PMOR to FOMs that are
given as a black-box. A promising approach for overcoming this limitation is data-driven
Operator Inference (Oplnf) (e.g., [21, 22, 23]), which aims to construct projection-based
ROMs in a nonintrusive way. Oplnf is motivated by the observation that projection pre-
serves algebraic structure, that is, if the semi-discretized FOM has polynomial nonlinearities,
a projection-based ROM for this system will also have polynomial nonlinearities of the same
degree. Once the functional, algebraic structure of the FOM (and hence the ROM) is de-
termined, OplInf works by replacing the intrusive projection step that is typically used to

! As discussed in Section 6, extending the approach proposed herein to nonlinear manifold bases will be
the subject of future work.



determine the ROM operators with a least-squares problem that infers these operators di-
rectly in a black-box fashion using available snapshot data (c.f. Section 2.3).

It is well known that projection-based ROMs constructed using either intrusive or non-
intrusive techniques will generally not automatically inherit key mathematical properties of
the PDEs from which they are derived. Since these properties are often well-understood to
be responsible for the involved physics, this is a major defect which can harm the predictive
performance of ROMs, limiting their utility in practical cases of interest. To remedy this
difficulty, a variety of methodologies have been proposed which focus around preserving dif-
ferent mathematical structures often seen in application settings. Here, we summarize the
literature on this subject for several common properties whose numerical preservation is criti-
cal to a wide range of applications: energy-/entropy- stability, conservation law preservation,
and variational structure preservation (most notably involving Hamiltonian or Lagrangian
structure, and including the focus of this paper).

It is worth noting that the majority of structure-preserving PMOR, approaches in the
literature focus on intrusive ROMs rather than non-intrusive OpInf models. The present
work is a step towards filling this gap for the specific case of Hamiltonian systems. In order
to distinguish our approach from other related work, we provide a succinct overview of ex-
isting Oplnf methods below, after our overview of commonly-preserved structures/properties.

Energy- and entropy-stability. The bulk of the literature on energy- and entropy-stability
preserving PMOR approaches focuses on the specific case of compressible flow. It is well-
known that projection-based ROMs for compressible flow constructed via Galerkin projection
in the L? inner product lack an a prior: stability guarantee [24, 25, 26]. This problem can be
circumvented for traditional intrusive ROMs through a variable transformation or by chang-
ing the inner product in which the projection is done, yielding energy-stable [27, 25, 26, 28]
or entropy-stable [29, 30, 31] approaches. Alternate approaches for mitigating the problem
which are less intrusive and possible to apply in conjunction with OpInf model reduction
include subspace rotation [32] and eigenvalue reassignment [33, 34]. An interesting and very
recent pre-print that considers incompressible flow is the work of Klein and Sanderse [35],
which develops a novel kinetic energy and momentum conserving hyper-reduction method
for projection-based ROMs for the incompressible Navier-Stokes equations.

Conservation law preservation. A second problem arising in PMOR for fluid mechan-
ics applications, and, more broadly, conservative systems of PDEs, is lack of conservation:
ROMs constructed from conservative models are not guaranteed to maintain the underlying
model’s conservation laws. The following three references for mitigating this problem for
intrusive projection-based ROMs are noteworthy. In [36], Carlberg et al. present a method-
ology for constructing conservative compressible low ROMs by modifying the minimization
problem defining the Least Squares Petrov-Galerkin (LSPG) [37] to include local or global
conservation law constraints. The formulation in [36] is extended to the case of incompress-
ible flow in [38], yielding a method that is both mass- and kinetic energy-conserving, and
thus nonlinearly stable. An alternate way to create an incompressible flow ROM with mass
and energy conservation is presented in [39]. In this work, the authors demonstrate that
these properties can be attained at the ROM level through a careful selection of the bound-
ary condition treatment and finite element space underlying the ROM. The preservation of



conservation laws in Oplnf remains an open problem, although progress has been made on
problems with a variational form through [40, 41], and this work.

Variational structure preservation. Another mathematical property mentioned previ-
ously and exhibited by a wide range of physical systems (e.g., solid dynamics, the shallow
water equations, etc.), including the ones considered in the present work, is variational
structure. This includes systems amenable to the standard Hamiltonian and Lagrangian
formalisms, as well as the more general formalisms of, e.g., Euler-Poincaré, Lie-Poisson and
metriplecticity. The advantages of biasing toward this structure are clear to see; for exam-
ple, since the Hamiltonian can be considered a representation of the energy of a system,
a Hamiltonian structure-preserving discretization will automatically obey at least one con-
servation law. Several Hamiltonian (or Lagrangian) structure-preserving approaches have
been developed in recent years for the specific case of solid dynamics. In [42], it is shown
that performing a Galerkin projection of the second-order-in-time Euler-Lagrange equations
defining a canonical solid dynamics problem preserves Lagrangian structure, provided no
hyper-reduction is employed. As discussed in [43], traditional hyper-reduction approaches
such as collocation, the Discrete Empirical Interpolation Method (DEIM) [44] and gappy
POD [45] destroy the Lagrangian structure of the ROM. In [43], two Lagrangian structure-
preserving approaches for performing hyper-reduction on these systems, termed reduced
basis sparsification (RBS) and matrix gappy POD, are proposed. Both approaches are of
the “approximate-then-project” flavor, meaning they apply hyper-reduction to the nonlinear
terms in the governing equations prior to projecting these terms onto a reduced basis. An al-
ternate “project-then-approximate” approach for preserving Lagrangian structure in ROMs
for nonlinear solid dynamics applications is the Energy-Conserving Sampling and Weighting
(ECSW) method of Farhat et al. [46]. In this method, the nonlinear projected function is
approximated using a set of points and weights, the latter set of which are obtained by solv-
ing a non-negative least-squares optimization problem. Interestingly, there has recently been
some headway into OplInf techniques for PMOR on solid mechanical systems as well. In [41],
the authors develop a gray-box method for learning the linear parts of Lagrangian systems
in a way that respects the symmetric positive definite nature of the governing operators.

A broader class of symplecticity-preserving PMOR methods focus on directly reducing
the Hamiltonian first-order-in-time system (1). As discussed in [42], performing a Galerkin
projection of these equations onto a set of reduced basis vectors will generally not preserve
the Hamiltonian/symplectic structure of the system. Several works, e.g., [47, 48], propose
to remedy this through Proper Symplectic Decomposition (PSD) and symplectic Galerkin
projection. In [47], Peng et al. propose three algorithms for calculating the PSD, based on
the cotangent lift, complex SVD and nonlinear programming. These algorithms effectively
generate reduced bases such that projection onto the subspaces spanned by these bases will
maintain symplecticity. Further, a version of DEIM for Hamiltonian systems, termed Sym-
plectic DEIM (SDEIM), is developed for maintaining skew-symmetry (but not necessarily
symplecticity or Hamiltonian structure) when performing hyper-reduction. An approach
based on a globally optimal symplectic reduced basis in the sense of the PSD is derived
in [49]. Here, it is shown the POD of a canonizable Hamiltonian system is automatically
symplectic, from which the authors deduce optimality of the PSD. In [50], PSD is extended
to create a greedy approach for symplectic basis generation. The approach is advertised as
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more cost-effective than traditional POD and PSD, and exhibits exponentially-fast conver-
gence. The follow-on work [51] presents a reduced dissipative Hamiltonian (RDH) method
as a structure-preserving model reduction approach for Hamiltonian systems with dissipa-
tion. Unlike other approaches, the proposed approach enables the reduced system to be
integrated using a symplectic integrator. The recent work [48], based on a lot of the same
ideas as [50, 51|, demonstrates that linear symplectic maps can be used to guarantee that
the reduced models inherit the geometric formulation from the full dynamics. The approach
evolves the approximating symplectic reduced space in time along a trajectory locally con-
strained on the tangent space of the high-dimensional dynamics. The recent pre-print [52]
presents a different DEIM-based hyper-reduction method for nonlinear parametric dynamical
systems characterized by gradient fields such as Hamiltonian and port-Hamiltonian systems
and gradient flows. The authors decompose the nonlinear part of the Hamiltonian into a
sum of d terms, each characterized by a sparse dependence on the system state, and obtain
a hyper- reduced approximation of the Jacobian by applying DEIM to the derived function.
The resulting hyper-reduced model retains the gradient structure, and possesses a priori
error estimates showing that the hyper-reduced model converges to the reduced model and
the Hamiltonian is asymptotically preserved.

It is also possible to derive Hamiltonian structure-preserving ROMs using the classical
POD reduced basis. In [53], a least-squares system is solved to ensure skew-symmetry of
the POD-Galerkin system corresponding to the governing Hamiltonian form. An a priori
error estimate for the resulting POD/Galerkin ROM is developed, but hyper-reduction is
not considered, rendering the approach inefficient. In [54], Sockwell presents a Hamiltonian
structure-preserving approach that is most closely related to the approach in [53] and that
possesses similar error estimates; however, the technique in [54] is derived in a Hilbert
space and takes advantage of the Hamiltonian framework in order to abstract the technique
to a wide variety of weighted inner-product spaces. This method is shown to preserve
linear Casimir invariants, and is demonstrated in the context of the rotating shallow water
equations, commonly used in ocean modeling on the sphere. In addition to intrusive PMOR
approaches, there is recent work in developing non-intrusive OpInf PMOR approaches that
preserve Lagrangian [55] as well as Hamiltonian structure [40, 16], and ROMs with nonlinear
manifold (e.g., convolutional autoencoder) bases [56]. Notably, [40, 16] are the only works
to the authors’ knowledge in which a Hamiltonian structure-preserving nonintrusive OplInf
PMOR methodology is developed, although this method is limited to canonical Hamiltonian
systems with a block-diagonal gradient structure.

Beyond Hamiltonian systems, it is worth mentioning some current references focusing on
structure-preserving model reduction for port-Hamiltonian and metriplectic systems, e.g.,
[57, 58], which are extensions of the Hamiltonian formalism to systems with dissipation.
Metripletic dynamical systems separate dynamics into terms that are “energy-preserving”
and “dissipative”, represented by a noncanonical Poisson structure and a degenerate Rie-
mannian metric structure, respectively. To the best of our knowledge, [58] is the first paper
to develop a structure-preserving (intrusive) ROM for PDEs with metriplectic structure.
Conversely, the work [57] presents three techniques for constructing reduced bases for port-
Hamiltonian systems: one based on POD, one based on Hsy/H..-derived optimized bases
(which can be calculated without any snapshots), and one that is a mixture of the two. In-
terestingly, the approach in [57] is based on Petrov-Galerkin projection, rather than Galerkin
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projection.

Operator Inference. Data-driven operator inference originated in the seminal work of
Peherstorfer and Willcox [21], which demonstrates that reduced operators in a projection-
based ROM can be inferred non-intrusively (i.e., without access to the corresponding FOM
operators or code) through the numerical solution of an optimization problem, given a set of
FOM snapshots. An acknowledged deficiency of the original OplInf formulation is that it is
only applicable to PDEs that contain low-order polynomial nonlinearities. As demonstrated
in subsequent works [59, 60, 61], this shortcoming can be circumvented for many physical
systems by using a technique known as “lifting”, which defines a transformation of the
state variables into auxiliary variables that make the governing PDEs linear or quadratic.
The resulting approach, termed “Lift and Learn” [59] has been applied to a wide range of
problems, including fluid mechanics and combustion [62, 59, 63, 64], additive manufacturing
[60], magnetohydrodynamics (MHD) [65], and solid mechanics [66].

During the past 1-2 years, researchers have begun to extend operator inference in several
important directions. In [23], non-intrusive operator inference is extended to problems with
non-polynomial nonlinearities given in analytic form, in a way that does require the definition
of a lifting transformation. In several recent works, the group of Kramer et al. has developed
Oplnf methodologies that preserve Hamiltonian (or symplectic) [16, 41] and Lagrangian [55]
structure, to ensure energy-conserving ROMs. Note that, in the Hamiltonian case, all OpInf
work to date has been restricted to purely canonical systems (c.f. Section 2.1). A primary
contribution of this work is the ability to treat both canonical and noncanonical systems of
interest.

Other recent works have focused on improving the efficiency and robustness of the op-
timization problem underlying Oplnf. It is well-known that this optimization problem gen-
erally requires regularization, and the results can be extremely sensitive to the choice of
regularization parameters. Several researchers have begun to look at ways to optimize the
choice of these regularization parameters. In [67], Guo et al. present a Bayesian approach
to operator inference, in which the maximum marginal likelihood provides insight into the
selection of the regularization parameters specified in the OplInf minimization problem. An
alternate remedy known as nested operator inference is being pursued by Aretz et al. [68].

While Oplnf originated in the context of ROMs in which the solution is approximated
using an affine POD basis, the method has recently been extended to balanced truncation
[69] and quadratic manifold bases [69, 19]. The latter work [69] presents a symplecticity-
preserving method based on quadratic manifold bases. The advantage of using quadratic
manifold bases over linear bases is that it is often possible to represent the reduced solution
using fewer basis vector, especially for problems exhibiting a slow decay of the Kolmogorov
n-width [20].

