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Abstract

Computer vision models have great potential as
tools for international nuclear safeguards
verification activities, but off-the-shelf models
require fine-tuning through transfer learning to
detect relevant objects. Because open-source
examples of safeguards-relevant objects are
rare, and to evaluate the potential of synthetic
training data for computer vision, we present
the Limbo dataset. Limbo includes both real
and computer-generated images of uranium
hexafluoride containers for training computer
vision models. We generated these images
iteratively based on results from data validation
experiments that are detailed here. The findings
from these experiments are applicable both for
the safeguards community and the broader
community of computer vision research using
synthetic data.
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1 Introduction

The International Atomic Energy Agency (IAEA)
operates under the United Nations and is
responsible for verifying that nuclear materials
and facilities across the globe are limited to
peaceful use. They do so by implementing and
monitoring international nuclear safeguards:
measures to account for nuclear materials and
verify the design and operation of nuclear
facilities. Increasing interest in nuclear energy
technologies, growing inventories of nuclear
material, and limited IAEA safeguards
resources are compelling the IAEA to be more
efficient in safeguards monitoring.

Computer vision models could increase IAEA
safeguards efficiency, by augmenting visual
tasks conducted as part of the IAEA’s
safeguards mission. Examples of visual tasks
for which computer vision research and

development is currently underway throughout
the safeguards community include:

e Object and change detection for
nuclear-relevant sites via satellite
imagery analysis (Rutkowski, Canty,
& Nielsen, 2018).

e Collection, triage, and information
recall for open-source images
(Feldman, Arno, Carrano, Ng, & Chen,
2018) (Gastelum & Shead, 2018)
(Arno, 2018).

e Reviewing surveillance camera data
for specific objects or patterns of life
(Smith, Hamel, Hannasch, Thomas, &
Gaiten-Cardenas, 2021) (Thomas, et
al., 2021) (Wolfart, Casado Coscolla, &
Sequeira, 2022).

e Supporting inspector indoor
localization at complex nuclear
facilities (Wolfart, Sanchez-Belenguer,
& Sequeira, Deep Learning for Nuclear
Safeguards, 2021).

e Supporting inspectors with digital
assistants for visual tasks (Smartt,
Gastelum, Rutkowski, Peter-Stein, &
Shoman, 2021).

Despite this surge in research, access to
sufficiently large, relevant datasets remains a
challenge. Relevant data for international
safeguards research and development are rare
for multiple reasons. First, real international
safeguards data are sensitive and held in
confidence by the IAEA and are therefore
inaccessible for most research. Second,
safeguards-relevant data may be either
commercially sensitive or have national security
sensitivities for states. Third, relevant data may
be lost to history due to obsolete file formats,
data corruption, or lack of digitization. Finally,
relevant data might not exist; for example,
images of technologies that are physically
feasible but not widely adopted may be of
interest to detect future proliferation activities,
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but images of these technologies are non-
existent.

In response to the rarity of available safeguards
data, we have created a large, open-source,
safeguards-relevant imagery dataset called
Limbo. Limbo contains one million synthetic
(computer-generated) images intended for
computer vision research and development.
The images include detailed, automatically-
generated segmentation mask, contour, and
bounding box annotations, see Figures 8 — 10
for examples. We also provide a small
collection of annotated real-world images for
validation that include well-documented
copyright information to simplify publication.
Our goal for the Limbo data, and for synthetic
data more broadly, is to develop computer
vision models trained solely on synthetic data
that can achieve state-of-the-art performance
when evaluated on real-world data.

We applied several criteria in selecting a
subject matter for our synthetic data. We
wanted the subject to be:

¢ Unclassified, for easier development
and dissemination of the data.

e Visually distinct, to facilitate labeling of
real-world validation data.

e Relatively common, to ensure that we
would have sufficient real-world data to
support our validation activities.!

e Prevalent within the nuclear fuel cycle,
so the generated data could support
the broadest possible research and
development, without being tied to a
single process or type of facility.

Based on these criteria, we opted to generate
images of containers used to store and
transport  uranium hexafluoride (UFg)
throughout the commercial nuclear fuel cycle.
We specifically focused on two general models
of UFg containers: 30B and 48-type containers.

30B containers are 30-inch cylinders used to
transport uranium-235 enriched up to 5%.
These containers are primarily found at
uranium enrichment facilities (as the product
output) and fuel fabrication plants (as the
product input). See Figure 1 for a real-world
example.

48-type containers refer to a class of 48-inch
containers used to store and transport natural

! Through a collaboration with researchers at Lawrence

Livermore National Laboratory, we had access to a set of
images collected from open sources that provided an
indication of overall prevalence in open sources and
served as a seed for additional data collection.

and depleted UFg. We included three common
designs of 48s: 48X and 48Y containers are
used for storage and transportation, while 48G
containers are characterized by the lack of an
apron and are used exclusively for storage. 48-
type containers can be found at uranium
conversion plants (as the product output),
uranium enrichment plants (as the input, and to
store depleted tails), and fuel fabrication
facilities (as input for natural uranium fuel). See
Figure 2 for a real-world example of 48Y
containers.

