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The goal of quantum tracking control is to identify shaped fields to steer observable expectation values along
designated time-dependent tracks. The fields are determined via an iteration-free procedure, which is based on
inverting the underlying dynamical equations governing the controlled observables. In this article, we generalize
the ideas in Phys. Rev. A 98, 043429 (2018) to the task of orienting symmetric top molecules in 3D. To
this end, we derive equations for the control fields capable of directly tracking the expected value of the 3D
dipole orientation vector along a desired path in time. We show this framework can be utilized for tracking the
orientation of linear molecules as well, and present numerical illustrations of these principles for symmetric top
tracking control problems.

I. INTRODUCTION

The desire to selectively manipulate molecular dynamics
using external fields is a decades-old dream that has mo-
tivated a broad range of research pursuits [1-3], includ-
ing the development of quantum optimal control (QOC)
theory [4]. The goal of QOC is to identify fields to con-
trol the dynamics of a quantum system, such that the sys-
tem achieves a desired control objective at a designated
target time ¢ = 7. The task of identifying an optimal
field is typically accomplished by iterative optimization
methods [5-7]. Although these methods can be compu-
tationally demanding, QOC has nonetheless found broad
applications, ranging from quantum computing [8—14] to
chemical reactions [15-19].

Figure 1. In this article, we formulate QTC for controlling
the 3D orientation of symmetric top molecules, such as fluo-
romethane, shown here. The control procedure involves de-

In this article, we focus on another formulation, quan-
tum tracking control (QTC) [20-22], for designing con-

trol fields to a}ccurately track. the temporal path of ap signing three orthogonal fields (black) in order to drive the
observable of interest. The origins of QTC are in engi-  5jecule’s 3D dipole vector along a desired time-dependent
neering control theory, which has explored tracking con- track (red). The three fields can be determined by solving an
trol in a range of settings including linear [23], nonlinear inverse equation, without the need for optimization.

[24], and bilinear [25] systems. For quantum-mechanical

applications, tracking control principles have been ap-

plied 'towards thé numerical study of sysFems including The aim of QTC is to find tracking control field(s) &(t)
a qubit [26], a single atom [27], and various molecular ¢ drive one or multiple observable expectation values
[20-22, 28, 29] and solid-state systems [30-32]. (O)(t) = (¥(t)|O](t)) along desired time-dependent
“tracks” (O)4(t) for a chosen time interval ¢ € [0, 7).
This is carried out by directly inverting the underlying
dynamical equation governing (O)(¢) in order to solve
* abmagan@sandia.gov for e(t) [20-22]. We remark that QTC possesses similar-
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an analytical form for e(t) that achieves desired trajecto-
ries of the state. However, reverse engineering is typi-
cally restricted to very small or simple systems. Because
it does not require any iterative optimization, QTC can
be computationally advantageous compared with usual
QOC schemes.

A challenge facing QTC is the potential presence of sin-
gularities in the corresponding direct inversion procedure
[36]. That is, attempts to exactly track arbitrary time-
dependent observable paths can produce unphysical, dis-
continuous control fields [37] and deviations from the
desired tracks. However, if singularities can be avoided,
QTC offers an appealing, iteration-free approach for de-
signing fields to control quantum systems.

Here, we consider applications of QTC to rotational
control, for the purpose of orienting symmetric top
molecules. Quantum control of rotational dynamics has
been explored in the context of numerous applications
[38]. In particular, quantum control of molecular ori-
entation has been explored for applications spanning
high harmonic generation [39] and chemical reaction en-
hancement [40—42], and has been the subject of numer-
ous experimental [43—45] and theoretical [46-52] stud-
ies. In particular, QTC of molecular rotor orientation in
2D has been explored [28]. In this work, we extend this
prior work to linear and symmetric top molecules in 3D.
We note that although the controllability of linear and
symmetric top molecules has been the subject of other
studies [53, 541, to the best of our knowledge, the suit-
ability of symmetric tops for QTC has thus far not been
explored.

The remainder of the paper is organized as follows. We
begin by outlining the symmetric top rotor model and
derive QTC equations for the control fields to track its
orientation. We go on to describe computational methods
for solving the QTC equations by expanding the wave
function in terms of angular momentum eigenfunctions
of the symmetric top and address the QTC singularity
issue. We then show how the formulation of QTC for
symmetric top molecules can be reduced to the case of
a linear rotor. We conclude with numerical illustrations
and an outlook.

