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Abstract. The Clifford spectrum is a form of joint spectrum for noncommuting matrices.
This theory has been applied in photonics, condensed matter and string theory. In applica-
tions, the Clifford spectrum can be efficiently approximated using numerical methods, but
this only is possible in low dimensional example. Here we examine the higher-dimensional
spheres that can arise from theoretical examples. We also describe a constuctive method to
generate five real symmetric almost commuting matrices that have a K-theoretical obstruc-
tion to being close to commuting matrices. For this, we look to matrix models of topological
electric circuits.

1. Multivariable spectrum

There are many in-equivalent ways to define a joint spectrum of a d-tuple (A1, . . . , Ad)
of Hermitian n-by-n matrices. For example, there is the monogenic spectrum [15] which
has a close connection with a noncommutative functional calculus. Here we are concerned
with the Clifford spectrum, as defined in [16], which is useful in many parts of physics such
as high-energy physics [2, 8], condensed matter physics [7, 12, 21, 31] and photonic crystals
[5, 10]. These papers make use of the connection between the Clifford spectrum and K-theory
[11, 24]. Here, we begin to investigate the question of what higher dimensional spaces can
occur as the Clifford spectrum of a d-tuple (A1, . . . , Ad) of Hermitian matrices and calculate
the K-theory associated with these spaces.

We make extensive use of the complex Clifford algebras Cℓ(d). We tend to think of Cℓ(n)
as the universal unital C∗-algebra for generators e1, . . . , ed subject to relations

e∗j = ej, (j = 1, . . . , d)

e2j = 1, (j = 1, . . . , d)

ejek = −ekej, (j ̸= k)
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and so refer to (e1, . . . , ed) as the universal Clifford generators. We also consider finite
matrices (γ1, . . . , γd) that satisfy the above relations, and call such a d-tuple a representation
of the Clifford relations.

Definition 1.1. Suppose A1, . . . , Ad are Hermitian matrices, all in Mn(C). The Clifford
spectrum Λ(A1, . . . , Ad) is the set of λ in Rd such that Lλ(A1, . . . , Ad) is a non-invertible
element of Mn(C)⊗ Cℓ(d), where

Lλ(A1, . . . , Ad) =
∑

(Aj − λj)⊗ ej.

The element Lλ(A1, . . . , Ad) is referred to as the spectral localizer in physics [5, 24].
Kisil takes closure when defining the Clifford spectrum, but we find this is not needed as
Λ(A1, . . . , Ad) as defined above is automatically closed. This is because it is the zero-set of
the scalar valued function

µC
λ (A1, . . . , Ad) = smin(Lλ(A1, . . . , Ad))

where we use smin to indicate the smallest singular value of a matrix. The function λ 7→
µC
λ (A1, . . . , Ad) is the Clifford pseudospectrum introduced in [22]. This function is continu-

ous, even Lipschitz [22], so its zero-set is already closed.
The term Clifford spectrum is used in various incompatible ways in the mathematics

literature [1, 17]. There seems to be no single notion of joint spectrum that is best for non-
commuting matrices. What we are calling the Clifford spectrum behaves in mathematically
odd ways with respect to functional calculus, but it links very well to topological invariants
and bound states in physics.

For many reasons, including minimizing computer memory use, we want to represent the
ej by the smallest matrices possible. It turns out that having a faithful representation of
the complex Clifford algebra is not needed. In fact, we can use any nontrival representation,
with irreducible representations generally preferred.

Lemma 1.2. Suppose γ1, . . . , γd are in M r(C) with r > 0 and these form a representation
of the Clifford relations. If A1, . . . , Ad are Hermitian matrices then

smin

(
d∑

j=1

(Aj − λj)⊗ γj

)
= smin

(
d∑

j=1

(Aj − λj)⊗ ej

)
.

Proof. When d is even, Cℓ(d) is isomorphic to M 2d/2(C). Up to unitary equivalence, the
only option for the γj is a direct sum of copies of the ej. This means that, if we ignore
multiplicity, the spectrum of

∑
(Aj − λj)⊗ γj and

∑
(Aj − λj)⊗ ej will be the same.

When d is odd, Cℓ(d) is isomorphic to Mm(C)⊕Mm(C) with m = 2(d−1)/2. We have in this
case two fundamental representations of the Clifford relations, α1, . . . , αd and −α1, . . . ,−αd

in Mm(C). There is a unitary Q so that

γj = Q

[
αj ⊗ Ip 0

0 −αj ⊗ Iq

]
Q∗

where at least one of p and q is positive since p + q = r. In this case, the spectrum of∑
(Aj − λj) ⊗ γj and

∑
(Aj − λj) ⊗ ej may differ, but these will have the same singular

values since ∑
(Aj − λj)⊗ (−αj) = −

∑
(Aj − λj)⊗ αj.

