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Abstract
Computer vision models have great potential as 
tools for international nuclear safeguards 
verification activities, but off-the-shelf models 
require fine-tuning through transfer learning to 
detect relevant objects. Because open-source 
examples of safeguards-relevant objects are 
rare, and to evaluate the potential of synthetic 
training data for computer vision, we present 
the Limbo dataset. Limbo includes both real 
and computer-generated images of uranium 
hexafluoride containers for training computer 
vision models. We generated these images 
iteratively based on results from data validation 
experiments that are detailed here. The findings 
from these experiments are applicable both for 
the safeguards community and the broader 
community of computer vision research using 
synthetic data. 
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1 Introduction
The International Atomic Energy Agency (IAEA) 
operates under the United Nations and is 
responsible for verifying that nuclear materials 
and facilities across the globe are limited to 
peaceful use. They do so by implementing and 
monitoring international nuclear safeguards: 
measures to account for nuclear materials and 
verify the design and operation of nuclear 
facilities. Increasing interest in nuclear energy 
technologies, growing inventories of nuclear 
material, and limited IAEA safeguards 
resources are compelling the IAEA to be more 
efficient in safeguards monitoring. 

Computer vision models could increase IAEA 
safeguards efficiency, by augmenting visual 
tasks conducted as part of the IAEA’s 
safeguards mission. Examples of visual tasks 
for which computer vision research and 

development is currently underway throughout 
the safeguards community include:

• Object and change detection for 
nuclear-relevant sites via satellite 
imagery analysis (Rutkowski, Canty, 
& Nielsen, 2018).

• Collection, triage, and information 
recall for open-source images 
(Feldman, Arno, Carrano, Ng, & Chen, 
2018) (Gastelum & Shead, 2018) 
(Arno, 2018). 

• Reviewing surveillance camera data 
for specific objects or patterns of life 
(Smith, Hamel, Hannasch, Thomas, & 
Gaiten-Cardenas, 2021) (Thomas, et 
al., 2021) (Wolfart, Casado Coscolla, & 
Sequeira, 2022). 

• Supporting inspector indoor 
localization at complex nuclear 
facilities (Wolfart, Sanchez-Belenguer, 
& Sequeira, Deep Learning for Nuclear 
Safeguards, 2021).

• Supporting inspectors with digital 
assistants for visual tasks (Smartt, 
Gastelum, Rutkowski, Peter-Stein, & 
Shoman, 2021). 

Despite this surge in research, access to 
sufficiently large, relevant datasets remains a 
challenge. Relevant data for international 
safeguards research and development are rare 
for multiple reasons. First, real international 
safeguards data are sensitive and held in 
confidence by the IAEA and are therefore 
inaccessible for most research. Second, 
safeguards-relevant data may be either 
commercially sensitive or have national security 
sensitivities for states. Third, relevant data may 
be lost to history due to obsolete file formats, 
data corruption, or lack of digitization. Finally, 
relevant data might not exist; for example, 
images of technologies that are physically 
feasible but not widely adopted may be of 
interest to detect future proliferation activities, 
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but images of these technologies are non-
existent. 

In response to the rarity of available safeguards 
data, we have created a large, open-source, 
safeguards-relevant imagery dataset called 
Limbo. Limbo contains one million synthetic 
(computer-generated) images intended for 
computer vision research and development. 
The images include detailed, automatically-
generated segmentation mask, contour, and 
bounding box annotations, see Figures 8 – 10 
for examples. We also provide a small 
collection of annotated real-world images for 
validation that include well-documented 
copyright information to simplify publication. 
Our goal for the Limbo data, and for synthetic 
data more broadly, is to develop computer 
vision models trained solely on synthetic data 
that can achieve state-of-the-art performance 
when evaluated on real-world data. 

We applied several criteria in selecting a 
subject matter for our synthetic data. We 
wanted the subject to be:

• Unclassified, for easier development 
and dissemination of the data.

• Visually distinct, to facilitate labeling of 
real-world validation data.

• Relatively common, to ensure that we 
would have sufficient real-world data to 
support our validation activities.1

• Prevalent within the nuclear fuel cycle, 
so the generated data could support 
the broadest possible research and 
development, without being tied to a 
single process or type of facility.

Based on these criteria, we opted to generate 
images of containers used to store and 
transport uranium hexafluoride (UF6) 
throughout the commercial nuclear fuel cycle. 
We specifically focused on two general models 
of UF6 containers: 30B and 48-type containers. 

30B containers are 30-inch cylinders used to 
transport uranium-235 enriched up to 5%. 
These containers are primarily found at 
uranium enrichment facilities (as the product 
output) and fuel fabrication plants (as the 
product input). See Figure 1 for a real-world 
example. 

48-type containers refer to a class of 48-inch 
containers used to store and transport natural 

1 Through a collaboration with researchers at Lawrence 
Livermore National Laboratory, we had access to a set of 
images collected from open sources that provided an 
indication of overall prevalence in open sources and 
served as a seed for additional data collection. 

and depleted UF6. We included three common 
designs of 48s: 48X and 48Y containers are 
used for storage and transportation, while 48G 
containers are characterized by the lack of an 
apron and are used exclusively for storage. 48-
type containers can be found at uranium 
conversion plants (as the product output), 
uranium enrichment plants (as the input, and to 
store depleted tails), and fuel fabrication 
facilities (as input for natural uranium fuel). See 
Figure 2 for a real-world example of 48Y 
containers. 

