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Abstract

Artificial intelligence (AI) and machine learning (ML) are near-ubiquitous in day-to-day life; from cars with automated
driver-assistance, recommender systems, generative content platforms, and large language chatbots. Implementing AI as
a tool for international safeguards could significantly decrease the burden on safeguards inspectors and nuclear facility
operators. The use of AI would allow inspectors to complete their in-field activities quicker, while identifying patterns and
anomalies and freeing inspectors to focus on the uniquely human component of inspections. Sandia National Laboratories
has spent the past two and a half years developing on-device machine learning to develop both a digital and robotic
assistant. This combined platform, which we term inspecta, has numerous on-device machine learning capabilities that
have been demonstrated at the laboratory scale. This work describes early successes implementing AI/ML capabilities
to reduce the burden of tedious inspector tasks such as seal examination, information recall, note taking, and more.
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1. Introduction

The mission of international safeguards is “... to deter
the spread of nuclear weapons by the early detection of
the misuse of nuclear material or technology. This pro-
vides credible assurances that states are honouring their
legal obligations that nuclear material is being used only
for peaceful purposes” [1]. Specific safeguards activities
performed to provide these assurances vary based on facil-
ity type and from state to state.

Despite these variations, there are many common and
repetitive inspection activities performed by inspectors;
reviewing facility bookkeeping, physically inspecting and
maintaining safeguards equipment, taking measurements
and samples, examining and verifying seals, item count-
ing, reviewing surveillance images, verifying design infor-
mation, and generally observing a facility for discrepan-
cies.

Many inspection activities are mentally and physically
repetitive and are consequently prone to human error. This
is particularly taxing when taken in the context of an in-
creasing number of nuclear facilities under international
safeguards and a push for inspectors to perform more in-
vestigative activities in addition to their traditional audit
activities.

Artificial Intelligence (AI) and Machine Learning (ML)
are quickly becoming a fixture of day-to-day life; from
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smart home controls to assistive chatbots and automated
driver assistance. Integrating these advanced capabilities
into the international safeguards inspection process could
improve the effectiveness and efficiency of safeguards ac-
tivities, particularly for tasks that are tedious, challenging,
and prone to human error.

Sandia National Laboratories is developing a prototype
for an AI-enabled smart digital assistant (SDA) for safe-
guards inspectors to support their increasingly challenging
task requirements. This SDA, termed inspecta (Interna-
tional Nuclear Safeguards Personal Examination and Con-
tainment Tracking Assistant) is designed to work alongside
humans to improve inspection execution. inspecta is de-
signed to function similar to other commercial SDAs, like
Apple’s Siri or Amazon’s Alexa, which aid with common
tasks like note-taking, alarms, and timers. Additionally,
inspecta is designed to have several safeguards-specific
capabilities like using optical character recognition (OCR)
to read seal numbers or information recall from the safe-
guards glossary.

The inspecta platform extends beyond capabilities
described in this document. For example, advances in
robotics pathfinding and point cloud mapping have been
made to help improve a variety of inspection tasks. This
document narrowly focuses on machine learning technolo-
gies that are applicable for nonproliferation tasks so other
supporting capabilities are not discussed in detail.

Preprint submitted to Annals of Nuclear Energy February 13, 2024

SAND2024-01605JThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy or the United States Government.

This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the
U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United
States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States
Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan.



2. Design philosophy

The inspecta platform consists of two components:
an on-device application to be operated by a human and a
robotic component that supports automation of some safe-
guards tasks. These two components are designed to have
some similar capabilities, but each platform has unique
offerings. For example, for the seal examination task, a
human inspector could use the on-device inspecta ap-
plication to automatically scan and record seal identifica-
tion codes. Alternatively, a robotic platform running the
same algorithms could be tasked to autonomously scan
and record seal identification codes without requiring hu-
man input. The goal of having two platforms is to enable
a reduction in repetitive tasks through semi-autonomous
robotics or for more dangerous tasks (e.g., inspections in
highly radioactive areas) when possible, while leveraging
the on-device component when robotics are unavailable.

Privacy, efficiency, and usability are key components
of the inspecta platform. Data collected from inspection
activities is often safeguards confidential and must be pro-
tected through a variety of cybersecurity best practices.
Facilities frequently prohibit wireless communication or
might otherwise be dead zones due to facility construction
which makes reliance on cloud-based capabilities impossi-
ble. Consequently, inspecta is being developed by exclu-
sively focusing on local capabilities that do not depend on
external compute devices.