In addition to relevant containers, the Limbo
data includes examples (both real and
synthetic) of distractor objects including
propane tanks, gas canisters, beer kegs, 55-
gallon drums, and more. Synthetic distractors
have the full metadata suite, while real-world
distractor metadata includes only the class
“distractor”.

Figure 1. 30B uranium hexafluoride container at the IAEA
Low Enriched Uranium Bank in Kazakhstan. Credit: IAEA,
2019.
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Figure 2: 48Y containers at Urenco, Netherlands. Credit:
IAEA, 2015.

In the remainder of this paper, we describe the
data generation process (Section 2), validation
workflow (Section 3), data validation
experiments and results (Section 4), and
discussion and implications for future research



(Section 5). We also provide information on
how to access and use the Limbo data, and
descriptions of the Limbo dataset contents
(Section 6).

2 Data Generation

In this section, we describe our workflow to
generate synthetic images. This process
includes the creation of three-dimensional (3D)
models of UFg containers, random sampling of
3D model parameters, and placement in real or
virtual environments, followed by rendering to
produce 2D images and metadata.

2.0 Developing 3D Models

We developed 3D models of our UFg containers
using SideFX Houdini
(https://www.sidefx.com/products/houdini/), a
procedural 3D modeling and animation tool
widely used in films, television, and game
design. A screenshot of the Houdini workspace
with a parameterized 30B container model is
provided in Figure 3. The 3D models were
informed by technical standards and
specifications published in open sources by
industry partners and professional societies,
with some subjective adjustments to better
match the containers in real-world images.
Sources that were especially useful for our
model development included:

e Uranium Hexafluoride: A Manual of
Good Handling Practices (United
States Enrichment Corporation, 1995);

e American National Standard for
Nuclear Materials - Uranium
Hexafluoride — Packaging for Transport
(American Nuclear Standards Institute,

2001); and

e Uranium Hexafluoride: Handling
Procedures and Container
Descriptions (Oak Ridge Operations,
1987).

Once the cylinder models were created in
Houdini, we used the Allegorithmic (now
Adobe) Substance 3D paint software to
generate multiple sets of “paint job” textures for
the cylinders in varying styles and levels of
wear.

Figure 3. 3D CAD model of a 30B UFg container in the
Houdini software.

In addition to the cylinders, Limbo also includes
a variety of distractor objects. Unlike the UFg
containers, the distractors are common objects
not specific to the nuclear fuel cycle (such as
propane tanks, welding gas cylinders, wine
barrels, etc.) that are widely available
commercially. Therefore, for the distractor
objects we procured 3D models from an online
3D model marketplace (https://turbosquid.com)
with appropriate permissions for use and
distribution.

2.1 Model Placement and Environment

As backgrounds for our 3D container models,
we provided two major classes of environment:
real-world and synthetic.

Real-world environments were created using
panoramic High Dynamic Range (HDR)
photographs, which capture a 360-degree
image of a scene, and—unlike normal
photographs—use special techniques to record
the full range of light intensity for each pixel. In
this way, an HDR image samples light intensity
from all directions simultaneously. This makes
it possible for an HDR image to provide the
photographic backdrop for a scene while also
supplying realistic, nuanced lighting. We used
HDR images collected from open sources with
appropriate permissions, including indoor and
outdoor scenes. A majority of the images were
industrial scenes similar to environments where
real 30B and 48 containers would be found, but
we also included several studio and other
scenes for variety. Several examples of our
HDR backgrounds are shown in Figure 4 (the
images are warped by the panoramic
perspective but display normally when
projected into the final 2D rendered images).


https://turbosquid.com/

Figure 4. Sample indoor and outdoor HDR environments.

A limitation of wusing real images as
backgrounds is that the scale and perspective
of the background may not match the 3D
objects in the foreground. This can lead to
cylinders that seem unusually large or small,
relative to their surroundings, or appear to be
floating in air instead of properly grounded.
Although ultra-realistic synthetic images are not
necessarily required for robust model training
(Tremblay, et al., 2018), we addressed this by
providing a fully synthetic 3D environment in
later Limbo images, based on an outdoor scene
of an oil refinery. The 3D oil refinery provided a
large and diverse setting for our containers, had
industrial features similar to a nuclear fuel cycle
facility, and guaranteed that 3D foreground
objects perfectly matched the background in
proportions and perspective.

We inserted skies from the real-world HDR
images into the synthetic oil refinery for
additional control and manipulation of lighting.
A scene from the refinery is shown in Figure 5.
The refinery scene was procured from the same
online 3D model marketplace as our distractor
objects.

Figure 5. Synthetic 3D oil refinery environment.

For both HDR and synthetic 3D environments,
we used Houdini to assemble complete scenes
via random sampling of parameters such as the
number, type, organization (scattered versus
rows) and placement of containers within the
environment; camera location, orientation, and

lens; environmental lighting conditions;
container material appearance; container
condition (new, scratched, rusty, etc.); and type
of cradles (wood, concrete) used to support the
containers.

