
Test and Evaluation of Systems with
Embedded Machine Learning Components

Michael R. Smith, Carianne Martinez, Joe Ingram, Mark DeBonis, Christopher Cuellar, Deepu Jose

Sandia National Laboratories, Albuquerque, New Mexico
{msmith4, cmarti5, jbingra, mjdebon, crcuell, djose}@sandia.gov

Abstract
As Machine Learning (ML) continues to advance, it is being integrated into more systems. Often, the ML
component represents a significant portion of the system that reduces the burden on the end user or
significantly improves task performance. However, the ML component represents an unknown complex
phenomenon that is learned from collected data without the need to be explicitly programmed. Despite
the improvement in task performance, the models are often black boxes. Evaluating the credibility and
the vulnerabilities of ML models poses a gap in current test and evaluation practice. For high
consequence applications, the lack of testing and evaluation procedures represents a significant source
of uncertainty and risk. To help reduce that risk, we present considerations to evaluate systems
embedded with an ML component within a red-teaming inspired methodology. We focus on (1) cyber
vulnerabilities to an ML model, (2) evaluating performance gaps, and (3) adversarial ML vulnerabilities.

Introduction
Machine learning (ML) is a paradigm in which the actions taken by a computer are learned rather than
explicitly programmed. This is a tremendous advance, especially in complex applications. ML is now an
everyday experience ranging from innocuous applications such as recommending what movie to watch
next to high consequence domains such as medical (Bradley, Korfiatis, Akkus, & Kline, 2017), critical
infrastructure (Laplante, Milojicic, Serebryakov, & Bennett, 2020), and warfare (Tangredi & Galdorisi,
2021) applications. Over 160 billion US dollars was invested in ML applications in 2021 and that
investment is continuing to grow exponentially (Zhang, et al., 2022). As the integration of ML is more
prevalent, there have also been some disastrous results including deaths from mistakes made by self-
driving vehicles (McFarland, 2022), racist chat bots (Schwartz, 2019) and image classifiers (Guynn, 2015),
as well as targeted adversarial attacks against ML models (Chakraborty, Alam, Dey, Chattopadhyay, &
Mukhopadhyay, 2018). Thus, establishing a process and tools to evaluate such systems is critically
important. Our goal in this paper is to define an initial process for evaluating systems that have an ML
component central to its operation.

As opposed to the academic evaluation of ML models, we present a system-level evaluation rather than
the ML model in isolation. We outline three axes along which to evaluate an ML component:

1) Evaluating the performance of the ML component to ensure that the model functions as
intended and is developed based on best practices developed by the ML community. This
process entails more than simply evaluating the learned model. As the model operates on data

SAND2023-11084JThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the
U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United
States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States
Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan.

used for training as well as perceived by the system, peripheral functions such as feature
engineering and the data pipeline need to be included.

2) ML components necessitate supporting infrastructure in deployed systems. The support
infrastructure may introduce additional vulnerabilities that are overlooked in traditional test and
evaluation processes. Further, the ML component may be subverted by modifying key
configuration files or data pipeline components.

3) ML models introduce possible vulnerabilities to adversarial attacks. The adversarial machine
learning (AML) attacks could be designed to evade detection by the model, poison the model,
steal the model or training data, or misuse the model to act inappropriately.

It is assumed that there will be an accompanying cyber assessment which is outside the scope of this
paper. Reporting deliverables, actions, and planning should be followed according to the established
guidance. This paper focuses on elements specific to the ML component that would accompany a cyber
vulnerability assessment. The final product of the assessment methodology is a document outlining the
risks and possible remediations related to an ML system. The document is designed to record the
expected performance and uncertainties of the ML component(s), cybersecurity vulnerabilities, ML
vulnerabilities, data leakage through the ML component, and the impact of these vulnerabilities on the
system and application.

A typical red teaming methodology (summarized in Figure 1) comprises the following eight steps. We
augment these steps for considering systems with an ML component.

• Define Assessment Goal and Scope: The primary objective of this step is to align the assessment to
the application goal of the system and specifically outline how the ML component affects that goal.
All information that is available about the system and the ML component should be provided to the
assessment team, access to the system, and rules of engagement established. The scope of the
assessment establishes the rules of engagement and defines the threat model(s).

Figure 1: Overview of the methodology for assessing systems with an ML component. The key component is a three-pronged
assessment: (1) an assessment of the ML component(s) to attacks that cause a failure or leak of unintended information; (2) an
assessment of the infrastructure supporting the ML component(s) and how it may affect the performance of the ML component;
and (3) an assessment of the performance of the ML component in contested environments.