Contributions of this manuscript. The present work extends the literature on structure-
preserving Oplnf techniques to include the linear operators governing general canonical and
noncanonical Hamiltonian systems. Particularly, we contribute

e Non-intrusive methods based on Oplnf for learning either: (1) the linear part of the
Hamiltonian gradient in the case of canonical Hamiltonian systems, or (2) the constant



part of the Poisson matrix in the case of noncanonical Hamiltonian systems. In contrast
to previous work, these methods impose no restriction on the separability properties
of the Hamiltonian or the algorithm used to compute the ROM basis.

e Theoretical analysis which guarantees that the learned operators converge to their
intrusive counterparts in the limits of increasing basis size and increasing amounts of
training data.

e Several numerical examples probing the behavior of these Hamiltonian OpInf ROMs
in comparison to ROMs based on black-box Oplnf as well as more intrusive PMOR
techniques.

The remainder of this paper is organized as follows. Section 2 recalls preliminary infor-
mation on Hamiltonian systems (including methods for their POD), as well as OpInf and
average vector field time integration (c.f. [70]). Section 3 describes the present methods
for canonical and noncanonical Hamiltonian Oplnf, as well as their connection to previous
work. Section 4 provides analysis showing that the proposed Oplnf methods converge to
their intrusive counterparts with the addition of snapshot data and basis modes. Finally,
Section 5 provides numerical evidence for the Hamiltonian Oplnf approaches in Section 3
using five example problems: a linear wave equation, a nonseparable but canonical quadratic
Hamiltonian system, the Korteweg-De Vries (KdV) equation, the Benjamin-Bona-Mahoney
(BBM) equation, and a 3D linear elastic cantilever plate. Finally, some conclusions and
future directions are discussed in Section 6.

2. Preliminaries

Here some preliminary information on Hamiltonian systems, as well as intrusive and
nonintrusive methods of model reduction for such systems, is summarized.

2.1. Hamiltonian Systems

The Hamiltonian formalism provides a mechanical framework encompassing a wide vari-
ety of conservative dynamical systems which arise from a variational principle. In particular,
it reduces the problem of understanding a near-arbitrarily complicated dynamical system to
the simpler problem of understanding a scalar-valued function H, called the Hamiltonian,
and a skew-symmetric Poisson bracket {-,-}, which encodes a Lie algebra realization on
functions. More formally, given a state vector x € RY, it follows that Vx = I, and so any
Hamiltonian system can be written in the form

x={x,H(x)} =Vx -L(x)VH(x) = L(x)VH(x), (1)

for some H : RY — R and some potentially degenerate Poisson matrix L : RY — RNXV
L™ = —L which is antisymmetric and satisfies the Jacobi identity,

N
Z (LiyLjgs + LjiLgig + L Liji) =0, 1<4,5,k <N,
=1



where L;; are the components of L and L;; denotes the derivative with respect to the kth
basis vector e, € RY. From this, it is easy to see that the Poisson bracket (generated by L)
is also skew-symmetric, bilinear, and obeys a Leibniz rule. Moreover, the Hamiltonian H is
a conserved quantity, since {H, H} = 0 by antisymmetry.

In the simplest case, Hamiltonian systems are dual (and equivalent) to their Lagrangian
counterparts. To see this, consider a Lagrangian function L(t,q,q) defined in terms of
a position variable q € RY and its associated velocity ¢. Then, under some regularity
conditions (see e.g. [71]), there is a canonical Legendre transformation

H(t,q,p) =sup ((p,q) — L(t,q,q)),

q

which yields the conjugate momentum vector p = Lg := V4L € RY. Substituting L =
(p,q) — H in the usual action integral S = [ Ldt and computing the first variation now
leads immediately to Hamilton’s equations for the state x = (q p)T c R?V,

(-3 ) (5) oo

similar to the above. Notice that J is anti-involutive and (trivially) satisfies the Jacobi iden-
tity, which implies that this Hamiltonian system is in canonical form. Conversely, systems
of the form (1) for which L # J are said to be noncanonical. Noncanonical Hamiltonian
systems are quite flexible and have an important property: elements in the kernel of L, called
Casimirs, are invariant quantities, meaning that many (but not all) constants of motion in a
noncanonical Hamiltonian system can be identified directly from its Poisson structure. Since
Casimir invariants are often directly responsible for the long-time behavior of the system, it
is important that they are appropriately respected by model reduction methods. It will be
shown in Section 5 that the particular Hamiltonian OpInf methods developed in Section 3
attend to this issue at least as well as the current state of the art.

Although the Hamiltonian and Lagrangian formalisms can often be freely exchanged,
many interesting dynamical systems which are readily modeled using the Hamiltonian for-
malism do not have an unconstrained Lagrangian formulation. For example, every com-
pletely integrable equation, including the KdV equation considered in Section 5, has a bi-
Hamiltonian structure and therefore a singular Legendre transformation. Therefore, these
systems can only be expressed in Lagrangian terms if the argument to the Lagrangian is con-
strained to be a derivative of the state variable (see, e.g., [72, 73] for the case of KdV). This
makes working directly with the Hamiltonian formulation of a dynamical system preferable
in many cases, and encourages the search for model reduction techniques which are more
general than those developed for canonical Hamiltonian systems. In particular, the nonin-
trusive methods of Section 3 are well adapted to noncanonical Hamiltonian systems and do
not appeal to Lagrangians or Legendre transforms.

2.2. Proper Orthogonal Decomposition for Hamiltonian systems

Given a large semidiscrete Hamiltonian system (1), it is often necessary to perform model
reduction in order to produce a feasible surrogate. Typically, this means constructing an
informative reduced basis for the solution space to the system onto which the dynamics can



be projected. While there are a variety of linear and nonlinear methods for accomplishing
this task (including those in [74, 75, 11], to mention a few), this paper focuses on the
linear technique known as Proper Orthogonal Decomposition (POD) which has seen the
most widespread success. POD uses snapshots x € R of the high-fidelity model solution to
construct a variance-maximizing subspace in which reduced solutions can be represented. To
explain this more precisely, let Y € RY*"s be a matrix with rank » < min{N,n,} containing
n, snapshots of the high-fidelity solution y = x — xy € R¥ shifted by the initial condition
xo := x(0). Such snapshots could be collected at, e.g., discrete points in the interval [0, 77,
where T € R represents the final simulation time. If Y = UXVT is the singular value
decomposition of this mean-centered data matrix, standard computations show that the
matrix U € RV*" comprised of the first n < 7 columns of U minimizes the L2 ([0,7])
reconstruction error of y, and that this error is precisely the sum of the remaining squared
singular values [76]. More precisely, it follows that

T T
||y—UUTYH2:=/ ly - UUyPdt= ) o7,
0

i=n+1

where o; is the 7" singular value of Y. This is the basis for the standard Galerkin POD-ROM
(G-ROM) procedure, which is applied to the dynamical system governing x by making the
approximation X = xo + Ux € R" for some unknown coefficients X € R™ and using that
UTU =11in R™. In particular, inserting this approximation into the Hamiltonian system (1)

yields the update rule '
x = U'L(x)VH (x),

which is low-order but obviously not Hamiltonian since UTL # — (UTL)" = LU. An effective
remedy for this is the strategy developed in [77], which solves the overdetermined least-
squares problem UTL = LUT for L = UTLU, yielding a skew-symmetric operator which is
guaranteed to produce dynamics which preserve the reduced Hamiltonian H=Hox:R"—
R. To see this, consider solving the Hamiltonian POD-ROM (H-ROM)

x = L(X)VH(%).

Then, it follows that the change in the value of the reduced Hamiltonian along a solution is
given by '
H=x-VH=LVH-VH=-LVH-VH =0,

so that this quantity is exactly preserved up to time discretization error.

While noncanonical Hamiltonian systems are (thus far) limited to variants of the “or-
dinary” POD basis construction described above, it turns out that there are several useful
ways to construct the POD basis U in the case of canonical Hamiltonian systems. In par-
ticular, when N = 2M for some M € N and x = (q p)T separates nicely into position and
momentum variables, it is frequently useful to use a basis built block-wise from sections of
the snapshot data Y. This is particularly true in the presence of scale separation, where
the variance in one of q, p will be dominated by the other if a standard POD basis for the
full field (q p)T is used [31, 78]. In this case, separating the data Y = (Yq Yp)T into
M x ng blocks and carrying out the POD procedure described before yields separate bases



U,, U, € RY*™ for position and momentum, which can be combined into the block basis
U = Diag (U,, U,) of size N x n where n = 2m. This has the effect of normalizing the
importance of q and p in the dimension reduction, often leading to better performance in
the associated ROMs. As an added benefit, notice that both UTY,YTU, and UJY,YTU,
are diagonal under this construction, since each POD basis is drawn from the SVD of the
snapshots.

In addition to this, another block basis construction which has been demonstrably useful
in the model reduction of canonical Hamiltonian systems is known as the “cotangent lift”
algorithm from [47]. This procedure constructs a basis such that UTJ = J,UT (for J,, € R"*"
the canonical Poisson matrix of dimension n) by choosing U from the left singular vectors of
the concatenated snapshot matrix (q p) &~ UXVT € RM*2": More precisely, if U € RM>*™
contains the first M left singular vectors, the basis U = Diag (Ij, Ij) satisfies the required
condition. This is quite a useful construction, as it follows that U JVH = J,U'VH =
J,.VH and hence the prototypical G-ROM is converted into an H-ROM. On the other hand,
it is clear that UTY,YTU is not diagonal (and same for p), since VT = (V, Vg)T € Rmx2ns
and so VIVI 7é V;VQ 7é V-{Vl + V;—VQ =1

2.3. Generic Operator Inference
Consider a dynamical system of the form

X (t,p) =F(t, p,x(t,p)), (2)

where x : R x R? — R¥ is a time-dependent state variable and pu € RP? is a vector of
parameters. As mentioned previously, constructing a POD basis U € RY*" and making the
approximation x = Xy + UX leads to the canonical Galerkin ROM,

;((tvu') =UTF (ta%i(t;#)) ) (3)

which is an n-dimensional dynamical system describing the evolution of the POD basis
coefficients. While this procedure is well studied and often effective, it clearly requires
intrusion into the FOM simulation code via access to the operators governing the high-
fidelity system (2), since it is necessary to assemble UTF(X). In the case that xo = 0 and
F(x) = Dx is linear, this means direct access to D € R¥*¥ is needed in order to assemble the
reduced operator D = UTDU e R™". However, it is frequently impossible (or prohibitively
expensive) to access this information, due to, e.g., complicated or proprietary legacy codes.
This motivates the black-box operator inference technique (Oplnf) of [6] which is used for
the non-intrusive modeling of dynamical systems such as (2). More precisely, OpInf uses
snapshot data to learn the tensor coefficients of a polynomial approximation Dy, ...,D,, to
the action of F, so that if x satisfies

z=Dy+Diz+Dy(z®z)+..+D, (28 ..R12),

then z &~ x remains close to a solution to the original system. This ansatz is clearly exact in
the case that the model in question is polynomial (or differentially polynomial), but has been
shown to be useful even outside of this case, see, e.g., [63, 22] and lifting transformations
[59, 62, 59, 63, 64]. Moreover, it readily extends to learning the coefficients of a POD-based
ROM, since reduced basis projection preserves this polynomial structure.
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To see this in detail, consider learning a linear approximation z = Dz (for simplicity), and
suppose an N X ng matrix X of snapshot data is provided containing (partial) trajectories
of the original system (2). Then, an approximation X; ~ X to the temporal derivative of
each snapshot can be formed through, e.g., finite differences, and the matrix least-squares
problem,

argmin R (D) = argmin |X, — DX|?,
DeRNXN DeRNxN

can be solved to yield the desired operator D. More precisely, exterior differentiation yields
dR (D) = -2(X; — DX,dDX) = -2((X; — DX) X",dD) ,= (VR (D) ,dD),
so that solving VR (D) = —2(X; — DX) XT = 0 reduces to solving the linear system
DXXT = X, XT.
Alternatively, there is the equivalent vectorized system
(XXT @ 1) vec D = vec (X, XT),

where ® denotes Kronecker’s matricized tensor product and equivalence follows via the “vec
trick” (see Appendix 9.1 for a review of these ideas).

On the other hand, in practical application settings, it is usually undesirable (or even
infeasible) to infer the full N x N operator D in this way, as this requires solving a linear
system which scales with N2. Instead, it is more useful to combine OpInf with dimension
reduction techniques such as POD, since, if x = Ux where U € RV*" is a POD basis
and X € R" then the snapshot data X and its approximate time derivative X; can be
projected onto this basis before inferring a reduced operator. In particular, there are the
n X n, matrices X = U™X and Xt = UTX,, which can be used to infer a lower-dimensional
operator D € R™» governing the non-intrusive reduced dynamical system x = Dx. In this
case, D is inferred through the reduced Oplnf problem of size n,

2

argmin Xt — DX

DeRnxn

I

which is solved as described above.

Besides reducing computational costs relative to inference of the full operator D, inferring
the reduced operator D has the following added benefit due to the hierarchical order of the
columns of U. While this result appears to be well known, the lack of a standard reference
has motivated the inclusion of a proof in Appendix 9.2.

Proposition 2.1. Suppose U € RY*" is the matriz of left singular vectors of some data
matriz X, and 3 € R"™*" is the corresponding diagonal matriz of (nonzero) singular values
{aj}?zl. Then, the unique solution to the Oplnf problem of size n is given by

D = argmin
DGR'ILX'IL

“ ~ |2 A~
Xt—DX‘ _ X, X722,

Moreover, for any n' < n, the submatriz D' € R"*" formed by extracting the first n rows
and columns of D is the solution to the corresponding OpInf problem of size n.

