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A bonded particle model is used to explore how variations in the material properties of brittle,
isotropic solids affect critical behavior in fragmentation. To control material properties, a model
is proposed which includes breakable two- and three-body particle interactions to calibrate elastic
moduli and mode I and mode II fracture toughnesses. In the quasistatic limit, fragmentation leads to
a power-law distribution of grain sizes which is truncated at a maximum grain mass that grows as a
non-trivial power of system size. In the high-rate limit, truncation occurs at a mass that decreases as
a power of increasing rate. A scaling description is used to characterize this behavior by collapsing
the mean-square grain mass across rates and system sizes. Consistent scaling persists across all
material properties studied although there are differences in the evolution of grain size distributions
with strain as the initial number of grains at fracture and their subsequent rate of production depend
on Poisson’s ratio. This evolving granular structure is found to induce a unique rheology where the
ratio of the shear stress to pressure, an internal friction coefficient, decays approximately as the
logarithm of increasing strain rate. The stress ratio also decreases at all rates with increasing strain
as fragmentation progresses and depends on elastic properties of the solid.

I. INTRODUCTION

The breakdown of brittle solids into smaller compo-
nents, or comminution, is relevant to countless physical
systems including, but not limited to, industrial pro-
cesses such as milling, geomechanical fragmentation of
rock, and ballistic impacts. In such applications, it is of
great importance that one can predict the state of the
final fragmented product. To effectively design a milling
process that optimizes a given powder property, such as
the coarseness of flour for baking cookies vs. bread [1, 2],
one must understand the impact of numerous control pa-
rameters such as the speed of the mill and the total grind-
ing time [3]. In geomechanics, the frictional stability of
faults and the energy balance of earthquakes depend on
the structure and breakup of rock [4–6]. During ballistic
impacts, one may want to estimate the likelihood of frag-
mentation or predict debris sizes for asteroid collisions
[7, 8] particularly for planning redirection missions [9].
Similar concerns are relevant to the design of ceramics
for ballistic armoring [10–12]. Therefore, there is a great
need for continuum mechanical models of fragmentation
in brittle materials [13–16].

Beyond such applications, comminution is also theo-
retically interesting as a transformation from a solid to a
complex granular state with dynamically evolving grain
sizes and shapes. Intriguingly, fragmentation has often
been noted to result in a power-law distribution of grain
masses N(M) ∼ M−τ , where N is the number of grains
of a given mass M and τ is an exponent with various
measured values in different systems [17]. This has been
identified in both experiments and simulations of differ-
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ent fragmented materials under various loading condi-
tions [4, 18–30].

Due to these findings, comminution has been postu-
lated to be an example of self-organized criticality [31],
where the system is driven by shear, impact, or crush-
ing to a critical state with a power-law distribution of
grains [18, 20, 32, 33]. In recent work [34], we used
large-scale particle-based simulations of fragmentation
to characterize the development of the grain size distri-
bution in brittle, isotropic solids under shear. In the
quasistatic, infinite-system-size limit, fragmentation pro-
duced a power-law distribution of grains. Moving away
from this limit by introducing finite-size or finite-rate ef-
fects, this power law was truncated by a power of either
decreasing system size or increasing strain rate with non-
trivial exponents. In analogy to critical scaling theories
for the magnitudes of avalanches in the depinning and
yielding transitions [35–47], we proposed a scaling the-
ory for the distribution N(M) and measured exponents
by collapsing grain size distributions and their moments
across rates and system sizes.

An important follow-up question is whether these re-
sults depend on the specific model or material being frag-
mented or whether they demonstrate universal behavior.
While fundamental changes in the class of material, e.g.,
brittle vs. plastic materials [26], may be associated with
significant changes in critical behavior, does the same
scaling theory describe all isotropic, brittle solids such
that critical exponents are insensitive to the material
properties of the system? Furthermore, if the critical be-
havior is universal, are there other important non-critical
aspects of fragmentation that depend on the material
properties?

Experimental studies of impacted objects found evi-
dence suggesting the power-law exponent τ may not de-
pend on the material being fractured [18]. Similar val-
ues of τ have also been found in various other simula-
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tions and experiments of brittle impacts [22, 24, 26, 48].
In this work, we alternatively consider a shear geom-
etry which provides continuous fragmentation. While
most experiments consider either impact [18, 26] or com-
paction [27, 28], some experiments use shear geometries
and find a power-law grain size distribution that con-
tinues to evolve until large strains [4, 23]. We also ex-
tend upon investigations of universality in fragmentation
by systematically controlling material properties to limit
uncertainty and by characterizing how other aspects of
fragmentation depend on material properties. To accom-
plish this task, we build upon the bonded particle model
in the previous work which only included two-body bond
interactions by adding three-body angular interactions.
With this modification, the model has three parameters
which can control Poisson’s ratio and the mode I and
mode II fracture toughnesses.

With variations in material properties, we identify
changes in noncritical behavior such as the onset of
power-law scaling in the grain size distribution. How-
ever, no significant deviation from the scaling theory or
exponents is detected with the exception of a possible
exponent that may govern the growing number of grains
with strain. In particular, we find there are initially fewer
grains at fracture at higher Poisson’s ratios but the num-
ber of grains subsequently grows at a faster rate with
increasing strain relative to systems with small Poisson’s
ratios. While we primarily focus on the role of elastic-
ity in the fragmentation of two-dimensional systems in
this work, we also briefly explore changes in the fracture
toughness and highlight key results for three-dimensional
systems.

In addition, we expand upon our previous work and
characterize the rheology of the system. In contrast to
typical studies of granular flow, the grain size distribu-
tion in comminuting systems evolves with strain. We find
this leads to a reduction in the ratio of the shear stress
to pressure, or the internal frictional resistance to flow,
with increasing strain. Furthermore, we also identify
that the grain size distribution is strongly dependent on
the strain rate, finer grains are produced at higher rates,
which produces a unique rheology where the stress ratio
decreases approximately logarithmically with increasing
rate. This behavior provides useful insight into the loga-
rithmic weakening described by theories of rate and state
friction [49].

The remainder of this article is organized as follows.
First we present the methodology and describe the nu-
merical model, its calibration, and the deformation pro-
tocol of simulations in Secs. II A, II B, and II C, re-
spectively. Next, we discuss results starting with a de-
scription of how the system fractures and fragments with
strain at different Poisson’s ratios in Sec. III A. Finite-
size, finite-rate, and combined finite-size and finite-rate
effects are presented in Secs. III B, III C, and III D, re-
spectively, along with a scaling theory for the grain size
distribution. The impact of fracture toughness is dis-
cussed in Sec. III E and rheology is discussed in Sec.

III F The results of this article are summarized in Sec.
IV.

II. METHODOLOGY

Fragmentation involves many physical mechanisms
which can be challenging to simulate, including elastic de-
formation, contact forces, and crack nucleation, growth,
and coalescence. Beyond the need to represent all of
these mechanisms, a model must also be computation-
ally efficient and scale to large system sizes to resolve
highly polydisperse systems with a representative num-
ber of grains. While there are mesh-based continuum
techniques which can model fracture [50, 51], particle-
based models are particularly well suited for this problem
as they naturally handle the large number of discontinu-
ities present in the fragmentation and flow of granular
materials. In this article, the term particle is only used
to refer to the fundamental element of a simulation which
may not correspond to a physical grain. Grains are com-
posed of one or more particles.

Among particle-based models, there are many contin-
uum mesh-free methods that can model cracking [52]
and several have already been applied to the fragmen-
tation of granular materials including the material point
method [53] and peridynamics [54]. These approaches
are ideal when one needs to model a specific material
with a given constitutive equation relating stress and
strain. Another particle-based technique, which is partic-
ularly popular for modeling comminution, is the discrete-
element method (DEM) [55]. In DEMs, particles tradi-
tionally each represent an individual grain and interact
by exchanging pairwise forces and torques while numer-
ically integrating their translational and rotational de-
grees of freedom using Newtonian mechanics. While the
DEM is generally quite computationally efficient, it can
be a challenge to design and calibrate interactions to re-
produce the behavior of specific materials [56].