2.1. On-device application
One of the two core components of the inspecta plat-

form is the on-device component. Generally, inspecta
needs to be deployed on a hand-held device with easy-
to-use controls that can be effortlessly carried during an
inspection. Key requirements for the on-device component
included security, privacy, usability, and ability to leverage
existing open source components. An early design decision
involved consideration of the use of existing platforms such
as Alexa, Siri, or open-source options such as Mycroft, as
a baseline to build from. At the time of first consider-
ation, Alexa and Siri had strong cloud-based dependen-
cies which could be problematic for facilities that prohibit
wireless connectivity. Privacy is also a concern since data
would be transmitted through third party servers. Mycroft
was briefly considered, however, there were few relevant
turnkey skills and limited documentation. These factors
lead to the decision to develop inspecta without relying
on existing digital assistant platforms and instead develop
custom capabilities with an inspection use case in mind.

2.1.1. Hardware platform
Hardware used for the on-device component of inspecta

requires several capabilities; speakers, a microphone, a
camera, and a display. While many devices meet this cri-
teria, the team ultimately selected a Google Pixel 6 smart
phone as a development device leading to the on-device
component of inspecta being developed as an Android

application. An Android device was selected due to their
relative procurement ease, large marketshare, and docu-
mented developer tools.

Smart phones are a good development platform for a
digital assistant given the variety of internal sensors, some
of which may be useful for future capabilities. Smart
phones are small, portable, familiar to many inspectors,
and allow for communication through both visual and au-
ditory means. Additionally, even commercial off-the-shelf
phones have reasonable computational capabilities with a
variety of accessories (e.g., extended battery packs). While
some nuclear facilities prohibit wireless connections, there
is also precedence for allowing devices with physically grounded
antennas.

2.1.2. Code platform
The on-device component of inspecta is developed in

separate modular components which are then integrated
into the larger application (see Figure 1). The goal of
this modular architecture is to have a more robust set of
capabilities that can be reused throughout the inspecta
platform and combined with modern software testing prac-
tices. Activities (dark blue boxes) implemented in the ap-
plication (light blue box) are based on the capabilities li-
brary (green box) and are integrated into the user inter-
face (blue blocks). As inspecta is expanded to encompass
more safeguards uses cases, new capabilities are added to
the library (orange blocks).

The user interface (UI) is implemented using the Xam-
arin platform [2]. Xamarin is an open-source cross-platform
tool based on .NET that can be used to deploy native de-
vice applications for Android, iOS, tvOS, watchOS, ma-
cOS, and Windows. While the team is currently devel-
oping specifically for an Android device, it is unclear how
inspecta might be deployed in the future. Xamarin allows
for a single UI code base for every platform. For example,
changing to an Apple device would be relatively easy using
Xamarin as the UI code would remain unchanged.

Machine learning capabilities for inspecta require on-
device processing for data security, privacy, and potentially
to meet facility requirements. However, as inspecta is de-
signed with a hardware agnostic platform target in mind
(as long as sensor requirements are met), a cross-platform,
generalized machine learning framework is required. The
Open Neural Network Exchange (ONNX) runtime appli-
cation program interface (API) [3, 4] is being used to that
end as it supports a wide range of programming languages
and platforms. This contrasts with popular ML frame-
works like PyTorch [5] or TensorFlow [6] which support a
smaller set of hardware environments. Generally, machine
learning models for inspecta are developed first in Python
using common frameworks (e.g., TensorFlow, PyTorch, or
Transformers [7]) and then exported to an ONNX format.
Models are also quantized and graph optimized for mobile
performance before being added to the main inspecta ap-
plication. In some cases, ONNX is also used to perform
data pre and/or post processing.

2



14

Task: Base App (v0.0)

Information 
Retrieval

Speech to 
Text

Speech 
Synthesis

Task 
Tracking

Location 
Tracking

Li
br

ar
y 

(a
t v

0.
0) Information Retrieval

Speech to Text

Speech Synthesis

Task Tracking

Location Tracking

Task: Seal Examination (v1.0)

Information 
Retrieval

Speech to 
Text

Speech 
Synthesis

Task 
Tracking

Location 
Tracking OCR

Li
br

ar
y 

(a
t v

1.
0) Information Retrieval

Speech to Text

Speech Synthesis

Task Tracking

Location Tracking

OCR

Task: Fuel Examination (v2.0)

Information 
Retrieval

Speech to 
Text

Speech 
Synthesis Task Tracking

Location 
Tracking OCR

Object 
Recognition

Image 
Classification

Anomaly 
Detection

Li
br

ar
y 

(a
t v

2.
0)

Information Retrieval

Speech to Text

Speech Synthesis

Task Tracking

Location Tracking

OCR

Image Classification

Object Recognition

Anomaly Detection

Task: TBD (v3.0)

Information 
Retrieval

Speech to 
Text

Speech 
Synthesis Task Tracking

Location 
Tracking OCR

Image 
Classification

Object 
Recognition

Anomaly 
Detection TBD

Li
br

ar
y 

(a
t v

3.
0)

Information Retrieval

Speech to Text

Speech Synthesis

Task Tracking

Location Tracking

OCR

Image Classification

Object Recognition

Anomaly Detection

TBD

Figure 1: Overview of the on-device inspecta application.