• Staff Assessment Team: The Integrated Assessment Team (IAT) will be charged with planning and
executing the assessment. This team will need to include ML and AML experts who understand the
domain, system, and the ML component that is being assessed.

• Information Gathering and Reconnaissance: This step seeks to gather as much information as
possible that documents the application objectives, the system, and the ML component. Ideally,
system developers are available for interview and provide additional information as needed to cover
undocumented aspects of the system. Open-source Intelligence (OSINT) should be consulted—
particularly relating to the ML component and techniques to subvert it.

• Discovery and Scanning: The objective of discovery and scanning is to discover where in the system
the ML component can be affected. Access points generally lie in a data pipeline for operating on
data and outputting results. How the ML component is executed and configured is identified in this
step. In cases where the ML component is not fully disclosed, discovering the ML component is also
undertaken.

• Vulnerability Assessment/ML Performance Assessment: Given the identified touch points in data
pipeline(s), the system configuration to execute the ML component, and ML model details,
vulnerabilities are identified, and plans are made to exploit them. Vulnerabilities are identified
relating to the infrastructure supporting the ML model as well as the model itself. Additionally,
performance, reliability, and robustness of the ML model is assessed, and plans are made to test it.

• Exploitation/Deployed Performance: Exploitation of the identified vulnerabilities and testing of ML
performance, reliability, and robustness issues are executed. Impact to the ML model and
downstream system effects are recorded.

• Impact Analysis: The goal of the assessment is to assess the impact on the domain and how the
exploitation of the identified vulnerabilities affects the objective of the application. Once the
vulnerabilities have been exploited and the assumptions made by the ML component have been
tested with edge cases, the impact of such adversarial attacks or data that breaks assumptions on
the system are evaluated. The impact analysis consolidates the findings from the exploitation and
deployed performance assessment with respect to the application impact. Possible mitigations are
also provided and analyzed. The objective of this phase is to quantify the severity of any
vulnerability or unexpected behavior from the ML component on the overall system. In this step, it
may be recognized that there are additional gaps that need to be addressed. If so, any phase of the
assessment can be repeated.

• Final Analysis and Report: All findings and documentation of the assessment steps are provided in a
final report. It should include recommendations on how to mitigate the identified vulnerabilities and
how to improve the performance of the ML component and the overall system.

This paper establishes an initial set of considerations for ML components. We first provide a high-level
description of developing an ML model and then discuss the vulnerabilities associated with ML.

The Machine Learning Lifecycle
A broad overview of the ML model development and deployment cycle is provided to give context in the
assessment and to motivate the need for access to data and additional information in an assessment.
Figure 2 shows the steps that are often involved in developing and deploying an ML model. There are
two primary components that are integrated into an ML component: a data processing module and a
trained ML model. As can be seen in Figure 2, several steps and design decisions are involved which are

difficult to derive from access to only the deployed system. Ideally, an assessment of an ML model
would begin prior to its deployment in a final system.

The ML development life cycle is a composition of three broad phases:

1. Data Collection and Annotation: A key phase in ML is collecting and labelling the data. It is
important that the data is representative of the task; the failure of training data to capture the
statistical distribution of data in the deployment environment has proven to be a key limitation
of ML (Yampolskiy, 2019). As such, several public open-source datasets are available and
synthetic data generation methods are employed. There are several implications in
vulnerabilities and the performance of ML that will be discussed below related to the training
and evaluation data. Open-source data sets represent a possible vulnerability.

2. Feature Engineering: Once the raw data is collected, it often needs to be processed to make it
suitable for an ML model. Common data processing techniques include filtering noise,
normalizing to a standard range of values, or otherwise transforming the data to be suitable for
the ML model. Different ML models have different requirements. For example, deep neural
networks can operate on raw images. Other models, such as a support vector machine, may
need to have features extracted from the image to operate on. Feature engineering is often an
iterative process with experimentation used to discover the best representation of the data. The
end product is a training dataset and often an associated evaluation dataset. For assessments,
knowing the design decisions for the feature engineering are beneficial to understand what is
considered important to the system and what is thrown away.
Experimentation: The experimentation step involves an ML developer tuning the ML algorithm
to optimize a performance metric on the training and evaluation datasets. This can be quite
complex. In the case of deep neural networks, experimentation can involve determining the
architecture, activation functions, learning rate, number of epochs, etc. The end product is a

Figure 2: Process of the ML life-cycle for developing a data processing component and an ML component. While documentation
and the deployed system are typically provided for an assessment, significantly more development steps are involved in
developing the ML component. Ideally, an assessment would have access to intermediate steps and design decision processes.

trained model. In many cases, the internals of the learned model and training data are not
exposed, assessing risks is difficult if no further information is provided.