In addition to relevant containers, the Limbo 
data includes examples (both real and 
synthetic) of distractor objects including 
propane tanks, gas canisters, beer kegs, 55-
gallon drums, and more. Synthetic distractors 
have the full metadata suite, while real-world 
distractor metadata includes only the class 
“distractor”. 

Figure 1. 30B uranium hexafluoride container at the IAEA 
Low Enriched Uranium Bank in Kazakhstan. Credit: IAEA, 
2019.

Figure 2: 48Y containers at Urenco, Netherlands. Credit: 
IAEA, 2015.

In the remainder of this paper, we describe the 
data generation process (Section 2), validation 
workflow (Section 3), data validation 
experiments and results (Section 4), and 
discussion and implications for future research 



(Section 5). We also provide information on 
how to access and use the Limbo data, and 
descriptions of the Limbo dataset contents 
(Section 6). 

2 Data Generation
In this section, we describe our workflow to 
generate synthetic images. This process 
includes the creation of three-dimensional (3D) 
models of UF6 containers, random sampling of 
3D model parameters, and placement in real or 
virtual environments, followed by rendering to 
produce 2D images and metadata. 

2.0 Developing 3D Models
We developed 3D models of our UF6 containers 
using SideFX Houdini 
(https://www.sidefx.com/products/houdini/), a 
procedural 3D modeling and animation tool 
widely used in films, television, and game 
design. A screenshot of the Houdini workspace 
with a parameterized 30B container model is 
provided in Figure 3. The 3D models were 
informed by technical standards and 
specifications published in open sources by 
industry partners and professional societies, 
with some subjective adjustments to better 
match the containers in real-world images. 
Sources that were especially useful for our 
model development included:

• Uranium Hexafluoride: A Manual of 
Good Handling Practices (United 
States Enrichment Corporation, 1995); 

• American National Standard for 
Nuclear Materials - Uranium 
Hexafluoride – Packaging for Transport 
(American Nuclear Standards Institute, 
2001); and

• Uranium Hexafluoride: Handling 
Procedures and Container 
Descriptions (Oak Ridge Operations, 
1987).

Once the cylinder models were created in 
Houdini, we used the Allegorithmic (now 
Adobe) Substance 3D paint software to 
generate multiple sets of “paint job” textures for 
the cylinders in varying styles and levels of 
wear.

Figure 3. 3D CAD model of a 30B UF6 container in the 
Houdini software.

In addition to the cylinders, Limbo also includes 
a variety of distractor objects. Unlike the UF6 
containers, the distractors are common objects 
not specific to the nuclear fuel cycle (such as 
propane tanks, welding gas cylinders, wine 
barrels, etc.) that are widely available 
commercially. Therefore, for the distractor 
objects we procured 3D models from an online 
3D model marketplace (https://turbosquid.com) 
with appropriate permissions for use and 
distribution.

2.1 Model Placement and Environment
As backgrounds for our 3D container models, 
we provided two major classes of environment: 
real-world and synthetic. 

Real-world environments were created using 
panoramic High Dynamic Range (HDR) 
photographs, which capture a 360-degree 
image of a scene, and—unlike normal 
photographs—use special techniques to record 
the full range of light intensity for each pixel. In 
this way, an HDR image samples light intensity 
from all directions simultaneously. This makes 
it possible for an HDR image to provide the 
photographic backdrop for a scene while also 
supplying realistic, nuanced lighting. We used 
HDR images collected from open sources with 
appropriate permissions, including indoor and 
outdoor scenes. A majority of the images were 
industrial scenes similar to environments where 
real 30B and 48 containers would be found, but 
we also included several studio and other 
scenes for variety. Several examples of our 
HDR backgrounds are shown in Figure 4 (the 
images are warped by the panoramic 
perspective but display normally when 
projected into the final 2D rendered images). 

https://turbosquid.com/


Figure 4. Sample indoor and outdoor HDR environments.

A limitation of using real images as 
backgrounds is that the scale and perspective 
of the background may not match the 3D 
objects in the foreground. This can lead to 
cylinders that seem unusually large or small, 
relative to their surroundings, or appear to be 
floating in air instead of properly grounded.  
Although ultra-realistic synthetic images are not 
necessarily required for robust model training 
(Tremblay, et al., 2018), we addressed this by 
providing a fully synthetic 3D environment in 
later Limbo images, based on an outdoor scene 
of an oil refinery. The 3D oil refinery provided a 
large and diverse setting for our containers, had 
industrial features similar to a nuclear fuel cycle 
facility, and guaranteed that 3D foreground 
objects perfectly matched the background in 
proportions and perspective.

We inserted skies from the real-world HDR 
images into the synthetic oil refinery for 
additional control and manipulation of lighting. 
A scene from the refinery is shown in Figure 5. 
The refinery scene was procured from the same 
online 3D model marketplace as our distractor 
objects.

Figure 5. Synthetic 3D oil refinery environment.

For both HDR and synthetic 3D environments, 
we used Houdini to assemble complete scenes 
via random sampling of parameters such as the 
number, type, organization (scattered versus 
rows) and placement of containers within the 
environment; camera location, orientation, and 

lens; environmental lighting conditions; 
container material appearance; container 
condition (new, scratched, rusty, etc.); and type 
of cradles (wood, concrete) used to support the 
containers.