11



Remark 2.1. Note that the conclusion of Proposition 2.1 continues to hold if the minimiza-

tion objective is Tikhonov reqularized by a multiple of D, as can be checked by considering
2

A ~ A ]2 A
the minimaization objective ‘Xt — DX‘ +1 ‘D for some n > 0 and repeating the arguments
above. Moreover, the conclusion also holds block-wise if U is a block basis as discussed in
Section 2.2 and D s block diagonal, since the relevant problem decouples over the blocks of

D.

2.4. Previous Hamiltonian Operator Inference

The idea of using Oplnf in conjunction with Hamiltonian systems has been previously
explored in [40], where it was used to learn the linear part of the Hamiltonian gradient VH for
a sub-class of canonical Hamiltonian systems which are known as separable?. The separability
assumption implies that the system Hamiltonian decomposes as H(q,p) = T'(q) + V(p) for
some real-valued functions 7T,V depending only on q, p, respectively. A consequence of
this is that the linear part of the gradient VH becomes block-diagonal in the variables
q,p, a fact which is preserved at the POD-ROM level as long as a cotangent lift POD
basis U € RY*" satisfying UTJU = J,, is employed, where J,, is the canonical symplectic
matrix of dimension n = 2m. With this additional restriction on the reduced basis, it
follows that the intrusive H-ROM for the approximation x = Ux & x decouples over q, p,
becoming x = J,VH(X) = J, (Afc v f(sc)) where A = diag (Aq, Ap> is block-diagonal
and we have written H(x) = $xTAx + f(x). This allows the authors of [40] to formulate an
inference procedure for the linear operator A which decouples block-wise into two m? x m?
subproblems for Aq, Ap, provided snapshots of V f can be obtained and this quantity can
be simulated online. More precisely, given snapshots X € RV*"s of the full order solution

along with snapshots V f(X) € R¥*" of the nonlinear part of VH, the problems to solve
are

2 A

argmin ‘Xp,t FAX 4+ Vo f(X)|, st. AT=A,
AeRme
A PP A 2 A A
argmin (Xq: — AX, — fo(X)‘ st. AT=A,
AeRme

where subscripts on q, p denote either the first or second m rows in the snapshot matrix,
Vg4, Vp denote partial derivatives, subscript ¢ denotes a finite difference approximation to the
time derivative, and “hat” indicates the application of a basis projection UT. This yields Aq
and Ay, respectively, which once learned can be used to simulate the differential equation
for x as usual to yield the approximation x. While this procedure has been previously
useful for simulating several systems of interest, it will be shown in Section 3 that the
restrictions inherent in this algorithm can be removed, leading to a Hamiltonian OplInf
ROM for canonical systems which does not require separability of the quadratic terms in the
Hamiltonian or a specific choice of reduced basis. This extends the applicability of canonical
Hamiltonian operator inference methods to, e.g., problems in molecular dynamics involving

2Since the nonlinear part of VH is assumed to be available intrusively, the method in [40] actually requires
the weaker condition of separability in the quadratic part of the Hamiltonian.
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temperature-dependent potentials [79] or the estimation of Schwarzchild geodesics [80] in
general relativity.

2.5. Linear ROMs and Average Vector Field Integration

To simplify the presentation of later results, it is worth mentioning some facts about
linear ROMs and the particular timestepping scheme used in this work. First, note that the
average vector field (AVF) method [70, 81] is employed for time integration of all numerical
examples, meaning that the Hamiltonian dynamical system (1) is discretized as

Xk:—H k

1
— X 1
—x =L <xk+z> / VH (x4 (1 = t)x*) dt,

0

where xF+2 = 1 (x* + x*1), which amounts to linearizing the trajectory of the state between
time steps k and k + 1 and fixing evaluation of L at the midpoint. This integration scheme
has appealing properties including exact quadrature for polynomial nonlinearities, as well
as second-order convergence in time. Moreover, it is easy to see that AVF integration is
globally energy-conserving: if £(t) = tx**! + (1 —t)x*, it follows from the symmetry relation
L™ = —L that

FY O (x 1 xktl _ xk 1
H( )AtH( ):Ait/0 %H(£<t>)dt:+T /VH(E())dt

- [L (x4) / VH (¢ dt} / VH (¢ —0,

so that there can be no loss of energy during AVF timestepping.
Now, when x = Dx is linear, it is clear that AVF integration reduces to the implicit
midpoint method

e ka-i-%

At ’
which can be easily solved at each time step k by writing x**! = x*¥ + Ax*, where Ax* =
xF+1 — xF satisfies the linear system

A
(I — {D) AxF = At Dx*.

Note additionally that if x = xo + Ux = x is a mean-centered Galerkin projection and
D = U™DU is the intrusive projection of D, this implies the low-order update formula
xFH = %k + A%F, where

“ At A
(I _ 7D) ARF = At (UTDx0 v ch’“) ,

which is an n x n linear solve leading to the full-order approximate x**! = x; + UxF+L,
Of course, in the event that D is not available and so D must be inferred, this mean-
centering can be ignored. Finally, to specify these expressions to linear Hamiltonian systems

= LAXx, it suffices to replace D = LA = UTLAU in the case of the G-ROM and

~

D = LA = UTLUUTAU in the case of the H-ROM.
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3. Hamiltonian operator inference

It is now possible to discuss the present methods for canonical and noncanonical Hamil-
tonian Oplnf, which will be referred to as C-H-OplInf and NC-H-Oplnf, respectively. First,
note the following computational result central to these techniques.

Theorem 3.1. Let A € RV*N B, C € RV*" and define AOB=AB+B®A. Then,
every solution to the symmetry-constrained least-squares reqularization problem

argmin |C — ADBJ*, st. DT =4D,

DERNXN

corresponds to a solution to the vectorized problem
(ATA©BBT) vecD = vec (ATCBT £ BCTA).

In particular, the first system is uniquely solvable if and only if the second s also, which
holds whenever A, B have mazimal rank.

Proof. First, note that the uniqueness condition follows immediately from the fact that the
objective is convex, the symmetry constraint is linear, and rank (B ® A) = rank (B) rank (A).
The remainder will follow from a direct calculation using the method of Lagrange multipli-
ers. More precisely, define the Lagrangian L (D, A) = 5 |C — ADB\2 + (A, D ¥ DT) where
A € RN i5 a matrix of Lagrange multipliers. Then, exterior differentiation yields
dL(D,A)=—-(C—-ADB,AdDB) + (A,dD FdDT") + (dA,D £ DT)
= (dD,—AT(C—-—ADB)B" + A FAT) + (dA,D £ DT).

Setting this to zero yields the first-order optimality conditions
AT(C—-—ADB)BT=AFAT,
DFD"=0.

Examining the first condition the right-hand side implies symmetry in the left-hand side,
allowing for easy elimination of A through the expression

AT(C-—ADB)B"+B(C—-ADB)"A =0
. Expanding the above and using the second condition D DT = 0 then yields
ATADBBT+ BB'DTATA = ATADBB™T + BB'DATA = ATCB™ + BC™A,
which vectorizes through the “vec trick” (c.f. Appendix 9.1) to yield the claimed result. [

Theorem 3.1 provides the solution to a generic symmetric or skew-symmetric operator
inference problem, which will be seen to include the C-H-OplInf and NC-H-Oplnf procedures
employed presently. As mentioned before, a notable benefit of the generic OplInf procedure is
that its solutions satisfy Proposition 2.1, meaning that a solution computed using a reduced
basis of size n remains optimal via truncation for all n’ < n. The next result shows that,
under some (fairly strong) assumptions on A, B, this “one-shot” ability continues to hold for
the system in Theorem 3.1. Since the proof is straightforward but technical, it is deferred
to Appendix 9.2.
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Proposition 3.1. Let U € RY*" be a POD basis. Suppose D € Rx» uniquely solves the
optimization problem in Theorem 3.1 for given A = UTAU € R™" gnd B,C € Rvns
defined by B = U™B, C =UTC. Letn < n, and for any matric M which is multzplzed
with the POD basis U, let M’ denote the submatriz obtained by removing the n — n' highest-
frequency basis vectors of U from every relevant multiplication. If A and BBT are both
diagonal, then the unique solution to

C' — A'DB 2, st. DT =+D,

argmin
DeRn' xn/

15 given by the truncation D'
Proof. See Appendix 9.2. m

While Proposition 3.1 is useful to know, it is worth mentioning that its conclusion gener-
ally does not hold for any of the structure-preserving OpInf methods known to date, including
those discussed here. Indeed, while the diagonality of A can often be arranged, it is more
difficult to construct a suitable BBT which is diagonal. On the other hand, there are many
cases when the truncated solution to Theorem 3.1 is close enough to optimal to produce
a well performing ROM, making it useful to employ truncation without the guarantee of
Proposition 3.1 provided this property is empirically verified.

3.1. Canonical Hamiltonian Systems

The first goal is to present an OpInf method applicable to canonical Hamiltonian systems,
and connect it to previous work in [40]. Suppose snapshots of the form x = (q p)T can be
obtained, say, as the result of post-processing data from a Lagrangian system via a Legendre
transformation (c.f. Section 2.1 and Section 5.5). Then, given that q,p are the canonical
position and momentum variables, it must be true that L = J in (1) and the Hamiltonian
system to be modeled is in canonical form. In this case, a Hamiltonian OplInf procedure can
be considered which requires only knowledge of the nonlinear part of VH. To see this, recall
that the discrete Hamiltonian can be expressed as

H(x) = JxTAx + [(x),

for a symmetric, potentially unknown A € RY¥*Y and a known nonlinear function f :

RY — R. It follows that the gradient is given by VH(x) = Ax + Vf(x), and any POD
basis U € RV*" yields a reduced Poisson operator J =uUlJu corresponding to the H-
ROM discussed in Section 2.2. Notice that J has a canonical form, so that this operator
can be computed without intrusion into any simulation code. Making the obvious Galerkin
projection x = Ux and writing H=Hox, f = fox then yields the reduced Hamiltonian

~

H () = %&TA& +f(%),

which depends on the symmetric, potentially unknown reduced operator A € R™". Pro-
vided A can be computed or inferred, access to Vf then implies solvability of the H-ROM

—JVHK) =] (Afc +V f(fc)) , (4)
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which will be a low-order Hamiltonian system approximating the original dynamics.

Since A is unavailable in the present setting, (4) is most readily solved by setting up a
tractable inference problem for A. This means forming the appropriate reduced quantities
from snapshot data and solving the constrained least-squares problem

argmin
AcRnxn

~ n A R 2
X, —J (AX+Vf(X))( , st AT=ZA, (5)

which has minimizer A satisfying the desired symmetry. In (5), Vf(X) = UTV f(X) denotes
the projection of the snapshot data for the derivative of the nonlinear term. Applying
Theorem 3.1 with C = X; — JV f (X)) yields the equivalent linear system

(373 & XX7) ve A = vee (ITXXT + XXTJ - FUVEOXT - XV/(X)), (0

which is guaranteed (see Section 4) to yield an operator A which converges to UTAU in an
appropriate limit. Interestingly, it is even more useful in practice to make the approximation
JJ ~ Iin (6), which is exact for the cotangent lift algorithm discussed in Section 2.2,
yielding the alternative linear system

(1 @ XXT) vec A = vec (jTXtXT +XXIT - VF(X)XT - XV f(X)T> , (7)

which satisfies Proposition 3.1 whenever the POD basis used is drawn from the SVD of X.
Inferring A by way of solving (7) will be called the C-H-Oplnf procedure, and is summarized
in Algorithm 1.

Remark 3.2. Notice that both inference procedures (6) and (7) preserve an approzimation
to the reduced Hamiltonian H (X) = —XTAX + £ (X), which can be considered a perturbation

of the true H. The analysis in Sectzon 4, particularly Theorem 4.5, guarantees that this
perturbation remains bounded throughout the range of the training data for a high enough
snapshot density and large enough basis size, although, in practice, this property seems to
hold for much longer time integrations as well (see Section 5).

Algorithm 1 Canonical Hamiltonian Operator Inference (C-H-Oplnf)

Input: Snapshots X € R¥*" of model solution; snapshots Vf(X) € RY¥*"s of nonlinear
term in the gradient VH of the Hamiltonian; integer n > 0 and real number 7 > 0.
Output: Symmetric, reduced operator A e Rmxn approximating the linear term in the

gradient VH of the reduced Hamiltonian.

1: Employ the user’s preferred algorithm to build a reduced basis U € RV*" from snapshot
data.

2: Form reduced Poisson operator J =UJU € R™™ as well as projected quantities
X = U'X € R and Vf(X) = UTVf(X) € R™",

3: Solve the n? x n? linear system (7) for A € R™*".