After these steps are completed, the data processing and ML components are deployed. In some
systems, the development and deployment stages are integrated such that the ML component is
continually updated as additional data is received. In some cases, a human in the loop annotates data,
providing feedback to the system.

The ML life cycle illustrates the chain of decisions that goes into a final model and the amount of
information that would be beneficial for an assessment integrating the development cycle. Significant
improvement in the assessment quality can be achieved with access to the feature engineering and
experimentation components, the ML algorithm, training data, and evaluation data.

Vulnerability Assessment/ML performance Assessment
The inclusion of an ML model introduces additional possible vulnerabilities into a system. This section
focuses on assessing (1) the infrastructure supporting the ML, (2) adversarial attacks against the ML
component, and (3) performance of the ML component.

Cyber Attacks and Vulnerability Assessment on the ML Infrastructure
The cyber vulnerability assessment focuses on the infrastructure supporting the ML component,
specifically focusing on the data access, storage, data processing, and associated configuration files that
were discovered when scanning the system. Understanding how a data pipeline is generally designed
and the chain of custody of data through which it flows helps define the methodology and types of
attacks on the ML ecosystem. In ML, data represents a key component driving the quality of an ML
model.

Generally, there exists some form of data generation or data capture from a sensor or set of sensors
that provide information possibly including results from other subsystems. The data is processed
eventually in preparation for the ML model. This step can happen at the same time as the algorithmic
processing but does not have to. The intermediate results may be stored or can be directly transferred
into the ML algorithm. The results from the ML model are often directed to storage for persistence and
any other follow-on algorithmic handling of information. Eventually, these results are displayed such
that strategic decisions can be made and information gleaned, or some action is taken. Each of these
data flows represent interfaces that can be tested for weakness and net effect on the ML output, not all
of these are unique to machine learning or ML systems; however, there should be a presence of them in
many deployments.

Using the previously discovered components, the assessment team checks for and documents any
known vulnerabilities. Noting which libraries are loaded may provide information about the existence
and implementation of the ML component, for example, knowing if PyTorch or TensorFlow is used.
Some attacks related to libraries could be if the libraries themselves are known to contain
vulnerabilities, such as not maintaining and updating the operating environment of the ML component
or even checking dependency chains of the libraries if they contain vulnerabilities that could be
accessible. Other potential vectors of attack on a ML component could include actions such as modifying
a configuration file or overwriting data in the database.

Beyond cyber vulnerabilities, an ML model could be subverted by actions including:

1) Modifying a saved model by swapping out the entire model or changing a specific portion of the
saved file. This occurs as many systems have a pre-learned model that is stored to be used
rather than retraining a model each time it is used.

2) Modifying configuration settings such as thresholds of when to take an action or to retrain.
These configurations can be stored in files or environment variables.

3) Directly modifying the data when the ML model is updated or when queried. Any modification
poses a potential threat.

Adversarial ML Attacks
AML refers to malicious attacks on ML algorithms and the data. The information gained from the
previous phases inform the types of attacks that are possible and those that are the most pertinent to
the assessment. Important information includes the type of ML algorithm that is being used, the training
and evaluation data, access to the ML component, the threat model, and goal of the assessment. These
will dictate the type of attacks that are possible to execute. The attacks should be prioritized based on
the access to the model according to the threat model and goals of the assessment/threat model.
Possible attacks are outlined in the following subsections. Actual attack details will be coordinated by
the AML SME on the IAT with input from domain and mission experts to best assess application impact
under these attacks.

In the past decade the number of papers on this topic has grown exponentially and these attacks are
both effective and alarming. These types of attacks come in several varieties: Evasion, Subversion (or
Poisoning), Stealing, and Misuse.

Defense mechanisms against adversarial attacks is another consideration for an assessment. There are
several proposed methods for defenses, albeit with limited success, as shown in several surveys (Tian,
Cui, Liang, & Yu, 2022; Short, La Pay, & Gandhi, 2019).

