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Abstract Fracture prognosis and characterization efforts require knowledge of crack tip position and the
configurational driving force acting on the crack. Here, we present an efficient numerical approach to infer
both of these characteristics under a consistent theoretical framework from noisy, unstructured displace-
ment data. The novel approach utilizes the separability of the asymptotic linear elastic fracture mechanics
fields to expedite the search for crack tip position and is particularly useful for noisy displacement data.
The manuscript begins with an assessment of the importance of accurately locating crack tip position when
quantifying the crack driving force from displacement data. Next, the proposed separability approach for
quickly inferring crack tip position is introduced. Comparing to the widely used displacement correlation
approach, the performance of the separability approach is assessed. Cases involving both noisy data and
systematic deviation from the asymptotic linear elastic fracture mechanics model are considered, e.g. in-
elastic material behavior and finite geometries. An open source python implementation of the proposed
approach is available for use by those doing field and laboratory work involving digital image correlation
and simulations, e.g. finite element, discrete element, molecular dynamics and peridynamics, where the
crack tip position is not explicitly defined.

1 Introduction

Fracture prognosis and characterization efforts require knowledge of crack tip position and the configura-
tional driving force acting on the crack. In many cases, the two tasks are related, as the crack tip position
is a necessary input for identifying the driving force. In the limit of scale separation, e.g. crack tip process
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zone ≪ crack size ≪ specimen size, ambiguities in the definition of crack tip position are not significant.
However in reality, scale separation is often difficult to achieve and the definition of the crack tip position
may impact the inference of crack driving force.
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Fig. 1 The displacement fields in the x and y directions for (a) mode I and (b) mode II loading. Configurational details
demonstrating (c) the crack tip relationships with the local coordinate system, centered and aligned with the crack tip,
and the annulus of K-dominance with inner radius Rin and outer radius Rout. (d) The global coordinate system with basis

vectors ê
′
1 and ê

′
2, showing the crack tip position, (xtip′ , ytip

′
).

Crack tip position can be defined geometrically or mechanically. When the characterization of crack
driving force is a goal, it is sensible to define crack tip position using the mechanical field (i.e. displacement).
This can be problematic in that the definition of crack tip position with respect to the mechanical field is
ambiguous. For example, one might define the crack tip position to be the forward most location where
no stress is transferred across the fracture plane, or the location where the maximum stress is transferred,
or something different. In this manuscript, we advocate that a mechanical definition of crack tip position
should be consistent with the model used for inferring the crack driving force. In the ubiquitous case of
linear elastic fracture mechanics (LEFM) (Zehnder, 2012), this equates to choosing a crack tip position
that maximizes the correspondence between a given data set and the LEFM model within an annulus
centered about the crack tip. This approach is widely applicable, where the “given data set” can represent
field or laboratory measurements of displacements at a set of points (e.g. digital image correlation) or the
calculation of displacements at a set of points via computer simulations, e.g. finite element or molecular
dynamics modeling.

In the LEFM model, the distribution of stresses in the vicinity of a sharp crack tip determine the
configurational driving force. The distribution of near tip stresses is completely characterized by the three
independent stress intensity factors, KI , KII , and KIII , and a constant background stress known as the
T-stress, T . The three stress intensity factors correspond to the opening, sliding, and tearing modes of
deformation, respectively. The T-stress is often disregarded, but it can play a significant role in some
cases and is thus included here (Ayatollahi and Nejati, 2011; Rice, 1974; Smith et al., 2001; Stepanova
and Roslyakov, 2016; Suresh, 1998). For brevity, attention will be restricted to 2D problems involving an
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elastically isotropic linear material undergoing the opening and sliding modes, noting that extension to
cases involving out-of-plane tearing or elastic anisotropy would be straightforward.

With the stress field not being observable, we focus on the associated displacement field, which can be
expressed as

[
u(r,µ,K)
v(r,µ,K)

]
=
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√
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relative to a local coordinate system centered and aligned with the crack tip, having basis vectors ê1 and
ê2, as depicted in Figure 1 (Williams, 1957). In Equation (1), r represents the distance from the crack tip
and θ represents the angle relative to the ê1 basis vector, which lies in the plane of the crack. To compactly
illustrate functional dependencies, we use the bold characters r = [r, θ], µ = [µ, κ], and K = [KI ,KII , T ].

We will consider the elastic constants to be known (µ the shear modulus and κ the Kolosov constant)
κ = (3 − ν)/(1 + ν) for plane stress condition and κ = 3 − 4ν for plane strain (ν is Poisson’s ratio). Thus,

the LEFM model displacement field Equation (1)) depends on six parameters: crack tip position, xtip
′
and

ytip
′
, orientation of the crack tip, ϕ′, and KI , KII , and T . xtip

′
, ytip

′
and ϕ′ are described relative to a

global coordinate system with basis vectors ê′1 and ê′2 (Figure 1). Hence, the identification of the crack
tip position and driving force from observed displacement data can then be viewed as a single nonlinear
minimization/optimization problem, whereby the discrepancy between the given displacement data set and
the asymptotic LEFM displacement field within an annulus is minimized over these six parameters. To
assess the discrepancy between the given data set and the asymptotic LEFM field, a displacement data
point i, observed in the global coordinate system at x′i and y′i and having displacement components of uobs

′

i

and vobs
′

i , can be expressed relative to Equation (1) via a rigid transformation[
uobsi (ϕ′)

vobsi (ϕ′)

]
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, (4)

where the position of the crack tip in the global coordinate system is expressed compactly as xtip′
=[

xtip
′
, ytip

′
]
while the coordinates of a particular data point i in the given data set are presented as

x
′

i =
[
x

′

i, y
′

i

]
. In addition to aligning coordinate systems, this transformation will also remove any in-plane
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rigid body motions that might exist in the given displacement data set. The left side of Equation (4) will

be subsequently represented in compact form as robsi (ϕ′,x′
i,x

tip′
).