Before moving to the case of noncanonical systems, it is worth discussing how the C-H-
Oplnf procedure discussed here relates to the previous H-Oplnf work in [40] summarized in
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Section 2.4. Particularly, if U is chosen via the cotangent lift algorithm so that UTJU = J,
is the canonical symplectic matrix of dimension n, and A = diag (Aqq, App> is assumed

to be block diagonal, then the algorithm presented here reduces to [40, Algorithm 1]. This
is because the C-H-Oplnf problem (7) decouples into a pair of problems for each diagonal
block Aq, Ap in A recovering exactly the minimization problems solved by that algorithm.
The formulation from [40] has the advantage of requiring the solution to two problems of
size m? x m? (still solvable with Theorem 3.1) as opposed to one problem of size 2m? x 2m?,
but does not allow any flexibility in the choice of basis U and cannot accurately represent
any systems with a nonseparable Hamiltonian. Therefore, it should only be used when
the problem in question is canonical and the continuous operator VH is diagonal in phase
space. Conversely, the inference described in Algorithm 1 can accommodate any reduced
basis, requires the solution of only one linear system, and is applicable to any Hamiltonian
system in canonical form.

3.2. Noncanonical Hamiltonian Systems

A primary advantage of the OplInf technique inspired by Theorem 3.1 is that it extends to
Hamiltonian systems in noncanonical form. To see this, suppose snapshots of a potentially
unknown Hamiltonian system are collected in an (N x ng)-matrix X, and that a candidate
Hamiltonian function H has been identified. This may occur if, for example, a conserved
quantity has been identified but the corresponding Hamiltonian structure remains unknown.
Then, an analytic expression for VH can be obtained, and hence it is possible to compute the
matrix VH(X) € RV*" of gradients at the snapshot data X, as well as a finite difference
approximation X, ~ X. As before, this enables the construction of a POD basis U €
RN*" via the SVD of the mean-centered data matrix Y = X — X, where X, denotes the
matrix each column of which is the initial state xo. Writing the Galerkin approximation
%X ~ xo + Ux again yields the prototypical H-ROM (see Section 2.2) x = LVH where
L = UTLU. When L is inaccessible, this suggests a similar inference procedure based
on Theorem 3.1 which preserves the antisymmetry necessary for Hamiltonian preservation.
Particularly, it is possible to form the n x n, reduced quantities

X=UX, X,=UX, VH(X)=UVHX),

and solve the optimization problem

2 A ~

, st. LT=-L,

~LVH(X)

argmm
LeRnX n

which is a straightforward least-squares inference for the antisymmetric L. As shown in
Theorem 3.1, this is equivalent to solving the n? x n? linear system

(I & @H(X)@H(X)T) vec L, = vec (XﬁH(X)T _VH(X)X] ) . 8)

Inferring L based on solving (8) will be called the NC-H-OplInf method, and is summarized in
Algorithm 2. While this inference similarly does not satisfy the hypotheses of Proposition 3.1,
it is interesting to note that “one shot” computation of L using Algorithm 2 occasionally
works quite well in practice when the basis U is chosen from the SVD of Y (see Section 5).
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Algorithm 2 Noncanonical Hamiltonian Operator Inference (NC-H-Oplnf)

Input: Snapshots X € RY*" of model solution; snapshots VH (X) € R¥*" of the gradient
V H of the Hamiltonian; integer n > 0 and real number 1 > 0.
Output: Antisymmetric, reduced operator L € Rvxn approximating the Poisson operator
governing the H-ROM x = LVH.
1: Employ the user’s preferred algorithm to build a (mean-centered) POD basis U € RV*"
from snapshot data.
2: Form projected quantities X = UTX € R and VH(X) = U'VH(X) € R"".
3: Solve the n? x n? linear system (8) for L € R™*™,

Remark 3.3. Note that NC-H-OplInf can be used (along with a symplectic time integrator) to
obtain dynamics which preserve any quantity H, regardless of whether or not it corresponds
to a true Hamiltonian structure. In this way, it can be considered a gray-box method requiring
only snapshots and a desired conserved quantity.

4. Analysis

Now that the C-H-OplInf and NC-H-Oplnf procedures have been described, it is impor-
tant to validate that the inferred operators approximate their intrusive counterparts in an
appropriate sense. To accomplish this, the following mild assumptions are needed.

Assumption 4.1. The span of the POD basis U € RV*" tends to RY asn — N, i.e., for
any x € RY,

lim |PJ'X| =0,

n—N
where P+ :=1 - UUT.
Assumption 4.2. The approzimate time derivatives x; converge to the true derivatives x
as the time step At — 0, i.e.,

Alir_lgomzax 1%, (t;) — %x(t;)| = 0.

Assumption 4.3. The snapshot matrices X, VH(X) € RY*" have mazimal rank.
This allows for the following result regarding the convergence of NC-H-Oplnf.

Theorem 4.4. Under Assumptions 4.1, 4.2, and 4.3, the inferred operator L from the NC-
H-OplInf procedure in Algorithm 2 converges to the intrusive operator L = UTLU as At — 0
andn — N.

Proof. First, notice that

X,~LVH(X)| = )(Xt - 5() + (f{ ~LVH(X)) + (L - L) @H(X)’

_ ‘ (Xt X) LU (X _ LVH(X)) + ULPLVH(X) + (I? — 13) VH (X)‘
_ ‘ U (Xt ) + UTLPYVH(X) + (E - IL) @H(X)(
<|u (Xt X‘+|L\ PLVH(X )}) +]E—t‘ ‘@H(X)‘.
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Therefore, for each n < N,

min
i

X, — fﬁH(X)‘ < min ] (‘Xt - X‘ + L] [PLYH(X)]) + )I: - f,‘ VH(X)]]
— |U| (‘Xt - X‘ + L |PLVH(X)\> .
By Assumptions 4.1 and 4.2, for any ¢ > 0 there exists an n’ < N and At’ > 0 such that
’UT (% —%)+ UTLPLVH(X)) <|u| (‘Xt - X‘ + L [PVH(X)|) < g

Therefore, for n > n' and At < At’ it follows from an elementary calculation that

min
L

(L-1) @H(X)‘ <e,

from which it can be concluded that L — L, since VH (X) has maximal rank. O
A similar result holds for C-H-Oplnf provided a cotangent lift basis U is used.

Theorem 4.5. Under Assumptions 4.1, 4.2, 4.3, and using a cotangent lift POD basis U, the
inferred operator A from the C-H-Oplnf procedure in Algorithm 1 converges to the intrusive
operator A = UTAU as At — 0 andn — N.

Remark 4.6. Note that the assumption of a cotangent lift basis in Theorem 4.5 can be
dropped provided (6) is solved instead of (7) in the C-H-Oplnf Algorithm 1.

Proof. First, notice that
X —JUUT (AUUTX + V£(X))
= (X =3 (AX+Vf(X))) +J (P*AX + PLVf(X) + UUTAPX)
=J (PTAX + PV f(X) + UUTAP'X),
since JVH(X) = J (AX + Vf(X)). Therefore, it follows as before that for every n < N,
\xt - (Amw(m)\ - \(xt _x) + (5(_3 (AX+vf(x)))+3(A-A) x\
= |UT (X, = X) + UTJ (P*AX + PV/(X) + UUTAP*X) + 7 (A - A) X|,
Now, for any € > 0 we can choose n’ < N and At' > 0 so that
‘UT (X, ~X) + U3 (P*AX + PV/(X) + UUTAP*X) ‘

< U] ([0 = X+ [P 13 (JA1X] + [V £(X)] + U] A X)) ) <

Y

YRS

and therefore we have

mgn‘j (A—A) X‘ <eg,

provided n > n’ and At < At’. Hence, A — A as desired , since J ,X have maximal
rank. O
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Remark 4.7. While useful, the results of this section only hold in the “infinite data limat”,
and so cannot guarantee good performance of the OpInf methods (and projection-based ROMs
in general) in all cases of practical interest, particularly in the predictive regime. It is an
ongoing effort to develop rigorous estimates which are more valuable in the presence of partial
or limited data.

5. Numerical Examples

Here, numerical results are reported on several benchmark problems from hydrodynamics
and linear elasticity, including a linear wave equation, a manufactured test case which has a
non-separable canonical Hamiltonian form, the Korteweg-de Vries equation, the Benjamin-
Bona-Mahoney equation, and a 3D linear elastic clamped plate problem undergoing high-
frequency oscillations. The primary error metrics used for comparison will be relative ¢y
error in the state approximation,

~ ‘X -X
R, (X, X) _ b
X,
as well as signed error in the Hamiltonian (or other conserved quantity) approximation
H(x(t)) — Hy where Hy = H(x(0)). When speaking about the properties of POD bases, it
will also be useful to evaluate the snapshot energy, computed for a given rank r snapshot
matrix X with singular values {c;};_; and POD basis size n < r as

B, (X.n) = =i
> k=1 Ok
Note that, when appropriate, both uncentered (X = Ux) and mean-centered (X = x¢ + UX)
Galerkin projections will be considered. This will be denoted by the letters “MC” in the
figures below. Of course, mean-centering requires a POD of the centered snapshot matrix
discussed in Section 2.2, and is infeasible for a general OpInf method. On the other hand,
NC-H-Oplnf is amenable to this technique, since the inferred operator L does not interface
directly with the approximate solution x.

When evaluating the performance of the H-Oplnf methods in Section 3, comparisons
are drawn with the standard intrusive Galerkin ROM (G-ROM) and Hamiltonian ROM
(H-ROM) discussed previously, as well as the standard Galerkin Oplnf (G-Oplnf) when ap-
propriate. Reproductive as well as predictive problems are considered, encompassing both
prediction in time as well as prediction across parameter space. Note that all ROMs consid-
ered are equally efficient online; since the chosen examples have polynomial nonlinearities,
their resulting ROMs do not depend on the full-order state space N, instead scaling only
with the reduced basis size n.

Remark 5.1. On canonical Hamiltonian examples, the NC-H-OplInf algorithm will infer
only J~ UTJU, which is already known. Since it is instructive to see that the NC-H-OplInf
ROM behaves appropriately on these examples, comparisons including it are presented for
these cases, although it should be noted that this is not the intended purpose of NC-H-Oplnf.
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5.1. Linear Wave Equation

First, consider the one-dimensional linear wave equation with constant speed c,

Dit = CPss, 0<s<lI,
©(0) = h(y(s)), ©:(0) =0,

where the boundary conditions are periodic and the (parameterized) initial condition is a
cubic spline defined by

(9)

1-3¢*+3y° 0<y<1, )
hiy) = §12-v)° l<y<2, y(s,a)zo‘S_E’.
0 y > 2,

Letting x = (q p)T € R? where ¢ = ¢ and p = ¢, this problem is readily recast in the
canonical Hamiltonian form

o= (4, 2) (5 ) ()

where the Hamiltonian functional is given by

1/
H(x) = —/ (p*>+ ¢2) ds,
2 Jo
and it follows quickly from differentiation that H, = —c®qs, H, = p. As discussed in

Section 2.5, semi-discretizing in x and applying AVF integration to this system yields the
implicit midpoint rule

Xk+1

—Xk_JA XML+ xF\ 0 T\ [(—PDy xFHL 4 xk
At 2 “\-1 0 0 I 2 ’

where x = (q p)T has been overloaded, Dy denotes the circulant matrix which results from
using a three-point stencil finite difference method to discretize the 1-D Laplace operator,
and the discrete Hamiltonian (also overloaded as H) is given by

2 4Az2

=1

N/2 2 2
H(x) = 12 (1%2 42 (¢i+1 — @) + (4 — ¢—1) > _

Note that the AVF method will preserve this discrete Hamiltonian exactly by construction.
Some snapshots of this solution for different values of a are displayed in Figure 1.

To evaluate the performance of the ROMs discussed thusfar, two experiments will be
conducted: one testing prediction in time, and one testing prediction in parameter space.
For each, the wave speed is fixed to ¢ = 0.1, the length to [ = 1, and the spatial domain
is divided into M = 500 equally sized intervals (yielding a state vector x of dimension
N = 2M = 1000).
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Figure 1: Solution snapshots from the linear wave example for different values of the parameter «.

5.1.1. Reproductive versus Predictive Dynamics

The first goal is to compare the C-H-Opinf and NC-H-Opinf ROM methods discussed in
Section 3 to their intrusive counterparts when predicting trajectories outside the temporal
range of their training data. For this, a total of 501 snapshots of the FOM solution with
initial condition parameter o = 5 are uniformly collected on the time interval [0, 7] where
T = 10. These data are used to train three POD bases: one constructed in the “ordinary
way” by forming the SVD of a data matrix of size N x n; containing snapshots of x, an-
other constructed using the cotangent lift algorithm described in Section 2.2, and the final
constructed block-wise using the SVD of snapshot data for position q and momentum p
separately (also described in Section 2.2). The snapshot energies and projection errors as-
sociated to these bases are shown in Figure 2. It is evident that all bases are capable of
capturing roughly 99% of the snapshot energy with only n = 15 modes, despite exhibiting a
slowly decaying projection error characteristic of hyperbolic problems.

Figure 3 plots the relative ROM errors as a function of basis size in the case where the
ROMs are integrated only in the range of the training data, i.e. ¢t € [0,10]. Notice that
both the intrusive G-ROM and the G-OpInf ROM are less accurate than their Hamiltonian
counterparts, and that the G-OpInf ROM is somewhat unstable with the addition of basis
modes. It is further interesting to observe the differences in performance between the ROM
algorithms as the underlying basis is changed. Particularly, both the cotangent lift and
(g, p)-block basis lead to lower relative errors than ordinary POD, although ordinary POD
has the significant (empirical) advantage of stability under OplInf truncation. Indeed, in the
case of the ordinary POD basis, all operators used in the OpInf ROMs were computed in
“one shot” via truncation from the operators learned at the largest basis size. While this is
not guaranteed to be optimal according to Proposition 3.1, it is interesting to note that this
resulted in almost no degradation of performance. This contrasts highly with the case of the
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Figure 2: POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the
nonparametric (o = 5) linear wave example. “MC” indicates mean-centering of the snapshots was performed.

cotangent lift and (g, p) block bases, for which Oplnf truncation led to unusable results (not

pictured).
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Figure 3: Relative state errors as a function of basis modes for the ROMs in the linear wave example
(reproductive case T = 10). “MC” indicates the use of a mean-centered reconstruction.

