
Test and Evaluation of Systems with 
Embedded Machine Learning Components

Michael R. Smith, Carianne Martinez, Joe Ingram, Mark DeBonis, Christopher Cuellar, Deepu Jose

Sandia National Laboratories, Albuquerque, New Mexico
{msmith4, cmarti5, jbingra, mjdebon, crcuell, djose}@sandia.gov

Abstract
As Machine Learning (ML) continues to advance, it is being integrated into more systems. Often, the ML 
component represents a significant portion of the system that reduces the burden on the end user or 
significantly improves task performance. However, the ML component represents an unknown complex 
phenomenon that is learned from collected data without the need to be explicitly programmed. Despite 
the improvement in task performance, the models are often black boxes. Evaluating the credibility and 
the vulnerabilities of ML models poses a gap in current test and evaluation practice. For high 
consequence applications, the lack of testing and evaluation procedures represents a significant source 
of uncertainty and risk. To help reduce that risk, we present considerations to evaluate systems 
embedded with an ML component within a red-teaming inspired methodology. We focus on (1) cyber 
vulnerabilities to an ML model, (2) evaluating performance gaps, and (3) adversarial ML vulnerabilities.

Introduction
Machine learning (ML) is a paradigm in which the actions taken by a computer are learned rather than 
explicitly programmed. This is a tremendous advance, especially in complex applications. ML is now an 
everyday experience ranging from innocuous applications such as recommending what movie to watch 
next to high consequence domains such as medical (Bradley, Korfiatis, Akkus, & Kline, 2017), critical 
infrastructure (Laplante, Milojicic, Serebryakov, & Bennett, 2020), and warfare (Tangredi & Galdorisi, 
2021) applications. Over 160 billion US dollars was invested in ML applications in 2021 and that 
investment is continuing to grow exponentially (Zhang, et al., 2022). As the integration of ML is more 
prevalent, there have also been some disastrous results including deaths from mistakes made by self-
driving vehicles (McFarland, 2022), racist chat bots (Schwartz, 2019) and image classifiers (Guynn, 2015), 
as well as targeted adversarial attacks against ML models (Chakraborty, Alam, Dey, Chattopadhyay, & 
Mukhopadhyay, 2018). Thus, establishing a process and tools to evaluate such systems is critically 
important. Our goal in this paper is to  define an initial process for evaluating systems that have an ML 
component central to its operation.

As opposed to the academic evaluation of ML models, we present a system-level evaluation rather than 
the ML model in isolation. We outline three axes along which to evaluate an ML component: 

1) Evaluating the performance of the ML component to ensure that the model functions as 
intended and is developed based on best practices developed by the ML community. This 
process entails more than simply evaluating the learned model. As the model operates on data 
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used for training as well as perceived by the system, peripheral functions such as feature 
engineering and the data pipeline need to be included. 

2) ML components necessitate supporting infrastructure in deployed systems. The support 
infrastructure may introduce additional vulnerabilities that are overlooked in traditional test and 
evaluation processes. Further, the ML component may be subverted by modifying key 
configuration files or data pipeline components. 

3) ML models introduce possible vulnerabilities to adversarial attacks. The adversarial machine 
learning (AML) attacks could be designed to evade detection by the model, poison the model, 
steal the model or training data, or misuse the model to act inappropriately. 

It is assumed that there will be an accompanying cyber assessment which is outside the scope of this 
paper. Reporting deliverables, actions, and planning should be followed according to the established 
guidance. This paper focuses on elements specific to the ML component that would accompany a cyber 
vulnerability assessment. The final product of the assessment methodology is a document outlining the 
risks and possible remediations related to an ML system. The document is designed to record the 
expected performance and uncertainties of the ML component(s), cybersecurity vulnerabilities, ML 
vulnerabilities, data leakage through the ML component, and the impact of these vulnerabilities on the 
system and application.

A typical red teaming methodology (summarized in Figure 1) comprises the following eight steps. We 
augment these steps for considering systems with an ML component.