Evasion
Evasion attacks involve carefully crafting inputs to an ML model to induce an error. This generally entails
altering data input to avoid detection or to be misclassified. The changes made to the data are often
imperceptible to humans but produce high confidence outputs from ML models that are incorrect.
Figure 3 illustrates attacks by adding noise to an image (Goodfellow, Shiens, & Szegedy, 2014) and an
attack that adds specially crafted noise to a shirt to avoid a person detection algorithm (Xu, et al., 2020).

Figure 3: Left: A digital evasion attack adding imperceptible noise to an image (Goodfellow, Shiens, & Szegedy, 2014),
Right: An evasion attack using a specially designed t-shirt to evade detection (Xu, et al., 2020).

Subversion
Subversion, or data poisoning, attacks the training data used to create the ML model. Since many data
sets are obtained through open sources, one can see how such an attack is of extreme concern. This
may be as simple as adjusting the labels of the training data to incorrect labels or adding a specific
feature that will trigger the ML model to produce a desired output. There are several motives for such
an attack. One is simply to break the ML model so that its performance is decreased. Another motive is
to dictate the output of an ML model when a specified feature is present. Figure 4 illustrates subversion
attacks in digital images and by altering a physical object (Gu, Dolan-Gavitt, & Garg, 2017). In each, a
specified pattern is included to induce a specific output.

Stealing
This type of attack focuses on obtaining information about the ML model (model extraction (Atli, Szyller,
Juuti, Marchal, & Asokan, 2020)) or the data that was used for training (model inversion (Fredrikson, et
al., 2014) or membership inference (Shokri, Stronati, Song, & Shmatikov, 2017)). Stealing attacks are
performed by careful and repeated querying of the ML model. Model extraction poses a threat by
stealing the model that represents potentially large investments of intellectual property. Often the data
used to train a model is sensitive and methods exists that can infer the data that was used for training
an ML model. This represents a potentially critical privacy risk.

Misuse
This type of attack occurs when an attacker employs an ML model in a malicious way and not for its
intended purpose. Examples include the altering of audio, imagery, or videos (deep fakes (Verdoliva,
2020)) for ulterior motives such as disinformation for political or financial gain.

ML Model Performance Assessment

In this stage, the IAT performs an independent assessment of the ML system and model. The intent is to
ensure that the model will perform satisfactorily once deployed and to assess how it may perform when
presented with novel inputs. This is a challenging portion of the assessment as it is difficult to predict
how an environment may change and is an active area of research in the ML community.

Figure 2: Top: A digital subversion (backdoor) attack to misclassify a 7 as 0, Below: A subversion (backdoor) attack that
misclassifies a stop sign as a different sign (i.e. a speed limit sign) depending on the sticker that is placed on the sign (Gu,
Dolan-Gavitt, & Garg, 2017).

Specifically, the IAT will complete as many of the following steps as possible given access to system
components and resources:

1. Inspect and assess the data used for training and evaluation.
2. Compare the training and evaluation data to data sampled from the deployment domain.
3. Review the ML source code.
4. Independently train and evaluate the ML model in an environment similar to (ideally, identical

to) the deployed system.
5. Review methods used to understand model behavior, such as explanations and uncertainty

quantification.
6. Document findings, identify risks, and recommend mitigations.

Where possible, the actual training and evaluation datasets and deployment environment should be
used for the ML assessment. However, the assessment team may use proxies when necessary.

The assessment should answer the following questions:

• Does the ML component work as intended?
• Is the component robust enough for deployed scenarios?
• Are the limits or failure modes of the model understood and documented?
• Were best practices followed during development?

The IAT should assess the ML component along the following axes: (1) representative datasets, (2)
model performance, (3) deployment model performance, and (4) model trust. In the remainder of this
section, we describe the assessment process, and we provide a rubric for evaluation ML model
performance risk with further details in the Appendix.

Representative Datasets
As the performance of an ML model is completely dependent on the data used to train it, there are
several criteria that must be met to provide high confidence in its usage. Data used for training and
evaluation need to be representative of the domain that the model will be deployed against. Statistical
tests to determine whether features in the training data are drawn from a distribution that is similar to
that found in the deployment environment serve to assess risk associated with fielded system
performance. Additionally, the manner in which the data is partitioned for training the ML model and
assessing its performance must be reviewed to avoid biases with consideration of temporal, spatial, and
generalization biases (Pendlebury, Pierazzi, Jordaney, Kinder, & Cavallaro, 2019; Smith, et al., 2022).
Other data considerations include the size of the dataset, the coverage and appropriateness of the
dataset in feature space with respect to the specific model task, and sensitivities present in the data
where access control procedures must be reviewed. Data should be documented including its source
and any known limitations. The Datasheets for Datasets (or similar) methodology (Gebru, et al., 2021)
should be followed for concise documentation.