The discrepancy between the LEFM model and a given data point i is quantified with a residual vector,[
Ru

i

Rv
i

]
=

[
uobsi (ϕ′)− u(robsi (ϕ′,x′

i,x
tip′

),µ,K)
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]
. (5)

Subsequently, the 6 model parameters xtip′
, ϕ′, and K that minimize the residual vector’s normalized

length across the data set with n number of data points,
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1

n

n∑
i=1

(
(Ru

i )
2
+ (Rv

i )
2
)
, (6)

is the best fit LEFM model in terms of a least squares measure when the elastic constants µ are known.
When xtip′

and ϕ′ are prescribed to be fixed values, the minimization of Φdc simplifies to a linear
regression problem, as detailed in Wilson et al. (2019). Numerous examples of this case are found throughout
the literature (Ayatollahi and Nejati, 2011; Lim et al., 1992; Sanford and Dally, 1979; Seitl et al., 2017).

In this manuscript, we present an approach for the nonlinear problem of identifying crack tip position
when xtip′

and ϕ′ are not prescribed. The approach utilizes the separable characteristic of the asymptotic
LEFM displacement field to accelerate the computation of crack tip position by avoiding a minimization
over the six unknown parameters of Equation (6). Following a search for the crack tip position with the
proposed separability approach, a single nonlinear optimization problem over ϕ′, KI , KII , and T can be
performed at that crack tip position to identify the driving force.

The manuscript begins with an assessment of the implications of inaccurately locating crack tip position
for the purpose of quantifying the driving force from a given displacement data set. Then, the proposed ap-
proach is presented and its performance across a range of applications is examined. The proposed approach
presented here will be subsequently referred to as the “separability approach”. The widely used regression
approach described by Equations (3)-(6) will be referred to as the “displacement correlation approach”.

2 Role of Crack Tip Position in the Computation of Stress Intensity Factors

The role of the crack tip position in the determination of the stress intensity factors is illustrated here with
a simple example. To highlight the universality of the results presented in this and subsequent sections,
the stress intensity factors are presented in units of µ

√
Rout, where µ is the shear modulus of the material.

Rout is the outer radius of an annulus centered at the crack tip and is the only length scale of the problem.
Hence, all length scales are represented in units of Rout. The normalized variables are denoted using a tilde,
e.g. ũ = u/Rout, r̃ = r/Rout, and K̃I = KI/µ

√
Rout.

To highlight the importance of the assumed crack tip for correctly computing stress intensity factors, a
synthetic infinite medium mode I displacement field was created with a known position of the crack tip at
(0,0). A collection of 250,000 points was placed as a regular grid within a square domain of length 25Rout

thereby arranged in a grid spacing of L = 0.05Rout. The example presented here (Figure 2) corresponds to

synthetic displacement data generated from Equation (1) with K̃I = 1.10, K̃II = 0.00 and T̃ = 0.00. The
annulus was centered on the presumed crack tip, with Rin chosen to be 0.1Rout, and it encompassed 1240
points. Points lying within a distance of 1.5 Rout of the true crack tip position, in both x and y directions,
were used as potential crack tip positions. The associated KI value, Kinfer

I , was inferred using Equation
(1) for each of these potential crack tip positions. In order to compute errors in the inferred KI values, the

KI value associated with K̃I = 1.10 was considered as the ground truth and this value is referred to as
Ktrue

I . The errors between Ktrue
I and Kinfer

I for each assumed crack tip position are plotted in Figure 2.
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Figure 2 demonstrates that inaccuracy due to an incorrectly assumed crack tip position can lead to both
over and under predictions of KI , dependent upon the relative location of the assumed position. This was
found to be true for KII as well, though it has not been shown here for the sake of brevity. With respect
to the goal of locating the crack tip, Figure 2 demonstrates that a search seeking to maximize or minimize
configurational driving forces such as KI will not suffice to identify the crack tip position. Further, the
values of stress intensity that are computed at an incorrect crack tip position do not bound the true value.

For KI , the error nears its maximum along the crack propagation direction ê1, where it scales approxi-
mately linearly with distance below 0.5Rout. This motivates the choice of using a maximally sized annulus
when inferring KI to minimize error arising from an incorrectly assumed or inferred crack tip position.