• Define Assessment Goal and Scope: The primary objective of this step is to align the assessment to 
the application goal of the system and specifically outline how the ML component affects that goal. 
All information that is available about the system and the ML component should be provided to the 
assessment team, access to the system, and rules of engagement established. The scope of the 
assessment establishes the rules of engagement and defines the threat model(s).

Figure 1: Overview of the methodology for assessing systems with an ML component. The key component is a three-pronged 
assessment: (1) an assessment of the ML component(s) to attacks that cause a failure or leak of unintended information; (2) an 
assessment of the infrastructure supporting the ML component(s) and how it may affect the performance of the ML component; 
and (3) an assessment of the performance of the ML component in contested environments.



• Staff Assessment Team: The Integrated Assessment Team (IAT) will be charged with planning and 
executing the assessment. This team will need to include ML and AML experts who understand the 
domain, system, and the ML component that is being assessed.

• Information Gathering and Reconnaissance: This step seeks to gather as much information as 
possible that documents the application objectives, the system, and the ML component. Ideally, 
system developers are available for interview and provide additional information as needed to cover 
undocumented aspects of the system. Open-source Intelligence (OSINT) should be consulted—
particularly relating to the ML component and techniques to subvert it.

• Discovery and Scanning: The objective of discovery and scanning is to discover where in the system 
the ML component can be affected. Access points generally lie in a data pipeline for operating on 
data and outputting results. How the ML component is executed and configured is identified in this 
step. In cases where the ML component is not fully disclosed, discovering the ML component is also 
undertaken.

• Vulnerability Assessment/ML Performance Assessment: Given the identified touch points in data 
pipeline(s), the system configuration to execute the ML component, and ML model details, 
vulnerabilities are identified, and plans are made to exploit them. Vulnerabilities are identified 
relating to the infrastructure supporting the ML model as well as the model itself. Additionally, 
performance, reliability, and robustness of the ML model is assessed, and plans are made to test it.

• Exploitation/Deployed Performance: Exploitation of the identified vulnerabilities and testing of ML 
performance, reliability, and robustness issues are executed. Impact to the ML model and 
downstream system effects are recorded.

• Impact Analysis: The goal of the assessment is to assess the impact on the domain and how the 
exploitation of the identified vulnerabilities affects the objective of the application. Once the 
vulnerabilities have been exploited and the assumptions made by the ML component have been 
tested with edge cases, the impact of such adversarial attacks or data that breaks assumptions on 
the system are evaluated. The impact analysis consolidates the findings from the exploitation and 
deployed performance assessment with respect to the application impact. Possible mitigations are 
also provided and analyzed. The objective of this phase is to quantify the severity of any 
vulnerability or unexpected behavior from the ML component on the overall system. In this step, it 
may be recognized that there are additional gaps that need to be addressed. If so, any phase of the 
assessment can be repeated.

• Final Analysis and Report: All findings and documentation of the assessment steps are provided in a 
final report. It should include recommendations on how to mitigate the identified vulnerabilities and 
how to improve the performance of the ML component and the overall system.

This paper establishes an initial set of considerations for ML components. We first provide a high-level 
description of developing an ML model and then discuss the vulnerabilities associated with ML.

The Machine Learning Lifecycle
A broad overview of the ML model development and deployment cycle is provided to give context in the 
assessment and to motivate the need for access to data and additional information in an assessment. 
Figure 2 shows the steps that are often involved in developing and deploying an ML model. There are 
two primary components that are integrated into an ML component: a data processing module and a 
trained ML model. As can be seen in Figure 2, several steps and design decisions are involved which are 



difficult to derive from access to only the deployed system. Ideally, an assessment of an ML model 
would begin prior to its deployment in a final system.

The ML development life cycle is a composition of three broad phases: 

1. Data Collection and Annotation: A key phase in ML is collecting and labelling the data. It is 
important that the data is representative of the task; the failure of training data to capture the 
statistical distribution of data in the deployment environment has proven to be a key limitation 
of ML (Yampolskiy, 2019). As such, several public open-source datasets are available and 
synthetic data generation methods are employed. There are several implications in 
vulnerabilities and the performance of ML that will be discussed below related to the training 
and evaluation data. Open-source data sets represent a possible vulnerability.