2.1.3. User interface
Inspecta is designed to support both a traditional

UI that is associated with phone-based applications and
a more language-based interface. While some informa-
tion is best consumed visually, the team recognizes that
inspectors often have bulky gloves and equipment that
would inhibit working with a smart phone effectively. The
language-based interface incorporates on-device natural lan-
guage processing for speech recognition and leverages speech
synthesis to accomplish tasks without the traditional screen-
based UI.

The team leverages a commercial UI kit to build the
traditional UI. This allows the team to develop a profes-
sional looking application without needing to hand craft
elements. The UI was developed in consultation with user
interface and user experience (UI/UX) experts. The effec-
tiveness of the UI is demonstrated in the included media
wherein the end-user only had about 15 minutes of famil-
iarity with the application before using it for a task. An

example of the phone-based UI is shown in Figure 2.

2.2. Semi-autonomous robotics
We intend to further extend inspecta by interfacing

it with an embodied intelligence, (i.e., a physical robotic
platform with enhanced computation), capable of intel-
ligently interacting within an environment. We are cur-
rently devising an autonomous system that can interact
with inspectors via inspecta’s mobile UI to complete safe-
guards related tasks. Since facilities contain dynamic el-
ements and are disparate in their layout, there is a need
for ML models of different modalities to help the robot
navigate and communicate with an inspector.

The robotics thrust of inspecta is currently focused
on two interactions: object detection by the robot and
communication between the inspector and robot. The first
requires a vision-based ML framework capable of running
inference on a low-power, single-board computer (SBC)
with a sufficient processing rate. The latter requires a
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Figure 2: inspecta UI showing the seal examination tab.

speech-to-text system that can classify commands spoken
to the robot.

3. General capabilities

Currently, the device-based component of inspecta is
between v1.0 and v2.0 as described in Figure 1. A sum-
mary of current capabilities that have been implemented
follows:

• Wake word detection (i.e., listens when “Hey in-
specta” is spoken)

• Automated seal examination (i.e., real-time OCR is
used to read seal identification text and compare to
a list of known values)

• Information recall (i.e., can extract information given
a query and respond with an answer)

• Document ingestion (i.e., perform OCR on docu-
ments and prepare them for use with information
recall or populate internal databases needed for in-
spection activities)

• Note taking capability (i.e., notes are typed using an
on-screen keyboard or recorded using speech-to-text)

• Variety of convenience functions (i.e., telling the time
and reading back notes)

An important guiding principle for on-device machine
learning capabilities developed for inspecta is computa-
tional efficiency. Unlike desktop or cloud-based implemen-
tations wherein ample compute resources are available,
smart phones and SBCs have limited processing capabil-
ities. Hardware limitations are particularly important in
the context of providing a consistent user experience; re-
quiring long wait times for various tasks could lead to
end-user frustration and lower platform utilization. Many
of the capabilities described in the following sections fo-
cus first on identifying a suitable open-source model or
algorithm for a given task. Then, the bulk of develop-
ment effort is focused on optimization of both algorithms
and implementation. Most models described below have
graph-level optimizations followed by either static or dy-
namic quantization for better on-device performance. Al-
though inspecta is not currently open source software,
implementation details are provided in the Appendix.

The robotics capabilities of inspecta are based on
Spot [8], a quadruped robot developed by Boston Dynam-
ics. Spot is capable of various functionality suitable for
inspection [9], logistics [10], and search and rescue [11].
Each leg of the quadruped is comprised of three actuators
that drive hip abduction/adduction, hip flexion/extension,
and knee flexion/extension [12]. Together, all four legs
drive Spot’s motion, which resembles the gait of biological
quadruped animals.

Spot also contains a perception sensor-suite used for
path planning, obstacle avoidance, and localization. There
is a stereo camera, a red, green, blue (RGB) camera, and
a depth camera on each side of Spot’s base; the front of
the robot has two of each. The two sensor suites on the
front of the robot point in overlapping directions; their
information is stitched together to deliver a larger frontal
field of view.