To introduce fracture to DEMs, several ideas have been
proposed. One approach is to ignore the dynamics of
crack growth and replace a large particle with multiple
smaller particles when the stress on the large particle ex-
ceeds some critical threshold to induce fracture. This can
be done by either splitting a grain along predicted crack
paths as in level-set DEM [57] or replacing particles with
a predefined collection of smaller particles [20, 58]. While
well-designed splitting rules may produce realistic results
[59], these techniques are fundamentally limited to slow
strain rates as they assume a separation in timescales be-
tween the external loading of a grain and the dynamics of
fracture. Another approach is to represent a grain using
a collection of particles linked by a network of attrac-
tive bonds [24, 60–67]. Fracture is modeled by allowing
bonds to break. There are many variations of these mod-
els with many different names, so for simplicity we refer
to them using an umbrella term of bonded-particle mod-
els (BPMs).
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For this work we designed a minimal BPM based on
an early model by Maloney and Robbins [68] revised in
more recent work [34] which uses point particles, akin
to a breakable spring network [69, 70]. Unlike typical
DEM-like BPMs, we do not resolve the rotational de-
grees of freedom of particles as rotation still emerges in
collections of bonded particles. This reduces the com-
putational complexity of evaluating forces and integrat-
ing trajectories allowing us to simulate larger systems
and longer run times, needed to probe critical behav-
ior. Bonds have equilibrium lengths equal to their initial
length, creating a stress-free reference state, and break if
stretched in tension beyond a threshold. This approach
also provides substantial flexibility to implement a di-
verse range of mechanical responses such as plastic de-
formation [71] with minimal changes to the model. In
this article we introduce three-body interactions which
expands control over material properties, a feature of the
Kirkwood-Keating spring model [72, 73]. Angular terms
have similarly been use in studies of pruning disordered
spring networks [74]. The model was implemented in the
Large Scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) [75, 76], which now has a dedicated
BPM package.

A. Model details

In three dimensions (3D), particles are monodisperse
with diameters of a, the unit of length. To prevent crys-
tallization in 2D, particles are bidisperse with diameters
of 3/5a and a. The ratio of the number of large par-

ticles to small particles is (1 +
√

5)/4 as in Ref. [77].
All particles have mass m. Disordered packings of par-
ticles with periodic boundary conditions are generated
using an initialization protocol similar to that in Refs.
[77–80]. Using a disordered packing ensures solids are
isotropically elastic and avoids anisotropic crack growth
associated with regular lattices [62, 81, 82].

Four types of interactions are used in simulations: a
pairwise non-bonded repulsion FNB, a pairwise bonded
force FB, a three-body angular force FA, and a pair-
wise damping force FD. These interactions are formu-
lated to use a minimal number of free parameters while
also conserving linear and angular momentum and avoid-
ing discontinuous forces. A list of bonds and angles are
generated using a Delaunay triangulation of the initial
particle packing. In 3D, each edge with a length less
than 5/4× 21/6a is used to generate a bond. This maxi-
mum length criterion did not have any significant impact
on results but reduced the necessary communication be-
tween processors for simulations running in parallel. For
each triangle in 2D or triangular face of a tetrahedron in
3D, a three-body angular bond is created at every ver-
tex unless one of its associated bonds were pruned due
to the length restriction. Each particle is associated with
6 pairwise bonds and 6 angular bonds in 2D and ∼ 11
pairwise bonds and ∼ 24 angular bonds on average in 3D,

FIG. 1. Example starting states in (a) 2D and (b) 3D. Bonds
that cross a periodic boundary are not rendered.

well above the Maxwell rigidity criterion [83]. Examples
of small starting states representing bulk, unfractured
material are rendered in Fig. 1

The central-body, non-bonded interaction represents
contact forces between particles on opposite sides of a
crack or particles from separate grains that are within a
distance r less than the sum of particle radii ā. Its mag-
nitude is calculated using a truncated, purely repulsive
Lennard-Jones force with a minimum at ā,

FNB =

{
12u
r

(
ā12

r12 −
ā6

r6

)
, r < ā

0, r > ā
(1)

where u is the unit of energy. Bond forces represent elas-
tic interactions within a solid body and are central body
with a magnitude that also depends on the initial dis-
tance r0 between the particles,

FB =


6×22/3ur20

a2r

(
r120
r12 −

r60
r6

)
, r < r0

C1(r0 − r) + C3(r0 − r)3, r0 < r < λcr0

0, r > λcr0

(2)

where λc represents the maximum stretch r/r0 of the
bond and the C coefficients are C1 = 36× 22/3ua−2 and
C3 = −36 × 22/3(λc − 1)−2ur−2

0 a−2. These coefficients
are chosen to ensure that all bonds have a constant r0-
independent linear stiffness of kB = 36×22/3ua−2 around
an equilibrium distance of r = r0 and that forces go to
zero at r = λcr0, the limit where bonds break.

Every three-body angular interaction is associated
with two bonds that share a central particle. This inter-
action is a function of the deviation between the initial
and current angles between the two bonds, δθ ≡ θ − θ0,
as well as the current stretch of the two bonds, λ1 and
λ2. Three-body forces act as torque springs within the
plane of the three particles with a magnitude of

FA = kAS(λ1, λ2)×

{
δθ − 1

θ2c
δθ3, |δθ| < θc

0, |δθ| > θc
(3)

where kA is an angular stiffness, θc represents the max-
imum angular deviation from θ0, and S(λ1, λ2) is a
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smoothing term given by

S(λ1, λ2) =


1, εmax < 0

1− 2
ε2max

ε2c
+

ε4max

ε4c
, 0 < εmax < εc

0, εmax > εc

(4)

where εc ≡ λc − 1 and εmax ≡ max(λ1, λ2) − 1. Forces
smoothly go to zero and the angular interaction breaks
as δθ approaches θc or as either of the associated bonds
breaks.

Finally, a damping force, commonly used in dissipa-
tive particle dynamics [84], is also applied to all pairwise
interacting particles,

~FD = −γ
(

1− r

rmax

)2

(r̂ · δ~v)r̂ (5)

where ~r = rr̂ is the vector between the two particle po-
sitions, δ~v is the difference in particle velocities, rmax

represents the maximum interaction distance (ā for non-
bonded particles and λcr0 for bonded particles), and γ
is the damping strength. This construction is Galilean
invariant and is the lowest-order damping term present
in isotropic solids [85]. The damping strength γ does
not significantly affect material properties and is set to
50
√
mu/a in all simulations, large enough to ensure there

are minimal thermal effects. For the remainder of this ar-
ticle, all quantities are reported without units, scaled by
the necessary factors of a, m, and u. A velocity-Verlet
integrator is used with a time step of 0.005.

B. Calibration of material properties

After accounting for units, the model described above
has three free parameters: kA, λc, and θc, i.e., an angular
stiffness, critical bond stretch, and critical angle. In this
section, these three parameters are mapped to three im-
portant material properties and calibrated. For isotropic
systems, linear elasticity can be described by two vari-
ables such as the bulk and shear moduli. As λc and θc
affect failure at large strains, the only relevant parameter
is kA. The bulk modulus B is measured by isotropically
compressing a periodic sample at a constant strain rate
and fitting the resulting linear rise in pressure up to a
volumetric strain of 0.5%. The response to volumetric
expansion or contraction is largely determined by pair-
wise bonds and B has minimal dependence on kA (Fig.
2[a]). We therefore assume a fixed value of 50.7 in 2D
and 37.9 in 3D. This value can be scaled to match the
bulk modulus of real materials by simply adjusting the
units of a simulation. The shear modulus G is similarly
measured using simple shear deformation and is found to
linearly increase with kA as seen in Fig. 2(b). From these
results, the Poisson’s ratio, νPR = (B−G)/(B+G) in 2D
and (3B − 2G)/(6B + 2G) in 3D, depends significantly
on kA in Fig. 2(c).

In isotropic particle packings with pairwise central
forces, Poisson’s ratio is restricted to equal a third in
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FIG. 2. (a) Bulk and (b) shear modulus normalized by the
bulk modulus at kA = 0, or B(0) = 50.7 in 2D and 37.9 in 3D,
as a function of angular stiffness kA in 2D (blue circles) and
3D (red triangles). Dashed lines in (b) have slopes of 3.4 and
3.6 and intercepts of 25 and 21 in 2D and 3D, respectively.
(c) Poisson’s ratio νPR as a function of kA. Horizontal dashed
lines highlight νPR = 0.17 (the approximate value of boron
carbide), 1/4, and 1/3. Vertical lines mark kA = 0 and 3.0.

2D and a quarter in 3D [86], as approximately obtained
above in the absence of angular forces at kA = 0. By
increasing the strength of angular interactions, triangu-
lar or tetrahedral collections of bonded particles become
more resistant to changes in shape. In isotropic com-
pression or expansion, this is largely irrelevant explaining
why B has minimal dependence on kA. In contrast, this
strengthens the material’s shear modulus thus decreasing
its Poisson’s ratio, extending into the auxetic limit.