Model Performance
An ML model should be evaluated to ensure that it is developed and performing correctly based on
several criteria.

First, the appropriateness of an ML model for the specific task should be reviewed. Given the dataset
review, model complexity should also be assessed; for example, deep learning algorithms typically

require large datasets and are not always appropriate for tasks with limited training data. Performance
metrics should be reviewed to ensure that they capture the desired model behavior. Additionally, the
process for selecting all decision thresholds within the model should be reviewed and analyzed for
sensitivities, and hyperparameter tuning methods should be scrutinized to understand potential model
performance variability.

Second, the model’s performance should be evaluated after training. Considerations such as
performance requirements, range of data values expected to be input to the model, and model stability
should be reported. The IAT should ensure the model’s performance in isolation is consistent with its
performance as part of the full system. Special attention should be given to subgroups in the dataset
that are particularly important for the model’s intended use or that run the risk of being
underrepresented in the dataset. Evaluation metrics should be explicitly reported for these subgroups,
and mitigations should be recommended for any observed degradation of model performance within
these groups.

Finally, the model should be well documented, and its performance should be reproducible. The IAT
should review documentation, and ideally, methods such as model cards (Mitchell, et al., 2019) should
be used for consistency. Best coding practices including version control, experiment tracking, and
random number generator seeding should be verified to ensure reproducibility of model results.

Deployed Model Performance
The data and environment that an ML model operates on can vary over time and significantly differ from
those that the ML model was developed on. This introduces a risk that the ML component may be
irrelevant or incorrect. Over time, an ML model can become stale because historical data was used for
training. The impact of an outdated model should be quantified as to how it impacts its performance
over time. A model generally becomes outdated as the data is operates on changes (concept drift). Data
should be reviewed periodically to detect concept drift. As concept drift is detected, methods to update
ML models appropriately should be identified and scheduled. Additionally, independent data sets
collected from the actual deployed environment should be used if available.

Model Trust
Recent work in the ML community has shown that models can be wrong but extremely confident in their
predictions (Nguyen, Yosinski, & Clune, 2015). This is exploited by adversarial attacks. There is a need to
provide trust in the model beyond good performance. Open areas of research in the machine learning
field include explainability, uncertainty quantification, and the development of defenses for adversarial
attacks.

Explainability is the capability of ML models to provide an explanation for how decisions are made either
for the model as a whole or for individual predictions (Ribeiro, Singh, & Guestrin, 2016). Explanations
are a source for increasing trust in the output of the model when working with a domain expert to
ensure that the model is functioning correctly.

Another facet to understanding limitations of ML models lies in uncertainty quantification (Abdar, et al.,
2021). There are many sources of uncertainty in ML models including model uncertainty (uncertainty
from the model errors in approximating the true function), data uncertainty (uncertainty from noise in
the data due to sensor errors or inherent noise), and distributional uncertainty (uncertainty from a

mismatch between training data and data that will be encountered in deployed scenarios). Quantifying
the uncertainty will help to quantify the risk associated with using the model.

Final Analysis and Report
At the end of the assessment, a final report is produced summarizing all the steps taken to come to any
conclusions. It should be detailed enough to reproduce the exploitation and ML model assessment.
Importantly, it should be noted what was not able to be assessed due to a lack of a certain resource.
Recall from Figure 2 that there is a large number of steps in producing a final ML component. Lack of
resources can limit the efficacy of an assessment and they should be pointed to here including the risk
that is introduced by not being able to use them in the assessment. Table 1 provides a high-level
summary of the necessary components to produce each section of the final report. The rows of the table
represent the various components of the ML lifecycle. The columns represent assessments of interest.
Each cell represents the priority level associated with the need for the component in that portion of the
assessment. The scores are interpreted as follows:

1. Low: this component is optional at this stage.
2. Medium: this component is a ``nice-to-have'' during this stage of the assessment, but the

assessment can still be completed successfully without it.
3. High: the component is needed, but the assessment can still be completed through other

means. As an example, the data source code may be needed to assess the performance of the
ML model, but if the training and evaluation data is already provided, a performance
assessment can still be performed successfully. However, additional cost is generally needed if
the component is not provided.