Additionally, Spot is equipped with a front-mounted
6-DoF (degree of freedom) articulated robotic arm with a
single-joint gripper end-effector. The weight of the arm
and any object carried in the gripper is compensated by
the orientation and motion of the robotic base. The end-
effector houses a 4K RGB camera that can zoom up to 30x
for tasks that require more precise image capturing than
those taken from the lower-resolution camera sensor suite
on Spot’s base.

Finally, while users cannot directly manipulate Spot’s
individual actuators, Boston Dynamics provides a robust
Software Development Kit (SDK) [13] written in Python.
The SDK abstracts motion, manipulation, and sensing
tasks for incorporation into user’s preferred client-side ap-
plications. Any user-created applications that drive Spot
must run on an external computing device and not Spot’s
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internal computer, which is restricted by the manufac-
turer. Figure 3 shows a 3D printed payload mount for
an Nvidia Jetson [14] SBC, which has been added to Spot
to run a variety of algorithms. The SBC connects via eth-
ernet to a port located in Spot’s rear. A Wi-Fi chip and
antennas added to the SBC allow an inspector to interface
with Spot through the inspecta app as well.

Figure 3: Spot with mounted Nvidia Jetson companion computer
and GPU, complete with wireless connectivity.

In summary, Spot’s locomotion, perception and ma-
nipulation systems enable it to operate in the same built
environments in which inspectors work. Spot can walk on
many types of terrain, up stairs, over small obstacles and
around large ones. Using its built in arm and gripper, Spot
can even open doors. Furthermore, the ethernet interface
and SDK allows the team to develop arbitrary autonomous
inspection behaviors and deploy them on Spot, while also
enabling connectivity between Spot and the inspecta app.

3.1. Device: Wake word detection
Wake word detection, or voice activity detection (VAD),

is the detection of speech in an audio clip. Accurate de-
tection of speech is important for reducing computational
overhead of the on-device inspecta application. While
inspecta has a speech recognition algorithm, which is de-
tailed more in the following section, constantly running
the model to look for wake words would not only slow
down the device, but also reduce battery life. Instead, it
is preferable to run the speech recognition model only for
cases where speech is likely present. The three key steps
for this task include audio collection, voice activity detec-
tion, and speech recognition.

Audio collection: Audio collection for the wake word
task is implemented through Android-specific libraries. An
audio buffer constantly collects audio and is passed through
the voice activity detection module. This process starts at
application launch and is only paused if another machine

learning task is launched (e.g., speech recognition or an-
other task). The buffer is never written to storage and
resides only within volatile memory. While active, audio
collection is continuously collected in the background.

Voice activity detection: The original implementa-
tion for voice activation detection (VAD) relied on engi-
neered metrics that compared the buffer’s statistical prop-
erties to a variety of thresholds. However, that approach
was brittle and did not work in a wide variety of set-
tings. That approach has been replaced with the Silero
VAD model [15], which is small and easy to compute. The
audio buffer is passed to the Silero VAD model at a reg-
ular interval to determine the estimated probability that
speech is present. If a threshold probability is passed, then
the speech recognition module is activated.

Speech recognition: Speech recognition is performed
if a threshold score from the Silero VAD model is exceeded.
The model used here for speech recognition, Meta’s wav2vec2.0
[16], is the same as for other speech recognition tasks for
the on-device inspecta application. Further details of this
model are described Section 3.2.

3.2. Device: Speech recognition
Speech recognition is the process of converting audio

with spoken word to plain text. A device-specific imple-
mentation (i.e., Android-specific) is used for the device-
based speech recognition task. The current implementa-
tion of speech recognition for the device-based inspecta
application does not rely on any UI interaction and can be
triggered by speech prompts only.

Audio collection: Audio recording starts after the
wake word (“Hey Inspecta”) is triggered. Specifically, an
Android audio buffer constantly collects audio in a pulse-
code modulation (PCM) format using four byte floats at
a rate of 16 kHz. This buffer is written to an internal
.wav file while audio recording is active. Audio record-
ing ends after two consecutive buffers worth of audio have
voice activation scores below a specified threshold; a likely
indication that the speaker is finished speaking.

The most important parameter for the audio collection
process is the audio buffer size. Since the buffer itself is
appended to the recorded audio file, the buffer size can
impact the audio file and subsequent downstream tasks.
If a buffer is too small, then spoken words can be cut off
and broken in the output audio file. If the buffer is too
large, read latency increases and the resulting output file
grows in size as extraneous zeros are added; this reduces
responsiveness. The values used in the current version of
the inspecta application were determined empirically by
considering responsiveness and accuracy of the predicted
speech.