2.2 Rendering and Metadata 
Once the individual 3D scenes were 
assembled, we used Redshift 3D - a GPU-
accelerated, biased render engine 
implementing a physically based rendering 
(PBR) lighting model – to render 2D images. 
Importantly, each of our 2D images comprises 
several layers and multiple files created 
explicitly with the needs of computer vison 
research in mind. Each of our images includes 
the following:

1) A 720 by 720-pixel HDR visible 
spectrum image (Figure 6).

2) A corresponding depth map image, 
where the value of each pixel is its 
distance from the camera. This data 
can be used by researchers interested 
in training models on light detection 
and ranging (LiDAR) information 
(Figure 7).

3) Sub-pixel occupancy data for every 
object in the image (Figure 8). Storing 
the per-pixel areas occupied by 
multiple objects allows us to generate a 
variety of perfect ground truth 
information, including per-instance and 
per-class segmentation masks, 
contours (Figure 9), bounding boxes 
(Figure 10), and tags for image 
classification. Sub-pixel occupancy 
data is stored in compressed form 
using the efficient and elegant 
Cryptomatte file format (Friedman & 
Jones, 2021). 

4) Metadata including the contents of a 
scene, background, lighting, and 
camera parameters. 

The images were rendered as a series of 
thematic “campaigns”, which are used to 
describe the image sets in experiments in 
Section 4, and in describing the data in Section 
6. Importantly, the synthetic images are 
perfectly labelled because the labels 
themselves are generated at the same time as 
the images, using the same 3D scene 
information. 

In addition to the data proper, we also 
developed an application programming 
interface (API) to simplify accessing the full 
data and metadata for each image. Information 



on the API is available at: https://limbo-
ml.readthedocs.io/. 

Figure 6. Examples of synthetic 30B containers in a variety 
of real-world HDR environments.

Figure 7. Depth map image suitable for use as LIDAR 
ground truth.

Figure 8. Segmentation masks derived from per-instance 
occupancy data.

Figure 9. Object contours for scene objects. 

Figure 10. Bounding boxes derived from per-instance 
masks.

https://limbo-ml.readthedocs.io/
https://limbo-ml.readthedocs.io/


3 Data validation procedure
We developed a data validation workflow to 
ensure that computer vision models could be 
trained using our synthetic images. In this 
section, we describe the data validation 
workflow, the findings from our validation 
activities, and how they informed later iterations 
of the Limbo data. This was a crucial step in the 
data generation process since the Limbo data 
is intended for computer vision research and 
development. Our workflow was iterative, 
including four steps: rendering synthetic 
images, training models on synthetic data, 
testing models on real data, and interpreting 
what the models learned. Then, we 
incorporated those lessons when rendering 
new synthetic data. The workflow is depicted in 
Figure 11, and each step will be described in 
additional detail below.

Figure 11. Synthetic data workflow.

3.0 Training Models on Synthetic Data
Our primary goal was to validate that popular 
computer vision models could learn from our 
synthetic images. We selected two main types 
of computer vision models for validation: image 
classifiers and object detectors. For each model 
type, we fine-tuned multiple pre-trained 
architectures. For image classification we used 
ResNet-50 (He, Xiangyu, Shaoqing, & Sun, 
2016) and Inception (Szegedy, et al., 2015). For 
object detection, we used YOLO-v5s (Jocher, 
et al., 2022) (which is built upon Yolov3 
(Redmon & Farhadi, 2018)), SSS (Liu, et al., 
2016) and Faster R-CNN (Ren, He, Girshick, & 
Sun, 2015). 

We conducted a series of experiments that 
trained the models using subsets of the 
synthetic Limbo data, to validate that the 

models could learn from the data and to identify 
any issues with the data. The results of those 
experiments are discussed in Sections 4 and 
Error! Reference source not found.. 

3.1 Testing Models on Real Data
After training models using synthetic data, each 
model was tested on the curated collection of 
real-world data—which we refer to as reference 
data—that is included with Limbo. The 
reference data contains images of both types of 
relevant UF6 containers and numerous 
distractors. Each real-world image in the 
reference dataset is accompanied by metadata 
that includes copyright information and ground 
truth bounding boxes manually labelled by 
members of our project team (Figure 12). As 
one can see in Figure 12, the manually drawn 
bounding boxes are not as perfect as those 
generated automatically for our synthetic data. 
However, we followed a consistent protocol for 
bounding box labeling, which was subject to 
inter-rater quality checks within our team. We 
think this protocol resulted in higher quality 
labels than many of the open-sourced labels 
used in the large benchmark datasets, which 
have documented errors and quality issues 
(Northcutt, Athalye, & Mueller, 2021). 

Figure 12. Sample Limbo reference image labelled by our 
research team (right).

3.2 Interpreting What the Models Learned
We interpreted the results of our models on 
reference data to identify potential issues with 
how the computer vision models were learning 
from the Limbo data. The mechanisms we used 
to interpret model learning differed by model 
type. 

For the image classification models, we used 
machine learning explainability methods to 
visualize the pixels of an image that were most 
influential in each prediction. We reviewed the 
false positive and true positive predictions to 
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interpret the features that were informing 
positive classification results. 

Due to the variation in responses from machine 
learning explainability techniques, we 
simultaneously viewed the explanations from 
three explainability models: GradCAM 
(Selvaraju, et al., 2017), Guided GradCAM, and 
Gradient SHAP. An example from an early 
classification model’s false positive explanation 
is in Figure 13. From these explanations, we 
interpreted what features of the synthetic Limbo 
data were more relevant during model training 
and inference on the real-world data. Figure 13 
shows an early example of indications that we 
needed to add distractor cylindrical objects into 
the dataset. Additional details of the 
classification model validation results are below 
in Section 4.