Fig. 2 Errors between actual KI values (Ktrue
I ) for a square domain with K̃I = 1.10, K̃II = 0.00, T̃ = 0.00 and the

inferred KI values (Kinfer
I ) computed as a function of assumed crack tip position. The actual crack tip is marked with a

’+’ sign and located at (0,0), where the error is zero as indicated by the color bar on the right.
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3 Inferring Crack Tip Position

Having established the importance of accurately locating the crack tip position, we now propose an approach
to expedite the inference of the crack tip position. The proposed approach is referred to as the “separability
approach,” as it exploits the multiplicative separability of the asymptotic near tip stress field into radial
and angular components. It will be shown to be effective even when substantial noise exists in the observed
displacements.

To begin, the separability approach considers the expected value of each component of the displacement
field within a sub-annulus j, where the inner radius of this sub-annulus j is defined as Rin

j = j
m

(
Rout −Rin

)
for a total number of m sub-annuli. The outer radius of the sub-annulus j is a multiple of the inner radius,
i.e. Rout

j = αRin
j , where α ∈ R+. From Equation (1), this is expressed as
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T

 (7)

where the linearity of the expectation operator
j
E in the sub-annulus j allows the expectation to be

applied independently to each entry in the 2x3 matrix, and the separable nature of each entry allows the
expectation to be applied over r and θ independently. The form of the θ dependent terms and the range of
the expectation, [−π, π], produces zeros in 4 of the 6 components, reducing Equation (7) to
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For all observed data points having positions within a sub-annulus j, the average displacement compo-

nents are denoted as

j

uobsi and

j

vobsi , respectively. Accordingly,

j
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j
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which reduces to 
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r] can be expressed in closed form
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where the outer radius of the sub-annulus j is defined as Rout
j = αRin

j . Equation (10) can then be understood
to equate the average observed value of displacement components to the radius of the sub-annulus with a
single constant that is independent of crack orientation, KI , KII , and elastic properties of the material, i.e.

j

uobsi = C1

√
Rout
j +

j

Ru
i (12)

and
j

vobsi = C2

√
Rout
j +

j

Rv
i . (13)

Similar to Equation (5), the discrepancy between the average observed value of displacement components
at a given data point i and the product of the constant with the square root of the outer radius of the
sub-annulus j, is quantified with a residual vector

 j

Ru
i
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i
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√
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 . (14)

Given values of

j

uobsi and

j

vobsi for each sub-annulus j, the values of the constants C1 and C2 that minimize
the normalized length of the residual vector across all m sub-annuli that partition the annulus give the best
fit LEFM model via a least squares measure,

Φsep =
1

m

m∑
j=0

( j

Ru
i

)2

+

(
j

Rv
i

)2
 . (15)

Equations (6) and (15) are nonlinear equations w.r.t. the unknown parameters. A pattern search opti-
mization algorithm (Diniz-Ehrhardt et al., 2017; Zanganeh et al., 2013) was used to find the minimum of
the displacement correlation and separability cost functions.

4 Analysis of Separability and Displacement Correlation Approaches

To assess the utility of the separability approach relative to the existing displacement correlation approach,
four attributes are considered: (1) cost function landscape, (2) robustness in application to non-ideal data
sets, (3) robustness relative to noise in the data set, and (4) computational expense.

4.1 Cost Function Landscape

Cost function landscapes for the displacement correlation (Equation (6)) and separability (Equation (15))

approaches are presented in Figure 3 for a range of assumed crack tip positions, x̃tip′ and ỹtip
′ . Each row

of the figure corresponds to the cost function landscapes for the two approaches associated with a different
synthetic data set. The first three rows correspond to displacements generated from Equation (1) using
pure mode I, pure mode II, and mixed mode loading with nonzero T -stress. The fourth set mimics the third
but includes the addition of an independent and identically distributed Gaussian noise to each component
of the data set. The noise had a mean of zero and a standard deviation of σ = 0.025Rout = 0.5L, i.e.
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DISPLACEMENT CORRELATION SEPARABILITY

(a) (b)

(c) (d)

(e) (f)

KI! = 1.10, 
KII! = 1.10, 
𝑇# = 0.004
Noise, σ = 0.00
(Mixed Mode)

KII! 	
= 1.10

Noise, σ = 0.00
(Mode II)

KI! = 1.10
Noise, σ = 0.00
(Mode I)

KI!	
= 1.10, 

KII! = 1.10, 
𝑇# = 0.004
Noise, σ = 0.5L
(Mixed Mode)

(h)(g)

Fig. 3 Comparison of the cost function landscapes of the displacement correlation and separability approaches for (a) -
(b) mode I, (c) - (d) mode II and (e) - (f) mixed modes (including T-stress) of fracture in the case of no noise in the data.
(g) - (h) Effect of noise on the displacement correlation and separability cost functions in the mixed mode scenario. The
value of noise points to the mean of a random displacement of Gaussian distribution. The global minimum value of the
respective cost functions, signifying the position of the crack tip inferred by each approach, is represented by the ′+′ sign
in the color maps. The ′X′ sign signifies the multiple local minima seen in the separability cost function plots.
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δui ∼ N (0, σ2) and δvi ∼ N (0, σ2) were added to each component of the data set. For perspective, we note
that this noise level is large relative to the molecular dynamics of common structural materials at 300K,
which would have noise levels in the range of σ = 0.01L to 0.04L (Liang and Ye, 2014; Mai and Choi, 2018;
Williams, 1957).