4. Critical: indicates that the relevant assessment stage cannot be completed satisfactorily without
that specific component.

Table 1: Summary of necessary components for an ML assessment

SUPPORTING
INFRASTRUCTURE

ML PERFORMANCE CAML OVERALL

ML DEVELOPMENT STAGE
DOCUMENTATION Medium Medium Medium Medium
ML DEVELOPER Medium Medium Medium Medium
DATA SOURCE CODE Medium High High High
TRAINING DATA Low Critical Critical Critical
EVALUATION DATA Low Critical Critical Critical
ML SOURCE CODE Medium Critical High Critical
TRAINED MODEL Medium High Critical Critical

ML DEPLOYMENT STAGE
SYSTEM INPUTS High Medium Medium High
DATA PROCESSING High High Medium High
DATA STORAGE High High High High
SYSTEM COMPONENT(S) Critical Low Low Critical
OPERATIONL ENVIRONMENT Critical Low Low Critical
DEPLOYED ML COMPONENT Critical High High Critical
END USER(S) Low Medium Medium Medium

Conclusion
This paper presents considerations for doing an assessment on a system with an ML component. This is
a new research field in the ML community and several toolkits exist to aide in this process. It is
encouraged to take advantage of the tools and techniques provided by the ML community. Our primary
motivation is bringing to the T&E community the importance of assessing ML models and providing a
starting point for proper assessments.

Authors
Michael R. Smith joined Sandia National Laboratories in 2015 after receiving his PhD in Computer
Science from Brigham Young University for his work on data-centric meta-learning. His work at Sandia
focuses on both applied and foundational machine learning research. Most of his applied research
focuses on the application of statistical models to cybersecurity and assessing systems that have a
machine learning component. His foundational research centers on the credibility of data-driven models
including explainability, uncertainty quantification in machine learning, out-of-distribution detection,
and counter-adversarial machine learning.

Cari Martinez is a Principal Computer Scientist in the Applied Machine Intelligence Department at Sandia
National Laboratories. She is a technical lead for an applied deep learning research team that
supports Sandia’s mission across a diverse set of science and engineering disciplines. Her research
focuses on improving deep learning modeling capabilities with domain knowledge, uncertainty
quantification, and explainability techniques. Cari holds a BS in Honors Mathematics and Music from the
University of Notre Dame, an MS in Computer Science from the University of New Mexico and is
currently a PhD candidate at Arizona State University.

Joe Ingram received his B.S. in Computer Science from the University of Illinois at Springfield in 2007 and
his M.S. in Computer Science from Southern Illinois University in 2009. He is a distinguished technical
staff member within the Applied Information Sciences group at Sandia National Laboratories. His
expertise lies in the application of machine learning and the development of end-to-end data analysis
systems. He has been a researcher at Sandia for over 13 years, leading numerous research projects as
principal investigator.

Mark DeBonis received his PhD in Mathematics in 1991 from University of California, Irvine, USA. He
spent some time working for the US Department of Energy and Department of Defense as an applied
mathematician on applications of machine learning. Formally an Associate Professor at Manhattan
College in New York City, he presently works for Sandia National Laboratory as an applied
mathematician. His research interests include machine learning, statistics, and computational abstract
algebra.

Christopher Cuellar received his M.S. in Computer Science from the University of Texas at El Paso in
2011. He has been a researcher at Sandia for 8 years and, prior to that, was a researcher at John’s
Hopkins University Applied Physics Laboratory for 3. Previously, Christopher has researched machine
learning applications within Bio Surveillance and Bibliometrics. His current areas of research centers
around applied machine learning and cyber security evaluations and applications.

Deepu Jose is a cybersecurity R&D engineer at Sandia National Laboratories, and lead for multi-
disciplinary initiatives to develop capabilities for assessing and defending diverse cyber-physical systems

of critical interest to national security. Deepu’s experience spans novel embedded systems development
to modeling and simulation of cyber and physical system characteristics for cyber analysis; and more
recently investigating security concerns in systems with machine learning. He holds a BS in Electrical
Engineering from the University of Texas at Dallas, MS in Electrical and Computer Engineering from the
Georgia Institute of Technology, and an MBA from the University of New Mexico.

References
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., . . . Nahavandi, S.

(2021). A review of uncertainty quantification in deep learning: Techniques, applications and
challenges. Information Fusion, 76, 243-297.