2.2 Rendering and Metadata

Once the individual 3D scenes were
assembled, we used Redshift 3D - a GPU-
accelerated, biased render engine
implementing a physically based rendering
(PBR) lighting model — to render 2D images.
Importantly, each of our 2D images comprises
several layers and multiple files created
explicitly with the needs of computer vison
research in mind. Each of our images includes
the following:

1) A 720 by 720-pixel HDR visible
spectrum image (Figure 6).

2) A corresponding depth map image,
where the value of each pixel is its
distance from the camera. This data
can be used by researchers interested
in training models on light detection
and ranging (LIiDAR) information
(Figure 7).

3) Sub-pixel occupancy data for every
object in the image (Figure 8). Storing
the per-pixel areas occupied by
multiple objects allows us to generate a
variety of perfect ground truth
information, including per-instance and
per-class segmentation masks,
contours (Figure 9), bounding boxes
(Figure 10), and tags for image
classification. Sub-pixel occupancy
data is stored in compressed form
using the efficient and elegant
Cryptomatte file format (Friedman &
Jones, 2021).

4) Metadata including the contents of a
scene, background, lighting, and
camera parameters.

The images were rendered as a series of
thematic “campaigns”, which are used to
describe the image sets in experiments in
Section 4, and in describing the data in Section
6. Importantly, the synthetic images are
perfectly labelled because the labels
themselves are generated at the same time as
the images, using the same 3D scene
information.

In addition to the data proper, we also
developed an application programming
interface (API) to simplify accessing the full
data and metadata for each image. Information



on the API is available at: https:/limbo-
ml.readthedocs.io/.

Figure 8. Segmentation masks derived from per-instance
occupancy data.

Figure 6. Examples of synthetic 30B containers in a variety
of real-world HDR environments.

Figure 9. Object contours for scene objects.

Figure 7. Depth map image suitable for use as LIDAR
ground truth.

Figure 10. Bounding boxes derived from per-instance
masks.
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3 Data validation procedure

We developed a data validation workflow to
ensure that computer vision models could be
trained using our synthetic images. In this
section, we describe the data validation
workflow, the findings from our validation
activities, and how they informed later iterations
of the Limbo data. This was a crucial step in the
data generation process since the Limbo data
is intended for computer vision research and
development. Our workflow was iterative,
including four steps: rendering synthetic
images, training models on synthetic data,
testing models on real data, and interpreting
what the models learned. Then, we
incorporated those lessons when rendering
new synthetic data. The workflow is depicted in
Figure 11, and each step will be described in
additional detail below.

Test # Interpret

what
model on
model
real data
learned
mgcriaellnon Render
synthetic

synthetic images
data b &

Figure 11. Synthetic data workflow.

3.0  Training Models on Synthetic Data

Our primary goal was to validate that popular
computer vision models could learn from our
synthetic images. We selected two main types
of computer vision models for validation: image
classifiers and object detectors. For each model
type, we fine-tuned multiple pre-trained
architectures. For image classification we used
ResNet-50 (He, Xiangyu, Shaoging, & Sun,
2016) and Inception (Szegedy, et al., 2015). For
object detection, we used YOLO-v5s (Jocher,
et al.,, 2022) (which is built upon Yolov3
(Redmon & Farhadi, 2018)), SSS (Liu, et al.,
2016) and Faster R-CNN (Ren, He, Girshick, &
Sun, 2015).

We conducted a series of experiments that
trained the models using subsets of the
synthetic Limbo data, to validate that the

models could learn from the data and to identify
any issues with the data. The results of those
experiments are discussed in Sections 4 and
Error! Reference source not found..

3.1 Testing Models on Real Data

After training models using synthetic data, each
model was tested on the curated collection of
real-world data—which we refer to as reference
data—that is included with Limbo. The
reference data contains images of both types of
relevant UFg containers and numerous
distractors. Each real-world image in the
reference dataset is accompanied by metadata
that includes copyright information and ground
truth bounding boxes manually labelled by
members of our project team (Figure 12). As
one can see in Figure 12, the manually drawn
bounding boxes are not as perfect as those
generated automatically for our synthetic data.
However, we followed a consistent protocol for
bounding box labeling, which was subject to
inter-rater quality checks within our team. We
think this protocol resulted in higher quality
labels than many of the open-sourced labels
used in the large benchmark datasets, which
have documented errors and quality issues
(Northcutt, Athalye, & Mueller, 2021).

Standard 48" Cylinders

Figure 12. Sample Limbo reference image labelled by our
research team (right).

3.2 Interpreting What the Models Learned

We interpreted the results of our models on
reference data to identify potential issues with
how the computer vision models were learning
from the Limbo data. The mechanisms we used
to interpret model learning differed by model

type.

For the image classification models, we used
machine learning explainability methods to
visualize the pixels of an image that were most
influential in each prediction. We reviewed the
false positive and true positive predictions to



interpret the features that were informing
positive classification results.

Due to the variation in responses from machine
learning  explainability =~ techniques, we
simultaneously viewed the explanations from
three  explainability = models: GradCAM
(Selvaraju, et al., 2017), Guided GradCAM, and
Gradient SHAP. An example from an early
classification model’s false positive explanation
is in Figure 13. From these explanations, we
interpreted what features of the synthetic Limbo
data were more relevant during model training
and inference on the real-world data. Figure 13
shows an early example of indications that we
needed to add distractor cylindrical objects into
the dataset. Additional details of the
classification model validation results are below
in Section 4.