A similar effect is obtained in BPMs based on the
DEM where particles have rotational degrees of freedom
and bonds transmit shear forces and torques, acting like
elastic beams. By increasing the relative shear stiffness,
these models can also represent smaller Poisson’s ratios
in disordered systems by similarly increasing the shear
strength [66, 87]. However, it is difficult to obtain the
opposite result and decrease G or increase Poisson’s ra-
tio. One could potentially use negative shear or angular
stiffnesses, as seen in Fig. 2(c), but this may create in-
stabilities. Other unique solutions to control Poisson’s
ratio also exist. In the Distinct Lattice Spring Model
[88], a local strain tensor is calculated at the location
of each point particle to construct rotationally invariant
shear springs. In the Lattice Particle Model, a volumet-
ric energy term is used to derive a multibody interaction
between particles [89].

Next we consider the fracture toughness of the mate-
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FIG. 3. Mode I fracture toughnessKIC normalized by Young’s
modulus E as a function of the critical bond stretch λc for
values of the angular stiffness kA and the approximate asso-
ciated Poisson’s ratios indicated in the legend in (a) 2D and
(b) 3D.

rial, or the maximum stress intensity factor a crack in the
solid can support before it propagates. We focus specifi-
cally on mode I and mode II fracture toughnesses which
measure the resistance to the propagation of a tensile
opening crack (mode I) and a shear crack (mode II). To
measure mode I toughness or KIC, we consider a square
system with an elliptic void with major and minor axes
of 20 and 2, respectively, and free boundaries. In 3D, the
third dimension is periodic and thin. All bonds crossing
the ellipse are deleted. Tension is applied perpendicular
to the major axis of the ellipse by displacing particles on
the boundaries at a fixed rate until the crack grows and
the system fails. The peak stress before crack propaga-
tion is used to calculate KIC [90]. Varying the system
size, crack length or width, and box height can change
estimates of KIC by about 10%. As λc sets the failure
strain, KIC increases linearly with λc as seen in Fig. 3
where KIC is normalized by Young’s modulus E to re-
move most of the dependence on kA. For small values of
λc, no significant dependence of KIC on θc is detected.
However at large values of λc, KIC can depend up to 10%
on θc as angular bonds break before pairwise bonds. As
this effect is relatively small, it is neglected. The speed
of crack growth is also measured by tracking the location
of broken bonds in time. In 3D, the crack front acceler-
ates at small times before reaching a constant speed of
approximately 55% of the Rayleigh wave speed, a theo-
retical maximum limit [91].

Finally, we measure the resistance to shear crack
growth, or mode II fracture toughness KIIC. Experi-
mentally inducing a pure mode II crack requires complex
setups to suppress the growth of mode I cracks [92, 93].
Here we force shear crack growth by controlling which
bonds break in a simple geometry to estimate KIIC. A
fully periodic system undergoes pure shear with an ellip-
tic void oriented 45◦ between the tensile and compressive
dimensions. In 3D, the elliptic void extends through a
thin third periodic dimension. Only bonds along a thin

FIG. 4. Geometry used to induce a shear crack in 3D. Com-
pression is applied in the horizontal dimension while extension
is applied in the vertical dimension. Only the red bonds have
a finite λc.
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FIG. 5. Ratio of mode II fracture toughness KIIC to mode I
fracture toughness KIC as a function of the critical angle θc
in (a) 2D and (b) 3D for λc = 1.03 (circles), 1.05 (triangles),
and 1.07 (squares) and kA = 3 (blue) and 5 (red). At kA = 3,
the Poisson’s ratio is νPR ≈ 0.18 in 2D and 0.17 in 3D.

region oriented in the direction of the crack, as rendered
in Fig. 4, have a finite value of λc and can break. Then
KIIC is calculated from the peak shear stress [90]. The ra-
tio of fracture toughnesses has a complicated dependence
on λc, kA, and θc, as seen in Fig. 5. Generally there is an
increase in KIIC/KIC with increasing θc, demonstrating
that it is possible to independently vary the two fracture
toughnesses. However, we do not further explore this cal-
ibration as there is relatively limited experimental data
on KIIC in brittle materials for comparison.
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FIG. 6. Sections of a 2D system with ka = 2.5 sheared at a rate of ε̇ = 10−5 to strains of 0.02, 0.5, 1.0, and 2.0 going from
left to right (or 2% to 200%). Particles are colored by the number of broken bonds going from zero (dark blue) to six (light
yellow). White regions represent voids, such as gaps in opening cracks. The inset in the first panel highlights broken fragments
along a crack.

C. Simulations and deformation protocol

Simulations of fragmentation are run using square or
cubic systems with fully periodic boundaries and side
lengths L of 1600 and 200 with ∼ 4×106 and ∼ 7×106

particles in 2D and 3D, respectively. Section III B also
considers smaller systems in 2D. As a reminder, these
lengths as well as all others in the text are normalized
by the diameter of particles a. For each system size,
multiple realizations are generated using different ran-
dom packings to improve statistics by averaging results
across these realizations. With the exception of Sec.
III E which explores the effect of fracture toughness on
fragmentation, simulations use values of λc = 1.05 and
θc = 10◦. In contrast, many different values of ka are
explored throughout the results.

After generating fully bonded initial states, constant
volume shear is applied at a fixed strain rate denoted byε̇.
In 2D, pure shear is applied by extending the x-dimension
at a constant true strain rate of ε̇ while compressing the
y-dimension by −ε̇. In 3D, triaxial compression is applied
by expanding the x- and y-dimensions at a rate ε̇/2 while
compressing the z-dimension at a rate of −ε̇. The strain
is then defined as ε ≡ ε̇t where t is the elapsed time. Al-
though this work considers only triaxial compression, it
is important to note that in 3D there is a spectrum of
shear types which can have significant impacts on gran-
ular flow [94] and could have impacts on fracture and
fragmentation. As the simulation cell deforms, particle
positions are affinely remapped. To avoid compressive
dimensions becoming too thin, Kraynik-Reinelt bound-
aries are used in 2D [95] and generalized Kraynik-Reinelt
boundaries are used in 3D [96, 97], leveraging various im-
plementations in LAMMPS [79, 80, 98]. A stress tensor is
calculated using the sum of the virial and kinetic energy
tensors.

Exponent Estimate Definition

τ 1.70 ± 0.08 N(M) ∼M−τ

φ 0.55 ± 0.07 N(M) ∼ εφ

γ 1.65 ± 0.1 N(M) ∼ Lγ

α 1.7 ± 0.15 Mcut ∼ Lα, ξα

ν 0.70 ± 0.08 ξ ∼ ε̇−ν

TABLE I. Reproduced estimates of critical exponents in 2D at
ka = 2.5 and their definitions from Ref. [34] where ka = 0.0.
In 3D, τ = 1.7 and φ = 0.7. No significant dependence on
material properties was identified in this article except in φ.

III. RESULTS AND DISCUSSION

A wide range of simulations were run to explore the
impact of strain, strain rate, system size, and material
properties on fragmentation. Due to the extra compu-
tational costs incurred by the three-body angular inter-
actions and the larger parameter space, results in this
article are based on smaller system sizes and fewer ran-
dom realizations than our previous work [34]. Therefore,
we rely on our previous measures of exponents taken from
systems with ka = 0, summarized in Table I, and gen-
erally do not attempt to refine estimates of exponents.
Instead, we primarily seek to identify where behavior
changes with material properties and explore new results
such as the rheology.

A. Evolution with strain

To begin, we characterize how systems fracture and
fragment as they shear in the low-rate limit. Results are
presented in both 2D and 3D, although the discussion
focuses on 2D systems which generally exhibit qualita-
tively similar behavior to 3D systems. In Fig. 6, an
example 2D system is rendered at various increments of
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FIG. 7. Shear stress as a function of strain in 2D (blue dashed
line) and 3D (red solid line) normalized by the peak shear
stress. In 2D, L = 1600, ka = 2.5 (νPR ∼ 0.20), and ε̇ = 10−5.
In 3D, L = 200, ka = 3.0 (νPR ∼ 0.17), and ε̇ = 3 × 10−5.

strain to demonstrate the transition from a solid material
to a highly polydisperse granular state as bonds are bro-
ken between particles. Example stress-strain curves are
plotted in Fig. 7 where the shear stress is quantified as
the square root of the second invariant of the deviatoric
stress tensor,

√
J2.

This system, as well as all others in this section, is
strained at a relatively low rate of 10−5 in 2D and 3×10−5

in 3D, which are quite close to the quasistatic limit and
exhibit minimal finite-rate effects as further characterized
in Sec. III C. In these figures and in the majority of
demonstrative results in this text, we consider a single
value of ka = 2.5 or a Poisson’s ratio νPR ≈ 0.20 in 2D
and ka = 3.0 or νPR ≈ 0.17 in 3D. This choice is used as
a default to illustrate general behavior. A nonzero value
is chosen to contrast previous work which only used two-
body interactions [34], while the specific value in 3D is
chosen to reflect the elastic properties of boron carbide,
an important ceramic for ballistic armor [12]. Note that
the bulk modulus can be trivially adjusted to match that
of boron carbide by defining the appropriate simulation
units.