Figure 13. Example explanation from a false positive image 
classification, using GradCAM to visualize salient pixels.

For the object detection models, we opted to 
use the placement of the bounding boxes to 
interpret the most relevant areas of an image 
used to make an inference. For example, in 
Figure 14 the model incorrectly detected 48-
type containers around a human and a 30B 
container. Similar to how we interpreted the 
image classification results, we reviewed the 
object detection true positives and false positive 
detections 2 and anecdotally devised potential 
implications of our Limbo data based on what 
we observed the object detection models were 
learning. The example in Figure 14 is one of 
dozens of false positive detections that 

2 We recognize that we are intermingling terminology from two 
paradigms of computer vision, adopting image classification results 
to describe object detection. We think it provides useful context for 
two reasons: First, if an analyst’s attention is drawn to an image 
but the bounding box is slightly offset from the object, we think it 
will still provide value. Second, this language gives us consistency 
in how we compare results from image classification and object 
detection models. 

prompted us to integrate synthetic people into 
our Limbo data. 

We also evaluated images of false negative 
classifications and detections. We attempted to 
observe common features of the images that 
may have impacted the failure to correctly 
classify or detect the object of interest in the 
images. The process we used for reviewing 
misclassifications and what we learned from the 
process is described in (Gastelum, Shead, & 
Marshall, 2022).

Figure 14. Example false positive detection results, in 
which the YOLO-v5s model identified a human and a 30B 
container as 48-type containers. 

3.3 Rendering New Synthetic Data
From our analysis of image classification and 
object detection results, we made multiple 
additions to our Limbo dataset, including the 
addition of cylindrical distractor objects and 
arranging containers into rows. After making 
updates to the Limbo data, we re-trained and 
re-tested our models. Selected results and 
findings from those activities, including 
experimentation with subsets of the Limbo data, 
are described in the following sections. 

4 Data validation experiments
The purpose of the data validation experiments 
was to confirm that computer vision models 
could be successfully trained on our synthetic 
data and tested on real data. Though we 
imagined that researchers or model developers 
could have access to a small amount of real 
data, we intended to prepare this data under the 
assumption that it would not necessarily be 
augmented by real data. Prior research on the 
use of synthetic data for training models 
typically includes large quantities of real-world 
data such as (Ekbatani, Pujol, & Segui, 2017) 
(Gaidon, Wang, Cabon, & Vig, 2016)and 
(Movshovitz-Attias, Kanade, & Sheikh, 2016), 
and achieves good model performance. 



However, the sizes of the real datasets in these 
papers (tens of thousands of real images) are 
still beyond the reach of our intended 
application spaces. We have previously 
examined the impact of augmenting synthetic 
data with small numbers of real images, with 
resulting model performance being 
approximately the same (Gastelum & Shead, 
2020). Therefore, our validation experiments 
focused on training models exclusively with 
synthetic data and testing them with real data. 

Descriptions of our validation experiments in 
which we train models on synthetic data and 
test them on real data are detailed in Sections 
4.2 and 4.3. These experiments utilize image 
classification models and object detection 
models. While there are other relevant 
computer vision model types available such as 
image segmentation models, we think that 
these two types provide sufficient evidence for 
our validation tests. Additional experiments with 
segmentation masks or other model types 
could prove to be interesting future research. 

Model performance in these experiments was 
measured in two ways. First, for image 
classification models, accuracy measures are 
dependent on the class ratios present in the test 
data, so we evaluated model performance 
using two common computer vision 
performance metrics: precision and recall. 
Precision is the percentage of items predicted 
to be members of a class that actually are 
members of that class (true positives divided by 
the sum of true positives and false positives, 
while recall is the percentage of class members 
that are predicted to be members of that class 
(true positives divided by the sum of true 
positives and false negatives).  

Second, for object detection models, we used a 
hybrid scoring approach. We first evaluated 
object detection models with the industry 
standard measure of performance mean 
Average Precision (mAP), which considers 
model performance on multiple object types, 
evaluation of positive and negative 
identifications, and evaluation of the predicted 
bounding box compared to the ground truth 
bounding box (for a useful tutorial, see (Tan, 
2019)). For our evaluations, we set the 
intersection over union (IOU) threshold of 0.25. 
We used this lower-than-typical IOU standard 
based on our deployment assumption that the 
detection of a relevant object, even with an 
imperfectly aligned bounding-box, could still 
support analysts in finding indications of 
nuclear activity. 

It is important to note that it was not the intent 
of these experiments to spend significant 

resources in fine-tuning hyper-parameters for 
best model performance. Rather, we used 
these validation experiments to suggest 
improvements for our synthetic data and to 
obtain a rough estimate of model performance 
when using it for training.  

4.1 Confirmation of Model Implementation
Although our focus for eventual deployment is 
on the train-synthetic, test-real use-case 
described above, all of our experiments are 
tested on synthetic data during training too - this 
allows us to validate that the code is working 
properly and the models are successfully 
training.  As one extant example, the following 
figures show train-synthetic, test-synthetic 
results for one set of experiments where we 
trained ten ResNet-50 models for 500 epochs 
using 5000 synthetic images of type 48 
containers from campaign 17, and tested using 
1000 additional synthetic images from the same 
campaign. As can be seen, we achieve 
excellent precision (>87%) (see Figure 15) and 
recall (>85%) (see Figure 16) on the type-48 
identification task (metrics are the results 
averaged from evaluating all ten models). 