Figure 13. Example explanation from a false positive image
classification, using GradCAM to visualize salient pixels.

For the object detection models, we opted to
use the placement of the bounding boxes to
interpret the most relevant areas of an image
used to make an inference. For example, in
Figure 14 the model incorrectly detected 48-
type containers around a human and a 30B
container. Similar to how we interpreted the
image classification results, we reviewed the
object detection true positives and false positive
detections 2 and anecdotally devised potential
implications of our Limbo data based on what
we observed the object detection models were
learning. The example in Figure 14 is one of
dozens of false positive detections that

2 wWe recognize that we are intermingling terminology from two

paradigms of computer vision, adopting image classification results
to describe object detection. We think it provides useful context for
two reasons: First, if an analyst's attention is drawn to an image
but the bounding box is slightly offset from the object, we think it
will still provide value. Second, this language gives us consistency
in how we compare results from image classification and object
detection models.

prompted us to integrate synthetic people into
our Limbo data.

We also evaluated images of false negative
classifications and detections. We attempted to
observe common features of the images that
may have impacted the failure to correctly
classify or detect the object of interest in the
images. The process we used for reviewing
misclassifications and what we learned from the
process is described in (Gastelum, Shead, &
Marshall, 2022).

Figure 14. Example false positive detection results, in
which the YOLO-v5s model identified a human and a 30B
container as 48-type containers.

3.3  Rendering New Synthetic Data

From our analysis of image classification and
object detection results, we made multiple
additions to our Limbo dataset, including the
addition of cylindrical distractor objects and
arranging containers into rows. After making
updates to the Limbo data, we re-trained and
re-tested our models. Selected results and
findings from those activities, including
experimentation with subsets of the Limbo data,
are described in the following sections.

4 Data validation experiments

The purpose of the data validation experiments
was to confirm that computer vision models
could be successfully trained on our synthetic
data and tested on real data. Though we
imagined that researchers or model developers
could have access to a small amount of real
data, we intended to prepare this data under the
assumption that it would not necessarily be
augmented by real data. Prior research on the
use of synthetic data for training models
typically includes large quantities of real-world
data such as (Ekbatani, Pujol, & Segui, 2017)
(Gaidon, Wang, Cabon, & Vig, 2016)and
(Movshovitz-Attias, Kanade, & Sheikh, 2016),
and achieves good model performance.



However, the sizes of the real datasets in these
papers (tens of thousands of real images) are
still beyond the reach of our intended
application spaces. We have previously
examined the impact of augmenting synthetic
data with small numbers of real images, with
resulting model performance being
approximately the same (Gastelum & Shead,
2020). Therefore, our validation experiments
focused on training models exclusively with
synthetic data and testing them with real data.

Descriptions of our validation experiments in
which we train models on synthetic data and
test them on real data are detailed in Sections
4.2 and 4.3. These experiments utilize image
classification models and object detection
models. While there are other relevant
computer vision model types available such as
image segmentation models, we think that
these two types provide sufficient evidence for
our validation tests. Additional experiments with
segmentation masks or other model types
could prove to be interesting future research.

Model performance in these experiments was
measured in two ways. First, for image
classification models, accuracy measures are
dependent on the class ratios present in the test
data, so we evaluated model performance
using two common computer vision
performance metrics: precision and recall.
Precision is the percentage of items predicted
to be members of a class that actually are
members of that class (true positives divided by
the sum of true positives and false positives,
while recall is the percentage of class members
that are predicted to be members of that class
(true positives divided by the sum of true
positives and false negatives).

Second, for object detection models, we used a
hybrid scoring approach. We first evaluated
object detection models with the industry
standard measure of performance mean
Average Precision (mAP), which considers
model performance on multiple object types,
evaluation of positive and negative
identifications, and evaluation of the predicted
bounding box compared to the ground truth
bounding box (for a useful tutorial, see (Tan,
2019)). For our evaluations, we set the
intersection over union (IOU) threshold of 0.25.
We used this lower-than-typical IOU standard
based on our deployment assumption that the
detection of a relevant object, even with an
imperfectly aligned bounding-box, could still
support analysts in finding indications of
nuclear activity.

It is important to note that it was not the intent
of these experiments to spend significant

resources in fine-tuning hyper-parameters for
best model performance. Rather, we used
these validation experiments to suggest
improvements for our synthetic data and to
obtain a rough estimate of model performance
when using it for training.

4.1  Confirmation of Model Implementation

Although our focus for eventual deployment is
on the train-synthetic, test-real use-case
described above, all of our experiments are
tested on synthetic data during training too - this
allows us to validate that the code is working
properly and the models are successfully
training. As one extant example, the following
figures show train-synthetic, test-synthetic
results for one set of experiments where we
trained ten ResNet-50 models for 500 epochs
using 5000 synthetic images of type 48
containers from campaign 17, and tested using
1000 additional synthetic images from the same
campaign. As can be seen, we achieve
excellent precision (>87%) (see Figure 15) and
recall (>85%) (see Figure 16) on the type-48
identification task (metrics are the results
averaged from evaluating all ten models).
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Figure 15. Precision results for image classification
implementation test.
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Figure 16. Recall results for image classification
implementation test.