□
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There are precious few noncommutative examples with d ≥ 2 where we can exactly cal-
culate, by hand, the Clifford spectrum. When d = 2 the Clifford spectrum of (A1, A2) is
basically the same as the ordinary spectrum of A1 + iA2, so this case is understood. More
precisely, one can prove [9] that (x, y) is in the Clifford spectrum of the pair exactly when
x + iy is in the ordinary spectrum of A1 + iA2. Kisil [16] finds an example of three 2-by-2
matrices whose Clifford spectrum is a 2-sphere. See [2, §IV] for a proof that the three ma-
trices that generate a fuzzy sphere also have Clifford spectrum a 2-sphere. In [32, §3.1] more
examples of three 2-by-2 matrices are examined, where the Clifford spectrum can be one
sphere or two spheres, possibly touching. Utilizing computer algebra systems one can get
more examples [9, 32], but these are still limited to examining only relatively small d-tuples
of small matrices. These examples showed it possible to have the Clifford spectrum for four
Hermitian matrices to be homeomorphic to a torus or a three-sphere.

In many applications, for example in [5, 12, 21], it suffices to use numerical computer
methods to estimate the function λ 7→ µC

λ (A1, . . . , Ad). Since small perturbations of a
function can drastically change its zero-set, this does not really help understand the structure
of the Clifford spectrum.

In this work, by systematically exploring what can lead to a symmetry in the Clifford
spectrum, we are able to make explicit calculations in examples where the Clifford spectrum is
any even-dimensional sphere. Later in the paper we resort to numerical calculations inspired
from physics to find an explicit example of five almost commuting real symmetric matrices
that have a K-theoretical obstruction keeping them far from commuting real symmetric
matrices. This somewhat settles the mystery raised in [3], where KK-theory and E-theory
were used to show that such matrices must exist, but with no hint of how to find these
matrices.

2. Symmetries in the Clifford Spectrum

Suppose γ1, . . . , γd form a representation of the Clifford relations. If U = [uij] ∈ O(d) is a
real orthogonal matrix we get another representation of the Clifford relations by defining

γ̂j =
d∑

r=1

ujrγr.

This claim is easy to verify. The main calculation needed is

γ̂j γ̂k =

(∑
r

ujrukr

)
I +

∑
r<s

(ujruks − ukrujs) γrγs.

Setting j = k we find

γ̂2
j =

(∑
r

ujrujr

)
I = I

and for j ̸= k,

γ̂j γ̂k =
∑
r<s

(ujruks − ukrujs) γrγs

which implies γ̂j γ̂k = −γ̂kγ̂j.
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Lemma 2.1. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian matrices in Mn(C) and that
U ∈ O(d). Suppose λ ∈ Rd. The d matrices

Âj =
∑
s

ujsAs

are also Hermitian and

λ ∈ Λ (A1, . . . , Ad) ⇐⇒ Uλ ∈ Λ
(
Â1, . . . , Âd

)
.

Proof. Select any γ1, . . . , γd that form a representation of the Clifford relations. Since U⊤ is
just as orthogonal as U we know that the matrices

γ̃j =
∑

urjγr

also form a representation of the Clifford relations. We can compute the Clifford spectrum
using the γ̃j and so look at∑

j

(Aj − λjI)⊗ γ̃j =
∑
j

Aj ⊗ γ̃j −
∑
j

λjI ⊗ γ̃j.

We find ∑
j

Aj ⊗ γ̃j =
∑
j

∑
r

Aj ⊗ urjγr

=
∑
r

∑
j

urjAj ⊗ γr

=
∑
j

∑
r

ujrAr ⊗ γj

=
∑
j

Âj ⊗ γj.

Substituting Aj by λjI we find ∑
j

λjI ⊗ γ̃j =
∑
j

αjI ⊗ γj

where α = Uλ. Thus ∑
j

(Aj − λjI)⊗ γ̃j =
∑
j

(Âj − αjI)⊗ γj

and we are done. □

Theorem 2.2. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian matrices in Mn(C) and that
U ∈ O(d). Let

Âj =
∑
s

ujsAs.

If there exists Q ∈ U(n) such that
QÂjQ

∗ = Aj

for all j then
λ ∈ Λ (A1, . . . , Ad) ⇐⇒ Uλ ∈ Λ (A1, . . . , Ad) .

Proof. Since unitarily equivalent d-tuples have the same Clifford spectrum, this follows from
Lemma 2.1. □
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Figure 3.1. (a) The Clifford spectrum Λ(A, tB, tC) for t = 1/7, 1/6, . . . , 1,
for fixed λ3 = 0. (b) Plot of the localizer gap as λ1 varies for the same set of
t, with λ2 = λ3 = 0. The coloration is consistent between both plots, with
t = 1/7 corresponding to teal and t = 1 displayed as magenta.

3. Scaling alters connectivity

We regard the lack of a spectral mapping theorem to be a feature, not a bug, when it
comes to applications in physics. We first present a simple example where applying an affine
function to a triple of matrices does not correspond to an affine transformation applied to the
Clifford spectrum. The transformation we apply is simply rescaling in two of the dimensions.
Depending on the the size of the rescaling, the Clifford spectrum remains sphere-like or breaks
into pieces. This is reminiscent of the transition from individual atoms to a molecule. To
demonstrate this kind of transition in a physical system explicitly, we then consider a second
example rooted in a well-known 2D lattice whose band structure can be tuned to possess
non-zero first Chern numbers [13].

Example 3.1. Consider three matrices,

A =

 −1 0 0
0 0 0
0 0 1

 , B =

 0 1 0
1 0 1
0 1 0

 , C =

 0 i 0
−i 0 i
0 −i 0

 .