To show the effect of each ROM on energy preservation, Figure 4 uses the block (g, p)
basis case with n = 16 modes to show the change in the Hamiltonian H over time. From
this, it is seen that the intrusive H-ROM and NC-H-Oplnf ROM conserve energy exactly,
while the C-H-OpInf ROM conserves energy to order 1078, Of course, this is a consequence
of the fact that the matrix A learned by C-H-Oplnf represents only an approximation to the
gradient of the true reduced Hamiltonian H. On the other hand, note that C-H-Oplnf still
conserves H much better than G-Oplnf or the intrusive G-ROM, and is guaranteed to exactly
preserve the approximate reduced energy H = %XTAX (not pictured), which follows since
the matrix J = UTJU is skew-symmetric. It is further remarkable that the conservation
properties of the H-ROMs displayed in these plots do not depend on the basis construction
mechanism or the number of basis modes, n.

Moving beyond the reproductive case, it is useful to see what happens when the ROMs
are tested on an interval of integration which is much larger. Figure 6 plots the relative
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Figure 4: ROM energy errors for the linear wave example in the reproductive case (T' = 10) when using a
block (q,p) POD basis with mean-centering (where applicable) and with n = 16 modes.
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Figure 5: Plots of the FOM and ROM solutions to the linear wave equation in the predictive case (T = 100)
when using a standard POD basis with n = 16 modes. Note that mean-centered reconstructions were used
for all but the G-Oplnf and C-H-OpInf ROMs.

ROM errors as a function of basis modes when the ROMs are tested over an interval of
[0,7] with 7" = 100, which is ten times the interval of training. Here the instabilities in
the G-OpInf ROM are made readily apparent, as certain numbers of modes lead extreme
blow-ups regardless of the underlying basis construction. It is interesting to note that the
intrusive G-ROM also exhibits similar blow-up in the cases (not pictured here) when the
POD basis is constructed with ordinary POD and no mean-centering is applied. Conversely,
both the intrusive and OpInf H-ROMs exhibit a steady and predictable decrease in error
with the addition of basis modes. Note that a comparative visualization of the FOM and
ROM solutions is shown in Figure 5, which plots each solution when an ordinary POD basis
is used with n = 16 modes.

Figure 7 displays the variation in the value of the Hamiltonian over this larger integra-
tion range when the ROMs are computed using a (¢, p) block basis of n = 16 modes. As
before, the intrusive G-ROM and OplInf G-ROM are not sufficiently conservative, which has
consequences for their accuracy and stability. Conversely, the NC-H-OpInf ROM conserves
H on the same order as the intrusive H-ROM, and the C-H-OpInf ROM conserves H to
order 1078, exhibiting similar performance to integration over the training interval.
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Figure 6: Relative state errors as a function of basis modes for the ROMs in the linear wave equation example
(predictive case T'= 100). “MC” indicates the use of a mean-centered reconstruction.
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Figure 7: ROM energy errors for the linear wave equation example in the predictive case (T' = 100) when
using a block (q, p) POD basis with mean-centering (where applicable) and with n = 16 modes.

5.1.2. Parametric Case

In addition to prediction in time, it is also useful to consider applying ROMs for the
prediction of solutions across the parameter space spanned by a € R, which controls the
initial state of the wave (c.f. Figure 10). To that end, the next experiment examines how well
the present ROM methods are able to predict solutions with variable initial conditions. To
accomplish this, eleven uniformly distributed parameters « € [5,15] are chosen for training,
and 501 snapshots of the FOM solution in the range [0, 10] are collected using each parameter
instance. These data are then concatenated to form the snapshot matrix which is used to
train the POD decompositions. The snapshot energies and projection errors associated to
this procedure are shown in Figure 8, where it is evident that the inclusion of multiple
solution trajectories slows down both the increase in the snapshot energy and the decay of
the projection error.

For testing, six uniformly distributed parameters a € [5.5,14.5] are chosen (note that
these are disjoint from the training parameters), and snapshot data of each solution in the
temporal range t € [0,100] is collected for comparison with the ROM integration. The
ROMs are then tested over this interval beginning from each unseen initial condition, and
the average relative error over all test snapshots is reported.

Figure 9 illustrates the results of this experiment. As in the purely predictive case, we
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Figure 8: POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the
parametric linear wave example. “MC” indicates that mean-centering of the snapshots was performed.
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Figure 9: Relative state errors as a function of basis modes for the ROMs in the linear wave equation example
(parametric predictive case T = 100). “MC” indicates the use of a mean-centered reconstruction.

see that the G-OpInf ROM is highly sensitive to basis size, while the intrusive H-ROM and
H-OplInf ROMs exhibit a predictable increase in accuracy with the addition of basis modes.
Moreover, the intrusive G-ROM is significantly less accurate in the case of an ordinary POD
basis, and indeed blows up similarly to the G-OpInf ROM in the case (not pictured) that
mean-centering is not applied. A consequence of this is illustrated in Figure 10, which shows
the FOM and ROM solutions in the case that a = 9.1 and the ROMs are computed using an
ordinary POD basis with mean-centering and with n = 28 modes. Notice that the G-OplInf
ROM becomes increasingly unstable while the others remain bounded and close to the FOM
solution throughout the range of integration.

Finally, it is illustrative to observe the energy plots in Figure 11, computed using a block
(¢, p) basis with mean-centering and with n = 16 modes. Here it is obvious that the improved
conservation properties of the intrusive and OplInf H-ROMs persist in this setting as well,
leading to improved accuracy and stability over time when compared to the G-ROMs which
do not have this property.
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Figure 10: FOM and ROM solutions for the linear wave equation example in the parametric predictive case
(e =9.1,T = 100) when using an ordinary POD basis without mean-centering and with n = 28 modes.
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Figure 11: ROM energy errors for the linear wave equation example in the parametric predictive case
(o = 9.1,T = 100) when using a block (g, p) POD basis with mean-centering (where applicable) and with
n = 16 modes.

5.2. A Non-separable Canonical Example

Since the linear wave equation can be similarly handled with the techniques in [40], it
is worth considering a simple canonical example where the C-H-Oplnf method is necessary.
Consider the following Hamiltonian and its (overloaded) discrete counterpart

! N/2
)= [ (o) ds  H6x) =3 0 +am).

=1

where x = (q p)T is the semidiscrete state variable of dimension N = 2M. Applying the
implicit midpoint method to the canonical Hamiltonian system x = JV H(x) generates the
canonical dynamics

skl _ xk xhHL 4 xk 0 I\ /0 T\ /x4 x*

A A 2 “\-1 0/ \1 0 2

27



Clearly, VH(x) = Ax does not satisfy the separability hypothesis of [40, Algorithm 1],
and therefore that method should not be effective at learning this system. Conversely, the
C-H-Oplnf Algorithm 1 applies regardless of the separability of H, so it is expected that
this system can still be learned through this approach. To see that this is the case, a
parameterized initial condition is considered with dimension M = 500,

xp(a) = (QO Po)T = (e_a(qﬂ) sin(aq) p)T7
and, as before, eleven uniformly distributed parameters « € [5,15] are chosen for training,
and 501 snapshots of the FOM solution in the range [0, 2] are collected using each parameter
instance. The resulting POD projection errors corresponding to these data are shown in
Figure 13, along with some solution snapshots in Figure 12.
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Figure 12: Solution snapshots from the non-separable canonical example for different values of the parameter
Q.

Again, the predictive case is considered. For testing, six uniformly distributed parameters
« € [5.5,14.5], disjoint from the training data, are chosen, and snapshot data of each solution
in the range [0, 10] is collected for comparison with the ROM integration. The ROMs are
then tested over this interval beginning from each unseen initial condition, and the average
relative error over all test snapshots is reported. In addition to the ROMs seen in the linear
wave equation example, note that the H-OpInf ROM of [40] discussed in Section 2.4 is also
reported.

The results of this experiment are displayed in Figure 14. As expected, H-Oplnf cannot
produce a useful ROM, while C-H-Oplnf is effective whenever the POD basis is built block-
wise or with the cotangent lift algorithm. Interestingly, no Hamiltonian ROM algorithm is
useful in the case where the POD basis is built from an SVD of the full snapshot matrix, while
the intrusive Galerkin ROM appears to work quite well. This could be due to the fact that
this Hamiltonian system decouples over q and p: a quick calculation shows that q = eqq
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Figure 13: POD projection errors corresponding to the bases used in the non-separable canonical example.
“MC” indicates that mean-centering of the snapshots was performed.
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Figure 14: Relative state errors as a function of basis modes for the ROMs in the non-separable canonical
example (parametric predictive case T = 10). “MC” indicates the use of a mean-centered reconstruction.

and p = e 'py, so the scale separation in q, p grows exponentially as ¢ increases. Conversely,
C-H-Oplnf with a cotangent lift basis learns an accurate and stable ROM, while the H-OpInf
algorithm is unable to do so due to its assumption of a block diagonal A. In addition to the
state errors, conservation of the system Hamiltonian is displayed in Figure 15, where it is
clear that C-H-Oplnf is conservative to a much higher order than either the Galerkin ROMs
or the H-OpInf ROM.

5.3. Korteweg-De Vries equation
Moving beyond canonical Hamiltonian systems, consider the Korteweg-De Vries (KdV)
equation [81]

T = QrTs + prs + VTgss, x € 1,1 x[0,T],

which depends on the parameters «, p,y € R. This equation has infinitely many integrals of
motion [72], the first few of which are mass, momentum, and energy:

l ! l
xrds, P(x :/ z? ds, E(z :/ gw3+8$2—za¢§ ds.
/ (x) @)= (e + 5 - 322

-l —1

M(x) =

29



10 All x10-13 C-H-OplInf x10-16 Other H-ROMs
15 .ﬂb 0.0 W FOM solution
o O. - Intrusive H-ROM
Lo & LN '. 3.09 y. nCH-Opinf ROM
.01 L}
. . 1.0 4 ~* NCH-Opinf ROM —0.51 251
o5 rd LY - C-H-Opinf ROM g
51 i
£ . 0.8 -1.04 204 ]
100y . 06 v
% 154 15 v
=0.5
0.4 1.0 v
.
-2.01 -
. ) v
-1o '.. 0.2 l 0.5 o
0 i
o, - s |~ FoMsotion
-15 o 0.0 = e - 0.0 WM

Figure 15: ROM energy errors for the non-separable canonical example in the parametric predictive case
(a = 7.3,T = 10) when using a cotangent lift POD basis with mean-centering (where applicable) and with
n = 10 modes. Note that the intrusive G-ROM and intrusive H-ROM are identical in this case.

Moreover, KdV has a noncanonical bi-Hamiltonian structure, meaning that it can be recast
as a Hamiltonian system in two distinct ways. While only the first form will be considered
here, the second form is also interesting and (to date) no POD-ROMs for it have been seen in
the literature. Therefore, some additional discussion regarding this second form is included
in Appendix 9.3.

5.3.1. First Hamiltonian Formulation
Consider the Hamiltonian functional H(z) = E(x), and note that its gradient satisfies
a
VH(z) = 5:1:2 + px + YT

Then, recalling that L := 0, is an antisymmetric operator with respect to the usual metric
on L*(R), it follows that # = LVH(z) is a Hamiltonian system equivalent to the KdV
equation. Since L has nontrivial kernel, this system is not canonical, meaning that there is
no obvious way to separate the state x into position and momentum variables. Assuming
periodic boundary conditions and a discretization x € R, the differential operators 0, and
O,s can be discretized with central finite differences as the circulant matrices

0 1 0 0 —1 2 1 0 0 1
-1 0 1 0 ... 0 1 -2 1 0
1 1
L:K ) B:? )
i
0 ... 0 -1 0 1 (Az)" 1 0 1 -2 1
1 0 0 —1 0 1 0 0 1 -2

yielding the semidiscrete Hamiltonian system
x=LVH(x)=L <%X2 + px + l/BX) :

Notice that the only nonlinearity in this system is polynomial in x, meaning that the quadra-
ture necessary for AVF time discretization (see Section 2.5) can be computed exactly. This
leads to the fully discrete system

kL _ xR

A L [g <(Xk)2 + xFxh 4 (Xk+1)2> + (pI +vB)xFtz ||

6
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where xFtz = (1/2) (xk + ka) and vector products are interpreted element-wise. This
represents the KAV FOM and is solved by Newton iteration. More precisely, at each time
step k we have the (At-normalized) residual and Jacobian functions

R (v) = v —x — AtL [% ()" +xtv +v2) + (@) (Xk+v)] :
At

JE (v )_I_TL[?) (Diag (x*) + 2Diag (v)) —i—pI—i—VB},

which are easily constructed and used to iterate vit! = vi — J* (vi) ' R¥ (v?) until conver-
gence. It can be checked that this scheme exactly preserves the discrete Hamiltonian,

N 2
1 Tjp1 — T
H(x) = = BN Nt ) A
(x) 2;(3 '+ pa? 1/( AL )) x.