II. SYMMETRIC TOP MOLECULES IN 3D

We consider a symmetric top molecule with dynamics
governed by the time-dependent Schrodinger equation,

.0
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where 7 = 1 and the time-dependent Hamiltonian is
H(t)=Hy—p-e(t) ()

in terms of (1) the field-free Hamiltonian Hj, (2) three
orthogonal control fields ex(t), ey (t), and ez(¢), i.e.,
where e(t) = Xex(t) + Yey (t) + Zez(t), and (3) the
components of the dipole moment p = X wx + Yuy +
7 Wz, where X s Y, and Z denote the three Cartesian unit
vectors in the laboratory, space-fixed frame of reference.

Given the symmetry of the molecule, the dipole moment
is along the principal, molecular, body-fixed Z-axis, such
that o = Zu,, where 1, = pz, @ is the magnitude of the
dipole moment, and z is the body-fixed position opera-
tor. Noting that vectors represented in body-fixed coor-
dinates Z, j, and 2 and space-fixed coordinates X,Y,and
Z can be related via Euler angles 6 € [0, 7], ¢ € [0, 27,
and x € [0,27], as per Fig. 2, the components of the
dipole moment in the space-fixed frame are then given
by

px = pX = psinécos ¢,
py = pY = psinfsin ¢, 3)
pz = pZ = pcosd,

where XY, Z denote the space-fixed position operators,
expressed using Euler angles 6, ¢.

The molecule is assumed to be a rigid rotor, and the field-
free symmetric top Hamiltonian is given by [55]

Ho=B(J}+J})+CJZ, 4)

where B and C' are rotational constants and J,, J,, and
J,, respectively, denote angular momentum projection
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Figure 2. Diagram showing (6, ¢, x) Euler angle relations be-

tween laboratory space-fixed X, Y, and Z coordinates (black)
and molecular body-fixed Z, ¢, and 2 coordinates (red).



operators in the molecular frame, given by the relations
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As a result, the total angular momentum can be written
as
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and the field-free Hamiltonian becomes
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III. QUANTUM TRACKING CONTROL EQUATIONS
FOR SYMMETRIC TOP ORIENTATION

Here, we apply the QTC framework [20-22, 28] to track-
ing a symmetric top molecule’s 3D orientation using
three orthogonal QTC fields. The time-dependent sym-
metric top orientation is defined as

(R)(1) = X(X)(t) + Y (Y)(t) + Z(2)(1), (9)

which is the instantaneous expectation value, at time ¢, of
the position vector operator R = XX +YY + ZZ. By
differentiating (R) () with respect to ¢ once we obtain

d(R)(t)
dt

= i([Ho, R])(?), (10)

which has no explicit dependence on &(t). By further
differentiating Eq. (10) with respect to ¢ we obtain

*(R)(t)
dt?
an

Eq. (11) can be expressed as a single matrix equation
b(t) = A(t)e(t), where e(t) = (ex(t),ey(t),ez(t))7,

= (lp - &(t), [Ho, R])(t) — ([Ho, [Ho, R]]) (2)-

the components of the matrix A (t) are given by

Axx(t) = (lux, [Ho, X]])(t) = 2uB(Y? + Z%)(t)
Ayy (t) = ([uy. [Ho, Y])(t) = 2uB(Z* + X?)(t)
Az z7(t) = (luz, [Ho, Z)))(t) = 2uB(X? + Y?)(1)
Axy(t) = Ay x(t) = ((py, [Ho, X]])(¢)
— _ouB(XY)(1)
Ay z(t) = Azy(t) = ((pz, [Ho, Y]))(?)
— _ouB(YZ)(t)
Az x(t) = Ax z(t) = ((ux, [Ho, Z]])(t)
— 2uB(ZX)(1).
(12)
and the components of the vector b(t) read
b(t) = T i R 0. a3

Here the subscript “d” denotes the predefined or “desig-
nated” path in time to be tracked, (R)4(t).