Speech recognition: inspecta uses the wav2vec2.0
algorithm [16] for converting the raw waveform stored in
the internal .wav file to an embedded output. This model
is selected for a number of reasons; raw waveforms can be
passed as input without further preprocessing, the model
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has been widely implemented in several frameworks, and
the model performs well when trained on even small (1
hour) quantities of data. High performance in low train-
ing data contexts are important as inspecta will ulti-
mately be used by inspectors of varying nationalities, so
fine-tuning on different accents will become important.

During speech recognition, the audio file from the col-
lection step is first read into memory provided it can fit
into memory. Otherwise, it is read into chunks and pro-
cessed iteratively. Next, the waveform is scaled to the
range [−1, 1] to improve performance. The waveform is
then passed through the quantized and optimized wav2vec2.0
ONNX model on-device. The output is tokenized using
connectionist temporal classification (CTC), so additional
post-processing is required. There were no readily avail-
able tokenization libraries for the .NET framework avail-
able to perform this task originally, however the team at-
tached a decoder to the model resulting in an end-to-end
ONNX speech recognition module. The final decoded out-
put, plain text, is used for down stream tasks such as com-
mand matching or note taking.

3.3. Device: Speech synthesis
There are a variety of algorithms for performing speech

synthesis (i.e., text-to-speech) including WaveGlow [17],
WaveRNN [18], and more recently BigVSAN [19]. How-
ever, Android offers a built-in text-to-speech service that
runs locally on-device. Inspecta leverages that Android
implementation rather than relying on a machine learning
approach given the low effort to implement.

3.4. Device: Command matching
Commercial digital assistants have the ability to match

spoken commands to software actions (e.g., turn on the
light or lookup the current weather). While some as-
pects of that process are well documented publicly, oth-
ers, like command matching, are not. There are two gen-
eral approaches that can be used for command matching;
similarity-based and embedding-based. In the former, a
metric of string similarity is used to compare the command
to a list of options. The embedding-based approach uses a
machine learning model to embed the sentence into a dif-
ferent space wherein sentences with similar sentiment are
close together. The current implementation uses a Leven-
shtein distance [20], a similarity-based technique. Specif-
ically, when Levenshtein is used to measure the distance
between two sentences, it is the minimum number of single-
character edits (i.e., insertions, deletions, or substitutions)
required to change one sentence to the other.

Inspecta attempts to match the speech-to-text result
to a list of available commands by calculating the Leven-
shtein distance between all possible result-command pairs.
If the score is under a threshold, then the best command
is executed (e.g., start seal examination task launches the
seal examination activity). If the score is over the thresh-
old, then it is assumed no command is a good match and
information recall is requested instead.

The Levenshtein distance is straightforward, intuitive
and has performed well, but might not represent the most
effective strategy to perform command matching. How-
ever, using embedding-based approaches might require nuclear-
specific vocabularies to capture the correct sentiment of a
command or sentence. There are some efforts outside of
this work to develop language models with nuclear-specific
vocabularies, however, they have not been extensively in-
vestigated here. Deployment of inspecta to more real-
world scenarios might require a more robust command
matching metric than the currently implemented Leven-
shtein distance.

3.5. Device: seal examination
Items at nuclear facilities are randomly sampled dur-

ing inspections to ensure material is present and accounted
for. Inspectors apply seals after an item has been sampled
to maintain continuity of knowledge between inspections.
If, at the next inspection a seal does not show signs of tam-
per, the item may not need to be measured again. Seals
are used in many places such as containers of nuclear ma-
terial, equipment cabinets, doors, and gates. The IAEA
verifies approximately 15,000 metal cup seals each year.
The verification procedure includes locating the seals, ver-
ifying the identity of the seal matches records, and looking
for visual indications of tamper.

inspecta currently supports real-time optical charac-
ter recognition (OCR) to reduce the burden of seal exam-
ination on inspectors. The on-device verification activity
can currently scan a metal cup seal and compare the iden-
tifier to a known list while item-seal checking capabilities
(i.e., ensuring the correct seal is on the correct item) are
under development. Capabilities related to tamper detec-
tion are also under development. Existing capabilities can
be used to ensure scanned seals are present on a predefined
list.