Figure 15. Precision results for image classification 
implementation test.



Figure 16. Recall results for image classification 
implementation test.

For our object detection models, we fine-tuned 
the pretrained YOLO-v5 model with synthetic 
images from the Limbo dataset. We used 8,000 
synthetic images for training, and 2,000 
synthetic images for testing.  The dataset was 
comprised of images of single 30B or 48-type 
containers from Campaigns 2 and 3, 
respectively, and background (no containers) 
images from Campaign 6. We balanced the 
dataset with equal number of negative 
(background) and positive (either a 30B or 48-
type container present) examples. For the 
positive examples, we had the same number of 
30B and 48-type containers. The YOLO-v5 
model was trained for 500 epochs.

Like the image classification models, we 
expected the performance of our train 
synthetic-test synthetic object detection models 
to be high. Using a threshold of 0.5 for mAP, 
performance of the object detection models 
was near-ceiling as shown in Figure 17. 

Figure 17. mAP scores using 0.5 detection threshold 
implementation test.

4.2 Image Classification Validation 
Our first set of computer vision validation 
experiments were focused on image 
classification. For these experiments, we fine-
tuned pre-trained ResNet-50 models using our 
synthetic Limbo data. The models were trained 
as one-class classifiers, with a sigmoid output 
between zero and one, where larger numbers 
indicated stronger predictions of the container 
class, and lower numbers indicated lower 
prediction of the container class. We elected 
0.5 as the threshold for container classification, 
so that images with scores higher than 0.5 were 
considered a container class and images with 
scores lower than 0.5 considered a non-
container class for the purposes of our 
evaluation.  

We trained 10 models for each experimental 
run, using randomized initiation points for each 
model to ensure that training results were not 
serendipitous. We used this approach instead 
of cross-validation in order to train the models 
exclusively on synthetic data in each run and 
test them exclusively on real data (where cross-
validation techniques would shuffle these 
training and test data sets). And we tested their 
performance on our full set of real images and 
recorded the average of the models’ 
performance. 

In Figure 19 and Figure 18, we show the results 
for all ten of the models but describe overall 
performance in relation to the mean of the ten 
models. Our classification experiment focused 
on single 30B container classifications and the 
experimental manipulation of the content of the 
negative training examples—either plain 
backgrounds, or synthetic distractors. For each 
trained model, we used an equal split of positive 
and negative examples.

In the first set of models (yellow/green tones 
along the bottom of Figure 19 and the top of 
Figure 18), the ResNet-50 model was trained 
on synthetic images of single 30B containers, 
with negative examples from background 
images without any containers. For these initial 
models, precision scores centered around 0.28 
(lower cluster in Figure 19), and recall scores 
around 0.5 (higher cluster in Figure 18). The 
second set of models (in red/orange tones 
along the top of Figure 19 and the bottom of 
Figure 18), the ResNet50models were trained 
on the same relevant containers, but with 
distractor containers as negative examples 
instead of backgrounds only. The precision 
scores for these models increased significantly, 
to around 0.58 (higher cluster in Figure 19), 
while the recall scores were around 0.35 (lower 
cluster in Figure 18). 



The large increase in precision between the first 

Figure 19. Precision scores from our image classification experiment show that image classification models 
trained with distractor objects (top cluster of red/orange lines) had higher precision than models trained 
without distractors using only background scenes as negative examples (bottom cluster of yellow/green 
lines).

Figure 18. Recall scores for an image classification experiment show that image classification models trained 
with distractor objects as negative examples (bottom cluster of red/orange lines) had lower recall than models 
trained with background scenes as negative examples (top cluster of yellow/green lines). 
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and second set of models indicates that the 
models trained with synthetic distractors were 
better at selecting images with relevant 
containers and not selecting images without 
relevant containers. The decrease in recall 
scores between the first and second set of 
models indicates that the models became less 
likely to classify relevant containers than 
before.  

We observed that as we made changes to the 
content type of the synthetic data, the models 
reacted in predictable ways—specifically, 
learning to be more discriminating with 
cylindrical objects before classifying them as 
relevant containers.

4.3 Object Detection
Our second set of validation experiments 
focused on object detection models. The object 
detection experiments evaluated models 
trained using subsets of Limbo to see how 
those subsets impacted model performance. In 
these experiments, we used an equal number 
of positive and negative examples to train the 
model. We considered a positive example to 
include one or more relevant containers of 
interest, and a negative example to contain no 
objects of interest (only background images or 
distractor containers). In these experiments, we 
used the YOLO-v5s object detection model, 
with an intersection over union (IOU) threshold 
of 0.25. Additionally, we calculated mean 
Average Precision (mAP) scores only for the 
30B and 48-type containers.

As a baseline for performance, we trained 
models with 10,300 images containing 
individual containers (30B and 48-type 
containers). We compared performance of the 
baseline models to two alternatives: first, we 
trained models with images containing single 
containers (30B and 48) and single rows of 
containers (30B and 48). Second, we trained 
models with the same images, plus images 
containing distractors and individual containers. 