At zero strain, there are are no forces between particles
and no stress in the system. With increasing strain the
stress grows linearly in Fig. 7 before eventually dropping
rapidly as the system brittlely fractures. Shortly after
fracture at a strain of 0.02 (or 2%) there are a few large
system-spanning cracks which cause failure, as seen in
first panel of Fig. 6. While these cracks may seem to have
only broken the system into a few fragments or grains,
there is actually significant structure and granular debris
along the path of cracks, highlighted in the figure’s inset.
During simulations, we track when each bond breaks to
identify when new grains are produced. A grain is defined
as a disconnected subgraph in the bond network, i.e.,
an isolated set of bonded particles. At regular intervals,
the number of grains N of a given mass M is tallied to
calculate the distribution of grain masses N(M). Grains
smaller than M = 3 in 2D and M = 4 in 3D are not
included in plots of N(M).

Shortly after fracture, the system already contains
grains with masses spread over six decades as seen in
distributions N(M) in Fig. 8(a). Furthermore, above

some small threshold Mmin ∼ 100, N(M) resembles a
power-law decay extending up to some maximum grain
size cutoffMcut ∼ 105. Alternate behavior in small grains
M < Mmin is not surprising as fragmentation is ulti-
mately limited by the size of a single particle, which af-
fects statistics in this limit. At larger mass scales, the
distribution curves slightly upward from the power law
before reaching a maximum grain size of Mmax ∼ 3×106

or nearly half the mass of the entire system. Grains of
size Mmax are exemplified by the large unbroken compo-
nents in the first panel of Fig. 6.

As strain increases, the stress in Fig. 7 then settles
around a smaller value as the system undergoes gran-
ular flow. During this flow regime, grains continue to
fragment as demonstrated in the other panels of Fig. 6
and the distribution shifts upward in Fig. 8(a) as more
grains of mass M < Mmax are produced. Although it
is not obvious in Fig. 8(a), Mcut grows as the power
law extends further (as further demonstrated below). To
provide the mass for this increase, N(Mmax) and Mmax

decrease as the largest fragments break up. This pro-
cess continues until roughly one unit of strain where the
power law extends up to the largest grains in the system
and Mcut ∼ Mmax ∼ 106. In this limit, data is consis-
tent with a power-law distribution N(M) ∼M−τ with a
value of τ = 1.7, as previously measured in systems with
ka = 0 [34]. The power-law regime is highlighted in Fig.
8(c) where distributions are normalized by Mτ . At larger
strains, not shown, Mcut andN(M) forM > Mmin slowly
decay as grains continue to break into smaller pieces.

In 3D systems, we see qualitatively similar behavior in
Fig. 8(b). However, the distinction between Mcut and
Mmax is more pronounced and there is a clear gap that
closes with increasing strain. A power law is identifiable
at M > Mmin ∼ 103 starting at strains of ε ∼ 0.1 and
reaching a maximum span by ε = 1. The exponent is
consistent with the previous estimate of τ = 1.7 [34].
Simulations at other values of ka were not run in 3D due
to computational costs.

Under a compaction loading geometry, experiments
have found that comminution reaches a terminal state
where the grains stabilize and stop breaking [27, 28], as
is often assumed in continuum models of breakage [13–
16, 33]. However, these results are hard to compare to
our simulations due to the fundamental differences in
loading. A stronger comparison can be made to shear
experiments by Marone and Scholz [4] and Coop et al.
[23], where grain breakage was found to persist to large
strains before possibly reaching a steady-state limit at
strains of ∼ 150% and thousands of percent strain in
the respective studies. These approximate steady-state
distributions were found to have fractal dimensions of
approximately 2.5 or 2.6, which correspond to τ of 1.83
or 1.87. This qualitative saturation in breakage at large
strains and the estimates of exponents are reasonably
close to the results from simulations studied here.

Compared to our previous results in larger 2D systems
at lower rates at ka = 0, we note two differences [34].
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FIG. 8. Distributions of the number of grains N as a function of the grain mass M , N(M), measured at the indicated strain
(up to 1.0 or 100%) in (a) and (c) 2D and (b) and (d) 3D using the same parameters in Fig. 7. In (c) and (d) distributions are
scaled by Mτ ε−φ with τ = 1.7 in 2D and 3D and φ = 0.4 in 2D and 0.7 in 3D. Dashed lines in (a) and (b) have slopes of −τ .
Dotted lines indicate estimates of Mmin = 100 (2D) and 1000 (3D) and Mmax is indicated by enlarged, outlined symbols.

In our prior work we observed a clear gap in the dis-
tribution for Mcut < M < Mmax for strains less than
∼ 1.0 which is not present in the 2D data seen here (but
is seen in 3D). However, a gap is also not seen in other
2D datasets run in this work at other values of ka, in-
cluding ka = 0. So this is not likely a physical change
associated with the addition of three-body interactions
but rather either due to the sampling statistics of these
relatively rare grains or due to the slightly higher strain
rate in these simulations. More importantly, the other
difference is the quantitative shift upward in distribu-
tions with increasing strain. In Ref. [34] we found that
this growth was approximately proportional to strain to
a power φ = 0.55 ± 0.07 such that the number of grains
grew as N(M) ∼ εφ for Mmin < M < Mcut. Here the
data is consistent with φ = 0.4 ± 0.1, as seen in Fig.
8(c), where N(M) is additionally normalized by εφ. This
suggests that the increase in the number of grains with
ε may depend on the linear elasticity of the system, ka
or νPR. In 3D, the vertical scaling of distributions with
strain is consistent with φ = 0.7, the value roughly es-
timated in Ref. [34] at ka = 0.0. However, 3D data
extends over an even narrower range of strains leading to
more uncertainty about the presence of an actual power
law and possibly requiring a larger range of ka to detect
any dependence of φ on ka.

To further investigate the strain-dependence of the
number of grains in 2D, we integrate distributions N(M)
in systems with ka ranging from zero to 12.0, or Poisson’s
ratios of νPR = 1/3 to -0.11 (well into the auxetic limit).
Only counting larger grains with masses M > Mmin, we
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FIG. 9. Number of grains with a mass M > 100 as a function
of strain ε for the indicated values of ka in 2D. Values of ka =
0, 2.5, 5, 8, and 12 correspond to νPR ≈ 0.33, 0.20, 0.10, 0.0,
and −0.11, respectively. Dashed lines have slopes of 0.55 and
0.25.

find more grains are generated during the initial frac-
ture of the system at large ka (small νPR). However, new
grains are created at a faster rate at small ka (large νPR),
as seen in Fig. 9. While we cannot determine whether
this data reflects an actual power law due to the limited
domain of ε considered and the fact that estimates of
φ may depend on Mmin, one could feasibly measure an
exponent φ from ∼ 0.55 to 0.25 with increasing ka (de-
creasing νPR), demonstrating a significant difference in
the rate of breakage in systems with different Poisson’s
ratios.

Finally, we focus on the large-strain limit of ε = 1.0
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FIG. 10. Rendered sections of a 2D system of size L = 1600
sheared to ε = 1.0 at a faster rate of ε̇ = 3 × 10−5 for values
of ka = 0 (left) and 12 (right) or νPR ≈ 0.33 and −0.11.

and explore the impact of varying ka. Poisson’s ratio
clearly affects the fragmentation process, as seen in Fig.
9, but does it affect the final critical state of the system?
Example fragmented systems at the extreme values of
ka = 0 and 12 are seen in Fig. 10. Interestingly, there are
observable differences in the shape of grains. Grains ap-
pear more elongated with increasing ka (decreasing νPR).
However, despite the changes both in the appearance of
grains and in the evolution of N(M) with strain, distri-
butions of N(M) at ε = 1.0 are remarkably similar and
have a minimal dependence on ka as seen in Fig. 11(a).
Distributions all decay with M with a power law close
to τ = 1.7. One can identify a slight dependence on ka
after dividing out the expected power law (Fig. 11[b]) as
N(M)Mτ trends slightly downward with increasing ka
(decreasing νPR). However even in the extreme case of
ka = 12, one might only measure τ as high as 1.75 which
is still within the estimated uncertainty in Ref. [34]. Ad-
ditionally, this potential shift is most noticeable in grains
of mass M < 103 and measurements of critical exponents
should ideally focus on larger grains where a shift is not
as clear.