2. Feature Engineering: Once the raw data is collected, it often needs to be processed to make it 
suitable for an ML model. Common data processing techniques include filtering noise, 
normalizing to a standard range of values, or otherwise transforming the data to be suitable for 
the ML model. Different ML models have different requirements. For example, deep neural 
networks can operate on raw images. Other models, such as a support vector machine, may 
need to have features extracted from the image to operate on. Feature engineering is often an 
iterative process with experimentation used to discover the best representation of the data. The 
end product is a training dataset and often an associated evaluation dataset. For assessments, 
knowing the design decisions for the feature engineering are beneficial to understand what is 
considered important to the system and what is thrown away.
Experimentation: The experimentation step involves an ML developer tuning the ML algorithm 
to optimize a performance metric on the training and evaluation datasets. This can be quite 
complex. In the case of deep neural networks, experimentation can involve determining the 
architecture, activation functions, learning rate, number of epochs, etc. The end product is a 

Figure 2: Process of the ML life-cycle for developing a data processing component and an ML component. While documentation 
and the deployed system are typically provided for an assessment, significantly more development steps are involved in 
developing the ML component. Ideally, an assessment would have access to intermediate steps and design decision processes.



trained model. In many cases, the internals of the learned model and training data are not 
exposed, assessing risks is difficult if no further information is provided. 

After these steps are completed, the data processing and ML components are deployed. In some 
systems, the development and deployment stages are integrated such that the ML component is 
continually updated as additional data is received. In some cases, a human in the loop annotates data, 
providing feedback to the system.

The ML life cycle illustrates the chain of decisions that goes into a final model and the amount of 
information that would be beneficial for an assessment integrating the development cycle. Significant 
improvement in the assessment quality can be achieved with access to the feature engineering and 
experimentation components, the ML algorithm, training data, and evaluation data. 

Vulnerability Assessment/ML performance Assessment
The inclusion of an ML model introduces additional possible vulnerabilities into a system. This section 
focuses on assessing (1) the infrastructure supporting the ML, (2) adversarial attacks against the ML 
component, and (3) performance of the ML component. 

Cyber Attacks and Vulnerability Assessment on the ML Infrastructure
The cyber vulnerability assessment focuses on the infrastructure supporting the ML component, 
specifically focusing on the data access, storage, data processing, and associated configuration files that 
were discovered when scanning the system. Understanding how a data pipeline is generally designed 
and the chain of custody of data through which it flows helps define the methodology and types of 
attacks on the ML ecosystem. In ML, data represents a key component driving the quality of an ML 
model.

Generally, there exists some form of data generation or data capture from a sensor or set of sensors 
that provide information possibly including results from other subsystems. The data is processed 
eventually in preparation for the ML model. This step can happen at the same time as the algorithmic 
processing but does not have to. The intermediate results may be stored or can be directly transferred 
into the ML algorithm. The results from the ML model are often directed to storage for persistence and 
any other follow-on algorithmic handling of information. Eventually, these results are displayed such 
that strategic decisions can be made and information gleaned, or some action is taken. Each of these 
data flows represent interfaces that can be tested for weakness and net effect on the ML output, not all 
of these are unique to machine learning or ML systems; however, there should be a presence of them in 
many deployments.

Using the previously discovered components, the assessment team checks for and documents any 
known vulnerabilities. Noting which libraries are loaded may provide information about the existence 
and implementation of the ML component, for example, knowing if PyTorch or TensorFlow is used. 
Some attacks related to libraries could be if the libraries themselves are known to contain 
vulnerabilities, such as not maintaining and updating the operating environment of the ML component 
or even checking dependency chains of the libraries if they contain vulnerabilities that could be 
accessible. Other potential vectors of attack on a ML component could include actions such as modifying 
a configuration file or overwriting data in the database.

Beyond cyber vulnerabilities, an ML model could be subverted by actions including:



1) Modifying a saved model by swapping out the entire model or changing a specific portion of the 
saved file. This occurs as many systems have a pre-learned model that is stored to be used 
rather than retraining a model each time it is used.