For consistency with section 2, the grid and annulus sizes remained L = 0.05Rout and Rin = 0.1Rout

respectively, which equated to 1240 points within the annulus. In all cases, the synthetic data set corresponds
to a crack tip positioned at (0,0) and having an orientation of 0◦. Two sub-annuli were used for the
separability approach, i.e. m = 2 in Equation (15). Based on the analysis shown in Section 4.3, this value
of m = 2 minimizes the amount of noise for a given number of points.

As expected from the linearity of LEFM fracture modes, the mixed mode contour landscapes (Figure
3e and f) can be viewed as the sum of mode I and mode II landscapes, plus the influence of a uniform
T-stress that acts parallel to the crack face plane. The landscape of the fourth row (which includes noise)
does not differ significantly from the third, showing that the addition of this level of noise was nominally
inconsequential. With the parameters used, a very large noise level of σ = L was required before the effects
of noise were substantial in the two approaches. Taking an average over 50 simulations at the noise level
of σ = L, the position error for the displacement correlation approach was 0.16L and for separability, this
error in inferred crack tip was 0.20L. Doubling the number of points within the annulus reduced this error
to 0.15L for displacement correlation and 0.06L for separability. All landscapes shown in Figure 3 have a
global minimum at the true crack tip position and are convex within a distance of Rout about that position.

Beyond these similarities, the separability landscapes display some inferior attributes relative to the
displacement correlation landscapes. First, the separability landscapes display a roughness, even in the
cases where no noise was added to the synthetic data set. This is attributed to the error in computing
the expectation in Equation (11) from a finite sized data set. Second, the separability landscape can show
multiple minima, whereas the displacement correlation landscape remains convex with a single minimum
within the 4Rout domain examined. If insufficient points are used in the separability method, either due
to low point density or insufficiently sized annulus, multiple minimum can appear at multiples of Rout.
Fortunately, the multiple minima of the separability approach are organized along the crack plane at a
spacing of Rout, which does reduce their impact on the identification of the crack tip, i.e. the minimization
algorithm can be set to expect this specific situation. The occurrence of such local minimum is dependent
of the choice of annulus dimensions, both α and Rout, and the number of points in the annulus. Third, the
separability cost function is flatter, i.e. has less curvature, meaning that it would be more easily disrupted
by noise. The effect of this difference with respect to noise is discussed more quantitatively in Section 4.3.

4.2 Robustness in Application to Non-Ideal Data Sets

To assess the robustness of the separability approach, three cases involving data sets that do not correspond
to the ideal asymptotic LEFM solution were examined. In all cases, the data sets were generated from non-
deal displacements obtained by Finite Element (FE) solutions to boundary value problems. The FE mesh
involved two regions, each entailing a uniform grid of six node quadratic triangular elements. The FE
solution was obtained by fully integrating the elements with six integration points. Centered at the crack
tip was a 3Rout by 3Rout region of finer elements with an edge length of 0.05Rout. This finer meshed region
was encompassed in a 10Rout by 10Rout region of coarser elements with an edge length of 0.1Rout. A crack
of length of 5Rout extended across half of the FE domain.

A Poisson’s ratio of 0.28 was assigned, corresponding to a Kolosov constant (= 3 - 4ν) of 1.88 in plane
strain. In all cases the symmetry of the problem permitted simulation of only half the domain, mirrored
about the crack plane (Figure 4). For the cost function landscapes presented in Figure 4, there were ∼1,260
points within the annulus in the fine mesh region. As the annulus gradually moved outside of the fine mesh
region to evaluate the cost function at distances up to 4Rout away from the crack tip, the number of points
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Elastic Plastic Finite Element

(b)

crack

Finite Domain Finite Element

(c)

crack

Linear Elastic Finite Element

(a)

crack

Fig. 4 Separability cost function maps in non-ideal datasets. (a) Linear Elastic Finite Element (b) Elastic Plastic Finite
Element, and (c) Linear Elastic Finite Domain Finite Element. The global minimum value of the respective cost functions,
signifying the position of the crack tip inferred by each approach, is represented by the ′+′ sign while the ′X′ sign
demonstrate the presence of the multiple local minima seen. The boundary conditions for each case are shown in grey.
Sub-figure (b) also displays the plastic zone in the crack tip region in the elastic-plastic case.
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within the annulus reduced. Once the annulus lied entirely in the coarse mesh region, there were ∼300
points within the annulus.

Case I entailed a linear elastic domain with displacement boundary conditions taken from the the LEFM
solution for a sharp crack in an infinite isotropic elastic medium (Equation (1)). Specifically, the boundary

conditions corresponded to pure mode I loading with K̃I = 1.10 and K̃II = T̃ = 0. In the domain, the
FE displacements differ from the LEFM solution in the region near the crack tip where the quadratic
shape functions are incapable of capturing the LEFM solution. Given that the FE solution is stiffer, its
displacement magnitudes approaching the crack face are less than the LEFM solution (Hughes, 2012); and
thus, the inferred stress intensity factor is less than the far field applied value when providing the correct
(0,0) crack tip position (line 2 in Table 1).