For our object detection models, we fine-tuned
the pretrained YOLO-v5 model with synthetic
images from the Limbo dataset. We used 8,000
synthetic images for training, and 2,000
synthetic images for testing. The dataset was
comprised of images of single 30B or 48-type
containers from Campaigns 2 and 3,
respectively, and background (no containers)
images from Campaign 6. We balanced the
dataset with equal number of negative
(background) and positive (either a 30B or 48-
type container present) examples. For the
positive examples, we had the same number of
30B and 48-type containers. The YOLO-v5
model was trained for 500 epochs.

Like the image classification models, we
expected the performance of our train
synthetic-test synthetic object detection models
to be high. Using a threshold of 0.5 for mAP,
performance of the object detection models
was near-ceiling as shown in Figure 17.
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Figure 17. mAP scores using 0.5 detection threshold
implementation test.

4.2 Image Classification Validation

Our first set of computer vision validation
experiments were focused on image
classification. For these experiments, we fine-
tuned pre-trained ResNet-50 models using our
synthetic Limbo data. The models were trained
as one-class classifiers, with a sigmoid output
between zero and one, where larger numbers
indicated stronger predictions of the container
class, and lower numbers indicated lower
prediction of the container class. We elected
0.5 as the threshold for container classification,
so that images with scores higher than 0.5 were
considered a container class and images with
scores lower than 0.5 considered a non-
container class for the purposes of our
evaluation.

We trained 10 models for each experimental
run, using randomized initiation points for each
model to ensure that training results were not
serendipitous. We used this approach instead
of cross-validation in order to train the models
exclusively on synthetic data in each run and
test them exclusively on real data (where cross-
validation techniques would shuffle these
training and test data sets). And we tested their
performance on our full set of real images and
recorded the average of the models’
performance.

In Figure 19 and Figure 18, we show the results
for all ten of the models but describe overall
performance in relation to the mean of the ten
models. Our classification experiment focused
on single 30B container classifications and the
experimental manipulation of the content of the
negative training examples—either plain
backgrounds, or synthetic distractors. For each
trained model, we used an equal split of positive
and negative examples.

In the first set of models (yellow/green tones
along the bottom of Figure 19 and the top of
Figure 18), the ResNet-50 model was trained
on synthetic images of single 30B containers,
with negative examples from background
images without any containers. For these initial
models, precision scores centered around 0.28
(lower cluster in Figure 19), and recall scores
around 0.5 (higher cluster in Figure 18). The
second set of models (in red/orange tones
along the top of Figure 19 and the bottom of
Figure 18), the ResNet50models were trained
on the same relevant containers, but with
distractor containers as negative examples
instead of backgrounds only. The precision
scores for these models increased significantly,
to around 0.58 (higher cluster in Figure 19),
while the recall scores were around 0.35 (lower
cluster in Figure 18).
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Figure 19. Precision scores from our image classification experiment show that image classification models
trained with distractor objects (top cluster of red/orange lines) had higher precision than models trained

without distractors using only background scenes as negative examples (bottom cluster of yellow/green
lines).
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Figure 18. Recall scores for an image classification experiment show that image classification models trained
with distractor objects as negative examples (bottom cluster of red/orange lines) had lower recall than models
trained with background scenes as negative examples (top cluster of yellow/green lines).

The large increase in precision between the first



and second set of models indicates that the
models trained with synthetic distractors were
better at selecting images with relevant
containers and not selecting images without
relevant containers. The decrease in recall
scores between the first and second set of
models indicates that the models became less
likely to classify relevant containers than
before.

We observed that as we made changes to the
content type of the synthetic data, the models
reacted in predictable ways—specifically,
learning to be more discriminating with
cylindrical objects before classifying them as
relevant containers.

4.3  Object Detection

Our second set of validation experiments
focused on object detection models. The object
detection experiments evaluated models
trained using subsets of Limbo to see how
those subsets impacted model performance. In
these experiments, we used an equal number
of positive and negative examples to train the
model. We considered a positive example to
include one or more relevant containers of
interest, and a negative example to contain no
objects of interest (only background images or
distractor containers). In these experiments, we
used the YOLO-v5s object detection model,
with an intersection over union (IOU) threshold
of 0.25. Additionally, we calculated mean
Average Precision (mAP) scores only for the
30B and 48-type containers.

As a baseline for performance, we trained
models with 10,300 images containing
individual containers (30B and 48-type
containers). We compared performance of the
baseline models to two alternatives: first, we
trained models with images containing single
containers (30B and 48) and single rows of
containers (30B and 48). Second, we trained
models with the same images, plus images
containing distractors and individual containers.