Like we did for image classification, for each 
experiment, we trained 10 models with 
randomized initiation parameters and took the 
mean of their results to ensure that test results 
were not the product of an especially high- or 
low-performing model. We found that by 
including images with rows of containers along 
with others showing individual containers 
during training, the mAP score improved 
compared to the baseline model where only 
individual containers were present, as shown in 
Figure 20Figure 20. Mean Average Precision (mAP) 
Scores for Object Detection Experiments.. The real-
world images contain scenarios where the 

relevant containers are in rows, and through 
inspection of the object detection results, we 
noticed models trained without examples of 
containers in rows, i.e., only using individual 
containers, struggled to identify examples when 
presented with a row of containers. By 
providing the model with examples of 
containers in rows in the training data, the 
model was able to learn that more containers 
were present and detect them. 

The model trained using both containers and 
distractors increased the mAP score relative to 
the baseline model but did not improve 
performance relative to individual containers 
and rows. The two scenarios are within 
statistical deviation of each other, but the mean 
mAP score for models trained on individual 
containers and rows is higher. In this case, we 
hypothesize that by training the model with 
examples of distractors, especially distractors 
occluding UF6 containers, the model learned 
features of the occluding object and incorrectly 
associated it with the 30B or 48 containers, 
lowering the mAP score. Furthermore, by 
including distractors in the categories for the 
model to learn from in the training set, the object 
detection problem becomes harder because 
the model has more options to choose from, 
and we observed that the model confused 30B 
or 48-type containers for distractors in some 
instances, which also lowered the mAP score. 

To better compare the impact of different 
synthetic images on our image classification 
and object detection models, we conducted an 
analysis in which we judged both models using 
common metrics. We adapted the signal 
detection performance metrics used in image 
classification (true positive, true negative, false 
positive, and false negative) for object detection 
as follows:

• For any image that had an object of 
interest (as defined by our team’s 
labeling), an object detection-
generated bounding box for that type of 
object in the image was considered a 
true positive regardless of its location 
within the image.

• For any image that did not have an 
object of interest, the absence of an 
object detection-generated bounding 
box of that type in the image was 
considered a true negative.

• For any image that had an object of 
interest, but the object detection model 
did not place a bounding box of that 
type anywhere in the image, it was 
considered a false negative.



• For any image that did not have an 
object of interest, but the object 
detection model placed a bounding box 
of that type anywhere in the image, it 
was considered a false positive.

We present the performance of our object 
detection models when they were evaluated as 
classifiers in Figure 21. We provide a summary 
of observations from assessing our object 
detection models as classifiers, and model-to-
model performance comparisons, below. 

First, we observed that increases in 
performance from including more diverse 
images in training (as shown in Figure 20) was 
not as great for the object detection models 
when they were used as classifiers. This is 
likely due to an increase in the baseline model 
performance coming from the lower bar for true 
positives than for correct object detection. 

Second, we had not previously tested 
differences in computer vision model 
performance between 30B and 48-type 
containers. Our early image classification 
testing focused mostly on 30B containers, and 
we did not differentiate container types in 
performance reporting in earlier object 
detection models. With this new testing, which 
included both types of containers and easily 
differentiated results based on how 
classification results are reported, we found that 
the object detector—when measured like a 
classifier—has a higher precision and recall 
with 48-type containers compared to the 30B 
containers. This may be due to the more 
visually distinct features of the 48-type 
containers compared to the 30B containers. 

Third, we found stable patterns in the trade-off 
between precision and recall as we increased 
the variety in the training data. In Figure 19 and 

Figure 20. Mean Average Precision (mAP) Scores for Object Detection Experiments. As variety and complexity of 
training data increased, so did model performance. There was a minor difference in performance between models 
that were trained with individual and rows of relevant containers and models that also included distractor objects. The 
green, blue, and red lines indicate training runs with single containers (30B and 48) and background; single 
containers, background, and single rows of containers; and single containers, background, distractors plus single 
containers, and single rows of containers, respectively.



Figure 18, we show that as we increased the 
variety, precision scores increased (i.e., a 
higher proportion of data retrieved was 
relevant) and recall scores decreased (i.e., 
fewer of the total relevant items were recalled), 
we see the same pattern in the object detection 
models when they are evaluated as classifiers. 

We had anticipated this result, that as the 
models learn more about other types of 
containers that exist, they become more 
discriminating in their classifications and 
therefore may also miss more relevant items.

Finally, when we compared the performance of 
our image classifiers and object detectors on 
the same metrics of precision and recall, we 
found that both model types had similar 
precision scores, but recall scores were 
significantly higher for the object detection 
models. The underlying models are different, so 
it is difficult to make broad generalizations 
about what this could mean for computer vision 
generally, but it could indicate that models 
trained as object detectors are better able to 
identify—based on the more specific nature of 
the training data—relevant features that could 
increase recall, thereby decreasing the 
potential number of relevant items missed by 
these models.  

4.4 Interpreting Model Results
As described in Section Error! Reference 
source not found., we interpreted the 
computer vision results using explainability 
techniques for the image classification models 
and visualization of the bounding boxes for the 
object detection models. Our most notable 
observations, and their subsequent impacts on 
the Limbo data, are described here. 

Relevant containers in rows. One of our first 
observations from the image classification 
explainability activities was that when relevant 
containers were pictured in rows, a model that 
was trained on single containers only appeared 
to be focusing primarily on the first one or two 
containers. In response, we began generating 
rows of relevant containers such as might be 
seen in a shipping or storage area. These 
changes can be observed in campaigns 4 and 
5. 