With both the displacement correlation and separability approaches, the crack tip position is inferred
to be in front of the true position. This is consistent with the discrepancy in displacements between the
FE and LEFM solutions being most significant in the region immediately behind the crack tip. As such,
the cost functions are minimized at a location ahead of the crack tip. As shown in Figure 2, this error in
crack tip position leads to an underpredicted stress intensity factor. Hence, both displacement correlation
and separability lead to underpredicted stress intensity factors for this data set due to two distinct causes:
the lower displacement magnitudes at the crack tip and the identification of a crack tip position that is in
front of the true crack tip.

Case II entailed the same boundary conditions as case I, but involved an elastic-plastic linear hardening
J2 plasticity material model with a normal flow rule (Figure 4b). A kinematic hardening modulus of 0.10E,
isotropic hardening of also 0.10E and an initial yield strength of 0.12E was used. The initial yield strength
was chosen so that there was substantial overlap between the plastic zone and the annulus, as can be seen
in Figure 4b. The length of the plastic zone along the y axis was 2Rout for the selected loading and material
properties.

The addition of plastic strain to the model increases the displacement magnitudes near the crack tip
relative to case I. This equates to an increase in the inferred stress intensity factor relative to case I
(line 5 in Table 1). When using displacement correlation to locate the crack tip position, the occurrence
of plasticity causes the inferred crack tip position to shift forward, due to the greatest discrepancy in
displacements occurring behind the crack tip (comparing elastic-plastic with LEFM case). This shift is
consistent with small scale yielding elastic-plastic fracture mechanics (Zehnder, 2012). As depicted in Figure
2, the shift/error in crack tip position decreases the predicted stress intensity factor, counteracting the
effect of increased displacement magnitudes. In the case where separability is used to identify the crack
tip position, the inferred crack tip is shifted behind the true tip position (Figure 4b), leading to an even
greater value of inferred stress intensity factor.

Case III entailed the same linear elastic material model as case I, but different boundary conditions.
In this case, the left and right boundaries of the domain were traction free and a constant traction was
applied to the top and bottom boundaries (Figure 4c). The magnitude of the applied traction was chosen
following the LEFM equations for an edge crack in a finite plate of size 5Rout by 10Rout (Tada et al., 1973)

such that K̃I = 1.10 to enable direct comparison with the previous cases. In total, the FE model of case III
produces a displacement field that differs from the asymptotic LEFM solution both close and far from the
crack tip. In close range the difference is due to the FE approximation, while at far range the difference is
due to the boundary effects of the finite domain.

For a crack tip position at (0,0) in this geometry, a smaller stress intensity factor of 0.92 is inferred (line
10 in Table 1). The difference between this value and that of case I (line 2 in Table 1) can be attributed
to the presence of the model domain boundaries and is consistent with the elasticity solution (Tada et al.,
1973). When displacement correlation and separability are used to infer the crack tip position, both return
a predicted crack tip position that is in front of the true position. We interpret this result to be due to the
displacement field being more influenced by the finite domain behind the crack tip, rather than in front of
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Table 1 A comparison of separability (sep) and displacement correlation (dc) approaches applied to non-ideal cases: Linear
Elastic Fracture Mechanics (LEFM) Finite Element (FE), Elastic Plastic Fracture Mechanics (EPFM) FE and linear elastic
Finite Domain FE.

K̃I K̃II T̃ x̃ ỹ Avg.

iterations

Avg.

time(s)

1. Analytic Solution 1.10 0.00 0.00 0.00 0.00 – –

2. LEFM FE- given tip 1.03 0.04 0.00 0.00 0.00 – –
3. LEFM FE- dc 0.83 -0.01 0.01 0.20 0.02 166 3.43
4. LEFM FE- sep 0.88 0.03 0.01 0.15 0.00 22 0.01

5. EPFM FE- given tip 1.17 0.05 -0.03 0.00 0.00 – –
6. EPFM FE- dc 0.91 -0.01 -0.01 0.25 0.02 148 4.02
7. EPFM FE- sep 1.38 0.06 -0.04 -0.25 0.00 24 0.07

8. EPFM FE- dc, apt annulus 1.05 -0.02 -0.01 0.08 0.01 362 7.49
9. EPFM FE- sep, apt annulus 1.13 0.03 -0.01 0.02 0.00 45 0.25

10. Finite Domain FE- given tip 0.92 0.03 -0.02 0.00 0.00 – –
11. Finite Domain FE- dc 0.43 0.01 0.00 0.55 0.04 108 3.98
12. Finite Domain FE- sep 0.49 -0.01 0.00 0.47 -0.03 32 0.07

13. Finite Domain FE- dc, apt annulus 0.64 0.01 -0.01 0.30 0.00 174 3.12
14. Finite Domain FE- sep, apt annulus 0.75 0.02 0.01 0.18 0.00 34 0.08

it. This error in crack tip position further reduces the inferred crack tip stress intensity factor as shown in
Table 1.

In all cases, the non-ideal nature of the data did not qualitatively alter the cost function landscape
(Figure 4). Quantitatively, the minimum of the separability landscapes (inferred crack tip position) displayed
equal or greater accuracy than the displacement correlation landscapes. That said, in the case of crack tip
non-linearity, the separability approach produces an error in the opposite direction of the displacement
correlation approach. This can have substantial implications on the value of the stress intensity factor
that is ultimately inferred. With separability, the error in the crack tip position leads to an error in stress
intensity factor. This discrepancy adds to the error associated with the plastic displacements near the crack
tip. That said, in practice one should attempt to chose an annulus that is larger than the plastic zone size
(Pataky et al., 2012) and significantly smaller than the domain size. In Table 1 and Figure 4, this was not
the case.