Atli, B. G., Szyller, S., Juuti, M., Marchal, S., & Asokan, N. (2020). Extraction of complex dnn models: Real
threat or boogeyman? Engineering Dependable and Secure Machine Learning Systems: Third
International Workshop (pp. 42-57). New York City, NY, USA: Springer International Publishing.

Bradley, E. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging.
Radiographics, 37(2), 505-515.

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., & Mukhopadhyay, D. (2018). Adversarial attacks
and defences: A survey. arXiv preprint arXiv:1810.00069.

Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., & Ristenpart, T. (2014). Privacy in pharmacogenetics:
An end-to-end case study of personalized warfarin dosing. 23rd USENIX Security Symposium
(USENIX Security 14), (pp. 17-32).

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., & Crawford, K. (2021).
Datasheets for datasets. Communications of the ACM, 64(12), 86-92.

Goodfellow, I. J., Shiens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.

Gu, T., Dolan-Gavitt, B., & Garg, S. (2017). Badnets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733.

Guynn, J. (2015, July 1). Google Photos labeled black people 'gorillas'. Retrieved March 10, 2022, from
https://www.usatoday.com/story/tech/2015/07/01/google-apologizes-after-photos-identify-
black-people-as-gorillas/29567465/

Hond, A. A., Leeuwenberg, A. M., Hooft, L., Kant, I. M., Nijman, S. W., Os, H. J., . . . Chavannes. (2022).
Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a
scoping review. NPJ digital medicine, 5(1), 2.

Laplante, P., Milojicic, D., Serebryakov, S., & Bennett, D. (2020). Artificial intelligence and critical
systems: From hype to reality. Computers, 53(11), 54-52.

Lavin, A., Gilligan-Lee, C. M., Visnjic, A., Ganju, S., Newman, D., Ganguly, S., . . . Gal, Y. (2022).
Technology readiness levels for machine learning systems. Nature Communications, 13(1), 6039.

McFarland, M. (2022, December 21). Tesla ‘full self-driving’ triggered an eight-car crash, a driver tells
police. Retrieved January 18, 2023, from https://www.cnn.com/2022/12/21/business/tesla-fsd-
8-car-crash/index.html

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., . . . Gebru, T. (2019). Model
cards for model reporting. Proceedings of the conference on fairness, accountability, and
transparency, (pp. 220-229).

Nagy, B. (2022). Level of Rigor for Artificial Intelligence Development. Naval Air Warfare Center Weapons
Division.

Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. Proceedings of the IEEE conference on computer vision
and pattern recognition, (pp. 427-436).

Orekondy, T., Schiele, B., & Fritz, M. (2019). Knockoff nets: Stealing functionality of black-box models.
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., & Cavallaro, L. (2019). TESSERACT: Eliminating
experimental bias in malware classification across space and time. Proceedings of the 28th
USENIX Security Symposium (pp. 729-746). USENIX Association.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should i trust you?" Explaining the predictions of
any classifier. Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, (pp. 1135-1144).

Schwartz, O. (2019). In 2016, Microsoft’s Racist Chatbot Revealed the Dangers of Online Conversation.
IEEE Spectrum.

Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership inference attacks against machine
learning models. 2017 IEEE symposium on security and privacy (SP) (pp. 3-18). IEEE.

Short, A., La Pay, T., & Gandhi, A. (2019). Defending Against Adversarial Examples. Sandia National Labs.

Smith, M. R., Krishnakumar, R., Lubars, J., Verzi, S., Zhou, X., & Goya, A. (2022). All models are wrong, but
some(times) are useful: Evaluating when machine learning models are useful for detecting novel
malware in the wild. Sandia National Laboratories.

Tangredi, S. J., & Galdorisi, G. (2021). Tangredi, Sam J., and George Galdorisi, eds. AI at war: How big
data, artificial intelligence, and machine learning are changing naval warfare. Naval Institute
Press.

Tian, Z., Cui, L., Liang, J., & Yu, S. (2022). Comprehensive Survey on Poisoning Attacks and
Countermeasures in Machine Learning. ACM Computing Surveys, 55(8), 1-35.

Verdoliva, L. (2020). Media forensics and deepfakes: an overview. IEEE Journal of Selected Topics in
Signal Processing, 14(5), 910-932.

Xu, K., Zhang, G., Liu, S., Fan, Q., Sun, M., Chen, H., . . . Lin, X. (2020). Adversarial t-shirt! evading person
detectors in a physical world. European Conference on Computer Vision (pp. 665-681). Glasgow,
UK: Springer International Publishing.