We look at the Clifford spectrum of (A, tB, tC) for various values of t between 1/7 and 1.
We have rotational symmetry in the second and third coordinate so it suffices to display the
slice with λ3 = 0, as in Fig. 3.1. There is a transition in the topology of the spectrum at
t = 1/4, as smaller positive values of t lead to three separated surfaces each of which are
homeomorphic to a sphere, while larger values of t lead to a (single) connected surface. This
example is similar to [9, Example 4.4].

The transition observed in the Clifford spectrum, from being a collection of disconnected
spheroids to being a single spheroid, manifests in some crystalline materials when the spacing
between the constituent atoms or molecules is changed relative to the system’s energy scale,
in some dimensionless sense. When the spacing between these elements is sufficiently small
so that the system behaves as a crystal, the Clifford spectrum is a connected surface. When
the spacing between the elements increases beyond some critical value, this surface breaks
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apart into many separated surfaces, and the system behaves as though it is a collection of
decoupled elements.

Example 3.2. To demonstrate this transition, consider a finite piece of a Haldane lattice
[13], which is a honeycomb lattice that contains both nearest-neighbor and next-nearest-
neighbor couplings. The Hamiltonian for this lattice can be written in a tight-binding basis
as

H =M
∑
m,n

(
a†m,nam,n − b†m,nbm,n

)
− t

∑
⟨(m,n),(m′,n′)⟩

(
b†m′,n′am,n + a†m,nbm′,n′

)
− tc

∑
⟨⟨(m,n),(m′,n′)⟩⟩

(
eiϕa†m′,n′am,n + e−iϕa†m,nam′,n′ + eiϕb†m′,n′bm,n + e−iϕb†m,nbm′,n′

)
.(1)

Here, am,n and bm,n (a†m,n and b†m,n) are the annihilation (creation) operators on the two
constituent sublattices in the unit cell identified by the index (m,n), and we are using no-
tation that is common in the physics literature for these types of systems with c† denoting
the conjugate transpose of c. The two sublattices have opposite on-site energies (i.e., diag-
onal elements) ±M . The nearest-neighbor couplings have strength t, and the summation
⟨(m,n), (m′, n′)⟩ only includes those lattice sites in the same or adjacent unit cells that are
nearest neighbors. The next-nearest-neighbor couplings have strength tc and a direction de-
pendent phase ϕ; the summation over ⟨⟨(m,n), (m′, n′)⟩⟩ denotes these next-nearest-neighbor
pairs of lattice sites.

The other two matrices that are combined to form this system’s spectral localizer so as
to calculate its Clifford spectrum are its position matrices. In the tight-binding basis, these
matrices are diagonal, and X and Y contain the coordinates of each lattice site (xm, yn) in
both sublattices. For the plot shown in Fig. 3.2, the site-to-site spacing is a, such that the
crystal’s lattice vectors have length

√
3a. Altogether, the spectral localizer for the Haldane

lattice can be written (using the Pauli spin matrices as the Clifford representation) as
(2)
Lλ=(κXx,κXy,κHE)(κXX, κXY, κHH) = κX (X − x)⊗σx+κX (Y − y)⊗σy +κH (H − E)⊗σz.

Here, we have included two dimension-full scaling coefficients, κX and κH that have units of
inverse distance and inverse energy, respectively, such that Lλ is dimensionless. Moreover,
we are directly identifying the components of λ = (κXx, κXy, κHE) as the corresponding
physically meaningful values of position (x, y) and energy E, but similarly re-scaled to be
dimensionless.

Beyond enforcing consistent units in the spectral localizer, the two scaling coefficients
κX and κH can be heuristically thought of as adjusting the weights given to the position
matrices X − x and Y − y relative to lattice’s Hamiltonian H − E in the Clifford spec-
trum Λ(κXX, κXY, κHH). As these weights are adjusted, the Clifford spectrum is either a
connected surface, when the lattice’s Hamiltonian is more heavily weighted, or many dis-
connected sphereoids, when the lattice’s position operators are more heavily weighted. In
the case of the latter, the Clifford spectrum is responding directly to the locations of the
individual lattice sites in the system, yielding these many disconnected surfaces centered
near each site. In contrast, when the position operators are de-emphasized, the Clifford
spectrum reveals information about the lattice as a whole, with the single spheroid in the
Clifford spectrum being associated with this lattice’s well-known chiral edge states [6].
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Figure 3.2. Localizer gap µC
λ for a 12-by-12 Haldane lattice whose Hamil-

tonian is given by Eq. (1), with tc = 0.5t, ϕ = π/6 and M = 0. Here, only x
is varied, with y fixed at one of the rows of lattice sites and E = 0. Different
colors show different values of κX and κH , the scaling coefficients in Eq. (2.