For illustration, case II was reexamined with Rout being twice the plastic zone size. In this scenario, the
separability approach infers a stress intensity factors within 1.8% of the values at true crack tip position
(0,0). In this setting, the inferred crack tip returned by the separability approach is (0.02, 0.00)Rout.
Qualitatively different from lines 6 and 7 in Table 1, these values are more accurate than the values
computed with the displacement correlation approach, where the inferred stress intensity factor is 7.50%
from the true value and the associated inferred crack tip is (0.08, 0.01)Rout. Thus, the choice of annulus is
fundamental to the accuracy of the separability approach.

4.3 Robustness relative to noise in the data set

The sensitivity of the cost functions to random noise in the observed data is a key attribute that controls the
utility of the cost functions for inferring crack tip position. The separability approach involves minimization
of a cost function with less curvature than displacement correlation (Figure 3), but the separability approach
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it is built upon average values of the displacement making it less sensitive to noise when there are sufficient
data points to compute the averages precisely.

In the simple case where the observed displacement vector components only differ from the linear elastic
model by an independent and identically distributed Gaussian noise of mean zero and standard deviation
σ, i.e. δui ∼ N (0, σ2) and δvi ∼ N (0, σ2), Equation (6) takes the form

Φdc =
1

n

n∑
i=0

(
(δui )

2
+ (δvi )

2
)
. (16)

In this case, Φdc is a sampled statistic that follows a Chi-squared distribution with a standard deviation of

stdev(Φdc) = 2σ2/
√
n. (17)

The analysis of the separability cost function is more complicated, requiring the distribution of the

sampled average displacement components in sub-annuli j to be assessed,

j

uobsi and

j

vobsi . To start,

j

uobsi and
j

vobsi are written in terms of the expectation of u and v in the LEFM model and in the sub annulus j as

j

uobsi =
j
E [u]+

j
ϵ [ui] + δui ,

j

vobsi =
j
E [v]+

j
ϵ [vi] + δvi ,

(18)

with
j
ϵ [ui] and

j
ϵ [ui] representing the difference between the sampled average values and the expectation in

the absence of noise. In other words,
j
ϵ [ui] and

j
ϵ [ui] represent the residual associated with approximating

the integral in the expectation operator with Monte Carlo Integration.
Plugging Equations (12) and (13) into Equation (18) provides an expression for the residuals given

sampled data points within an annulus j,

j

Ru
i = C1(KI ,KII , µ, κ, ϕ)

√
Rout
j − (

j
E [u]+

j
ϵ [ui] + δui ),

j

Rv
i= C2(KI ,KII , µ, κ, ϕ)

√
Rout
j − (

j
E [v]+

j
ϵ [vi] + δvi ).

(19)

In the simple case considered previously, where the observed sampling of displacement vector compo-
nents only differ from the linear elastic model by an independent and identically distributed Gaussian noise
of mean zero and standard deviation σ, Equations (19) reduce to

j

Ru
i = −(

j
ϵ [ui] + δui ),

j

Rv
i= −(

j
ϵ [vi] + δvi ).

(20)

The cost function for the separability approach, Equation (15), reduces to

Φsep =
1

m

m∑
j=0

(
j
ϵ [ui] + δui

)2

+

(
j
ϵ [vi] + δvi

)2

, (21)

Given that δui ∼ N (0, σ2), the sampled average of δui on n/m data points within a sub-annulus is
distributed as δui ∼ N (0, σ2m/n). Here, n/m data points per sub-annulus are considered to enable a direct
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comparison between the displacement correlation and separability approaches when the same number of
data points are utilized in both cases.

The distributions of
j
ϵ [ui] and

j
ϵ [vi] depend on the distribution of the population from which ui and

vi are sampled. This depends on KI ,KII , µ, κ, ϕ. While one could compute it exactly for a specific choice
of these parameters, we proceed more generally, approximating it as a uniform distribution from umin to
umax within the annulus. umax is the maximum observed displacement component from the linear elastic
model, given KI ,KII , T, µ, κ, ϕ,R

out, and umin is taken to be -umax.

With this assumption,
j
ϵ [ui] follows a Bates distribution with mean zero and standard deviation

umax/
√
3n/m. Considering the value of n/m in practice, the Bates distribution can be approximated by

a normal distribution, i.e.
j
ϵ [ui] ∼ N (0, mu2

max/3n) as n/m −→ ∞. With this approximation and pro-

vided
j
ϵ [ui] and δui are independent,

j
ϵ [ui] + δui ∼ N (0, mu2

max/3n + σ2m/n). By the same reasoning,
j
ϵ [vi] + δvi ∼ N (0, mv2max/3n+ σ2m/n).