Yampolskiy, R. (2019). Unpredictability of AI. arXiv preprint arXiv:1905.13053.

Zhang, D., Maslej, N., Brynjolfsson, E., Etchemendy, J., Lyons, T., Manyika, J., . . . Perraulty, R. (2022).
Artificial Intelligence Index Report 2022. AI Index Steering Committee, Stanford Institute for
Human-Centered AI, Stanford University.

Appendix
ML Performance Rubric
The following rubric may be used to evaluate the performance of an ML model:

High Risk Medium Risk Low Risk
Representative
Datasets

The training and evaluation
datasets contain several
high-risk attributes relating
to MA
• Data is not provided for

evaluation OR
• Data has significant

biases present.
• Data does not represent

data that will be
encountered in
deployed environments

• Data has not been
examined and features
exist which make
learning inappropriate

• Data is not documented

The training and
evaluation datasets are
partially documented,
match expert
assumptions but still
have some sources of
uncertainty and risk
• Data is provided

for evaluation AND
• Data has moderate

or no biases that
significantly affect
the MA of the
system.

• Training and
evaluation data
match the data
that is expected to
be encountered in
deployed scenarios
with recognized
deviations and
planned
remediations.

• Data has been at
least partially
reviewed and some
faults are identified
with appropriate
remediations.

The training and
evaluation datasets are
documented, match
expert assumptions and
have low uncertainty in
the above criteria
• Data is provided for

evaluation AND
• No significant biases

exist
• Training and

evaluation data match
the expected
distribution once
deployed

• There are enough
examples for an ML
algorithm to learn

• Data has been
reviewed by experts
AND is documented

• Data is at least
partially
documented.

Model
Evaluation

Most or all of the following
concerns are raised
• Target metric is

misaligned from the
mission goals

• Decision thresholds are
not properly set

• No hyperparameter
tuning was done

• Model is under or
overfit

• Model is not numerically
stable

• Model performs
differently once
integrated into the
system

• No documentation on
the model or
development and
evaluation phases

• Code is not versioned
• Evaluation cannot be

reproduced

The ML model is
properly documented
and evaluated, but
some concerns still
persist due to the
nature of the ML
model and
environment
• Evaluation criteria

may be ill defined
or misaligned with
the mission

• The deployed
environment may
be highly dynamic
where a
representative
training and
evaluation data set
is difficult to obtain

• Model is
numerically stable

• Code is maintained
and versioned

• Evaluation results
are reproducible

The ML model is properly
documented and
evaluated and
assumptions match those
in the deployed
environment
• Evaluation criteria is

well defined
• The deployed

environment is well
understood, and
representative
training and
evaluation dataset are
used.

• Model is numerically
stable

• Code is maintained
and versioned

• Evaluation results are
reproducible

Deployed
Model
Evaluation

There is no
acknowledgement or
monitoring of changes to
the deployed environment
• No risks are laid out

AND
• No processes are in

place to monitor
changes in the data or
the retrain

The need to monitor
the dynamics of the
deployed environment
are acknowledged but
not all aspects are fully
covered
• Risks from concept

drift are
enumerated and
documented

• The data is not
monitored for
changes OR

• No process is in
place to adapt to
changes in the
environment

The risks of concept drift
are understood, and
mitigations are in place
• Data from the system

is compared with the
assumptions that
were used during
training

• Mechanisms for
updating the ML
model are in place

Model Trust No aspect is addressed to
ensure trustworthy outputs
from an ML model
• No defenses of

adversarial attacks are
in place or
acknowledged

• No explanations are
provided to help vet the
decision process made
by the ML model

• Uncertainty from the
model is not accounted
for

Some aspects have
been addressed for
trustworthy outputs
from an ML model. Not
all components are
addressed, but those
most related to MA are
satisfactorily addressed
• Explanations are

verified by a SME
OR

• Defenses are in
place against
adversarial attacks
OR

• Outputs have an
associated
uncertainty
measure

All aspects have been
addressed for prediction
trustworthiness
• Explanations are

verified by a SME AND
• Defenses are in place

against adversarial
attacks AND

• Outputs have an
associated uncertainty
measure

This rubric was developed after consulting several existing resources in the literature (Nagy, 2022; Lavin,
et al., 2022; Hond, et al., 2022; Mitchell, et al., 2019; Gebru, et al., 2021).