4. The K-theory of the Clifford resolvent set

In many examples with d ≥ 3 the Clifford spectrum of (A1, . . . , Ad) is a (d−1)-dimensional
surface in Rd. It is frequently possible to associate a K-theory element to the connected
components of the complement of the Clifford spectrum. This is typically in KOj(R) and
so is often computed as an integer or element of Z/2Z. Here, we will only need integer
invariants. These invariants are (up to an isomorphism) computed as some multiple of

sig (Lλ(A1, . . . , Ad))

where we take sig(L) to indicate signature, which for a Hermitian, invertible matrix L is the
difference between the number of positive and of negative eigenvalues. Here we do need to
specify a particular choice of the γj. These need to form an irreducible representation of the
Clifford relations. When d is odd we need to make an arbitrary choice of which irreducible
representation to use. The other choice just flips the sign of the signature.

We know [22] that sig (Lλ(A1, . . . , Ad)) = 0 when |λ| is large or when the Aj commute
with each other. The index can only change when λ crosses the Clifford spectrum, and is
thus constant on the connected components of the Clifford resolvent. For a discussion of
how this index might serve as a sort of K-theory charge of a D-brane, see [2].

A simple example, following [16], will illuminate this phenomena. For d = 3 the choice we
make for the three γj is to use the Pauli spin matrices,

γ1 = σx =

[
0 1
1 0

]
, γ2 = σy =

[
0 −i
i 0

]
, γ3 = σz =

[
1 0
0 −1

]
.

The easiest way to understand this example is to first examine symmetries. If U = [uij] ∈
O(d) has determinant one then

γ̂j =
d∑

r=1

ujrγr

form not just a representation of the Clifford relations, but a representation that is unitarily
equivalent to the original representation. Thus the Λ(γ1, γ2, γ3) has rotational symmetry.
The proof of Lemma 2.1 works for points in the Clifford resolvent, and shows the following.
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Suppose (A1, . . . , Ad) is a d-tuple of Hermitian matrices in Mn(C) and that U ∈ SO(d).
Suppose λ ∈ Rd. The d matrices

Âj =
∑
s

ujsAs

are also Hermitian, and if λ /∈ Λ (A1, . . . , Ad) then Uλ /∈ Λ
(
Â1, . . . , Âd

)
and

sig (Lλ(A1, . . . , Ad)) = sig
(
LUλ(Â1, . . . , Âd)

)
,

again following from unitary equivalence. Thus we can improve our earlier theorem.

Theorem 4.1. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian matrices in Mn(C), that
U ∈ SO(d). Let

Âj =
∑
s

ujsAs.

If there exists Q ∈ U(n) such that
QÂjQ

∗ = Aj

for all j then
λ ∈ Λ (A1, . . . , Ad) ⇐⇒ Uλ ∈ Λ (A1, . . . , Ad)

and if λ /∈ Λ (A1, . . . , Ad) then

sig (Lλ(A1, . . . , Ad)) = sig (LUλ(A1, . . . , Ad)) .

Theorem 4.2. The Clifford spectrum of (γ1, γ2, γ3) is the unit sphere. Moreover

µC
λ (γ1, γ2, γ3) = ||λ| − 1|

and

sig (Lλ(γ1, γ2, γ3)) =

{
2 if |λ| < 1

0 if |λ| > 1
.

Proof. By Theorem 4.1 we need only deal with the special case λ = (0, 0, z). We find that

L(0,0,z)(γ1, γ2, γ3)

= σx ⊗ σx + σy ⊗ σy + (σz − zI)⊗ σz

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

+


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

+


−z 0 0 0
0 −z 0 0
0 0 z 0
0 0 0 z



=


1− z 0 0 0
0 −1− z 2 0
0 2 −1 + z 0
0 0 0 1 + z

 .

This has spectrum {
1± z,−1±

√
z2 + 4

}
and the results follows. □
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This result can be generalized in at least two ways. The Pauli spin matrices can be replaced
by generators (X1, X2, X3) of a fuzzy sphere. In that case [2], the Clifford spectrum and
signature come out the same, but as the matrix size increases the norms of the commutators
[Xj, Xk] decrease. We will generalize this is a different direction, calculating Λ(γ1, . . . , γd)
for higher d.

To illuminate the proof of the general case we look at the effect of conjugating L(0,0,z)(γ1, γ2, γ3)
by the unitary

(3) Q =
1√
2


0 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 0

 .

We find

Q (σx ⊗ σx)Q
∗ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



Q (σy ⊗ σy)Q
∗ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



Q (σz ⊗ σz)Q
∗ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Q (−zI ⊗ σz)Q
∗ =


0 0 0 −z
0 0 −z 0
0 −z 0 0
−z 0 0 0


and so QL(0,0,z)(γ1, γ2, γ3)Q

∗ breaks again into 2-by-2 blocks, specifically[
1 −z
−z −3

]
,

[
1 −z
−z 1

]
.

Notice that Q is a matrix whose columns are joint approximate eigenvalues of σx ⊗ σx and
σy ⊗ σy. It also diagonalizes σz ⊗ σz since σz = iσyσx and so

σz ⊗ σz = − (σy ⊗ σy) (σx ⊗ σx) .

5. Conventions for representations of the Clifford relations

The minimal representation of the Clifford relations is unique when d is even. When d is
odd we know γd will be a scalar multiple of a product of the other γj. We need to specify
which multiple to determine which of the two irreducible representations we are using.
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If γ1, . . . , γd is our choice for an irreducible representations for some odd d, we can get to
a representation α1, . . . , αd+2 by using

αj = γj ⊗ σx, (j ≤ d)

αd+1 = I ⊗ σy,

αd+2 = I ⊗ σz.