In this context, each side of Equation (21) can then be viewed as a sampled statistic following a sum of
two Chi-squared distributions. Insight into the scaling of the variability of Φsep can subsequently be obtained

by considering the simplified case when u2
max and v2max are equal and

j
ϵ [ui] and

j
ϵ [vi] are independent, i.e.

stdev(Φsep) =
2
√
m

n
(u2

max/3 + σ2). (22)

A direct comparison of stdev(Φsep) and stdev(Φdc) does not provide a fair comparison of the ability of
the separability and displacement correlation methods to handle noisy data sets, as the landscape of Φsep

has less curvature. From Figure 3, a factor of 100 can be seen to provide a reasonable approximation of the
curvature difference. Therefore, with respect to finding a crack tip in a noisy data set, separability would
favorable when 100stdev(Φsep) < stdev(Φdc). Utilizing Equations (17) and (22) then gives an approximate
inequality between an effective signal-to-noise ratio and the number of points in the data set, giving an
indication of when separability would be favorable

umax

σ
<

√
3

10

√√
n

m
− 1 (23)

Acknowledging that the separability approach performs best with two sub-annuli, i.e. m = 2, Equation
(23) suggests separability to be favorable at signal-to-noise ratios (umax

σ ) below 0.2, 0.4, 0.8, and 1.4 for
10, 100, 1000, and 10,000 data points, respectively. With that said, we point out that umax is not just
a function of the stress intensity and elastic modulus, but also a function of the annulus size, increasing
linearly with

√
Rout. Therefore, the signal-to-noise ratio sufficient to motivate the use of the separability

approach depends on the annulus size, such that the separability approach is favored at smaller annulus
sizes, which are motivated in practice by a desire to limit finite domain effects in the data set.

4.4 Computational expense

The utility of the separability approach depends not only on its robustness when using noisy non-ideal data
sets, but also on its computational expense.

The computational expense of the separability cost function (Equation (15)) in the practical case of
n/m ≫ 1 is dominated by the computation of the average displacement components in the sub-annuli.
This requires 2n additions. The other computations scale with m and m2 and are thus insignificant when
n/m ≫ 1.
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The evaluation of the displacement correlation cost function (Equation (6)) requires significantly more
computation, i.e. n square roots, 4n trigonometric operations, 12n multiplications, and 6n addition opera-
tions. Further, the cost function must be evaluated more times with the displacement correlation approach,
as it involves minimization in a 6D parameter space, whereas the separability cost function is minimized
in a 2D parameter space.

Table 1 demonstrates the significant difference in computation time and number of iterations for the
two approaches considering the non-ideal data sets that were discussed in section 4.2. In the cases shown,
a pattern search optimization algorithm was used to find the minimums of the cost functions (Zanganeh
et al., 2013), and n varied between ∼300 and ∼1260 depending upon whether the trial crack tip position
was in the fine or coarse meshed regions. A starting guess of (Rout/2, Rout/2) was used for all cases. In this
context, the computational time of the separability approach is shown to be approximately 30× superior
to the displacement correlation approach and is the result of both fewer iterations to solution and less
computational time per iteration.

This difference in computational expense means that Equation (23) is not a sufficient indicator in the
decision of whether to use the separability approach. For equal computational cost, ∼ 30× points can be used
with the separability approach, i.e. nsep = 30ndc, and therefore following Equation (24) and utilizing the
approximations 30

√
ndc/m− 1 ≈ 30

√
ndc/m and

√
90/10 ≈ 1, the separability approach can be considered

favorable when

umax

σ
<
(
ndc

m

)1/4
. (24)

Acknowledging again that the separability approach performs best with two sub-annuli, i.e. m = 2,
Equation (23) suggests separability to be favorable at signal-to-noise ratios (umax

σ ) below 1.5, 2.7, 4.7, and
8.4 for 10, 100, 1000, and 10,000 data points, respectively, considering the computational costs observed
in table 1. Finally, we note that the storage requirements of the separability and displacement correlation
approaches are both minimal, as neither scales with n (Wilson et al., 2019).

5 Demonstrations

The separability approach presented in this manuscript has wide-ranging applications. It can be utilized
on any displacement dataset that encapsulates a crack tip, from computer simulation and laboratory ex-
periment to field data. The wide applicability is demonstrated in this section by extending beyond the
finite element datasets analyzed in the previous section, considering Molecular Dynamics (MD) and Digital
Image Correlation (DIC) datasets as two examples.

The MD simulation data presented in Wilson et al. (2019) was used an an example upon which to
utilize the separability approach to infer crack tip position. The Wilson et al. data was generated using the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Plimpton, 1995; Thompson et al.,
2021) and involved the fracture of a silica glass sample subjected to a uniaxial strain in the y direction
with an initial edge crack extending in the x direction that was subjected to mode I loading. The sample
was 55x22x5 nm and consisted of 362 thousand atoms at 300K. In the z through crack direction, the
specimen was simulated as infinitely thick via periodic boundary conditions. With the uniaxial strain held
fixed at a sufficiently high value, the molecular dynamics simulation resulted in crack propagation, with
the atomic configurations being analyzed every 400,000 time steps. The separability approach was used to
infer the crack tip position at each timestep, with Rout = 62.5 Å and α = 2.5 that yielded n ≈ 29, 000 in
this case. Here, the elastic properties of the material were known and could be used to also compute the
stress intensity factors associated with the inferred crack tips. In other atomistic fracture simulations where
the elastic properties are unknown, the separability approach can still be used to infer crack tip positions
without calculating the driving force values.
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(a) (b)