Synthetic distractors. We also observed in our 
image classification explainability tests that the 
models were recognizing many real-world 
cylindrical objects as 30B or 48-type containers. 
We think this was caused by negative examples 
in early trials, which consisted of backgrounds 
without any additional synthetic content, such 
as synthetic cylindrical distractors. In response, 
we introduced synthetic distractors—primarily 

cylindrical, round, industrial objects. These 
changes can be observed starting in Campaign 
7. 

Synthetic distractors in groups. We thought it 
would be informative to render our distractor 
objects in groups or clusters, instead of the well-
aligned rows of campaigns 4 and 5. This 
change can be seen starting in campaigns 8 
and 9. 

Partially occluded containers. As a follow-up to 
the changes made in point 1, we also wanted to 
occlude containers with distractor objects rather 
than just relevant containers. Combinations of 
distractors with relevant containers appear 
starting with campaigns 8 and 9. 

Synthetic people. As seen in Figure 14, our 
object detection models frequently mis-labelled 
people as containers. In response, we 
introduced synthetic 3D people in campaigns 
18 and 19. 

Animated walk-through. During its 
development, we collaborated with partners 
who wanted to use the Limbo data for their own 
R&D. One project—the 3D Computer Vision for 
Safeguards project—is developing container 
counting capabilities intended for use by a 
safeguards inspector walking through a facility. 
In anticipation of their needs, Limbo campaign 
20 provides an extensive animated walk-
through of the synthetic environment that could 
be used for frame-by-frame tracking and 
counting of objects. 

 



Figure 21. Applying signal detection performance assessments for determining precision (top) and recall (bottom) to 
the object detection results. The hatched lines represent performance on 30B containers, and the solid (no hatch 
marks) represent performance on the 48-type containers. See Table 1 for a description of the campaign details. 



5 Discussion and future work
During our iterative image validation process, 
we made several general observations about 
training computer vision models with synthetic 
data, which we briefly summarize here along 
with thoughts on additional research.

First, negative examples are more effective 
when they include distractors. This observation 
came directly from our validation activities and 
is described in Section 4.2 and 4.3, as well as 
our discussion of updates to the data as an 
outcome of the validation process in Section 4.4

Second, object configuration and positioning 
had a larger influence on detection rates than 
expected. This was also addressed in Section 
4.2 and 4.3, and included an update in our 
synthetic data described in Section 4.4. 

Third, training computer vision models to be 
more discriminating through the inclusion of 
distractor objects in training data can lead to a 
classic performance trade-off of improved 
precision, but lower recall. 

Fourth, computer vision models are generally 
learning the wrong lessons from training data. 
Anecdotally, there are many synthetic images 
in the Limbo dataset that our human colleagues 
found difficult to distinguish from real-world 
data. The problem of domain shift between 
datasets has been well-documented in 
computer vision research, and (Movshovitz-
Attias, Kanade, & Sheikh, 2016) describes its 
relevance to synthetic as well as real datasets. 
However, we note that even when human 
observers can tell which images are real and 
which are synthetic, they still have no difficulty 
correctly recognizing the (real or synthetic) 
cylinders.  Yet computer vision models display 
significant differences in performance when 
evaluating real and synthetic images.  This 
implies not only that there are differences 
between the synthetic and real feature 
distributions, but that the models are making 
decisions based on image features that 
humans somehow ignore as irrelevant. 

We acknowledge that the premise of computer 
vision models learning the wrong features may 
be controversial. However, it is our aspiration 
that computer vision models respond more like 
human observers and recognize the intended 
item across many varied environments. We 
think the ability of computer vision models to 
learn the defining visual characteristics of 
relevant objects is especially crucial for high 
consequence domains such as nuclear 
nonproliferation, where learning irrelevant 
features could have serious security 
consequences.   

At this point, we think attention must be placed 
back on feature engineering and the models 
themselves: what are the features they are 
learning, and can we force them to learn only 
the features we deem important? Can we 
identify and prune features that are irrelevant? 
We believe the next step in computer vision 
research and development—especially for 
high-consequence domains where real-world 
data is limited and synthetic data will likely play 
a significant role—will require new ideas and 
new architectures that allow model trainers to 
explicitly specify the relevance of data. 

6 Accessing and using the data
The images, metadata, reference data, and 
documentation for the Limbo dataset are 
available to the public as unclassified, unlimited 
release data. While Sandia does not own the 
reference data, we have checked copyright 
information to the best of our ability and have 
included only data that we believe is shareable. 
The full Limbo dataset, including one million 
synthetic images, hundreds of real-world 
reference images, and all associated metadata 
is hosted in the Lawrence Berkely National 
Laboratory’s Berkeley Data Cloud (BDC). The 
data is open source and available to anyone 
with a free BDC account. Before accessing 
BDC, however, we recommend reading the 
documentation, terms of use, and API 
information detailed at: 

https://limbo-ml.readthedocs.io/ 

The Limbo data is organized into a series of 
topical campaigns that provide a manageable 
file structure of roughly 50000 images each and 
reflect the lessons and observations from our 
data validation experiments (see Section 3). 
The rendering campaigns are described in 
Error! Reference source not found., and in 
the documentation provided at our website. 

Table 1. Limbo campaign descriptions.

Campaign 
No.

Campaign Description and Associated Figure.

2 30B containers viewed individually, in the 
relative center of the frame of real-world 3D 
HDR backgrounds. 50,000 of the images 
depict 30B containers, and 5,000 images 
show only the backgrounds without 
containers for use as negative examples. See 
Figure 1.

https://limbo-ml.readthedocs.io/


Campaign 
No.