2) Modifying configuration settings such as thresholds of when to take an action or to retrain. 
These configurations can be stored in files or environment variables.

3) Directly modifying the data when the ML model is updated or when queried. Any modification 
poses a potential threat.

Adversarial ML Attacks
AML refers to malicious attacks on ML algorithms and the data. The information gained from the 
previous phases inform the types of attacks that are possible and those that are the most pertinent to 
the assessment. Important information includes the type of ML algorithm that is being used, the training 
and evaluation data, access to the ML component, the threat model, and goal of the assessment. These 
will dictate the type of attacks that are possible to execute. The attacks should be prioritized based on 
the access to the model according to the threat model and goals of the assessment/threat model. 
Possible attacks are outlined in the following subsections. Actual attack details will be coordinated by 
the AML SME on the IAT with input from domain and mission experts to best assess application impact 
under these attacks. 

In the past decade the number of papers on this topic has grown exponentially and these attacks are 
both effective and alarming. These types of attacks come in several varieties: Evasion, Subversion (or 
Poisoning), Stealing, and Misuse.

Defense mechanisms against adversarial attacks is another consideration for an assessment. There are 
several proposed methods for defenses, albeit with limited success, as shown in several surveys (Tian, 
Cui, Liang, & Yu, 2022; Short, La Pay, & Gandhi, 2019).

Evasion
Evasion attacks involve carefully crafting inputs to an ML model to induce an error. This generally entails 
altering data input to avoid detection or to be misclassified. The changes made to the data are often 
imperceptible to humans but produce high confidence outputs from ML models that are incorrect. 
Figure 3 illustrates attacks by adding noise to an image (Goodfellow, Shiens, & Szegedy, 2014) and an 
attack that adds specially crafted noise to a shirt to avoid a person detection algorithm (Xu, et al., 2020).

Figure 3: Left: A digital evasion attack adding imperceptible noise to an image (Goodfellow, Shiens, & Szegedy, 2014), 
Right: An evasion attack using a specially designed t-shirt to evade detection (Xu, et al., 2020).



Subversion
Subversion, or data poisoning, attacks the training data used to create the ML model. Since many data 
sets are obtained through open sources, one can see how such an attack is of extreme concern.  This 
may be as simple as adjusting the labels of the training data to incorrect labels or adding a specific 
feature that will trigger the ML model to produce a desired output. There are several motives for such 
an attack. One is simply to break the ML model so that its performance is decreased. Another motive is 
to dictate the output of an ML model when a specified feature is present. Figure 4 illustrates subversion 
attacks in digital images and by altering a physical object (Gu, Dolan-Gavitt, & Garg, 2017). In each, a 
specified pattern is included to induce a specific output.

Stealing 
This type of attack focuses on obtaining information about the ML model (model extraction (Atli, Szyller, 
Juuti, Marchal, & Asokan, 2020)) or the data that was used for training (model inversion (Fredrikson, et 
al., 2014) or membership inference (Shokri, Stronati, Song, & Shmatikov, 2017)). Stealing attacks are 
performed by careful and repeated querying of the ML model. Model extraction poses a threat by 
stealing the model that represents potentially large investments of intellectual property. Often the data 
used to train a model is sensitive and methods exists that can infer the data that was used for training 
an ML model. This represents a potentially critical privacy risk.

Misuse
This type of attack occurs when an attacker employs an ML model in a malicious way and not for its 
intended purpose. Examples include the altering of audio, imagery, or videos (deep fakes (Verdoliva, 
2020)) for ulterior motives such as disinformation for political or financial gain.

ML Model Performance Assessment

In this stage, the IAT performs an independent assessment of the ML system and model. The intent is to 
ensure that the model will perform satisfactorily once deployed and to assess how it may perform when 
presented with novel inputs. This is a challenging portion of the assessment as it is difficult to predict 
how an environment may change and is an active area of research in the ML community. 

Figure 2: Top: A digital subversion (backdoor) attack to misclassify a 7 as 0, Below: A subversion (backdoor) attack that 
misclassifies a stop sign as a different sign (i.e. a speed limit sign) depending on the sticker that is placed on the sign (Gu, 
Dolan-Gavitt, & Garg, 2017).