A possible explanation for a slight shift in the power
law of distributions could be that systems at different
values of ka exhibit different lower mass scaling cutoffs
Mmin or different finite-size or finite-rate effects. In the
previous work in [34], the measured power-law exponent
was found to vary with rate, as further discussed in Sec.
III C. To confirm the measured exponent does not change
with decreasing rate, we collected data for ka = 12 at
an even slower rate of 3× 10−6 but found no significant
difference. Alternatively, it is possible that changes in
the elasticity could shift the transition to the quasistatic
limit in finite-size systems as further discussed in Sec.
III D. However, ultimately, any change in τ is still within
uncertainty and cannot be determined to be significant.

B. Finite-size effects

In smaller systems, one naturally expects fewer and
smaller grains. This is seen for 2D systems in Fig. 12 at
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FIG. 11. (a) Distributions N(M) in 2D systems sheared to
a strain of ε = 1.0 at a rate of ε̇ = 10−5 for the indicated
values of ka. The dashed line has a slope of τ = 1.7. (b)
Same distributions as in (a) but scaled by Mτ .

both ka = 2.5 or νPR ≈ 0.20 in Fig. 12(a) and ka = 12
or νPR ≈ −0.11 in Fig. 12(d). Systems are sheared to a
strain of 1.0 at a rate of ε̇ = 10−5 for the largest system
size of L = 1600 and ε̇ = 3× 10−5 for all other sizes. At
both values of ka, N(M) shifts downward with decreasing
linear system size L while the upper cutoff of the power
law Mcut similarly drops.

A reasonable assumption might be that the number of
grains should scale with the total mass in the system such
that N(M) ∼ Ld, where d is the spatial dimension. How-
ever, while the vertical shift in distributions is reasonably
described by a power law N(M) ∼ Lγ , the exponent γ is
distinctly less than d for both values of ka as measured
by collapsing distributions in Figs. 12(b) and 12(e) us-
ing a value of γ = 1.65 ± 0.1 from previous work [34].
Notably, this implies the number of grains grows subex-
tensively with the size of the system. After scaling, one
can still identify a slight splay in distributions across L
such that data may be better fit by γ = 1.75 for all ka
studied in this work except for ka = 12.0, which may be
better fit by γ = 1.80. However, like estimates of τ , this
determination depends on which domain is considered,
ideally focusing on the largest grains for which statistics
are weakest. Therefore, we cannot conclude this effect is
significant, again noting that these results rely on overall
smaller systems at higher rates with fewer statistics than
previous work.

To capture the dependence of N(M) on L, we con-
struct a finite-size scaling theory for N(M). This pro-
cess is based on similar derivations of critical scaling the-
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FIG. 12. Distributions N(M) in systems of the indicated size L with (a)-(c) ka = 2.5 and (d)-(f) ka = 12 sheared to a strain
of ε = 1.0 at a rate of ε̇ = 10−5 for L = 1600 and ε̇ = 3× 10−5 for all other L: (a) and (d) raw distributions, (b) and (e) N(M)
scaled by Lγ , and (c) and (f) a fully scaled N(M) using Eq. (6) plotted using values of τ = 1.7, γ = 1.65, and α = 1.7. For
each data set, the largest mass at each L is enlarged and outlined to improve visibility.

ories for the magnitude of avalanches in the depinning
and yielding transitions [36, 38, 42–44, 47]. We assume
that Mcut ∼ Lα, where α is a critical exponent, and that
N(M) only depends on the ratio M/Mcut. This leads to
the ansatz

NQS(M,L) = Lγ−ατf(M/Lα) , (6)

where f(x) is a scaling function. To ensure there are no
grains larger than Mcut, f(x) must go to zero for M �
Lα or x � 1. In the opposite limit of M � Lα, f(x)
must scale as x−τ for x � 1 such that NQS ∼ LγM−τ .
Using this scaling relation, we find distributions are rea-
sonably collapsed using a value of α = 1.7 in Figs. 12(c)
and 12(f). Notably, this implies the size of the largest
grain also grows sub-extensively with the size of the sys-
tem. There is some splay in the scaled data near the
cutoff Mcut which might be due to noncritical behavior
in smaller systems or slight finite-rate effects in large sys-
tems, as discussed in the following sections.

As it is difficult to rigorously identify the location of
the cutoff Mcut in Fig. 12 due to limited statistics of
large grains, we alternatively consider the moments of
the distribution to improve estimates of α and derive a
scaling relation between exponents. Calculating the nth

moment, we find

〈Mn〉QS =

∫
MnNQS(M,L)dM (7)

=

∫
Lγ−ατMnf(M/Lα)dM . (8)

Note that this definition is not normalized by the total
number of grains. Substituting variables for x = M/Lα

yields

〈Mn〉QS = Lγ+α(n+1−τ)

∫
xnf(x)dx (9)

where the integral is dominated by the upper limit and
converges for n > τ−1 ∼ 0.7. Since this expression is not
normalized, the lowest moment n = 1 simply equals the
total mass in the system and scales as Ld in d dimensions.
This implies a scaling relation

d = γ + α(2− τ) . (10)

A similar scaling relation exists for exponents describ-
ing the distribution of avalanche magnitudes in sheared
disordered systems in the yielding transition [42, 43, 79].

For the second moment we find

〈M2〉 ∼ Lγ+α(3−τ) ∼ Ld+α (11)

using the scaling relation in Eq. (10). This expression
is particularly useful as it isolates the exponent α. Cal-
culating the second moment from the same data used to
produce Fig. 12, we find 〈M2〉 grows with system size L
at all values of ka (Fig. 13). This growth is consistent
with a power-law exponent α = 1.7 measured in Ref.
[34]. The value of 〈M2〉 is overpredicted in the largest
system size, which could imply a smaller value of α at all
ka, however, the possible deviation in α is not larger than
the ±0.15 range of uncertainty estimated in the previous
work (Table I). Furthermore, as noted before, the largest
system sizes may have slight finite-rate effects leading to
a smaller values of 〈M2〉. In the following two sections,
we incorporate the scaling of 〈M2〉 with rate to account
for this possibility.

C. Finite-rate effects

Up to now, results have focused on the low-strain-rate
limit. With increasing strain rate, systems yield at larger
strains and fracture occurs over a wider range of strain,
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FIG. 13. Mean-square grain size as a function of 2D system
size L for the indicated values of ka. Data is collected at a
strain of ε = 1.0 at a rate of ε̇ = 10−5 for L = 1600 and
ε̇ = 3 × 10−5 for all other sizes. The dashed line represents a
power law with exponent 2 + α with α = 1.7.
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FIG. 14. Stress ratio as a function of strain at the indicated
strain rates ε̇ in (a) 2D at L = 1600 and ka = 2.5 and (b) 3D
at L = 200 and ka = 3.0.

as seen in Fig. 14. At larger strains, the shear stress still
stabilizes as the system reaches a quasi-steady state of
granular flow and comminution; however, systems stabi-
lize around larger stress at higher rates. This is clearly
visible in 2D stress-strain curves but also occurs in 3D,
although the magnitude of the effect is smaller and is only
easily visible at larger strains. As in the quasistatic limit,
the flow stress gradually decays with increasing strain.

These changes in the mechanical response arise from
the underlying changes in the microscopic granular struc-
ture. In Fig. 15 a dramatic change in the characteristic
size of grains with increasing strain rate is seen in snap-
shots of 2D systems sheared to one unit of strain. As one
would expect, at faster strain rates the system nucleates
and grows more cracks [99], causing the system to break
into smaller fragments [24, 25, 48, 100–103]. Here we aim
to quantify how the characteristic size of grains decreases
over this broad span of strain rates.

To quantify this behavior, we again turn to distribu-
tions of grain masses N(M) as seen in both 2D and 3D
in Fig. 16. As the strain rate increases, the upper limit

of N(M) shrinks reflecting the qualitative reduction in
the largest grain size seen in Fig. 15. While N(M) still
appears to decay as a power of M at high rates, inter-
estingly N(M) becomes less steep with increasing rate.
This trend becomes more apparent after normalizing by
the quasistatic power law (Fig. 16[c-d]) as N(M)Mτ

clearly rises above the predicted quasistatic power law at
high rates. This data could suggest either that the expo-
nent τ systematically depends on the strain rate, which
would be quite unusual, or that the actual power law only
emerges for rates smaller than ∼ 10−4 such that higher
rates exhibit some other non-critical behavior. As the
difference between exponents of two consecutive curves
decreases with progressively decreasing rates, the slope
appears to be converging, suggesting the data is more
consistent with the latter option. However, resolving this
distinction would again require running simulations of
even larger systems at slower rates.