Two different user experiences were considered. In the
first, a user takes pictures of a seal, triggers the verification
pipeline on that image, and receives some feedback. If the
results are inadequate due to image conditions (e.g., poor
prediction due to lighting or camera angle) then the user
would have to take another image. This approach would
likely result in a tedious and slow workflow that is even
worse than manual verification.

Instead, a real-time implementation is chosen wherein
OCR and verification are performed on a real-time pre-
view from the camera. This approach results in a better
user experience as the user only has to point the camera
while moving or rotating the seal, however this approach
requires faster processing. If processing is too slow, then
the camera preview appears as a slideshow and results in
a frustrating user interface. During the real-time preview,
bounding boxes for current text in the analysis window, its
translated text, and a softmax probability, are all drawn
on each frame to provide user feedback. An example of
the seal examination procedure is shown in the attached
media.
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The current real-time seal examination pipeline con-
sists of several steps as follows:

Image collection: There are several ways to generate
a camera preview in the UI. The current implementation
leverages the OpenCV library, with .NET bindings [21]
updated to the latest version of OpenCV (v4.8.0), to cre-
ate a preview and modify frames of the preview. This is
chosen instead of an Android-native approach, which only
supports returning frames in RGB format in some cases
(varies by Android version and device) and returns YUV
format otherwise. Downstream tasks expect RGB format
and converting frames from YUV to RGB is not straight-
forward, so OpenCV preview functions that return RGB
frames are used instead. The downside is that OpenCV
camera preview resolution is limited to that of the device
display, not the maximum camera resolution. However,
this limitation did not negatively impact the seal examina-
tion pipeline, which is focused on performance and utilizes
lower resolution images.

When a frame from the preview is generated, it is
then processed by subsequent operations in the seal exam-
ination pipeline. Since these operations take a non-zero
amount of time, not all preview frames can be processed.
Frames that arrive while a frame is being processed are
simply dropped. This effectively results in a frame rate
drop from the original preview rate to a final rate that is
determined by the computational overhead of the pipeline.

Image preprocessing: The baseline preview provided
by OpenCV is about 20 fps regardless of resolution. Since
processing speed is a priority, the preview image is rescaled
to a resolution of 720x480. Next, a blurring filter is applied
to the preview covering all except for the analysis region,
which is only 160x120 (see Figure 4 for an example). Fi-
nally, the image contrast is adjusted by a factor of 2.5.
There are a variety of algorithms that can perform OCR
on images. Since processing speed is a top priority, con-
temporary end-to-end transformer architectures were not
used. Instead, a two-stage approach based on the Easy-
OCR library is used.

Text detection: The first stage is to detect text in a
scene (i.e., image). Here, the CRAFT model [22] is used,
which is based on VGG [23] and U-Net [24] architectures.
The outputs of the CRAFT algorithm are region scores,
used to localize individual characters in an image, and
affinity scores which are used to group characters into a
single word. More specifically, region score is the proba-
bility that a given pixel is the center of a character and
affinity score is the center probability of the space between
adjacent characters. These metrics are not directly useful
for downstream tasks, so additional processing is required
to generate bounding boxes. This is accomplished by ap-
plying a threshold to both scores and finding a minimum
bounding box on the binary map of the summed com-
ponents. Once bounding boxes have been identified, the
regions of interest are cropped and passed to the second
stage of the pipeline.

Text recognition: The second stage recognizes text

in an image. This stage uses EasyOCR’s recognition model
[25] which is based on the CRNN model [26]. Each image
segment that is determined to contain text in the pre-
vious stage is preprocessed by again having the contrast
adjusted by a factor of 2.5. This model uses an Adap-
tive 2D Pooling layer, which is not currently supported
by ONNX. The first attempt remedied this by exporting
a fixed sized model which created the need for padding
and/or resizing of each input image patch. This resulted in
mixed performance, so the current implementation instead
approximates the Adaptive average pooling layers with a
global pooling layer, which enables variable sized input in
the resulting ONNX model that possesses increased per-
formance. The model is trained with the CTC loss, so the
outputs are decoded from a sequence of scores to letters
that form a word. The resulting text from each cropped
image is passed on to the final stage of the seal examina-
tion pipeline.

Identification matching: The final step of seal ex-
amination is to compare text in the frame to a known list
of seal identification. Here, text is directly compared and
only direct matches qualify (e.g., a text identifier of “123”
must have an exact match from the recognition algorithm).
Text is only compared to possible seal identification if the
softmax probability from the text recognition stage is at
or above 0.85, which acts as a proxy for confidence. If an
image is a match for a listed seal, then visual feedback is
provided to the user and the image is stored on-device for
later human review if necessary.