Specifically, the IAT will complete as many of the following steps as possible given access to system 
components and resources:

1. Inspect and assess the data used for training and evaluation.
2. Compare the training and evaluation data to data sampled from the deployment domain.
3. Review the ML source code.
4. Independently train and evaluate the ML model in an environment similar to (ideally, identical 

to) the deployed system.
5. Review methods used to understand model behavior, such as explanations and uncertainty 

quantification.
6. Document findings, identify risks, and recommend mitigations.

Where possible, the actual training and evaluation datasets and deployment environment should be 
used for the ML assessment. However, the assessment team may use proxies when necessary.

The assessment should answer the following questions:

• Does the ML component work as intended?
• Is the component robust enough for deployed scenarios?
• Are the limits or failure modes of the model understood and documented?
• Were best practices followed during development?

The IAT should assess the ML component along the following axes: (1) representative datasets, (2) 
model performance, (3) deployment model performance, and (4) model trust.  In the remainder of this 
section, we describe the assessment process, and we provide a rubric for evaluation ML model 
performance risk with further details in the Appendix.

Representative Datasets
As the performance of an ML model is completely dependent on the data used to train it, there are 
several criteria that must be met to provide high confidence in its usage. Data used for training and 
evaluation need to be representative of the domain that the model will be deployed against. Statistical 
tests to determine whether features in the training data are drawn from a distribution that is similar to 
that found in the deployment environment serve to assess risk associated with fielded system 
performance. Additionally, the manner in which the data is partitioned for training the ML model and 
assessing its performance must be reviewed to avoid biases with consideration of temporal, spatial, and 
generalization biases (Pendlebury, Pierazzi, Jordaney, Kinder, & Cavallaro, 2019; Smith, et al., 2022). 
Other data considerations include the size of the dataset, the coverage and appropriateness of the 
dataset in feature space with respect to the specific model task, and sensitivities present in the data 
where access control procedures must be reviewed.  Data should be documented including its source 
and any known limitations. The Datasheets for Datasets (or similar) methodology (Gebru, et al., 2021) 
should be followed for concise documentation.

Model Performance
An ML model should be evaluated to ensure that it is developed and performing correctly based on 
several criteria.  

First, the appropriateness of an ML model for the specific task should be reviewed. Given the dataset 
review, model complexity should also be assessed; for example, deep learning algorithms typically 



require large datasets and are not always appropriate for tasks with limited training data. Performance 
metrics should be reviewed to ensure that they capture the desired model behavior.  Additionally, the 
process for selecting all decision thresholds within the model should be reviewed and analyzed for 
sensitivities, and hyperparameter tuning methods should be scrutinized to understand potential model 
performance variability.

Second, the model’s performance should be evaluated after training. Considerations such as 
performance requirements, range of data values expected to be input to the model, and model stability 
should be reported. The IAT should ensure the model’s performance in isolation is consistent with its 
performance as part of the full system.  Special attention should be given to subgroups in the dataset 
that are particularly important for the model’s intended use or that run the risk of being 
underrepresented in the dataset.  Evaluation metrics should be explicitly reported for these subgroups, 
and mitigations should be recommended for any observed degradation of model performance within 
these groups.

Finally, the model should be well documented, and its performance should be reproducible. The IAT 
should review documentation, and ideally, methods such as model cards (Mitchell, et al., 2019) should 
be used for consistency.  Best coding practices including version control, experiment tracking, and 
random number generator seeding should be verified to ensure reproducibility of model results.

Deployed Model Performance
The data and environment that an ML model operates on can vary over time and significantly differ from 
those that the ML model was developed on. This introduces a risk that the ML component may be 
irrelevant or incorrect. Over time, an ML model can become stale because historical data was used for 
training. The impact of an outdated model should be quantified as to how it impacts its performance 
over time. A model generally becomes outdated as the data is operates on changes (concept drift). Data 
should be reviewed periodically to detect concept drift. As concept drift is detected, methods to update 
ML models appropriately should be identified and scheduled. Additionally, independent data sets 
collected from the actual deployed environment should be used if available.