Regardless of the origin of this effect, it is interesting to
note that one could conceivably measure a wide range of τ
spanning from 1.7 to around 1.3 in 2D and 3D depending
on rate. This could reflect the range of exponents mea-
sured in different experimental systems [17]. While the
quasistatic power law ofN(M) is found to be quite robust
to changes in material properties, evidencing universal
behavior within the regime of isotropic brittle materials,
one could potentially still measure different exponents at
high rates. Although this paper does not include a thor-
ough dissection of the evolution of N(M) with strain at
high rates, we note that N(M) evolves very differently
with strain compared to the low-rate limit discussed in
Sec. III A. Specifically, at high rates the distribution is
initially steeper at small strains but becomes less steep
with increasing strain up to strains of ∼ 1.0. In a system
sheared at a high rate, one could therefore potentially fit
different exponents depending on the strain. This behav-
ior was discussed briefly in Ref. [34] for ka = 0.0, and
similar trends were identified in systems with ka 6= 0.0,
although further simulations and alternate analytic tech-
niques like population balance modeling are required to
thoroughly explore this behavior.

With increasing strain rate, energy is added more
rapidly to the system. To confirm that energy dissipates
quickly enough and that results reflect the overdamped
limit, we ran simulations at the fastest rate of ε̇ = 10−3

with different damping strengths γ between 5.0 and 500.0
where the standard value of γ is 50.0. With changing
γ, there is a systematic change in the number of small
grains M < Mmin, varying up to ±50% relative to results
at γ = 50.0. This splay converges with increasing γ. Ad-
ditionally, the minimum cutoff of the power law Mmin

increases to ∼ 1000 at the smallest value of γ = 5.0.
However, there is no significant change in the number of
grains for M > Mmin. A similar power law can be fit to
N(M) at all γ and the upper cutoff Mcut is consistent,
implying our results are representative of the overdamped
limit. At the second fastest rate of ε̇ = 3 × 10−4, there
is minimal dependence on γ even in the small-mass limit
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FIG. 15. Rendered sections of a fragmented 2D system of size L = 1600 with ka = 2.5 sheared to a strain of ε = 1.0 at rates of
ε̇ = 10−5, 3 × 10−5, 10−4, 3 × 10−4, and 10−3 going from left to right.
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FIG. 16. Distributions N(M) in systems of size L = 1600 sheared to a strain of 1.0 at the indicated rates in (a) and (c) 2D
with ka = 2.5 and (b) and (d) in 3D with ka = 3.0. In (c) and (d) distributions are scaled by Mτ with τ = 1.7. Dashed lines
in (a) and (b) have slopes of −τ .

for γ ∈ [5.0, 500.0]. However, it is likely that even smaller
values of γ could change results.

D. Finite-size and finite-rate effects

Having separately considered finite-size and finite-rate
effects in the preceding two sections., we now consider
the combination to determine the crossover between the
finite-rate and quasistatic limits and its scaling with sys-
tem size. As before, we continue to focus on the large-
strain limit of ε = 1.0 in 2D systems. In Fig. 17, normal-
ized distributions from a relatively small system of size
L = 200 are plotted at different strain rates at ka = 2.5
(νPR ∼ 0.20, Fig. 17[a]) and 12 (νPR ∼ −0.11, Fig.
17[b]). Similar to Fig. 16(c), distributions have a shal-
lower power law and are truncated at smaller masses at
the fastest rates. However, as the rate decreases to 10−4

and below, distributions cease evolving, suggesting this
smaller system size has already reached the quasistatic

limit, at a higher rate than simulations of size L = 1600.
If we alternatively focus on a higher strain rate of ε̇ =

10−4 and vary the system size, we see different behavior
between larger systems, L > 400, and smaller systems,
L < 400. Large systems exhibit a trivial dependence on
L as distributions simply scale extensively, N(M) ∼ L2,
and have similar cutoffs as seen in Figs. 17(c) and 17(d).
In contrast, there is some vertical splay in distributions
for small systems and the cutoff grows with increasing
L. This phenomenon is consistent with the above finding
that smaller systems transition to the quasistatic limit
at higher strain rates and is naturally anticipated. For
instance, one might expect the transition to quasistatic
behavior could be governed by the timescale it takes for
a crack to propagate across the system such that the
crossover occurs at a rate of ε̇ ∼ L−1 for a constant crack
propagation speed. However, as identified below, this
criterion is not sufficient.

To capture the transition and quantify how it scales
with L, we hypothesize that there is an additional length
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FIG. 17. (a) and (b) Mass distributions scaled by Mτ in 2D systems of size L = 200 sheared at the indicated rates. (c) and
(d) Distributions scaled by MτL2 for the indicated system sizes sheared at a fixed rate of 10−4. Normalization uses a value of
τ = 1.7. All systems are sheared to ε = 1.0 and correspond to (a) and (c) ka = 2.5 and (b) and (d) ka = 12.

scale ξ that diverges with decreasing strain rate ε̇ with
an exponent ν:

ξ ∼ ε̇−ν . (12)

Based on the findings from Fig. 17, we assume fragmen-
tation depends only on the smallest of the two length
scales L and ξ. At low rates where ξ > L, the system
is in the quasistatic limit such that N(M) is described
by Eq. (6) and the size of the largest grain Mcut is set
by Lα. At high rates where ξ < L, the system is in
the finite-rate limit and ξ governs behavior such that
Mcut ∼ ξα. This idea echoes results from many dynamic
critical phenomena such as avalanches in depinning and
yielding [39, 44, 79, 80, 104–106].

Next we propose a scaling description for N(M) in the
finite-rate limit. From Figs. 17(c) and 17(d) we assume
N(M) primarily depends on ξ and only has a trivial de-
pendence on L in this limit, namely, N(M) grows exten-
sively as Ld in d dimensions. A system of size L can then
be divided up into (L/ξ)d independent regions, each of
size ξd. Within each region, the distribution of grains
resembles that of a quasistatic system of size L = ξ, or
NQS(M,L = ξ) from Eq. (6). Combining the contribu-
tions from all of these regions yields a finite-rate ansatz
for N(M) of the entire system,

NFR(M, ε̇, L) ∼ Ldε̇ν(d−γ+ατ)h(Mε̇να) , (13)

where h(x) is another scaling function. If x � 1, h(x)
goes to zero while if x � 1 then h(x) ∼ x−τ such that
NFR(M, ε̇) ∼ Ldε̇ν(d−γ)M−τ . Using the scaling relation
for γ in Eq. (10), this ansatz can be reexpressed as

NFR(M, ε̇, L) ∼ Ldε̇2ναh(Mε̇να) . (14)

Note that this derivation does not account for the obser-
vation that distributions become more shallow at high
strain rates or that τ may possibly depend on ε̇. As the
magnitude of this deviation appears to decrease at lower
strain rates in larger systems, we postulate that it will
not be significant in the large-system low-rate limit and
therefore neglect it, although further validation is needed.

To test this theory, we again turn towards the moments
of the distribution. As in Sec. III B, one can derive an
expression for the moments of N(M) in the finite-rate
limit as

〈Mn〉FR =

∫
MnNFR(M, ε̇, L)dM (15)

=

∫
Ldε̇2ναMnh(Mε̇να)dM . (16)

Again, substituting variables for x = Mε̇να yields

〈Mn〉FR = Ldε̇να(1−n)

∫
xnh(x)dx (17)

where the integral is similarly dominated by the upper
limit and converges for n > τ − 1 ∼ 0.7. For the second
moment, one finds

〈M2〉FR ∼ Ldε̇−να . (18)

Combining this with the expression for 〈M2〉QS in Eq.
(11), we can now construct a scaling ansatz for 〈M2〉
across system sizes and rates. We assume that 〈M2〉
only depends on the dimensionless ratio of L/ξ or Lε̇ν

such that

〈M2〉 ∼ Ld+αg(ε̇L1/ν) , (19)



14

where g(x) is yet another scaling function. In the qua-
sistatic limit where x � 1, g(x) goes to a constant to
recover the scaling in Eq. (11). In the finite-rate limit
where x � 1, g(x) ∼ x−να to recover the scaling in Eq.
(18).

Calculating 〈M2〉 across different system sizes and
rates, we see behavior consistent with the theory. In Fig.
18(a) in the high-rate limit, 〈M2〉 grows as a power of
decreasing rate at all L independent of the elastic prop-
erties or ka. This growth continues until ε̇ ∼ 3 × 10−4

where 〈M2〉 plateaus for the smallest systems L = 100
and no longer depends on rate. A similar crossover is
then seen in progressively larger systems at lower and
lower rates as systems transition to the quasistatic limit.
Comparing different values of ka, a similar trend is seen
although the location of the crossover and the height of
the plateau may shift.