From this, it is possible to compute the intrusive G-ROM and intrusive H-ROM as
described in Section 2.5. Particularly, straightforward Galerkin projection onto a reduced
basis contained in the columns of U yields the reduced-order G-ROM system

t = ULVH (xo + Ux) = UTL [2 (x0 + U%)% + (pL + vB) (xo + Ufc)]

I
VRS

%UTLX(Z) + UL (oI + vB) X0> + UL (a Diag (xo) + (pI + vB)) Uk + %UTL (Ux)?
=¢+Cx+T(x,%),
where T is a precomputable order-three tensor with components 77 = (/2) UZ-“L;-Ubj Ui,
Similarly, a reduced-order H-ROM system is given by
x=LVH (x) = LUT [2 (%0 + Ux)* + (pI + vB) (x0 + Uﬁc)}
[% (UTx2 + 2 UTDiag (xo) U% + UT (UR)?) + (oI + vB) (x0 + Ufc)} ,
[(%UTxg +UT (pI + vB) xo) + UT (aDiag (x¢) + (pI + vB)) Ux + %UT (U)E)Q]
~ 1 (é+C§c+T(§(,$c)) ,

where T : R" x R" — R" is a precomputable order-three tensor with components Tbac =
(a/ 2)U “ULUE. In either case, applying AVF for temporal discretization and using the fact
that T is symmetric in its lower indices yields the fully discrete ROM (note that L=1Iin
the G-ROM),

)A(k—i—l o )A(k:

At

which is again solvable with Newton iterations. In this case, the (At-normalized) residual
and Jacobian at time step k are given by

- - 1
:L|:6+C)A(k+é_|_§<2r:[\< Sk Ak-{- >—|—T( k+1 Ak+1)>:|’

A

RF(v) = v — " — AtL {é+%c(f¢’f+v) %(T(x xk+v)+T(0,v))},

JF(v)=1-AtL BCJA(T (%) +2T(0)>} ,



where T (&k) indicates that the symmetric tensor T is applied to the vector x in either of
its lower indices, yielding an n X n matrix.

The goal is now to compare these intrusive ROMs to the NC-H-OpInf ROM from Sec-
tion 3 as well as a G-OpInf ROM which does not incorporate any structure information. To
facilitate a fair comparison, the G-Oplnf procedure employed presently will not be black-box,
but will instead aim to infer L in the intrusive H-ROM x = LVH (x) similarly to NC-H-
Oplnf, but using the generic technique of Section 2.3. This way, both the G-OpInf ROM
and the NC-H-OpInf ROM are assumed to use analytic knowledge of the nonlinear part of
VH, and both OpInf ROMs can be integrated similarly to the intrusive H-ROM, but with
the intrusive governing operator replaced by the inferred one. For experimental parameters,
we choose [ = 20, («a, 8,7) = (—6,0,—1), N = 500, and an initial condition

o(s) = sech? (E) |

which generates a soliton solution for s € R. To train the OpInf ROMs, 1001 snapshots of
the solution x and the gradient VH (x) are collected uniformly on the interval [0,7] with
T = 20.
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Figure 16: POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the
KdV equation example. “MC” indicates mean-centering of the snapshots was performed.

Recall that there is no analogue of a block basis or cotangent lift method in the case of
noncanonical Hamiltonian systems, so the POD bases U employed here are trained using the
full snapshot matrix. The associated snapshot energies and projection errors are displayed
in Figure 16, where it is evident that the snapshot energy accumulates quite slowly with the
addition of basis modes. On the other hand, the use of ordinary POD bases again allows
for the one-shot computation of all OpInf ROMs via truncation from the Oplnf solution at
the highest number of modes, creating large savings in computational cost. While this is
unlikely to be provably optimal in view of Proposition 3.1, the empirical difference in perfor-
mance is small enough to justify the substantial decrease in computational time necessary
for computing the ROMs.

As before, the performance of these ROMs in both predictive and reproductive cases
is considered. The relative state errors of each ROM as a function of basis modes are
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Figure 17: Relative state errors as a function of basis modes for the ROMs in the KdV equation example.
Left: reproductive case (T = 20). Right: predictive case (T = 100). “MC” indicates the use of a mean-
centered reconstruction.

shown in Figure 17, with the reproductive case (T = 20) on the left and the predictive case
(T =100) on the right. Reported are the errors with and without mean-centering by xg, as
it is interesting to observe the effect of this choice. Notice that mean-centering in the POD
basis appears to make the intrusive ROMs more accurate and the OpInf ROMs more stable,
perhaps because it ensures that the value of the Hamiltonian is exact at X = 0. However, in
either case the NC-H-OpInf ROM remains more accurate and stable than the G-OpInf ROM,
demonstrating the benefits of preserving antisymmetry in the learned operator. Figures
18 and 19 provide a comparative illustration of the FOM and ROM solutions in the case
that n = 32 modes and mean-centering is applied. While both OpInf ROMs are capable
of predicting the general trajectory of the soliton, the NC-H-OpInf ROM exhibits much
less artifacting over the rest of the domain—a consequence of capturing the correct latent
space dynamics. Note that, in either case, the performance of the OpInf ROM improves
substantially as the number of modes increases, eventually leveling off around n = 60 as a
consequence of the failure of the learned dynamics to remain Markovian (see [82]).

Besides decreased state errors, Figure 20 shows the improved conservation of energy, mass,
and momentum displayed by the H-ROMs over the G-ROMs when a mean-centered POD
basis with n = 48 modes is used. Again, the conservation behavior of the intrusive H-ROM
and the NC-H-Oplnf ROM is orders of magnitude more accurate than the intrusive G-ROM
or the G-OpInf ROM, reflecting the notion of the Hamiltonian as a conserved quantity. It
is also clear that the mass and momentum are preserved by the H-ROMs at least as well
as the by the G-ROMs, demonstrating that other conserved quantities are not sacrificed for
Hamiltonian preservation. Finally, it is useful to note that, as before in the canonical case,
this behavior persists regardless of the number of basis modes used in the ROM.

5.4. Benjamin-Bona-Mahoney Equation

As another example, consider the Benjamin-Bona-Mahoney (BBM) equation, also re-
ferred to as the regularized long-wave equation,

T =ars+ frry — Yl
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Figure 18: FOM and ROM solutions to the KdV equation example with mean-centering (where applicable)
and n = 32 modes (predictive case T' = 100).

The BBM equation represents an alternative to the KdV equation introduced in [83] and
later in [84], intended as a model for the unidirectional propagation of long-range water
waves with small amplitude. This equation has a noncanonical Hamiltonian form defined by
the data:
2\ 1 L[ 2, B o3
L=—(1-8) 9, H(z) == | az®+ —a°ds,
2 Jo 3

where L? (R) is skew-symmetric and H is the Hamiltonian. The BBM equation is distinct
from KdV in that it is not completely integrable, possessing only three globally conserved
quantities. In addition to H, these are the momentum and kinetic energy:

1

¢ ¢
P(z) = /0 (7 — yx4s) ds, KE(x) = 5/0 (2 + ya?) ds.

Because the governing operator L is unwieldy to spatially discretize, the BBM equation
has (to the authors’ knowledge) never been simulated in Hamiltonian form. On the other
hand, it is straightforward to discretize this system with pseudospectral techniques. In
particular, denote the Fourier and inverse Fourier transforms of a function f : R — R by

f©):=(FHE© = / Z FEe e, f@) = (F1) @) = / Z f(e)emics,

Then, basic properties of the Fourier transform (see e.g. [85]) show that the BBM equation
has the equivalent (non-Hamiltonian) expression

e (—QWiF(VH(:c)) (g)) @,

1+ 4ym2€?

where VH (z) = az + (3/2)z%. The FOM used presently is generated from this expression
by semidiscretizing x as x € RY with N = 1024 and utilizing the fast Fourier transform
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Figure 19: Snapshots in time correesponding to the FOM and ROM solutions to the KdV equation example
with mean-centering (where applicable) and n = 32 modes (predictive case T = 100).

and “solve_ivp” functions found in the SciPy library [86]. More precisely, given the discrete

Hamiltonian
1 & 3
H(x) = 5 E (ozx? + gx?) Az,

j=1
the FOM is computed by solving the system

. 1 [ —2miF (VH(x))
X_fl( L+ dym2g? )

with an explicit Runge-Kutta method of order 8, and F,F ' are the discrete Fourier and
inverse Fourier transforms defined in terms of the vector k = m = (() 1 ... N-— 1)T of
nonnegative integers at most N — 1,

— 2ri 1 = i
F(x) = tpexp (——km) L FHE =5 ) Gexp (—km) .
m=0 N N k=0 N

Since it is challenging to build an intrusive Hamiltonian ROM for the BBM system, it
is useful to see if the governing operator can be effectively learned by the Oplnf methods
seen in Section 3. This would allow for a nonintrusive spatial ROM which preserves the
underlying Hamiltonian structure, which could be valuable in cases where conservation is
paramount. As before, accomplishing this means inferring L in x = LVH (x), which is
readily done by solving the linear system in equation (8). Similar to the case of KdV, this
result will be compared to the nonintrusive ROM generated by inferring L using the generic
Oplnf technique described in Section 2.3. Provided a suitable L is available, the desired
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Figure 20: Errors in conserved quantities for the (mean-centered) ROMs in the KdV equation example in
the predictive case (T' = 100) when using a POD basis with n = 48 modes.

Hamiltonian ROM becomes

LVH (xo + Ux) = LU |a (x0 + Ux) + g (xo + Ux)?

I
=

ur ax0+§x3 + UT (al + fDiagxy) U + T (%, X)
—L(e+Cx+T(x%),

where T is precomputable with components 7} 2 = (B/2)UrULU! similar to the case of KdV.

With these definitions of ¢, C, T, AVF integration yields the BBM ROM system
XLk T L KL gkt
=L e+ O o (2T (R H) + T (LR )|

which is solvable with Newton iterations identically to the KdV system.

For the present experiment, the parameters in the governing equation are set to (a, 8,7) =
(1,1,107*) and 2001 snapshots of x, VH(x) are collected in the interval [0, 7] for T = 0.5,
starting from the initial condition

1
Xo = 7sech? . (s — 0.25) ) + 3sech®
Y

- (s — 0.35)
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Figure 21: Left: POD snapshot energies (left) and projection errors (right) corresponding to the bases used
in the BBM equation example. “MC” indicates mean-centering of the snapshots was performed.

This generates a nonperiodic 2-solitary wave solution, which experiences an inelastic collision
over the length of the training integration. The relative POD energies and reconstruction
errors of the computed POD bases are shown in Figure 21, where it is seen that the recon-
struction error decays quite slowly as a function of basis modes. It is further interesting to
observe that the first eigenvector of the mean-centered basis contains much more information
than the others, although this does not appear to yield a faster decrease in reconstruction
error. These data are used to train the NC-H-Oplnf ROM and a corresponding G-Oplnf
ROM.

For testing, AVF time integration is carried out to T = 0.5 and T = 1, respectively,
representing reproductive and predictive scenarios. The relative errors of these ROMs as a
function of basis size are displayed in Figure 22, where it can be seen that the errors for the
NC-H-Oplnf ROMs are about half of those for the G-OpInf ROMs. However, it is also clear
that this example poses a much greater challenge for either OpInf ROM, likely due to the
nonperiodic and inelastic nature of the solitary wave collisions present in the BBM solution,
as well as the complicated form of the governing operator L. It is interesting to note the
effect of mean-centering here: in either case, there is a significant gain in performance for
middling numbers of modes (20-60) which diminishes as more modes are added.

Visual comparisons of the FOM and ROM solutions in the predictive case are shown in
Figures 23 and 24, where two inelastic collisions are pictured and the second collision occurs
outside the range of the training data (note the difference in the tails). Even at n = 44
modes, the collisions are relatively well captured, validating the hypothesis that the NC-H-
Oplnf procedure can produce a useful and nonintrusive spatial ROM even when the FOM
is pseudospectral and the involved operator L cannot be readily discretized by standard
techniques.

Moving beyond state errors, the difference in conserved quantities between the NC-H-
OplInf and G-OplInf ROMs is displayed in Figure 25, using mean-centered POD bases and
n = 44 modes. From this, it is evident that the Hamiltonian is conserved exactly by the NC-
H-OpInf ROM but not by the G-ROM (note that the FOM is conservative to O (107!2)),
likely enabling the NC-H-OpInf ROM to capture small-scale features like the tails of the
solitons in Figure 23 much more realistically. Moreover, it appears that both OpInf ROMs
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Figure 22: Relative state errors as a function of basis modes for the ROMs in the BBM equation example.
Left: reproductive case (I' = 0.5). Right: predictive case (' = 1). “MC” indicates the use of a mean-
centered reconstruction.

are capable of conserving momentum exactly and kinetic energy to a relatively low-order. It
is interesting to note that mean-centering makes a difference here: without this choice (not
shown here), the momentum conservation of both ROMs is on the same order as the kinetic
energy conservation.