Like we did for image classification, for each
experiment, we trained 10 models with
randomized initiation parameters and took the
mean of their results to ensure that test results
were not the product of an especially high- or
low-performing model. We found that by
including images with rows of containers along
with others showing individual containers
during training, the mAP score improved
compared to the baseline model where only
individual containers were present, as shown in
Figure 20Figure 20. Mean Average Precision (mAP)
Scores for Object Detection Experiments.. The real-
world images contain scenarios where the

relevant containers are in rows, and through
inspection of the object detection results, we
noticed models trained without examples of
containers in rows, i.e., only using individual
containers, struggled to identify examples when
presented with a row of containers. By
providing the model with examples of
containers in rows in the training data, the
model was able to learn that more containers
were present and detect them.

The model trained using both containers and
distractors increased the mAP score relative to
the baseline model but did not improve
performance relative to individual containers
and rows. The two scenarios are within
statistical deviation of each other, but the mean
mAP score for models trained on individual
containers and rows is higher. In this case, we
hypothesize that by training the model with
examples of distractors, especially distractors
occluding UFg containers, the model learned
features of the occluding object and incorrectly
associated it with the 30B or 48 containers,
lowering the mAP score. Furthermore, by
including distractors in the categories for the
model to learn from in the training set, the object
detection problem becomes harder because
the model has more options to choose from,
and we observed that the model confused 30B
or 48-type containers for distractors in some
instances, which also lowered the mAP score.

To better compare the impact of different
synthetic images on our image classification
and object detection models, we conducted an
analysis in which we judged both models using
common metrics. We adapted the signal
detection performance metrics used in image
classification (true positive, true negative, false
positive, and false negative) for object detection
as follows:

e For any image that had an object of
interest (as defined by our team’s
labeling), an object detection-
generated bounding box for that type of
object in the image was considered a
true positive regardless of its location
within the image.

e For any image that did not have an
object of interest, the absence of an
object detection-generated bounding
box of that type in the image was
considered a true negative.

e For any image that had an object of
interest, but the object detection model
did not place a bounding box of that
type anywhere in the image, it was
considered a false negative.
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Figure 20. Mean Average Precision (mAP) Scores for Object Detection Experiments. As variety and complexity of
training data increased, so did model performance. There was a minor difference in performance between models
that were trained with individual and rows of relevant containers and models that also included distractor objects. The
green, blue, and red lines indicate training runs with single containers (30B and 48) and background; single
containers, background, and single rows of containers; and single containers, background, distractors plus single
containers, and single rows of containers, respectively.

e For any image that did not have an Second, we had not previously tested
object of interest, but the object differences in computer vision model
detection model placed a bounding box performance between 30B and 48-type
of that type anywhere in the image, it containers. Our early image classification
was considered a false positive. testing focused mostly on 30B containers, and

we did not differentiate container types in
performance reporting in earlier object
detection models. With this new testing, which
included both types of containers and easily
differentiated  results based on how
classification results are reported, we found that
the object detector—when measured like a

We present the performance of our object
detection models when they were evaluated as
classifiers in Figure 21. We provide a summary
of observations from assessing our object
detection models as classifiers, and model-to-
model performance comparisons, below.

First, we observed that increases in classifier—has a higher precision and recall
performance from including more diverse with 48-type containers compared to the 30B
images in training (as shown in Figure 20) was containers. This may be due to the more
not as great for the object detection models visually distinct features of the 48-type
when they were used as classifiers. This is containers compared to the 30B containers.

likely due to an increase in the baseline model
performance coming from the lower bar for true
positives than for correct object detection.

Third, we found stable patterns in the trade-off
between precision and recall as we increased
the variety in the training data. In Figure 19 and



Figure 18, we show that as we increased the
variety, precision scores increased (i.e., a
higher proportion of data retrieved was
relevant) and recall scores decreased (i.e.,
fewer of the total relevant items were recalled),
we see the same pattern in the object detection
models when they are evaluated as classifiers.

We had anticipated this result, that as the
models learn more about other types of
containers that exist, they become more
discriminating in their classifications and
therefore may also miss more relevant items.

Finally, when we compared the performance of
our image classifiers and object detectors on
the same metrics of precision and recall, we
found that both model types had similar
precision scores, but recall scores were
significantly higher for the object detection
models. The underlying models are different, so
it is difficult to make broad generalizations
about what this could mean for computer vision
generally, but it could indicate that models
trained as object detectors are better able to
identify—based on the more specific nature of
the training data—relevant features that could
increase recall, thereby decreasing the
potential number of relevant items missed by
these models.

4.4  Interpreting Model Results

As described in Section Error! Reference
source not found., we interpreted the
computer vision results using explainability
techniques for the image classification models
and visualization of the bounding boxes for the
object detection models. Our most notable
observations, and their subsequent impacts on
the Limbo data, are described here.

Relevant containers in rows. One of our first
observations from the image classification
explainability activities was that when relevant
containers were pictured in rows, a model that
was trained on single containers only appeared
to be focusing primarily on the first one or two
containers. In response, we began generating
rows of relevant containers such as might be
seen in a shipping or storage area. These
changes can be observed in campaigns 4 and
5.

Synthetic distractors. We also observed in our
image classification explainability tests that the
models were recognizing many real-world
cylindrical objects as 30B or 48-type containers.
We think this was caused by negative examples
in early trials, which consisted of backgrounds
without any additional synthetic content, such
as synthetic cylindrical distractors. In response,
we introduced synthetic distractors—primarily

cylindrical, round, industrial objects. These
changes can be observed starting in Campaign
7.