Scaling data by the system size according to Eq. (19),
data is collapsed using values of α = 1.7 and ν = 0.7 from
Ref. [34] as shown in Fig. 18(b). There is some observ-
able splay which may simply be due to different constant
prefactors (such as a vertical or horizontal shift) across
values of ka. Shifting datasets apart in Fig. 18(c) reveals
that the quality of the individual collapses is reasonable
across values of ka. Focusing on a single dataset, one
might estimate a somewhat different exponent depend-
ing on the value of ka; however, these deviations are not
greater than uncertainty in exponents.

E. Impact of fracture toughness

In the previous sections, we considered how changes
in the elastic properties of the material affect fragmenta-
tion. This is accomplished by varying ka which adjusts
Poisson’s ratio νPR. In this section, 2D systems with a
fixed value of ka = 2.5 or νPR ∼ 0.20 are used to alter-
natively test how fracture toughness impacts fragmenta-
tion. We consider variations in KIC and KIIC fracture
toughnesses which, as demonstrated in Sec. II B, are
controlled by the free parameters λc and θc, the critical
stretch for a bond and the critical angle for three-body
interactions, respectively. Here we focus on the large-
system-size, large-strain, and low-strain-rate limits with
systems of size L = 1600 sheared to a strain of 1.0 at
a rate of 10−5 to maximize the span of the power-law
domain in N(M).

First, we consider a fixed value of θc = 10◦ and vary
λc, which varies KIC or the resistance to propagating an
opening crack. As expected, decreasing the strength of
bonds leads to more breakage as demonstrated in Fig.
19. In particular, at low λc there are large regions of
nearly fully pulverized material broken down into indi-
vidual particles separating larger intact (although heav-
ily damaged) grains. In the limit of very weak bonds, it
is unsurprising that large swaths of the material break
as vibrations emanating from cracks may have enough
energy to break surrounding bonds. As λc increases, the
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FIG. 18. (a) Second moment of N(M) normalized by Ld

with d = 2 as a function of strain rate for different 2D system
sizes L (color) and values of ka (shape) as indicated by the
legend in (b). The dashed line represents a power law with an
exponent −να. (b) The same data in (a) is collapsed using
the scaling relation in Eq. (19). (c) The scaled data in (b)
is plotted after shifting data vertically across values of ka for
visibility. All panels use values of α = 1.7 and ν = 0.7.

width of these regions and the amount of visible damage
in grains decrease. It is possible that this effect could
be counteracted by increasing the strength of damping
in the system, as discussed at the end of Sec. III C.

While there is markedly different behavior at small
length scales, to determine whether the large-scale criti-
cal statistics depend on λc we evaluate grain size distri-
butions N(M) (Fig. 20). Although small grains with a
mass of unity are not included in Fig. 19, there is a large
excess at small λc, as expected. In contrast, there is a
deficit of grains with intermediate masses at small λc.
For instance, at λc = 1.01, grains with masses between
∼ 5 and 104 are underrepresented relative to systems
with λc ≥ 1.05. The size of this domain and the magni-
tude of the under-representation shrinks with increasing
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FIG. 19. Rendered sections of a 2D system of size L = 1600 sheared to a strain of 1.0 at a faster rate of 3 × 10−5 with values
of ka = 2.5, θc = 10◦, and λc = 1.01, 1.015, 1.02, and 1.03 in panels going from left to right.
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FIG. 20. (a) Distributions N(M) for a 2D system of size
L = 1600, ka = 2.5, and θc = 10◦ sheared to a strain of
1.0 at a rate of 10−5 with the indicated values of λc. The
dashed line represents a power law with exponent τ = 1.7.
(b) Distributions are normalized by Mτ .

λc before converging around λc = 1.05. Despite this
substantial change in the statistics of small and interme-
diate grains, no significant dependence on λc is present in
N(M) at large M . This suggests that λc is irrelevant in
the large-mass limit and does not change the fundamen-
tal critical nature of fragmentation. Alternatively, KIC

only appears to affect the lower cutoff of the power-law
behavior, Mmin, and the statistics of smaller grains.

Finally, we fix λc = 1.05 and vary θc, which is equiva-
lent to maintaining a constant mode I fracture toughness
while varying the mode II fracture toughness KIIC or
the resistance to propagating a shear crack. In Fig. 21,
N(M) is remarkably robust to changes in θc. While there
may be slight changes in the statistics of small grains, the
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FIG. 21. (a) Distributions N(M) for a 2D system of size L =
1600, ka = 2.5, and λc = 1.05 sheared to a strain of 1.0 at a
rate of 10−5 with the indicated values of θc in units of degrees.
The dashed line represents a power law with exponent τ = 1.7.
(b) Distributions are normalized by Mτ .

magnitude of any potential differences is minimal and is
largely masked by uncertainty in the data. Therefore,
similar to the above analyses, the critical behavior of
fragmentation does not depend on the fracture toughness
of the material in the limit of large masses.

F. Rheology

Having explored the impact of strain, system size,
strain rate, and material properties on fragmented grain
size distributions in the above sections, we now zoom
out and consider the macroscopic response of the system
to shear. In addition to studying the typical values of
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FIG. 22. Stress ratio µ as a function of the inertial number I
for systems of size (a) L = 1600 in 2D and (b) L = 200 in 3D
at ka = 0.0 (solid lines) and 2.5 in 2D and 3.0 in 3D (dashed
lines). Data is averaged over the indicated strain intervals.

ka = 2.5 (2D) and 3.0 (3D), in this section we also in-
clude results with ka = 0 or νPR = 1/3 in 2D and 1/4
in 3D since this option limits computational costs (no
three-body interactions) so simulations can reach slower
strain rates. Focusing on the granular flow regime after
fracture, or strains greater than 0.05 (Fig. 14), we cal-
culate the internal friction or stress ratio µ ≡

√
J2/P ,

where P is the mean pressure of the system to character-
ize its rheology. For granular systems at low pressures in
the hard-grain limit, rheology is often described in terms
of an inertial number

I = ε̇〈d〉
√
ρ/P , (20)

where 〈d〉 is the average grain diameter and ρ is the den-
sity of the system [107]. In a µ(I) model, µ grows as a
function of increasing I, as demonstrated in many works
[94, 108–111] including DEM studies of aspherical [112]
and polydisperse grains [113, 114].

In contrast to traditional studies of granular rheology,
the system in this article uniquely does not have a fixed
average grain size 〈d〉. Instead, 〈d〉 depends on both
strain and rate. Averaging over intervals of 0.5 (50%)
strain, both the stress ratio µ and the inertial number I
are calculated in large systems at different strain rates,
extending down to ε̇ = 10−6 in 2D and 3 × 10−6 in 3D
at ka = 0. Results are plotted in Fig. 22. Here µ inter-
estingly decreases with increasing inertial number (and
strain rate) as well as increasing strain. This reduction
fundamentally reflects the fact that the system fragments
into smaller grains at higher rates (Fig. 15) and that
more of the system has broken up at larger strains (Fig.
6). Note that in these simulations, the pressure is not
held constant such that I is calculated using an aver-
age pressure P which evolves with strain and rate and

may not reflect the hard-grain limit typically explored in
DEM simulations of granular flow. However, a confining
pressure is always maintained postfailure.

As observed in Fig. 14, the shear stress does actually
increase with strain rate; however, the pressure increases
at a faster rate, leading to the decrease in the stress ratio
seen here. In future work, it would be valuable to explore
fragmentation under alternate loading conditions such as
constant pressure instead of constant volume. In partic-
ular, varying the confining pressure could test the impact
of cavity formation on fragmentation. Additionally, ex-
periments of granular breakage under shear by Xu [29]
found a potential pressure-dependence on the power-law
exponent τ .

At larger ka or lower νPR, stress ratios are higher
as curves shift upward. The difference is around 0.015
in both 2D and 3D. This effect likely originates from
changes in the aspherical shape of grains seen in Fig.
10 as increasing asphericity of grains is associated with
greater stress ratios in flow [112], but could also emerge
from the slight differences in polydispersity seen in Fig.
11.