The real-time seal examination pipeline requires about
85ms per frame resulting in a final preview frame rate of
about 12 frames per second. This framerate is not partic-
ularly fast from a visual preview perspective, but is quite
fast for on-device inference. This performance is achieved
by leveraging offline graph optimization (shape inference
and operation fusion), static quantization (QDQ format,
MinMax calibration), and Android’s Neural Network Ap-
plication Programming Interface (NNAPI) executor.

3.6. Device: Document scanning
Document scanning, or document OCR, involves tak-

ing a picture of an image and transcribing any text in the
image. This capability is particularly useful when needing
to scan documents that need to be stored on inspecta
for internal use. Use cases could include scanning a list
of seals to be used later in the seal examination task or
scanning a document to be queried with the information
recall module. Document scanning presents two unique
challenges not present in the seal examination task. First,
documents might have many words; a single page from a
text book could contain several hundred. Resolving the
individual words requires a higher resolution image than
what is used in the seal examination task. Second, pages
might be warped or skewed, particularly if they are in a
book. This can result in lower performance for the OCR
task and also make it more difficult to order words. Un-
like for seal examination, it is important to ensure words
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Figure 4: Example of the seal examination task being performed on-device.

in scanned documents are ordered properly from left to
right and top to bottom. The OCR pipeline (i.e., detection
and recognition) does not necessarily output the bounding
boxes in the proper order.

The document scanning task is not performed in real
time. Instead, this task focuses on taking a single high
resolution image of a document and focusing on accuracy
over speed. Attempting real-time predictions, as is done
for seal examination, on an entire page of text is simply
not feasible using on-device resources. The workflow by
the end-user for document scanning involved toggling two
switches. The first indicates if an image is free form text
(i.e., non-regular text such as that on a sign) or not (i.e.,
regularly ordered text as on a page). The second con-
trols if the dewarp algorithm, which attempts to correct
for skewed pages, is used. The document OCR pipeline can
take a considerable amount of time in some cases, so im-
ages captured by the end-user are stored on-device. Then,
the user can trigger processing of the images manually.
This procedure is shown in the attached media demon-
strating the user interface. There are several components
of the document scanning pipeline.

Image collection: Higher resolution images are re-
quired for document scanning, so a different camera back-
end is used. Instead of using the OpenCV preview back-
end, the native Android CameraX backend is used to cap-
ture images. These images have roughly a 3072p resolution
compared to the seal examination’s 120p. This is essen-
tial for resolving densely arranged text. Image collection
is performed when the user presses a button to capture an
image. The images are then stored on-device in a queue
until the user indicated the queue should be processed. Af-
ter processing, documents, both image and the predicted

text, are viewable in the UI. The predicted text is also
available for use with the information recall module to al-
low interrogation of the scanned document. Several key
steps are required for document scanning:

Page dewarping: Dewarping pages that are other-
wise skewed or warped improved the OCR pipeline per-
formance and helps to better align translated text. De-
warping text is a challenging problem that sees continual
development. Several different approaches were considered
for the dewarping problem, both deep learning based (De-
warpNet [27] and Displacement Flow Estimation [28]) and
traditional image-based approaches (cubic spline model
[29]). The two deep learning methods exhibit poor perfor-
mance on several test cases, so the traditional image-based
approach is used. Specifically, a cubic spline model devel-
oped by Matt Zucker [29, 30] is used with some modifica-
tions to improve performance where possible. There are
two key concepts used in this approach. The first is to note
that a flat sheet of paper resides in the same z-coordinate
plane (i.e., there is height and width, but depth should be
the same at all points). If a page is bowed or warped, then
the z-coordinates change across the horizontal axis. The
change in the z-coordinates can be represented as a cubic
spline that depends on the horizontal position as described
in Equation 1. It is assumed that the page positions on
the left and right side should be fixed, therefore f(0) = 0
and f(1) = 0 where f(x) = z. Representing the curvature
by setting f ′(0) = α and f ′(1) = β and solving yields the
function expressed in Equation 2.

z = ax3 + bx2 + cx+ d (1)

z = (α+ β)x3 − (2α+ β)x2 + αx (2)
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Next, it can also be noted that there is a world coordi-
nate system with three dimensions, but that a camera can
only record two as images do not explicitly capture depth.
The transformation between the world coordinate system
and camera coordinate system can be expressed by a ro-
tational and translational vector. It is possible to develop
an optimization problem expressing the warping of a page
when the two models are taken together. First, 2D image
points are projected into a 3D space using the cubic spline
model. Then, the 3D points are projected back down to
2D space using the camera pose model. An optimization
goal can be formulated to minimize the reprojection error
thus jointly optimizing the cubic spline model and cam-
era pose model. The models can then be inverted after
optimization to find a coordinate translation between the
current warped page space to a new, unwarped space. The
specific steps are described by Zucker [29] and will not be
repeated here.