Fig. 5 Applications (a) Comparison of crack tip locations calculated by Separability with the crack tips inferred from MD
data. (b) Comparison of K1 values from the Separability with DIC data shown in Figure 12a in the paper by Carroll et al.
(2009)

The results of the separability approach across sequential atomic configurations have been compared
to the crack positions inferred by visually examining the geometry of the configurations. The degree of
correspondence between the two approaches is shown in Figure 5(a). Human inference based upon the
geometry of the configurations can be seen to mostly overpredict the length of the crack relative to the
separability approach. This over prediction is attributed to the crack tip blunting that occurred in the
simulations, which moves the crack tip position defined by LEFM forward relative to the geometrically
observable tip position. From Figure 2, this implies that the inferred stress intensity factor from a human
inferred crack tip position would be an over prediction of the true value. For engineering applications
where simulation data of KI vs crack velocity might be used to infer material behavior, the error is not
conservative. Had sufficient bridging behind the crack occurred, the opposite result would be expected.

The data presented in Carroll et al. (2009) was used as an example to demonstrate the utility of the
separability approach to infer crack tip position and ultimately stress intensity factors from DIC experi-
ments. Carroll et al.’s experiments consisted of cyclically loaded single edge-notched tension specimens of
commercially pure titanium. A 2-8Hz cyclic loading was performed such that Kmax was maintained at 19
MPa

√
m with a load ratio of nearly zero. Periodically, the cyclic loading rate was slowed to 0.004 Hz to

measure the stress intensity factor during the load cycle via DIC. The slower cycle allowed 120 images to
be captured throughout the loading cycle. Figure 5(b) gives the inferred KI values during one of these mea-
surement cycles (as given in Figure 12a in Carroll et al. (2009)), using 5,600 displacement points captured in
a 710 X 40 micron field of view surrounding the crack tip. The values of KI obtained by Carroll et al. were
calculated using the displacement correlation technique on the displacement vector in the direction normal
to the crack plane and using a crack tip position that was human inferred from the geometry visible using
28x optical microscopy. Carroll et al. excluded a region of 80µm around the crack tip from the displacement
correlation data set to exclude the plastic zone.

Inferred KI values from the separability method applied to this data set are also shown in Figure 5(b).
These KI values were obtained using Rout = 108µm and α ≈ 2.2, which yielded n ≈ 140. The results from



Identifying crack tip position and stress intensity factors from displacement data 17

both approaches are found to be similar, although the separability inferred KI value was more noisy. This
noise can be attributed to a large signal to noise ratio for the governing parameters as developed in section
4.3. This leads to a noise in the inferred crack tip position and ultimately in the inferred KI value as
presented in Figure 2. Increasing the annulus size would improve the performance.

6 Conclusions

The occurrence and prevention of fracture has been estimated to consume 4% of the US GDP (Reed, 1983).
In attempts to reduce this burden, quantifying the configurational driving force acting on the crack is often
paramount. Identifying the crack tip position is a required step toward this goal.

This manuscript has presented a new approach to identify crack tip position from displacement data. The
new approach, which we refer to as the separability approach, is particularly useful in cases involving noisy
displacement data, where many data points are needed to obtain sufficiently accurate results. Such cases
are becoming more prevalent with the increased digitization of the physical world, e.g. digital imaging of
laboratory and field data. Further, there are multiple simulation approaches that are used to study fracture
that often involve noisy data, such as molecular dynamics at the nanoscale (Zhao et al., 2022) and discrete
element and peridynamics at the continuum scale (Baker and Warner, 2012; Stenström and Eriksson,
2019; Wang et al., 2020). In all of the mentioned cases, crack blunting (Gu and Warner, 2021), bridging
(Wilson et al., 2019), and microcracking Buehler et al. (2006) can create an inconsistency between geometric
approaches to locate crack tip position and the mechanically defined position needed to accurately identify
the driving force.

When the dataset is ideal, i.e. in accord with asymptotic linear elastic fracture mechanics, the separabil-
ity approach will produce a similar result as the widely used displacement correlation approach. Therefore,
the appeal of the newly presented separability approach is that it offers computational expediency over the
existing approach. This expediency results not only from its time to solution, but also from its ability to
produce more accurate solutions from large noisy data sets, enabling the use of smaller displacement data
sets in some contexts with the separability approach.

The effect of deviations in the data set from the asymptotic linear elastic ideal, e.g. finite boundary effects
and non-linearity near the crack tip, is shown to not be substantially different between the two approaches.
In all examined cases, the user of the separability approach should be aware of the potential for multiple
local minimal behind the ideal crack tip location, if the choice of annulus dimensions is inappropriate or
the number of points in the annulus is insufficient. Nonetheless, the challenge of multiple minimum can
easily be addressed within the minimization routine, especially given the computational expediency of the
separability approach. In addition to its efficiency, another major advantage of the separability approach is
its ability to infer the crack tip location without knowing any elastic constants. This makes separability a
particularly valuable approach for those studying atomistic fracture.

A generally applicable python implementation of the separability approach is given at X, and an example
involving its utilization within a python wrapper that also calls LAMMPS is given at X.
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