One particularly intriguing feature of the rheology in
Fig. 22 is that µ appears to decay logarithmically with
increasing inertial number. Similar behavior is seen when
µ is plotted as a function of strain rate. Such logarithmic
velocity weakening is often an important feature in rate
and state friction models [49] and this demonstrates that
it can naturally emerge from fragmentation in sheared
granular materials. Furthermore, these findings highlight
how the distribution of grain sizes can have a signifi-
cant influence on rheology, emphasizing the need to ex-
plore rheology beyond the low-pressure, monodisperse,
and spherical limits which do not always reflect granu-
lar material found in nature. For instance, it is unclear
whether the factor of 〈d〉 in µ(I) rheology is an appropri-
ate metric for highly polydisperse granular material such
as the power-law distributed set of grains seen here. Po-
tentially another metric, such as

√
〈d2〉, would be more

informative. This underlines a need to understand gran-
ular rheology beyond narrow size distributions.

Furthermore, this data prompts questions about the
nature of the crossover between the quasistatic and finite-
rate limits. In contrast to the granular structure, quan-
tified in terms of the mean-square grain size in Fig. 18,
there generally is no clear saturation in the strength ratio
with decreasing strain rate, despite extending to slower
rates in a similarly sized system at ka = 0.0. While some
data series may exhibit this saturation (such as strains
between 1.05 and 1.55), this may just reflect the uncer-
tainty in the measured stress ratios. Therefore, it is likely
that the rheology actually crosses over to the quasistatic
limit at a lower rates than the grain size distribution
and is controlled by a separate mechanism. In smaller
systems, there is a clear saturation in µ with decreas-
ing strain rate; however, a full finite-size analysis of the
rheology is beyond the scope of this paper.
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IV. SUMMARY

This article has provided a systematic exploration of
simulated fragmentation in isotropic, brittle solids under
shear, particularly focusing on the impact of material
properties on the scaling of grain size distributions in
2D. Using a simple bonded particle model with break-
able three-body angular interactions, we were able to in-
dividually control Poisson’s ratio and mode I and mode
II fracture toughnesses which are calibrated using only
three free parameters. While the rate of production of
new grains and some noncritical aspects of fragmentation
were found to depend on material properties, all systems
reached the same critical power-law distribution of grain
sizes in the quasistatic large-strain limit. Universal be-
havior in fragmentation has been proposed and tested
several times in the literature [18, 22, 26, 32, 33, 48]
and this work provided a comprehensive extension and
validation of this idea through the breadth of material
properties studied under a wide range of conditions in
2D and by considering the less-studied loading geome-
try of shear flow. Furthermore, using a finite-size and
finite-rate scaling theory proposed in our earlier work,
we demonstrated that several additional critical expo-
nents, summarized in Table I, were consistent across a
wide range of elastic properties. A more limited explo-
ration was also performed in 3D where we found similar
quasistatic and finite-rate behavior with the addition of
three-body interactions, although we did not systemat-
ically explore finite-size effects or test a wide range of
material properties. Finally, we identified several other
unique features of a fragmenting material under shear
flow including an abnormal rheology where the stress ra-
tio decays with increasing rate.

As systems fracture and fragment in shear at low strain
rates, the number of grains of a given mass depended
significantly on Poisson’s ratio νPR as more grains were
generated immediately upon fracture at small νPR but
the rate of subsequent increase was slower in compari-
son to systems with large νPR (Sec. III A). It is possi-
ble that the growth in the number of grains with strain
is described by a power law with an exponent φ. If
so, φ might decrease from ∼ 0.55 at νPR = 0.25 to
∼ 0.25 at νPR = −0.11. However, this dependence on
νPR appeared to be the exception as the distribution of
grain sizes otherwise demonstrated minimal dependence
on material properties. Shortly after yield, a power-law
domain with an exponent τ was identified in N(M). This
domain subsequently grew with strain until a strain of
≈ 1.0 (or 100%). This saturation at large strains re-
flects results from experimental studies of comminution
in shear [4, 23]. Although there appeared to be a slight
increase in the exponent τ with decreasing νPR of about
10%, this was less than uncertainty in measurements and
could simply be due to slightly different manifestations of
finite-rate or finite-size effects and therefore there was no
detectable νPR-dependence on τ . Similarly, varying the
fracture toughnesses in Sec. III E revealed no detectable

impact on τ , although the onset of the power-law domain
shifts to larger masses with decreasing mode I fracture
toughness due to a tendency for the material to produce
an excess of small grains and a dearth of intermediate-
size grains.

In the quasistatic limit, a scaling relation for finite-size
effects in N(M) was described in Eq. (6) based on two
nontrivial exponents γ and α and tested in Sec. III B. For
the first exponent, the number of grains of a given mass
M grew as a power of the linear system size L with an
exponent γ less than d = 2 as demonstrated by directly
scaling N(M) by Lγ . For the second exponent, the mass
of grains at the upper cutoff of the power-law regimeMcut

was found to grow as a power of L as Mcut ∼ Lα where
again α < 2, implying both the number of grains and the
size of the largest grain grow subextensively. By calcu-
lating the average grain size, we derived a scaling relation
in Eq. (10) between these exponents and τ based on con-
servation of mass. Variations in νPR had no detectable
effect on any of these exponents or scalings.

Beyond the quasistatic limit, this paper also presented
a description of fragmentation at high rates in Sec. III C.
With increasing rate, fragmentation produced a finer set
of grains and the distribution N(M) unusually became
shallower, possibly reflecting a changing power-law expo-
nent. While we could not fully determine the origin of
this effect, it is possible that this is simply an instance of
noncritical behavior at particularly high rates that may
become irrelevant in the limit of infinitely small strain
rates and infinitely large system sizes. However, this ef-
fect is still an important topic for further study, especially
as it may relate to variations in measured values of τ in
real-world materials and experiments [17].

By combining studies of finite sizes and rates in Sec.
III D, we observed that fragmentation only depends on
either the size of the system or the rate, but not both.
We proposed that there exists a diverging length scale
ξ ∼ ε̇−ν , where ν is another exponent less than unity, and
that the scaling of N(M) only depends on the smallest
length scale, either ξ or L. In the finite-rate limit where
ξ < L, a scaling ansatz for N(M) was derived in Eq. (14).
Combining the quasistatic and finite-rate expressions for
N(M), we then constructed a finite-size scaling relation
for the second moment in Eq. (19) which collapsed data
across system size and rate, yielding an estimate of ν.
This collapse was consistent across values of Poisson’s
ratio νPR.

Finally, we considered the system’s rheology in Sec.
III F as a unique example of a granular system with evolv-
ing polydispersity. As grains begin to flow after fracture,
the internal friction decays as the logarithm of increasing
strain rate. Such logarithmic weakening is an often stud-
ied topic in geophysics and friction, and this work demon-
strated how fragmentation can emergently lead to this
important behavior. This emphasizes a need for further
studies of flowing polydisperse granular materials with
different grain size distributions to characterize changes
rheology.
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In conclusion, we find the observed critical behavior is
remarkably robust to changes in material properties with
no detectable deviation in exponents, summarized in Ta-
ble I, with the possible exception of φ, which cannot be
concluded to be a real critical exponent due to a limited
scaling domain. However, there are still countless unan-
swered questions about the physics of fragmentation.
For instance, additional studies extending analysis of
finite-size effects to three-dimensional systems are needed
and variations in the damping strength were not inves-
tigated. Alternative loading geometries, in particular
stress-controlled deformations at various mean pressures,
need to be studied. Low damping strengths could intro-
duce interesting inertial effects which have been found to
affect avalanches in the yielding transitions [42, 43, 115]
and the role of energy dissipation needs to be better un-
derstood. In comparison to results from our recent paper
[34], the results in this text were limited to smaller sys-
tem sizes and higher strain rates due to the additional
computational complexity of controlling Poisson’s ratio.
This highlights an ongoing need to develop more efficient
bond models which can control elastic properties, in par-
ticular efficient methods that can model higher Poisson’s
ratios which were inaccessible to this work.
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[48] J. A. Åström, B. L. Holian, and J. Timonen, Phys. Rev.

Lett. 84, 3061 (2000).
[49] E. G. Daub and J. M. Carlson, Annu. Rev. Condens.

Matter Phys. 1, 397 (2010).
[50] T. Rabczuk, ISRN Appl. Math. 2013, 1 (2013).
[51] K. Rege and H. G. Lemu, IOP Conf. Ser. Mater. Sci.

Eng. 276, 012027 (2017).
[52] Y. Sun, M. G. Edwards, B. Chen, and C. Li, Eng. Fract.

Mech. 257, 108036 (2021).
[53] M. A. Homel and E. B. Herbold, Int. J. Numer. Methods

Eng. 109, 1013 (2017), 1010.1724.
[54] M. Behzadinasab, T. J. Vogler, A. M. Peterson, R. Rah-

man, and J. T. Foster, J. Dyn. Behav. Mater. 4, 529
(2018).

[55] P. A. Cundall and O. D. L. Strack, Géotechnique 29, 47
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