If we have
γd = ϵdγd−1 · · · γ2γ1

then

ϵd+2αd+1 · · ·α2α1 = ϵd+2 (I ⊗ σy) (γd ⊗ σx) (γd−1 ⊗ σx) . . . (γ1 ⊗ σx)

= ϵd+2 (I ⊗ σy) (γd ⊗ σx)
(
(γd−1 · · · γ1)⊗ σd−1

x

)
= ϵd+2 (γd ⊗ (−iσz))

(
ϵ−1
d γd ⊗ I

)
= −iϵd+2ϵ

−1
d (I ⊗ σz)

= −iϵd+2ϵ
−1
d αd+2

so we should set
ϵd+2 = iϵd.

As a base convention, we are using γ1 = σx, γ2 = σy, γ3 = σz so γ3 = iγ2γ1 meaning

(4) ϵd = i(d+3)/2.

6. The Clifford spectrum of Clifford matrices

The case where d is even is rather boring, but we work out this case part way as some of
the results will be helpful in the odd case.

Theorem 6.1. If d is even and γ1, . . . , γd is an irreducible representation of the Clifford
relations then

Λ(γ1, . . . , γd) = {0}.

Proof. Let Gj = γj ⊗ γj so that

L0 = L0 (γ1, . . . , γd) =
d∑

j=1

Gj.

We want to show this is singular. The Gj are matrices of size 2d and they pairwise commute.
Each Gj is Hermitian and squares to one, so the joint spectrum of (G1, . . . , Gd) is a subset
of {±1}×d. Since replacing a single γj by −γj leads to another representation of the Clifford
relations, unitarily equivalent to the original, there is a unitary by which we can conjugate
to fix all the Gj except the one that is negated. Similarly we can exchange a pair, γj with γk,
and so get another unitary whose action swaps Gj and Gk. Thus the joint spectrum must
have the same multiplicity at all points of {±1}×d and so that common multiplicity must be
one. That means there is an orthonormal basis

(5)
{
bp | p ∈ {±1}×d

}
such that

Gjbp = pjbp (1 ≤ j ≤ d).
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Thus the spectrum of L0 consists only of even numbers, including zero. An eigenvalue of 0
will arise from every p that has an equal number of −1 and +1 coordinates.

Notice that in the basis given in (5) is, up to order, the unique basis in which the localizer
at zero becomes diagonal. In the case d = 3 these vectors are the columns of Q in (3). For
the general case we just need to know we have such a basis.

We want to show that there are no points in the Clifford spectrum besides 0. By the
discussion in Section 2 we know that Theorem 2.2 applies. Thus it suffices to consider λ
equal to (x, 0, . . . 0). If we set H = I ⊗ γ1 then

L(x,0,...0) (γ1, . . . , γd) =
∑

Gj − xH.

Notice that G1H = HG1 and GjH = −HGj for j ≥ 2. Thus
G1Hbp = HG1bp = H (p1bp) = p1Hbp

and, for j ≥ 2,
GjHbp = −HGjbp = −H (pjbp) = −pjHbp.

The joint eigenspaces are one dimensional so we know there is a unit scalar θp so that
Hbp = θpbp̃

where
p̃ = (p1,−p2,−p3, . . . ,−pd).

Since H2 = I we find that
bp = H2bp = H(θpbp̃) = θpθp̃bp

thus proving that θp = θp̃. Thus, in this basis, we know that L(x,0,...0) (γ1, . . . , γd) decomposes
into 2-by-2 blocks, one block for each pair {p, p̃}. To avoid a double count we assume

s =
n∑

j=2

pj ≥ 1

(notice s must be odd). The corresponding block is[
p1 + s −θpx
−θpx p1 − s

]
.

This block has determinant
−x2 +

(
p21 − s2

)
= −x2 +

(
1− s2

)
.

Since 1− s2 ≤ 0 this block can be singular only when s = 1 and x = 0. □

When d is odd we can build on what we learned in the even case. The exception is when
d = 1. To get a zero sphere we would need a generator of the full Clifford algebra C ⊕ C,
an Hermitian matrix with spectrum {−1, 1}. For larger d we need to use an irreducible
representation of the Clifford algebra to be able to see the K-theory.

Theorem 6.2. If d ≥ 3 is odd and γ1, . . . , γd is an irreducible representation of the Clifford
relations then

Λ(γ1, . . . , γd) = Sd−1,

the unit sphere in Rd. Moreover

sig (Lλ(γ1, . . . , γd)) =

(
d− 1

1
2
(d− 1)

)
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if 0 ≤ |λ| < 1 and this signature is zero for |λ| > 1.

Proof. In this case, we can assume γ1, . . . , γd−1 satisfy the conditions of the last theorem, so
we use the orthonormal basis {

bp | p ∈ {±1}×(d−1)
}

such that
Gjbp = pjbp (1 ≤ j ≤ d− 1).

We have also to consider Gd = γd ⊗ γd. According to (4) we will have

Gd = (−1)
d−1
2

∏
j<d

Gj.

This means that

L0 = L0 (γ1, . . . , γd) =
d∑

j=1

Gj

has still bp as an eigenvector, but now with eigenvalue

α(p) =
d−1∑
j=1

pj + (−1)
d−1
2

d−1∏
j=1

pj.