The QTC fields can be found by inverting A (t), i.e., as-
suming the inverse of A (¢) exists at all times ¢, and solv-
ing the resultant QTC equations,

e(t) = A~ (t)b(t), (14)

as follows. First, the initial field values £(0) are com-
puted at time ¢ = 0, by evaluating (14) for an initial
state [1)(0)). The next step is to evolve the system for-
ward in time by integrating the Schrédinger equation (1)
over a small time step At, where this evolution depends
on &(0). Then, the state that results from this forward
propagation, |¢)(At)), can be substituted into Eq. (14) to
compute € (At) associated with time ¢ = At. This proce-
dure is then repeated for all remaining time steps, where
each forward step £k — 1 — k involves the following two
computational steps (i) and (ii):

(i) [(kAt)) = e~ (= ((=D20)) At (6 1) Ag)
(ii) e(kAt) = A7 (|0 (KAL) ) b([9 (kAL))).

The computational details associated with steps (i) and
(ii) are given in Sec. IV. As mentioned above, this pro-
cedure requires that A(t) is invertible at all times. A
singularity is obtained when A (t) is not invertible, im-
plying that det(A (¢)) = 0. We proceed by investigating
this case in more detail below.

From Eq. (12) it can be readily shown that the determi-
nant of the matrix A, suppressing the ¢-dependence, can



be written as

det(A)=(2uB)3<(< ?) + <Y2>)(< 2)(X?) - (XY)?)
+ (V%) +(29) ((V*)(2%) = (v 2)?)
+((27%) + (X)) (X*)(2%) - (X 2)?)
+2<<X2><Y2><ZZ> (x ><YZ><XZ>))zo

5)

The Cauchy-Schwarz inequalities between the state vec-
tors X |¢(t)), Y| (t)), and Z|1(t)), which can be ex-
pressed in general as

(p1lo1)(@2lp2) = [{o1l@2)]? (16)
for any two state vectors |p1) and |¢2), implies that Eq.
(15) is positive semidefinite, as indicated. To see that

this holds for the final line in Eq. (15), we begin with the
following relations from Cauchy-Schwarz,

(X (Y?) > (XY)?
(Y2)(Z%) > (Y Z)* (17)
(2%)(X?) > (2X)*

which may be rearranged by taking products as,

(X222 = (XY)(YZ2)2(ZX)*. (19)

Taking the square root of both sides then yields the de-

sired result that
(X2)(¥Y)(2%) =

(XY WY ZWZX). (19)

The equality sign (i.e., a singularity) in Eq. (15) can
arise if and only if X |(t)), Y|¢(¢)), and Z|w(t)) are
all linearly dependent. The QTC singularity issue will
be addressed in Sec. IV below where we describe our
computational methods for solving Eq. (14).

IV. COMPUTATIONAL METHODS

The numerical computation of the QTC fields according
to Eq. (14) requires evaluations of the expectation val-
ues for the associated operators. Here, we study QTC
of symmetric top molecules in the | JK M) eigenbasis of

the drift Hamiltonian, which is given in Eq. (8) and can
be rearranged as
Hy=BJ*+

(C—B)J? (20)

leading to the eigenvalue equation

Ho|JKM) = (BJ(J +1)+ (C — B)K*)|JKM)
2D
where J = 0,1,2,--- is the total rotational angular
momentum quantum number, K = 0,+1,+2,--- | £J
is the projection of the angular momentum onto the
molecule-fixed z-axis, and M = 0,£1,4+2 --- | £J is
the projection of the angular momentum onto the labora-
tory frame Z-axis. Eq. (21) can be obtained in a straight-
forward manner from Eq. (20) using the standard an-
gular momentum matrix element relations J,|JKM) =
K|JKM) and J?|JKM) = J(J + 1)|JKM). In this
section, we obtain matrix element relations in this basis
in order to carry out the two computational steps outlined
in Sec. III that must be taken at each forward time step,
i.e., (i) solving the time-dependent Schrddinger equation,
Eq. (1) and (ii) solving the QTC equations, Eq. (14).