Campaign Description and Associated Figure.

3 48-type containers (X, Y, and G designs 
intermixed) viewed individually, in the relative 
center of the frame of real-world 3D HDR 
backgrounds. 50,000 of the images depict 48 
containers, and 5,000 images show only the 
backgrounds without containers for use as 
negative examples. See 

Figure 22. Example from campaign 3, 
with a single 48-type container.

Figure 23. Example from campaign 4, 
showing rows of 48-type containers.

Campaign 
No.

Campaign Description and Associated Figure.

Figure 24. Example from campaign 5, with 
rows of 30B containers 

4 48-type containers (X, Y, and G designs 
intermixed) arranged in rows in real-world 3D 
HDR backgrounds. 50,000 of the images 
depict 48 containers, and 5,000 images show 
only the backgrounds without containers for 
use as negative examples. See Figure 23.

5 30B containers arranged in rows framed in 
real-world 3D HDR backgrounds. 50,000 of 
the images depict 48 containers, and 5,000 
images show only the backgrounds without 
containers for use as negative examples. See 
Figure 24.

6 No containers. This campaign contains 
images from our 3D HDR backgrounds as 
negative examples. See Figure 25.

7 Single synthetic distractor objects arranged in 
our real-world 3D HDR backgrounds. See 
Figure 26.

8 Single 30B containers pictured with a single 
distractor, in the real-world 3D HDR 
background. Depending on camera 
placement and container size, one of the 
containers might not be visible in some 
images. See Figure 27.

9 Single 48 containers pictured with a single 
distractor, in the real-world 3D HDR 
background. Depending on camera 
placement and container size, one of the 
objects might not be visible in some images. 
See Figure 28.

10 Clusters of distractor objects, including up to 
three distractor types, in real-world 3D HDR 
backgrounds. See Figure 29.



Campaign 
No.

Campaign Description and Associated Figure.

11 Single 30B container with up to three types of 
distractor objects clustered around the 
container, in real-world 3D HDR 
backgrounds. This campaign offers more 
views of occluded containers than previously 
demonstrated. See Figure 30

Figure 28. Example from campaign 9, with a 
single 48-type container and one distractor.

Figure 29. Example from campaign 10, with  
groups of distractors.

Campaign 
No.

Campaign Description and Associated Figure.

Figure 30.

12 Single 48 container with up to three distractor 
objects clustered around the container, in 
real-world 3D HDR backgrounds. This 
campaign offers more views of occluded 
containers than previously demonstrated. 
See Figure 31. 

13 Highly complex environment with a single 48 
container and many distractors of up to 10 
different types filling the frame, in real-world 
3D HDR backgrounds. These images are 
intended to test the limits of computer vision 
applications. See Figure 32.

14 Highly complex environment with a single 48 
container and many distractors of up to 10 
different types filling the frame, in real-world 
3D HDR backgrounds. These images are 
intended to test the limits of computer vision 
applications. See Figure 33.

15 Each individual UF6 container type developed 
for this project, with every possible surface 
type, viewed from many angles. Backgrounds 
are real-world 3D-HDR backgrounds. See 
Figure 34Figure 36.

16 Between 0 – 50 30B containers with multiple 
distractors placed in synthetic 3D oil refinery 
background. See Figure 35

17 Between 0 – 50 48 containers with multiple 
distractors placed in synthetic 3D oil refinery 
background. See Figure 36.

18 Single 30B containers with multiple 
distractors and with the addition of people 
placed in synthetic 3D oil refinery 
background. See Figure 37Figure 39.

19 Single 48 containers with multiple distractors 
and with the addition of people placed in 
synthetic 3D oil refinery background. See 
Figure 38.



Campaign 
No.

Campaign Description and Associated Figure.

20 30B and 48 containers pictured together, with 
distractor objects, in an animated walkthrough 
of the synthetic oil refinery background. This 
campaign is intended for use in computer 
vision research involving video data. See 
Figure 39Figure 39.

Figure 22. Example from campaign 3, with a single 48-type 
container.

Figure 23. Example from campaign 4, showing rows of 48-
type containers.

Figure 24. Example from campaign 5, with rows of 30B 
containers. 

Figure 25. Example from campaign 6, showing a  
background image with no containers.

Figure 26. Example from campaign 7, with a single 
distractor object.



Figure 27. Example from campaign 8, showing one 
distractor and one 30B container.

Figure 28. Example from campaign 9, with a single 48-type 
container and one distractor.

Figure 29. Example from campaign 10, with  groups of 
distractors.

Figure 30. Example from campaign 11, showing groups of 
distractors with one 30B container. 

Figure 31. Example from campaign 12, with groups of 
distractors with one 48-type container.

Figure 32. Example from campaign 13, with many 
distractors and one 48-type container.



Figure 33. Example from campaign 14, with many 
distractors with one 30B container.

Figure 34. Example from campaign 15, in which a 30B 
container is pictured from below. 

Figure 35. Example from campaign 16, with several 30B 
containers and distractors in a synthetic background.

Figure 36. Example from campaign 17, with several 48-
type containers and distractors in a synthetic background.

Figure 37. Example from campaign 18, with 30B 
containers, distractors, and people in a synthetic 
background.



Figure 38. Example from campaign 19, with 48-type 
containers, distractors, and people in a synthetic 
background.

Figure 39. Example from campaign 20, an animated walk-
through of 30B and 48-type containers with distractors in a 
synthetic background. 
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