These eigenvalues are now odd so L0 is now nonsingular. We again have rotational sym-
metry so we can restrict our attention to λ of the form (x, 0, . . . , 0). The localizer

L(x,0,...0) (γ1, . . . , γd)

again breaks into 2-by-2 blocks, where the blocks are

Bp =

[
α(p) −θpx
−θpx α(p̃)

]
.

where
p̃ = (p1,−p2,−p3, . . . ,−pd−1).

This block has determinant α(p)α(p̃)− x2.
We need to figure out the positive values of α(p)α(p̃) at p. We first compute

α(p̃) = 2p1 −
d−1∑
j=1

pj − (−1)
d−1
2

d−1∏
j=1

pj

= 2p1 − α(p).

The only way to avoid having α(p) and α(p̃) of opposite signs is to have α(p) = p1 = ±1.
When this happens, the block Bp has eigenvalues 1±x. Thus L(x,0,...0) (γ1, . . . , γd) is singular
only when x = ±1, so the Clifford spectrum is (by symmetry) the unit sphere.

As to the signature, we need only compute this at λ = 0. We first look for all solutions
to |α(p)| = 1. If there are k occurrences of −1 in p1, . . . , pd−1 then

α(p) = (d− 1)− 2k + (−1)
d−1
2 (−1)k.

The product works out as ±1 so k must be a small range, specifically
1
2
(d− 1)− 1 ≤ k ≤ 1

2
(d− 1) + 1.
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When k = 1
2
(d− 1) we find

(d− 1)− 2k = 0

(−1)
d−1
2 (−1)k = 1

so we have a solution with α(p) = 1. When k = 1
2
(d+ 1) we find

(d− 1)− 2k = −2

(−1)
d−1
2 (−1)k = −1

which we do not have a solution. When k = 1
2
(d− 3) we find

(d− 1)− 2k = 2

(−1)
d−1
2 (−1)k = −1

and so have a solution with α(p) = 1. There are no solutions with α(p) = −1.
If we add the condition that p1 = α(p) = 1 we find that p 7→ p̃ swaps the two types

of solutions. Thus we need only count the solutions with k = 1
2
(d − 1). Let us count the

solutions with p1 = 1 and k = 1
2
(d− 1). Here we need to pick the places for −1 out of d− 2

places, so there are (
d− 2

1
2
(d− 1)

)
values for p here. This is also the number of blocks with non-zero signature. Each has block
has index 2 so the overall signature is

2

(
d− 2

1
2
(d− 1)

)
=

(
d− 1

1
2
(d− 1)

)
.

□

Software to numerically verify the value of the signature, for d up to about 11, is available
on GitHub [4].

7. Spectrum and index of a 4D system

There is still much we do not know about almost commuting matrices, and some of what
we do know is nonconstructive. We know that Lin’s theorem [20] states that for every pair
of almost commuting Hermitian matrices there is close-by a pair of commuting Hermitian
matrices. The proofs of this theorem are sufficiently non-constructive that we do not have
any reasonable algorithm to find the nearby commuting pair. For three Hermitian matrices,
the result fails; the essential example that shows this is nice and constructive, as it is just
the three matrices generating a fuzzy sphere [14]. For real symmetric matrices, we have a
real version of Lin’s theorem [25], but we do not know if the real version of Lin’s theorem
holds for three matrices. As we show in this section, we pick up a K-theoretical obstruction
for five real matrices, so we know that the real version fails in this case. There is an example
[3, §6] that shows this obstruction in nontrivial, but the prior example in that study is far
from constructive.

There are abstract results [3, §4-5] related to bivariant K-theory for real C∗-algebras that
tell us there are five real symmetric matrices of (A1, . . . , A5) norm one with

(6) ∥[Aj, Ak]∥
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and

(7)

∥∥∥∥∥∑
j

A2
j − I

∥∥∥∥∥
arbitrarily small, with the property that these are not close to five commuting real symmetric
matrices. The obstruction is K-theoretical and can be expressed as the fact that

L0(A1, . . . , A5)

has nontrivial signature. From this we can conclude that

Λ(A1, . . . , A5)

is very similar to a four-sphere. We can say it is a compact set that separates the origin
from infinity and that it is close to the unit sphere. We cannot rule out a union of concentric
spheres, for example. More critically, it is just about impossible to unwind the homotopy
arguments used in E-theory so we have no way of writing down these matrices.

A possible construction of such matrices is to utilize the theoretical models of 4D topolog-
ical insulators that have a real Hamiltonian, from [29, §3], and then truncate these models
to be finite. By the results of [24] we know that if we use very large models, these will have
the correct K-theory and have the quantities in (6) and (7) as small as desired. Potentially,
this might only work with matrices so large we cannot even store them on a computer.

In this section we will show that this is a somewhat practical approach, in that the K-
theory comes out to be as expected in small models. To get commutators that are truly
small, say less than 1/100, might require a large computer, but should be possible if one is
curious enough. We cannot prove that the K-theory stays nontrivial for all models larger
than the one we work with, but past experience indicates that this should be the case.