Synthetic distractors in groups. We thought it
would be informative to render our distractor
objects in groups or clusters, instead of the well-
aligned rows of campaigns 4 and 5. This
change can be seen starting in campaigns 8
and 9.

Partially occluded containers. As a follow-up to
the changes made in point 1, we also wanted to
occlude containers with distractor objects rather
than just relevant containers. Combinations of
distractors with relevant containers appear
starting with campaigns 8 and 9.

Synthetic people. As seen in Figure 14, our
object detection models frequently mis-labelled
people as containers. In response, we
introduced synthetic 3D people in campaigns
18 and 19.

Animated walk-through. During its
development, we collaborated with partners
who wanted to use the Limbo data for their own
R&D. One project—the 3D Computer Vision for
Safeguards project—is developing container
counting capabilities intended for use by a
safeguards inspector walking through a facility.
In anticipation of their needs, Limbo campaign
20 provides an extensive animated walk-
through of the synthetic environment that could
be used for frame-by-frame tracking and
counting of objects.



0.8

—=— Campaigns 2, 3, & 6
—— Campaigns 2, 3,4, 5, &6
—— Campaigns 2, 3,4,5,6,7,

8.9.10,11, & 12
0.71

o
o

o
w

Precision

o
»

0.3

0.21

0 50 100 150 200 250 300 350 400

—a— Campaigns 2, 3, & 6
0.4] —— Campaigns 2,3,4,5,&6
" | —— Campaigns 2,3.4,5,6,7,8,9,10, 11, & 12

0 50 100 150 200 250 300 350 400
Epochs

Figure 21. Applying signal detection performance assessments for determining precision (top) and recall (bottom) to
the object detection results. The hatched lines represent performance on 30B containers, and the solid (no hatch
marks) represent performance on the 48-type containers. See Table 1 for a description of the campaign details.



5 Discussion and future work

During our iterative image validation process,
we made several general observations about
training computer vision models with synthetic
data, which we briefly summarize here along
with thoughts on additional research.

First, negative examples are more effective
when they include distractors. This observation
came directly from our validation activities and
is described in Section 4.2 and 4.3, as well as
our discussion of updates to the data as an
outcome of the validation process in Section 4.4

Second, object configuration and positioning
had a larger influence on detection rates than
expected. This was also addressed in Section
4.2 and 4.3, and included an update in our
synthetic data described in Section 4.4.

Third, training computer vision models to be
more discriminating through the inclusion of
distractor objects in training data can lead to a
classic performance trade-off of improved
precision, but lower recall.

Fourth, computer vision models are generally
learning the wrong lessons from training data.
Anecdotally, there are many synthetic images
in the Limbo dataset that our human colleagues
found difficult to distinguish from real-world
data. The problem of domain shift between
datasets has been well-documented in
computer vision research, and (Movshovitz-
Attias, Kanade, & Sheikh, 2016) describes its
relevance to synthetic as well as real datasets.
However, we note that even when human
observers can tell which images are real and
which are synthetic, they still have no difficulty
correctly recognizing the (real or synthetic)
cylinders. Yet computer vision models display
significant differences in performance when
evaluating real and synthetic images. This
implies not only that there are differences
between the synthetic and real feature
distributions, but that the models are making
decisions based on image features that
humans somehow ignore as irrelevant.

We acknowledge that the premise of computer
vision models learning the wrong features may
be controversial. However, it is our aspiration
that computer vision models respond more like
human observers and recognize the intended
item across many varied environments. We
think the ability of computer vision models to
learn the defining visual characteristics of
relevant objects is especially crucial for high
consequence domains such as nuclear
nonproliferation, where learning irrelevant
features could have serious security
consequences.

At this point, we think attention must be placed
back on feature engineering and the models
themselves: what are the features they are
learning, and can we force them to learn only
the features we deem important? Can we
identify and prune features that are irrelevant?
We believe the next step in computer vision
research and development—especially for
high-consequence domains where real-world
data is limited and synthetic data will likely play
a significant role—will require new ideas and
new architectures that allow model trainers to
explicitly specify the relevance of data.

6 Accessing and using the data

The images, metadata, reference data, and
documentation for the Limbo dataset are
available to the public as unclassified, unlimited
release data. While Sandia does not own the
reference data, we have checked copyright
information to the best of our ability and have
included only data that we believe is shareable.
The full Limbo dataset, including one million
synthetic images, hundreds of real-world
reference images, and all associated metadata
is hosted in the Lawrence Berkely National
Laboratory’s Berkeley Data Cloud (BDC). The
data is open source and available to anyone
with a free BDC account. Before accessing
BDC, however, we recommend reading the
documentation, terms of use, and API
information detailed at:

https://limbo-ml.readthedocs.io/

The Limbo data is organized into a series of
topical campaigns that provide a manageable
file structure of roughly 50000 images each and
reflect the lessons and observations from our
data validation experiments (see Section 3).
The rendering campaigns are described in
Error! Reference source not found., and in
the documentation provided at our website.

Table 1. Limbo campaign descriptions.