(i) Solving Eq. (1):

We begin by expanding the state of a symmetric top as

[W(t) = > (JEM)(t))|JKM),

JKM

(22)

The expansion coefficients are governed by the equation

TR M)

= Y (JKM|Ho|J'K'M')(J'K'M'|3)(t))
J/K/M/
J'K' M’
J'K'M'

J' K'M’

(KM XK M) (' K'M[3p(t))e x (¢)
(t)

®),
(23)

p(JEKM|Y|J'K' M'YJ' K M |y)(t))ey

((JKM|Z|J' K' MY (J'K' M| (t))e

where

(JKM|Ho|J'K'M'y = BJ(J+1)+(C—B)K? (24)

forJ'=J,K' = K,and M’ = M, and



(JKM|X|J'K'M'y = —
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2
ey NVE(1)ERT K e U N (I 1 2
(JKMY|J'K'M') = 2% 2:11<M m —M’) (K 0 —K’) ’
withJ =J+1, K'=K,and M' = M £ 1, and
’ ! ! / !
(JEM|Z|J'K'M'y = N (—1)2+2/ +M =K +2M (J\J4 (1) jw’) (}é (1) _‘2/) ; (26)

with J' = J+ 1, K/’ = K, and M’ = M, in terms
of 35 symbols, where N' = /(2] + 1)(2J" + 1) [56-

]. The selection rules associated with Eqgs. (25) and
(26) can be used to accelerate the computation of the as-
sociated matrix elements. The selection rules also imply
that fields coupling to the system via X, Y, Z can only be
used to drive transitions in the quantum numbers J, M,
while K is conserved.

(ii) Solving Eq. (14):

Egs. (25) and (26) provide the matrix element relations
needed for obtaining the elements of A(t) in the QTC
Eq. (14) (i.e., see Eq. (12)) in the |JKM) eigen-

J

(

basis. The computation of b(t) requires matrix ele-
ment relations for the triple commutators of the form
[Ho, [HQ, R]], i.e.,

(JKM|[Ho, [Ho, R]]|J'K'M")

= (B(J(J F1) = J(J+ 1)))2<JKM|R\J’K’M’>.
(27)

The issue of det(A(t)) = 0 in Eq. (15) can be clar-
ified as follows [59]. We will show that the state vec-
tors X |[(¢)), Y| (t)), and Z|(t)) are linearly inde-
pendent of each other. Specifically, X | (t)), Y|v(t)),
and Z|1(t)) can be, respectively, further written in terms
of the basis | JK M), as

X)) = 3 [ D0 (EMIXIIK M) (K M p(0)||TKM),

JKM J K'M' (28)
Yie) = 3 | D (JKMYE M) K M ()| |TKM),
JKM J K'M'
and
Zp) = > | 3 (EM|ZIIE M) KM ()| TKM), 29)

JKM J' K'M'

which, from Eqgs. (25) and (26), can be seen to be lin-
early independent, since the expansion coefficients for
Xp(t)), Y|(t)), and Z|1p(t)) in the |JK M) basis are
all distinct for bases truncated at some finite, albeit suf-
ficiently large, value J,,,, (Which is set to 30 in all of
our calculations in Sec. VI). As a result, we conclude
that det(A(¢)) > 0 and that singularities will not appear
when solving the QTC Egs. (14).

V. REDUCTION TO THE CASE OF LINEAR
MOLECULES

Figure 3. Diagram showing (0, ¢) relation between laboratory
frame fixed (X,Y, Z) coordinates (black) and molecular ori-

5 entation vector (red)



Linear molecules possess only one axis of rotation and
their Hamiltonian is given by,

H, = BL? (30)

where

2 (1 0. 40 1
Lm= <smeae<smeae)+sm2ea¢2 3D

and has no explicit y-dependence, as depicted in Fig. 3.
This yields an expression for det(A) that is equal to Eq.
(15). The matrix elements required to study QTC of lin-
ear molecules in their eigenbasis can be found using the
matrix element relations obtained for symmetric tops and
setting K = 0.

VI. NUMERICAL ILLUSTRATIONS

We have derived the QTC equations, Eq. (14), for con-
trolling symmetric top orientation, and we now present
numerical illustrations of this approach. For our illus-
trations, we consider the symmetric top molecule flu-
oromethane, with principal rotational constant B =
5.182cm~! and second rotational constant C' =
0.852 cm~! [60]. The magnitude of the dipole mo-
ment is given by p = 1.847 Debye [01]. The sys-
tem is represented in the |JK M) basis, with basis el-
ements |000), -- -, |30, £30, £30). We consider desig-
nated tracks (X)4(t), (Y)4(t), and (Z)4(t) given by