5.5. Three-dimensional Linear Elasticity

The final example considered in this work involves a moderate size three-dimensional
(3D) linear elasticity problem, given by the following equations of motion:

pg=V-o, onQecR> (10)

In (10), q € R? is the displacement vector, p > 0 is the material density, and o is the Cauchy
stress tensor. We assume that the material is elastic and follows Hooke’s law, so that the
components of o satisfy

oij = ANTr(€)d;; + 2pe;j, 1<i<j<3, (11)
where A\, u > 0 are the Lamé coefficients and
1 T
e:=5[Va+(Va) (12)

is the infinitesimal strain tensor. It can be shown [87] that the Hamiltonian for (10) can be
expressed in terms of (noncanonical) position and velocity variables:

H(a.d) = 5 [ (P1aP + A[TH(e)F +2u]ef*) v (13)

We remark that, in 1D, (13) reduces to the linear wave equation (9) considered earlier in
Section 5.1. The main purpose of this example is to demonstrate the utility of non-intrusive
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Figure 25: Plots showing the evolution of the conserved quantities for the mean-centered ROMs in the BBM
equation example in the predictive case (T' = 1) using n = 44 modes.

ROMs on an application in which the FOM is implemented within a large HPC code without
embedded ROM capabilities, making intrusive model reduction infeasible.

Herein, equation (10) is assumed to be discretized in space using the finite element method
(FEM), per common practice in the field of solid mechanics. Doing so gives a semi-discrete
system of the form

Mg+ Kq =0, (14)

where (overloading notation) q € R is the discretized displacement field, and M € RM*M
and K € RM*M are the mass and stiffness matrices, respectively. Letting p := M¢ denote
the (overloaded) momentum, N = 2M, and defining x := (q p)T € RV, (14) can be written
as the following canonical Hamiltonian system:

X:JVH(x):(_OI ;)(Ig N?l>x, (15)

where H is a quadratic discrete Hamiltonian of the form

H(x) = 5 (a"Ka + p™M'p) . (16)

The test case considered presently is a classical solid mechanics benchmark involving a
vibrating rectangular cantilever plate of size 0.2 x 0.2 x 0.03 meters, so that 2 = (0,0.2) x
(0,0.2) x (0,0.03) € R3. Let sT := (s1, $9,53)T € R? denote the coordinate (position) vector.
Here, the left side of the plate is clamped, meaning that a homogeneous Dirichlet boundary
condition q = 0 is imposed on I'; 1= {sy, 83 € Q : 57 = 0}. Homogeneous Neumann boundary
conditions are prescribed on the remaining boundaries of €2, indicating that these boundaries
are free surfaces. The problem is initialized by prescribing an initial velocity of 100 m/s in
the s3-direction on the right boundary of the domain, T, := {s5,53 € Q : 5; = 0.2}:

0
q(s,0) = 0 , forsel,. (17)
100
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(a) t=0s (b) t=10x10"3s () t=20x10"3s

(d) t=9.0x 1073 s (e) t=1.80x10"2s

Figure 26: Plot of FOM s3—displacement, scaled by a factor of ten, at several times for the 3D linear elastic
cantilever beam problem. The colorbar range is —2.3 x 1072 m (blue) to 2.3 x 1073 m (red).
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N Tq'g(()) =100 m/s

Figure 27: One-dimensional cartoon illustrating 3D linear elastic cantilever plate problem setup.
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Figure 28: POD snapshot energies (left) and projection errors (right) corresponding to the bases used in the
3D cantilever plate example. “MC” indicates that mean-centering of the snapshots was performed.

A one-dimensional cartoon illustrating the problem setup is shown in Figure 27. The initial
velocity perturbation (17) will cause the plate to vibrate and undergo a flapping motion,
as shown in Figure 26. As the plate vibrates, waves will form and propagate in all three
coordinate directions within the plate. Assuming the plate is made of steel, the material
parameters® are as follows: E = 200 GPa (Young’s modulus), v = 0.25 (Poisson’s ratio),
and p = 7800 kg/m? (density).

To build the full order model from which our non-intrusive OpInf ROMs are constructed,
we utilize the open-source* Albany-LCM multi-physics code base [88, 89, 90]> and discretize
the domain €2 with a uniform mesh of 20 x 20 x 3 hexahedral elements. To generate snapshots,
the FOM system (14) is advanced forward from time ¢ = 0 to time ¢ = 2 x 1072 s using a
symplectic implicit Newmark time-stepping scheme with parameters g = 0.25 and v = 0.5,
and time-step At = 1.0 x 10™* s. Plots of the s3 component of the displacement are shown
at several different times in Figure 26. The resulting 201 snapshots, each of length 5292,
are used to build POD bases of varying sizes, from 4 to 100 POD modes. Figure 28 shows

31t is straightforward to calculate the Lamé coefficients appearing in (11) from the Young’s modulus £
and the Poisson ratio v using the formulas A\ = myﬁﬁ and pu = 2(17’3_”

4Albany-LCM is available on github at the following URL: https://github.com/sandialabs/LCM.

5For details on how to reproduce the results in this subsection, the reader is referred to Section 8.
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the snapshot energies and reconstruction errors of these bases as a function of basis modes.
Once the POD bases are constructed, several intrusive and non-intrusive ROMs are created
and evaluated as discussed earlier in this manuscript. All ROMs are evaluated in the time-
predictive regime, by integrating the governing system forward in time until ¢t = 0.1 s (5%

longer than the training time).

101
10724

1073

Ordinary POD (one shot)

Cotangent Lift POD

Block POD basis

@ Intrusive G-ROM @ Intrusive G-ROM . i - Intrusive G-ROM
Intrusive H-ROM Intrusive H-ROM | | Intrusive H-ROM
+ copntroM L . P 4 G-Opinf ROM * i G-Oplnf ROM . i
i 57 E R . ! i y i
: !(igcpw rom HEE-R-E-E-EE KX ! LE X ] 1wl NVC-E—LDpInf ROM g @ w gy oy 10 NVC-}V—i-Gpmf TN A-SR I P A AP AP | § A A
pinf ROM v @ CH-OpinfROM - ‘ CHOpINTROM |y _ ¥
v IS § ‘ o vry
! v \ 1]
{ - Ve |
] Y * i w § [ |
- Y ; - i .
¥ 1014 e ha! 107 4 i R2
* i
L4 * 4 g |
i . *
1077 4 1072 4
1073 4 107 4
i -
.
*
1074 e ! 104
L] -
T T T 10-° T T T T T 107° y T T T T
20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100

Figure 29: Relative state errors as a function of basis modes for the ROMs in the 3D cantilever plate example

(predictive case T = 0.1). “MC” indicates the use of a mean-centered reconstruction.
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Table 1: Table corresponding to the plots in Figure 29, corresponding to the 3D cantilever plate example and showing the ROM errors as a function

of basis size. Dashes indicate lack of convergence.

POD Basis ‘ ROM Type basis size n
4 12 20 28 36 44 52 60 68 76 84 92 100

Intrusive G-ROM | 5.67 x 102 2.30 x 10 1.00 2.66 x 100 1.43 x 1027 3.79 x 107° - - 1.72 x 10% 5.56 x 10% 1.25 x 107 8.71 x 10? 6.56 x 107
Intrusive H-ROM | 1.50 1.50 1.00 1.51 1.56 1.53 1.39 1.28 1.23 1.43 1.45 1.47 1.53

Ordinary POD | G-OpInf ROM 8.58 x 10 1.51 x 10> - 275 x 10°  6.55 x 101 1.29 x 107*  2.46 x 10"  4.13 x 10** - 1.00 3.78 x 10M%  1.05 x 10**  6.77 x 10%
NC-H-OpInf ROM | 1.66 1.87 1.00 1.60 1.68 1.66 1.69 1.66 1.68 1.60 1.47 8.60 x 107! 1.38 x 107!
C-H-OpInf ROM | 1.16 1.48 1.51 1.49 1.59 1.57 1.50 1.51 1.43 1.00 1.70 1.74 5.09 x 10%
Intrusive G-ROM | 1.18 1.16 1.14 1.14 1.15 1.15 1.15 9.75x 1077 551 x 1077 246 x 1077 1.68x 10T 9.14x 1072 6.10 x 102
Intrusive H-ROM 1.18 1.16 1.14 1.14 1.15 1.15 1.15 9.75 x 1071 551 x 107Y 246 x 107" 1.68 x 107'  9.14 x 1072 6.10 x 1072

Cotangent Lift | G-OpInf ROM 4.83 x 101 850 x 107! 6.88 x 107* 1.00 x 10'  8.07 x 1072 2.97 x 1072 1.90 x 10! 1.15 x 10~* 6.08 x 10° 1.00 7.34 x 10% 1,90 x 109 5.65 x 10!
NC-H-OpInf ROM | 1.18 1.16 1.14 1.14 1.15 1.15 1.15 9.72x 1071 550 x 107! 3.01x 107" 3.12x 107" 821 x 1072 1.25
C-H-OpInf ROM | 9.17 x 107! 4.01 x 109 1.22x 10° 1.77 991 x 1071 3.15 x 1067  1.39 x 10! 434 x 1071 2.70 x 107 1.00 1.03 x 107 1.48 x 10"  5.62 x 10°
Intrusive G-ROM | 1.32 1.39 3.95 512x 1071 1.22x 1071 3.79x 1072 230 x 102 2.92x 1075 3.03 x 10711 2.94 x 10°11 291 x 1077 1.29 x 1027 1.75 x 1011
Intrusive H-ROM | 1.38 1.46 1.16 1.19 1.17 1.17 1.16 1.15 1.14 1.14 1.14 1.13 1.12

Block (g, p) G-OpInf ROM 474 %101 9.65 x 1071 7.61 x 107! 5.46 x 10%°  1.12x 107! 289 x 1072 1.93 x 10 1.31 559 x 107%  4.05 x 1076 4.10 x 10 2.45x 10*  5.95x 1078
NC-H-OpInf ROM | 1.43 1.29 1.06 749 x 1071 117 x 1071 6.23 x 1071 6.32 x 1071 1.90 x 1073 2.55 x 107* 255 x 107 2,63 x 107*  7.50 x 1072 2.50 x 1074
C-H-OpInf ROM | 1.05 1.68 x 109 4.29 x 10% - 1.55 x 101 1.44 x 10> 5.04 x 100 1.15 1.14 1.14 1.14 1.14 1.13




The results of this experiment are displayed in Figure 29 and Table 1. Clearly, the ROMs
are highly sensitive to the basis construction technique as well as the number of modes used.
While the intrusive G-ROM and G-Oplnf ROMs constructed with a block (g, p) basis yield
the lowest minimum errors, they are highly volatile, exhibiting unpredictable behavior as
basis modes are added. Conversely, the the NC-H-OpInf ROM constructed with a block (g, p)
basis and the C-H-OpInf ROM constructed with a cotangent lift basis exhibit some attempts
at convergence, although still with significant oscillations. It is interesting to note that the
intrusive H-ROM represents a different extreme with all choices of bases: it is perfectly
stable with the addition of modes, but exhibits O(1) errors unless a cotangent lift basis is
used. It is further remarkable that the ROM errors in the reproductive case 7' = 0.02 (not
pictured) are slightly lower (within one order of magnitude), but their stability properties
remain unchanged.

Remark 5.2. While not pictured here, we have observed that intrusive ROMs based directly
on the second-order Euler-Lagrange equations (14) do not suffer from the same degree of
instability with respect to the addition of basis modes as those based on the first-order Hamil-
tonian formulation (15). This could be due to the fact that Galerkin projection of Lagrangian
systems onto a reduced basis automatically respects energy conservation, which is not true in
the Hamiltonian case, where an additional corrective projection is needed.

For another visualization, Figure 30 shows plots of the displacement magnitude at the
final time ¢ = 0.1 s for the FOM (a) and various OpInf ROMs (b)—(d). Here, we showcase
“best-case scenarios” for each ROM: (b) a G-OpInf ROM with 100 POD modes calculated
via the (¢, p)-block basis approach, (c¢) a C-H-OpInf ROM with 96 POD modes calculated
via the cotangent lift basis, and (d) an NC-H-OpInf ROM with 96 POD modes calculated
via the (g, p)-block basis approach. The reader can observe that each ROM is capable of
producing solutions which are visually indistinguishable from the FOM solution (see subplots
(b)—(d)), although their error distribution patterns are quite different (see subplots (e)—(g)).
We emphasize that, while the G-OpInf ROM is the most accurate, it is also by far the most
sensitive to the size of the reduced basis (see e.g. Figure 29): there is no visible trend in
terms of the basis size, in contrast with the NC-H-OplInf and C-H-OpInf ROMs which are
still volatile but roughly decreasing. Additionally, it is likely that the results seen here could
be improved somewhat by regularizing the OpInf problem in some way; since the choice of
regularization technique is a non-obvious matter which is currently under active investigation
(e.g., [91]), this is left for future work.

To test conservation, Figure 31 plots the errors in the value of the Hamiltonian. Again,
it can be seen that the C-H-OplInf and NC-H-Oplnf preserve this quantity much better than
the G-OplInf ROM, even in cases where the G-OpInf ROM is more accurate. Unsurprisingly,
the conservation properties of the intrusive H-ROM are still superior in all cases, although
it is remarkable that this does not always translate to better accuracy in the ROM solution.
This could be due to the fact that the H-ROMs require an additional projection step onto
the column space of U, limiting their accuracy in order to gain exact property preservation.
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Figure 30: “Best case” plots of the displacement magnitude at the final time ¢ = 0.1 s for the FOM (a) and
various OpInf ROMs (b)—(d) for the 3D linear elastic cantilever plate problem. Subplots (e)—(g) show the

spatial distribution of the absolute errors in the displacement magnitude for the various ROMs evaluated,
again at the final time t = 0.1 s.