2 30B containers viewed individually, in the
relative center of the frame of real-world 3D
HDR backgrounds. 50,000 of the images
depict 30B containers, and 5,000 images
show only the backgrounds without
containers for use as negative examples. See
Figure 1.



https://limbo-ml.readthedocs.io/

48-type containers (X, Y, and G designs
intermixed) viewed individually, in the relative
center of the frame of real-world 3D HDR
backgrounds. 50,000 of the images depict 48
containers, and 5,000 images show only the
backgrounds without containers for use as
negative examples. See

Figure 22. Example from campaign 3,
with a single 48-type container.

Figure 23. Example from campaign 4,
showing rows of 48-type containers.

10

Figure 24. Example from campaign 5, with
rows of 30B containers

48-type containers (X, Y, and G designs
intermixed) arranged in rows in real-world 3D
HDR backgrounds. 50,000 of the images
depict 48 containers, and 5,000 images show
only the backgrounds without containers for
use as negative examples. See Figure 23.

30B containers arranged in rows framed in
real-world 3D HDR backgrounds. 50,000 of
the images depict 48 containers, and 5,000
images show only the backgrounds without
containers for use as negative examples. See
Figure 24.

No containers. This campaign contains
images from our 3D HDR backgrounds as
negative examples. See Figure 25.

Single synthetic distractor objects arranged in
our real-world 3D HDR backgrounds. See
Figure 26.

Single 30B containers pictured with a single
distractor, in the real-world 3D HDR
background.  Depending on  camera
placement and container size, one of the
containers might not be visible in some
images. See Figure 27.

Single 48 containers pictured with a single
distractor, in the real-world 3D HDR
background. Depending on  camera
placement and container size, one of the
objects might not be visible in some images.
See Figure 28.

Clusters of distractor objects, including up to
three distractor types, in real-world 3D HDR
backgrounds. See Figure 29.



1"

Single 30B container with up to three types of
distractor objects clustered around the
container, in real-world 3D HDR
backgrounds. This campaign offers more
views of occluded containers than previously
gemonstrated. See

Figure 28. Example from campaign 9, with a
single 48-type container and one distractor.

Figure 29. Example from campaign 10, with
groups of distractors.

12

13

14

15

16

17

18

19

Figure 30.

Single 48 container with up to three distractor
objects clustered around the container, in
real-world 3D HDR backgrounds. This
campaign offers more views of occluded
containers than previously demonstrated.
See Figure 31.

Highly complex environment with a single 48
container and many distractors of up to 10
different types filling the frame, in real-world
3D HDR backgrounds. These images are
intended to test the limits of computer vision
applications. See Figure 32.

Highly complex environment with a single 48
container and many distractors of up to 10
different types filling the frame, in real-world
3D HDR backgrounds. These images are
intended to test the limits of computer vision
applications. See Figure 33.

Each individual UF¢ container type developed
for this project, with every possible surface
type, viewed from many angles. Backgrounds
are real-world 3D-HDR backgrounds. See
Figure 34Figure 36.

Between 0 — 50 30B containers with multiple
distractors placed in synthetic 3D oil refinery
background. See Figure 35

Between 0 — 50 48 containers with multiple
distractors placed in synthetic 3D oil refinery
background. See Figure 36.

Single 30B containers with multiple
distractors and with the addition of people
placed in synthetic 3D oil refinery
background. See Figure 37Figure 39.

Single 48 containers with multiple distractors
and with the addition of people placed in
synthetic 3D oil refinery background. See
Figure 38.



20 30B and 48 containers pictured together, with
distractor objects, in an animated walkthrough
of the synthetic oil refinery background. This
campaign is intended for use in computer
vision research involving video data. See
Figure 39Figure 39.

Figure 24. Example from campaign 5, with rows of 30B
containers.

Figure 22. Example from campaign 3, with a single 48-type
container.

Figure 25. Example from campaign 6, showing a
background image with no containers.

r \ [T

Figure 23. Example from campaign 4, showing rows of 48-
type containers.

Figure 26. Example from campaign 7, with a single
distractor object.



Figure 30. Example from campaign 11, showing groups of

Figure 27. Example from campaign 8, showing one distractors with one 30B container.

distractor and one 30B container.

Figure 31. Example from campaign 12, with groups of
Figure 28. Example from campaign 9, with a single 48-type distractors with one 48-type container.
container and one distractor.

Figure 29. Example from campaign 10, with groups of
distractors.

Figure 32. Example from campaign 13, with many
distractors and one 48-type container.



Figure 33. Example from campaign 14, with many

distractors with one 30B container. Figure 36. Example from campaign 17, with several 48-

type containers and distractors in a synthetic background.

Figure 34. Example from campaign 15, in which a 30B

container is pictured from below. Figure 37. Example from campaign 18, with 30B

containers, distractors, and people in a synthetic
background.

Figure 35. Example from campaign 16, with several 30B
containers and distractors in a synthetic background.



Figure 38. Example from campaign 19, with 48-type
containers, distractors, and people in a synthetic
background.

campaign20

Figure 39. Example from campaign 20, an animated walk-
through of 30B and 48-type containers with distractors in a
synthetic background.
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