(X)a(t) = 0.26_( T/ )2 sin(8Bt)

(Wha(t) = 02~ (F5) cos(sBry G2

(Z)q(t) =0.2¢ (57 )2 cos(8Bt)

where T = 5/B is the terminal time and 30,000 time
points are used for the calculations. Fig. 4 shows a
3D plot comparing these designated (X)4(t), (Y)a(t),
and (Z)4(t) trajectories with the actual tracks (X)(¢),
(Y')(t), and (Z)(¢) that are followed when the molecule
is initialized in |¢)(0)) = |000), |100), |110), |200). We
see that the curves in Fig. 4 are all superimposed, indi-
cating that QTC is successful. Meanwhile, Fig. 5 shows
the QTC fields determined via Eq. (14) that are found
to drive (X)(t), (Y)(t), and (Z)(t) along these desig-
nated trajectories for the four initial conditions we con-
sider, noting that the dominant frequency present (= 93)
is slightly higher than the dominant frequency in the as-
sociated tracks (8B). As per Sec. (V), the fields ex (),
ey (t), and £z (t) and the tracks associated with |1 (0)) =

0.2

0.15

0.1

= 0.05

-0.05

-0.1

-0.15
0.2

Figure 4. The designated tracks (X)q(t), (Y)4(t), and (Z)q(t)
given in Eq. (32) are plotted as a black curve inside of the
(X)2(t) + (Y)2(t) + (Z)*(t) = 1 unit sphere. Then, the QTC
tracks (X)(t), (Y)(t), and (Z)(t) followed by the system are
plotted in color. The different colors correspond to different
initial conditions |1(0)) = |000), |100), |110), |200).

|000), |100), |200) are the same fields and tracks for a
3D linear rotor with rotational constant B, initialized as
[#(0)) = 1]00),|10),]20). We remark that in settings
where it is desirable to obtain QTC fields that satisfy a
zero-area constraint [62], the QTC fields for tracking an
observable over some time interval ¢ € [0, 7] can be ex-
tended in time arbitrarily past ¢ = T to obtain a zero
area pulse as desired (e.g., by mirroring the QTC field
for time ¢ € (T,2T]). However, when using such tech-
niques, tracking control is only achieved over the original
time interval ¢ € [0, T7.

VII. CONCLUSIONS

In this article, we have explored how QTC can be applied
to design fields to orient symmetric top molecules, and
have derived expressions for the QTC fields for driving
the molecular orientation along time-dependent tracks.
We also obtained matrix element relations to facilitate
studying QTC of symmetric tops in the |J K M) symmet-
ric top eigenbasis, and presented numerical illustrations
of the QTC procedure for driving orientation dynamics
in these systems. In order to realize associated experi-
mental demonstrations, molecular rotors could be inves-
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Figure 5. The QTC fields e x (7), ey (7), and ez (7) are plotted
as a function of the nondimensionalized time 7 = Bt in panels
(a), (b), and (c), respectively. The different colors correspond to
different initial conditions |1)(0)) = |000), |100), |110), |200).

tigated using, e.g., laser and evaporative cooling methods
to create ultracold molecules, and then trapping them in
an optical lattice [63]. Then, the creation of shaped mi-
crowave fields needed for QTC could be explored using
arbitrary waveform generators [64, 65]. In these settings,
noise in the fields that are generated will cause some de-
viation from the desired QTC field shapes. While pre-
vious work has found that QTC can be robust to control
noise [27], carrying out careful analyses of the robust-
ness of QTC fields for rotational control in the presence
of realistic control noise would be a valuable direction of
future research.

Looking ahead, this QTC formulation could be extended
towards studying the control of so-called molecular su-
perrotors [66], e.g. by selecting tracks to create very
rapid rotational dynamics. Furthermore, the prospects of
applying QTC towards the control of arrays of coupled
molecular rotors, e.g. for applications in quantum infor-
mation science [67-69], could be studied as well. For
the latter, the study of coupled molecules will likely re-
quire high-dimensional modeling to represent the system

dynamics, given that the model dimension scales expo-
nentially in the number of degrees of freedom. As such,
numerically exact simulations of coupled molecular ro-
tors may not be computationally feasible. However, such
challenges may be addressable through the use of suit-
able approximation frameworks for the quantum dynam-
ics, e.g. [70-73].
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