To demonstrate the appearance of higher dimensional spheres in the Clifford spectrum of
physical systems, we consider a 4D tight-binding lattice that has been previously realized in
an electric circuit [27, 34]. This model has four sites per unit cell, on which the annihilation
operators can be labelled as am,n,j,l, bm,n,j,l, cm,n,j,l, dm,n,j,l, where the indices specify the
unit cell in all four dimensions. The corresponding creation operators are given by the
conjugate transpose of these operators (again denoted using physics notation), a†, b†, c†, d†.
The lattice’s Hamiltonian in the standard tight-binding basis can be divided into four sets
of terms, the on-site energies

(8) Hon = M
∑

m,n,j,l

(
a†m,n,j,lam,n,j,l + b†m,n,j,lbm,n,j,l − c†m,n,j,lcm,n,j,l − d†m,n,j,ldm,n,j,l

)
,

the nearest neighbor couplings within a single unit cell

(9) HNN,in = −t
∑

m,n,j,l

(
c†m,n,j,lam,n,j,l − b†m,n,j,ldm,n,j,l + d†m,n,j,lam,n,j,l + b†m,n,j,lcm,n,j,l

)
+ H.c.,

the nearest neighbor couplings between different unit cells

HNN,out = −t
∑

m,n,j,l

(a†m+1,n+1,j,lcm,n,j,l − d†m+1,n+1,j,lbm,n,j,l + c†m−1,n,j,lam,n,j,l

− b†m−1,n,j,ldm,n,j,l + a†m,n,j+1,l+1dm,n,j,l + c†m,n,j+1,l+1bm,n,j,l

+ d†m,n,j−1,lam,n,j,l + b†m,n,j−1,lcm,n,j,l) + H.c.,(10)
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and the longer-range couplings

HLR = −t1
∑

m,n,j,l

(a†m+1,n+1,j+1,l+1am,n,j,l + b†m+1,n+1,j+1,l+1bm,n,j,l

− c†m+1,n+1,j+1,l+1cm,n,j,l − d†m+1,n+1,j+1,l+1dm,n,j,l) + H.c..(11)

Then, the full lattice Hamiltonian is given by

(12) H = Hon +HNN,in +HNN,out +HLR.

In these equations, the notation “+H.c.” is used to indicate that every term’s Hermitian
conjugate is also included, e.g., if ta†m,n,j,lbm′,n′,j′,l′ is included, then so is t̄b†m′,n′,j′,l′am,n,j,l.

In the tight-binding basis, this 4D lattice’s position operators X1,2,3,4 are simply diagonal
matrices, in which each diagonal element [Xj]kk is the position in the jth dimension of the
kth unit cell. For simplicity for the examples considered in Figs. 7.1 and 7.2, all four lattice
sites in each unit cell are assigned the same spatial coordinate, and unit cells are separated
by the same lattice constant a in all four spatial directions. Thus, we can form the 4D
tight-binding lattice’s spectral localizer as

(13) Lλ=(x1,x2,x3,x4,E)(X1, X2, X3, X4, H) =
4∑

j=1

κ (Xj − λj)⊗ Γj + (H − λ5)⊗ Γ5.

Here, we are using the d = 5 representation of the Clifford relations defined as

Γ1 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , Γ2 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 , Γ3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



Γ4 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , Γ5 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

Finally, we note that the scaling parameter κ in Eq. (13) also serves to ensure that the
spectral localizer has consistent units, and thus κ has units of energy/distance.

For M, t, t1 ∈ R, this lattice is in class AI of the Altland-Zirnbauer classification [29, 18, 28],
and possesses bosonic time-reversal symmetry T 2 = +1, but no other local symmetries.
Direct calculation of the system’s Clifford spectrum reveals that it is a 4-dimensional surface
that is approximately S4 (i.e., a 4D sphereoid), see Fig. 7.1d-i. Moreover, the K-theory
element associated with this lattice’s Clifford spectrum is a local marker equivalent for the
second Chern number, and can be calculated as

indλ(X1, X2, X3, X4, H) = 1
2
sig(Lλ(X1, X2, X3, X4, H)).

For class AI, the time-reversal symmetry fixes this index to always be even. As can be seen
in Fig. 7.1, inside of the closed 4D surface that forms the Clifford spectrum, the index is
seen to be 2, while outside the index is 0.

Even with the small system size, the commutators are substantially smaller than in the
Clifford matrix examples in Section 6. We need to normalize things, as none of these matrices
have norm one. Numerical estimates tell us

∥[Xj, H]∥ /(∥Xj∥ ∥H∥)
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Figure 7.1. (a) Localizer gap µC
λ for a 5-by-5-by-5-by-5 4D class AI lattice

whose Hamiltonian is given by Eq. (12), with t1 = 0.8t and m = t/2. Here,
only x1 is varied, with x2 = x3 = x4 = 0, and κ = 0.1(t/a), where a is the
lattice constant. (b) Localizer index for the same system. (c) Spectral flow
of the 20 eigenvalues of Lλ closest to zero over the same position variation.
(d)-(i) Slices of the localizer gap (top) and localizer index (bottom) over the
surfaces xi and xj, with i, j = 1, 2, 3, 4. Any coordinate not shown in a given
plot is fixed to zero. The positions shown are varied between 0 and 3a. The
lattice is centered at the origin.

are approximately equal to 0.29 for odd j and 0.21 for even j and that each Xj has norm
2.0 and finally that H has norm close to 4. In order to get non-trivial K-theory we have to
rescale these, replacing Xj by (0.1)Xj. For much larger systems size, we have a theorem [24]
to tell us that the index of the localizer at the origin will equal the second Chern number.
There is substantial numerical evidence that this equality will hold for much smaller system
sizes. See, for example, [22, 23, 26].