Model Trust
Recent work in the ML community has shown that models can be wrong but extremely confident in their 
predictions (Nguyen, Yosinski, & Clune, 2015). This is exploited by adversarial attacks. There is a need to 
provide trust in the model beyond good performance.  Open areas of research in the machine learning 
field include explainability, uncertainty quantification, and the development of defenses for adversarial 
attacks.

Explainability is the capability of ML models to provide an explanation for how decisions are made either 
for the model as a whole or for individual predictions (Ribeiro, Singh, & Guestrin, 2016). Explanations 
are a source for increasing trust in the output of the model when working with a domain expert to 
ensure that the model is functioning correctly. 

Another facet to understanding limitations of ML models lies in uncertainty quantification (Abdar, et al., 
2021). There are many sources of uncertainty in ML models including model uncertainty (uncertainty 
from the model errors in approximating the true function), data uncertainty (uncertainty from noise in 
the data due to sensor errors or inherent noise), and distributional uncertainty (uncertainty from a 



mismatch between training data and data that will be encountered in deployed scenarios). Quantifying 
the uncertainty will help to quantify the risk associated with using the model.

Final Analysis and Report
At the end of the assessment, a final report is produced summarizing all the steps taken to come to any 
conclusions. It should be detailed enough to reproduce the exploitation and ML model assessment. 
Importantly, it should be noted what was not able to be assessed due to a lack of a certain resource. 
Recall from Figure 2 that there is a large number of steps in producing a final ML component. Lack of 
resources can limit the efficacy of an assessment and they should be pointed to here including the risk 
that is introduced by not being able to use them in the assessment. Table 1 provides a high-level 
summary of the necessary components to produce each section of the final report. The rows of the table 
represent the various components of the ML lifecycle. The columns represent assessments of interest. 
Each cell represents the priority level associated with the need for the component in that portion of the 
assessment. The scores are interpreted as follows:

1. Low: this component is optional at this stage.
2. Medium: this component is a ``nice-to-have'' during this stage of the assessment, but the 

assessment can still be completed successfully without it.
3. High: the component is needed, but the assessment can still be completed through other 

means. As an example, the data source code may be needed to assess the performance of the 
ML model, but if the training and evaluation data is already provided, a performance 
assessment can still be performed successfully. However, additional cost is generally needed if 
the component is not provided.

4. Critical: indicates that the relevant assessment stage cannot be completed satisfactorily without 
that specific component.

Table 1: Summary of necessary components for an ML assessment

SUPPORTING 
INFRASTRUCTURE

ML PERFORMANCE CAML OVERALL

ML DEVELOPMENT STAGE
DOCUMENTATION Medium Medium Medium Medium
ML DEVELOPER Medium Medium Medium Medium
DATA SOURCE CODE Medium High High High
TRAINING DATA Low Critical Critical Critical
EVALUATION DATA Low Critical Critical Critical
ML SOURCE CODE Medium Critical High Critical
TRAINED MODEL Medium High Critical Critical

ML DEPLOYMENT STAGE
SYSTEM INPUTS High Medium Medium High
DATA PROCESSING High High Medium High
DATA STORAGE High High High High
SYSTEM COMPONENT(S) Critical Low Low Critical
OPERATIONL ENVIRONMENT Critical Low Low Critical
DEPLOYED ML COMPONENT Critical High High Critical
END USER(S) Low Medium Medium Medium



Conclusion
This paper presents considerations for doing an assessment on a system with an ML component.  This is 
a new research field in the ML community and several toolkits exist to aide in this process. It is 
encouraged to take advantage of the tools and techniques provided by the ML community. Our primary 
motivation is bringing to the T&E community the importance of assessing ML models and providing a 
starting point for proper assessments.
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Appendix
ML Performance Rubric
The following rubric may be used to evaluate the performance of an ML model:

High Risk Medium Risk Low Risk
Representative 
Datasets

The training and evaluation 
datasets contain several 
high-risk attributes relating 
to MA
• Data is not provided for 

evaluation OR 
• Data has significant 

biases present.
• Data does not represent 

data that will be 
encountered in 
deployed environments 

• Data has not been 
examined and features 
exist which make 
learning inappropriate

• Data is not documented

The training and 
evaluation datasets are 
partially documented, 
match expert 
assumptions but still 
have some sources of 
uncertainty and risk 
• Data is provided 

for evaluation AND
• Data has moderate 

or no biases that 
significantly affect 
the MA of the 
system. 