6. Conclusions and Future Work

Two gray-box operator inference (OpInf) methods for the nonintrusive model reduction
of Hamiltonian dynamical systems have been introduced, and their utility has been demon-
strated on several canonical and noncanonical benchmarks. Being provably convergent to
their intrusive counterparts in the limit of infinite data, these OpInf ROMs are shown to
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Figure 31: Plots of the error in the Hamiltonian for three different simulations corresponding to the 3D
cantilever beam example. (Top) Ordinary POD basis, n = 48 modes; (Middle) Cotangent Lift POD basis,
n = 84 modes; (Bottom) Block (¢, p) POD basis, n = 92 modes.

recover desirable properties of carefully built intrusive Hamiltonian ROMs such as improved
energy conservation without requiring access to FOM simulation code, making them flexible
to deploy and leading to improved performance over generic Oplnf techniques in reproduc-
tive and predictive problems. Moreover, the technique introduced here has been shown to
strictly generalize previous state-of-the-art work on Hamiltonian OplInf methods, reducing
to it when the Hamiltonian system in question is canonical, the basis used is a cotangent
lift, and the operator to be inferred is block diagonal.

Despite the improvements made here, there are plenty of avenues for future work in the
area of Hamiltonian model reduction. First, the gray-box requirement that the nonlinear
part of the Hamiltonian system is known can be feasibly removed when this nonlinearity
is polynomial, making the Hamiltonian OpInf methods described potentially black-box in
this case. Similarly, it would be interesting to apply this technique to systems which have
a known conserved quantity but no known Hamiltonian structure, to see if the NC-H-OpInf
ROM which preserves this quantity is more accurate and predictively useful than a generic
OpInf ROM. Additionally, it is clear that all structure-preserving ROM techniques to date,
intrusive or Oplnf, are quite sensitive to basis size when problems become large with complex
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dynamics. It would be useful to have stabilized techniques which produce ROMs with more
predictable convergence behavior and which do not destroy the delicate mathematical struc-
ture important for long-term behavior of the FOM system. Finally, it would be interesting
to extend the techniques mentioned here to quadratic POD bases as well as more general
Lie-Poisson variational problems.

7. Acknowledgement

Support for this work was received through the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Mathematical Multifaceted In-
tegrated Capability Centers (MMICCS) program, under Field Work Proposal 22025291 and
the Multifaceted Mathematics for Predictive Digital Twins (M2dt) project. The work of
the first author (Anthony Gruber) was additionally supported by the John von Neumann
Fellowship at Sandia National Laboratories. The writing of this manuscript was funded in
part by the second author’s (Irina Tezaur’s) Presidential Early Career Award for Scientists
and Engineers (PECASE).

Sandia National Laboratories is a multi-mission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

The authors wish to thank Alejandro Mota for assisting with the formulation of the 3D
elasticity problem described herein, and Max Gunzburger for helpful suggestions regarding
the choice of basis and treatment of boundary conditions.
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The numerical results presented in Section 5.5 were generated by running the Albany-
LCM open-source HPC code, available for download on github at the following URL: https:
//github.com/sandialabs/LCM. The Albany-LCM code has a strong dependency on Trili-
nos, available at: https://github.com/trilinos/Trilinos. The following shas for Albany-
LCM and Trilinos were used in generating the results herein:
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322132d613777d48b85d70ed95c0ff4a07c8aed0, respectively. To ensure transparency and
reproducibility, we have made available the Albany-LCM input files needed to reproduce
our results, as well as configure scripts for Albany-LCM and Trilinos. These input files
can be downloaded from the following github repository: https://github.com/ikalash/
HamiltonianOpInf. The handwritten Python files and scripts for reproducing the results in
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9. Appendix

9.1. Appendix A: Kronecker Products and Vectorization

We briefly recall some properties of the Kronecker product which are necessary for the
results in the body. Interested readers can find more details in, e.g., [92]. Let A € R™*" B €
RP*9. The Kronecker product A®B € R™P*" is then the matrix of size mp xnq whose 7, j-th
block (of size p X q) is given by (A ® B); = a;-B. It is straightforward to show that ® is the
matricization of the usual tensor product when expressed with respect to a lexicographical
ordering of the standard bases for R"®@R? and R™®RP, since (A ® B) (x ® y) = Ax®@By for
any x € R" and y € R?. Moreover, there is a linear vectorization operator “vec” which stacks
the columns of a matrix into a long vector, i.e. A4;; = (vecA), . )., Since vectorization is
obviously invertible, this allows for the following computationally convenient reformulation
of linear systems with matrix unknowns.

Theorem 9.1 (Vec trick). vec (AXB) = (BT ® A) vec X.

Proof. Let a;, x;,b; denote the i column of A, X, B respectively. Then, the i column of
AXB is ‘ '
(AXB), = AXb; = Ab/x; = (b)A) x; = (b] ® A) vec X.

The conclusion now follows by stacking columns. ]

57



There is also a very concrete (but rather inefficient) way to obtain the transposition
matrix K satisfying vec X7 = Kvec X. While this is true generally for m x n matrices X,
we state the result for square matrices for ease of notation.

Proposition 9.1. Let E;; = eieJT. denote the 1j-th basis vector for the matrix space R"*".
Then, we have that

K=> EL®E;,
]
satisfies vec XT = K vec X.
Proof. Given X € R™*", it follows by the vec trick that
KvecX = <Z :E]TZ &® Eﬂ) vec X = vec (Z E]ZXEﬂ)

= vec (Z ejxije}> = vec (Z a:ijEj,-> = vec XT.
]

More practically, the following pseudocode is used to generate a sparse matrix represent-
ing K.

Algorithm 3 Building the commutation matrix K
Input: Integers m,n > 0.
Output: Sparse matrix K € Z™*™" satisfying vec X7 = Kvec X for all X € R"™*".
1: Let row = {1,2,...,mn} € Z™ be the vector of row indices.
2: Let row’ € Z™*"™ be defined by reshaping row column-wise.
3: Let col € Z™", the list of column indices, be the row-wise flattening of row’.
4: return Sparse matrix K with indices (row, col) and entries {1,...,1} € Z™".

9.2. Appendix B: Proofs of Results

Here we provide omitted proofs for the results in the body. Note that Einstein summation
is assumed throughout, so that any tensor index appearing both “up” and “down” in an
expression is implicitly summed over its range.

Proof of Proposition 2.1. This is a straightforward consequence of the fact that OplInt of size
n decouples into n? scalar minimization problems. To see this, notice that if D solves the
Oplnf problem of size n and 1 <4, <n’ < K <n, 1<k <n, then

<XtXT> =D <XXT> = DI, <XXT> + DY, <XXT>
7’ 7' 7’ J’
R sk 2 A K 2 i 2
— k/ 5‘]l O-J/ + DK 5]’ 0-], i DJ, 0-‘]/,
where 6 denotes the Kronecker delta tensor and the first equality of the second line follows
from the fact that, for all 1 <i,j < n,

(XXT>Z, = (XTu;, XTu;) = (e;, U'XXUe;) = <ez~, 22€j> - 5;“?'

J
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Therefore, the minimization problem for each component ﬁ; has the solution (note the sum

on k),
uIXtXTu]

2 b)
9;

argmin
DieR

u/ X, — Z DiulX
k

showing that each entry of D depends only on the indices ¢, j. Therefore, the solution D’ to
the Oplnf problem of size n’ < n can be extracted from D by extracting the top-left n’ x n’
submatrix, as desired. O

Proof of Proposition 3.1. Suppose D is the solution hypothesized in the statement of the
Proposition. Then, it follows that

ATCB" + BCTA = ATADBB™ + BB'DTATA
= ATADBB™ + BBTDATA
Now, for any 1 < 4,5 < n, notice that
(ATCBT = ECTA); — Aiu]CBTu, £ u/BCTu, A,

Therefore, the ij-th entry of the left-hand side of the optimality condition for D depends

only on the basis vectors u;, u;, and we have
ATCBTBOTA = (ATCBT+ BCTA)
Similarly, letting 1 <4,/ k', I’ <n’ and 1 < k,l < n, it follows that
(ArcBr+BOTA) = (ATA) D (BBT)

+ (BBT) Df (ATA)
j k ! k

J

N2 S NV N N2
= (47) o (BBT) +(BBT) D (),
k/

J

v/

j
PN 4 ~ A~ \L A A N\ ~ A\L
where the second line uses the fact that (ATA) = (BBT> = <BBT) = (ATA> for
K j K 5
all Zz’ < K, L < n. Putting these computations together, this shows that the truncation D’
of D satisfies

i

ATC'BT+B'CTA’ = ATA'D'BBT + BBTD'ATA/,
showing that D’ is the desired minimizer. O]

9.3. Appendix C: Second Hamiltonian Fomulation of KdV

Another Hamiltonian formulation of the KdV equation is given by the data

1 o«

l
H(l’) = 5/0 z° dS, L(;U) 3 (fas + 0s(x)) + pas + VassS7
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where Oy(z+)y = 0s(xy). Choosing A to be the central difference discretization of Js (this
was L in the first formulation) leads to the skew-symmetric discrete operator

(0%

L(x) 3

(Diag (x) A + A Diag (x)) + pA + vE,

where E is the pentadiagonal circulant matrix representing the central difference discretiza-
tion of Oy, i.€.

0 -2 1 -1 2
2 —1
1 _
E= 3 L
2 (Ax) 1
1 LTl Tl =2
-2 1 -1 2 0

This implies the second Hamiltonian formulation of the KdV system,
x = L(x)VH(x) = % (Diag (x) Ax + A Diag (x) x) + pAx + vEx,

which is integrated via AVF to yield the discrete system,
k+1 k
X — X 1 1
X TX L (Xk+§) <+
At

This leads to the At-normalized residual and Jacobian functions,

R (Xk-i-l) P gk ALL <Xk+%> <F+3

J* (ka) =1I- % {2?0[ (Diag (XH%) A + A Diag (XH%)) + pA + VE:| ,

Y

which are solvable with Newton iterations.

With this, intrusive Galerkin and Hamiltonian ROMs can then be constructed as before.
On the other hand, notice that AVF evaluates L at the midpoint of the discrete trajectory,
meaning that Galerkin projection and discretization with AVF no longer commute, since
UTL is not a Poisson matrix. However, letting x = xo + Ux, Galerkin projection after AVF
yields
)A(k+1 _ )A(k

At

- (UTL (%o) % (UT Diag (Ufc’”%) A + UTA Diag Ufc’”%») <x0 + ka+z)
= UTL (x0) xo + (T (%44 xo + UTL (o) Ux*3) 4 T (%443 44
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where T, T are precomputable order 3 tensors given component-wise by 1%, = (a/3)Uf (U, L+ Use) A;
and T2, = (o/3)U (U! + U,.) Al UJ. Now, a Hamiltonian ROM can be computed in the same
way: applying AVF before Hamiltonian projection, it follows that

)A(k+1 _ )A(k

X X _yn (5(’”%) UUTRF
At

~ (UL (x0) U + 5 (U7 Diag (U%**}) AU + UTA Diag (Ux**4) U)
1

RS R SR B N
— &t Ok _I_T<Xk+2>xk+2’

where the tensor 7' is identical to before. In either case, these equations are easily solved
with Newton iterations, as explained in Section 5.3.

Remark 9.2. [t is interesting to note that V H (x) = x in this formulation, so that its matriz
representation A = 1. This has the effect of equalizing the (non mean-centered) H-ROM and
G-ROM, since LA = LA.

KdV ROM (v2) Errors (Reproductive) KdV ROM (v2) Errors (Predictive)
w004 T TRy 1009 § T TR
W e * e
- S * TN
* R *o B o e S e S s S 3
* . A Y
107 5 * “ 1071 4 0
* \
. - - L]
~ 1072 + a . O -2 3
~ > ~ -
4 . R S S g
] ] R
E \ E "
1073 1073 \
. .
# Intrusive G-ROM (MC) \_ #— Intrusive G-ROM (MC)
® - Intrusive G-ROM (no MC) ® - Intrusive G-ROM (no MC) e
. L .
10-4 4 Intrusive H-ROM (MC) 10-4 1 Intrusive H-ROM (MC) M.
Intrusive H-ROM (no MC) ° Intrusive H-ROM (no MC) e
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Figure 32: Relative state errors as a function of basis modes for the ROMs in the KdV equation (V2)
example. Left: reproductive case (T' = 20). Right: predictive case (T = 100). “MC” indicates the use of a
mean-centered reconstruction.

Figures 32 and 33 show the results of this procedure, alongside a linear G-Oplnf ROM
for comparison (c.f. Section 2.3). The experimental parameters are identical to those in
Section 5.3. It is remarkable that the mean-centered H-ROM does not perform well in this
case, despite conserving the first three invariant quantities as well as the mean-centered G-
ROM. Note that the naming convention in Figure 33 follows that of Figure 20, despite the
fact that P is now the Hamiltonian functional.
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Figure 33: Errors in conserved quantities for the (mean-centered) ROMs in the KdV (v2) equation example
in the predictive case (T' = 20) when using a POD basis with n = 72 modes.

62