By relaxing the reality of the coupling coefficients and choosing t1 ∈ C, the lattice’s
time-reversal symmetry is broken and it instead falls into class A of the Altland-Zirnbauer
classification, which represents systems with no local symmetries. As such, its topological
index determined by Eq. (7) can now be any integer, and odd values of this index are seen
in Fig. 7.2. For this system, the Clifford spectrum is two intersecting 4D spheroids, that
merge together as time-reversal symmetry is restored. For choices of λ in the interior of
both spheroids, the index remains 2, while the index outside of both surfaces is 0. However,
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Figure 7.2. (a) Localizer gap µC
λ for a 5-by-5-by-5-by-5 4D class A lattice

whose Hamiltonian is given by Eq. (12), with t1 = 0.8e0.1iπt and M = t/2.
Here, only x1 is varied, with x2 = x3 = x4 = 0, and κ = 0.1(t/a), where a is
the lattice constant. (b) Localizer index for the same system. (c) Spectral flow
of the 20 eigenvalues of Lλ closest to zero over the same position variation.
(d)-(i) Slices of the localizer gap (top) and localizer index (bottom) over the
surfaces xi and xj, with i, j = 1, 2, 3, 4. Any coordinate not shown in a given
plot is fixed to zero. The positions shown are varied between 0 and 3a. The
lattice is centered at the origin.

in between the two surfaces, a region that was inaccessible in the time-reversal symmetric
system, the index is 1.

A system with width of 5 lattice units is too small to try the methods of [24] to create
a “fuzzy sphere” with (6) and (7) both small and all the matrices normalized to have norm
one. To do this properly, we would want a round sample in place of a square sample, and
we would use a larger system. By keeping the position observables to be of norm one as the
system size grows, we would get smaller and smaller commutators.

Instead, we have found strong numerical evidence that the Clifford spectrum for the ob-
servables in our small system looks somewhat like a four-sphere. In particular, it seems that
a ray leaving the origin in any direction while staying at energy zero will cross the Clifford
spectrum just once for t1 ∈ R (Fig. 7.1), or once or twice for t1 ∈ C (Fig. 7.2). The hope
is that someone will see a pattern here, find a method to produce fuzzy four-spheres based
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on real-symmetric matrices, and prove that the Clifford spectrum of those matrices is a
four-sphere.

All of the algorithms necessary to reproduce these numerical results are available on
GitHub [4].

8. Open problems and future directions

In the typical application in physics the matrices involved are D matrices Xj that specify
position and the Hamiltonian H. In this case, the spectral localizer at zero is comprised of
H ⊗ eD+1 and

∑
Xj ⊗ ej. In the continuum the latter is the Fourier transform of a standard

Dirac operator. The term involving the Hamiltonian can be seen as a perturbation of the
Dirac operator. In this way, one can deduce the structure of the spectrum of this perturbed
Dirac operator [12, 30, 31].

There are, however, many other incompatible observables to which we have want to apply
the localizer, such as momentum operators and current operators. We would like to have
the basic theory of the Clifford spectrum built up to better support this ongoing research in
mathematical physics. To this end, we present some conjectures. Some of these may require
techniques from geometry or other areas of mathematics outside of operator theory.

There are patterns emerging in the types of spaces that show up as the Clifford spectrum
in examples. For the most part, these patterns have not been explained. The following
conjecture is due to Kisil [16]. Kisil sketched a possible proof, but the conjecture seems to
be still open.

Conjecture 8.1. The Clifford spectrum Λ(A1, . . . , Ad) is always nonempty, given A1, . . . , Ad

Hermitian matrices in Mn(C).

This is true for d = 2, and in the commutative case, since in each case the Clifford spectrum
is equal to a standard form of spectrum [22].

In all the examples found so far, the Clifford spectrum of d matrices in Mn(C) either has
cardinality n or less or contains a two-dimensional space.

Conjecture 8.2. If the Clifford spectrum Λ(A1, . . . , Ad) for Hermitian matrices in Mn(C)
is finite then it has cardinality at most n.

Conjecture 8.3. The Clifford spectrum Λ(A1, . . . , Ad) of Hermitian matrices in Mn(C) is
never a one-manifold.

While we have not seen an example where the Clifford spectrum is a non-orientable man-
ifold, we believe such an example can exist. Indeed, there may be matrix models based on
recent physical experiments [19, 33] that lead to this.

We end with a more open-ended challenge.

Problem 8.4. Define a fuzzy four-sphere, similar to the usual fuzzy two-sphere, that can be
generated by five almost commuting real-symmetric matrices, with arbitrarily small commu-
tators possible. This should have Clifford spectrum equal to the standard unit four-sphere
and at points inside this sphere the localizer should have nonzero signature.
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