• Training and 
evaluation data 
match the data 
that is expected to 
be encountered in 
deployed scenarios 
with recognized 
deviations and 
planned 
remediations.

• Data has been at 
least partially 
reviewed and some 
faults are identified 
with appropriate 
remediations.

The training and 
evaluation datasets are 
documented, match 
expert assumptions and 
have low uncertainty in 
the above criteria 
• Data is provided for 

evaluation AND
• No significant biases 

exist 
• Training and 

evaluation data match 
the expected 
distribution once 
deployed 

• There are enough 
examples for an ML 
algorithm to learn 

• Data has been 
reviewed by experts 
AND is documented



• Data is at least 
partially 
documented.

Model 
Evaluation

Most or all of the following 
concerns are raised
• Target metric is 

misaligned from the 
mission goals 

• Decision thresholds are 
not properly set 

• No hyperparameter 
tuning was done 

• Model is under or 
overfit 

• Model is not numerically 
stable 

• Model performs 
differently once 
integrated into the 
system 

• No documentation on 
the model or 
development and 
evaluation phases

• Code is not versioned 
• Evaluation cannot be 

reproduced

The ML model is 
properly documented 
and evaluated, but 
some concerns still 
persist due to the 
nature of the ML 
model and 
environment 
• Evaluation criteria 

may be ill defined 
or misaligned with 
the mission

• The deployed 
environment may 
be highly dynamic 
where a 
representative 
training and 
evaluation data set 
is difficult to obtain

• Model is 
numerically stable 

• Code is maintained 
and versioned 

• Evaluation results 
are reproducible

The ML model is properly 
documented and 
evaluated and 
assumptions match those 
in the deployed 
environment
• Evaluation criteria is 

well defined 
• The deployed 

environment is well 
understood, and 
representative 
training and 
evaluation dataset are 
used. 

• Model is numerically 
stable

• Code is maintained 
and versioned 

• Evaluation results are 
reproducible

Deployed 
Model 
Evaluation

There is no 
acknowledgement or 
monitoring of changes to 
the deployed environment 
• No risks are laid out 

AND 
• No processes are in 

place to monitor 
changes in the data or 
the retrain

The need to monitor 
the dynamics of the 
deployed environment 
are acknowledged but 
not all aspects are fully 
covered
• Risks from concept 

drift are 
enumerated and 
documented 

• The data is not 
monitored for 
changes OR 

• No process is in 
place to adapt to 
changes in the 
environment

The risks of concept drift 
are understood, and 
mitigations are in place 
• Data from the system 

is compared with the 
assumptions that 
were used during 
training

• Mechanisms for 
updating the ML 
model are in place  



Model Trust No aspect is addressed to 
ensure trustworthy outputs 
from an ML model 
• No defenses of 

adversarial attacks are 
in place or 
acknowledged

• No explanations are 
provided to help vet the 
decision process made 
by the ML model 

• Uncertainty from the 
model is not accounted 
for

Some aspects have 
been addressed for 
trustworthy outputs 
from an ML model. Not 
all components are 
addressed, but those 
most related to MA are 
satisfactorily addressed 
• Explanations are 

verified by a SME 
OR 

• Defenses are in 
place against 
adversarial attacks 
OR 

• Outputs have an 
associated 
uncertainty 
measure

All aspects have been 
addressed for prediction 
trustworthiness
• Explanations are 

verified by a SME AND 
• Defenses are in place 

against adversarial 
attacks AND 

• Outputs have an 
associated uncertainty 
measure

This rubric was developed after consulting several existing resources in the literature (Nagy, 2022; Lavin, 
et al., 2022; Hond, et al., 2022; Mitchell, et al., 2019; Gebru, et al., 2021).