Several changes were made that resulted in approxi-
mately a 30x speedup from the original code. First, the
number of spans and points used in the optimization prob-
lem were vastly reduced by noting a few lines of text can
generally estimate the extent of page warping. A more
suitable optimizer is leveraged, namely L-BFGS-B [31] us-
ing the Accord.NET library [32]. The code for the opti-
mized page dewarper is available on GitHub (see Appendix
6.5). This process takes about 10 seconds per page when
running on-device.

Text detection: Text detection is performed using
the same algorithm as the seal examination task; the CRAFT
algorithm. The only significant difference is that the input
image has a much higher resolution.

Bounding box ordering: Bounding boxes identified
by the text detection step are often not in reading order
(i.e., left to right and top to bottom). Additional pro-
cessing is performed to ensure bounding boxes are ordered
correctly for the final output text. This is accomplished by
converting the image to greyscale and summing across the
horizontal dimension. Then, bounds of text lines are deter-
mined by looking for significant gaps between the summed
rows (e.g., lines with text should be non-zero). After de-
termining the rows, bounding boxes are grouped by row
and ordered by horizonal position. The image segments
containing individual words are then cropped and sent to
text recognition.

Text recognition: Text recognition is performed us-
ing the same algorithm as the seal examination task: us-
ing EasyOCR’s CRNN model. Some preprocessing has
changed, particularly the padding around the bounding
box that is applied before an image is passed to the text
recognition algorithm. Since accuracy is prioritized for
the document OCR task, a more contemporary model was
also evaluated. Microsoft’s TrOCR [33] (small checkpoint)
was compared to the EasyOCR CRNN. One particular
challenge with implementing TrOCR on-device is that the
small version of TrOCR requires a SentencePiece [34] de-
coder.

SentencePiece is a model specific text tokenizer that
requires a model and does not rely strictly on a function
call. SentencePiece was not readily available for .NET, the
framework used to build the on-device component of in-
specta. However, ONNX runtime-extensions recently im-
plemented new capabilities, so the team was able to pack-
age SentencePiece as a standalone ONNX module. The
CRNN model is fast and performs well for well-defined
printed scene text, but is sensitive to preprocessing (e.g.,
noise reduction must vary based on font size and thick-
ness). For that reason, TrOCR is being investigated as a
potential replacement provided it is more robust to various
text sizes and formats.

Overall, the document OCR pipeline bears similarity
to the seal examination pipeline, but emphasises accuracy
over speed. The same detection and recognition mod-
els are used, but higher resolution input images, and in
some cases, page dewarping is required. The CRNN model
works well for certain text sizes, but can struggle on freeform
text of varying sizes. Current examples of freeform text
detection can be seen in Figure 5, whereas the document
scanning UI and result is shown in Figure 6.

Figure 5: inspecta free-from text identification with translated text.
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Figure 6: inspecta document scanning UI with translated text. Text
taken from [35].

3.7. Device: Information recall
The final machine learning module that is currently

implemented for the on-device inspecta application is in-
formation recall. Generally, this refers to the process of
asking a natural language question and receiving a natu-
ral language answer. Contemporary large language mod-
els and chatbots can perform this with ease given the large
training data corpus, however, this approach is not avail-
able for an on-device environment. The approach used in
inspecta requires two stages. The user experience for the
information recall on inspecta involves verbally asking
a question followed by an answer that is spoken via the
speech synthesis model.

Context generation: Question and answering with
models that can fit on-device often requires context that
contains the correct answer. Generating this context can
be challenging particularly when there might be multiple
documents with hundreds of pages. There are both non
deep learning approaches (e.g., ElasticSearch [36] or FAISS
[37]) and deep learning based approaches. inspecta cur-
rently utilizes a deep learning approach due to the relative
ease of implementation and associated permissive license

models.
The context generation step is accomplished by uti-

lizing a DistilBERT [38] model that is fine-tuned on the
MSMarco [39] dataset. First, documents are converted to
raw text, either through a PDF conversion tool for exist-
ing documents, or through the document OCR pipeline
for images. Next, the text is split into smaller segments
of about 700 characters long. The document segments are
then encoded by applying a WordPiece tokenizer [40] and
passing them through the DistilBERT model. Relevance
of text segments for a particular question are measured by
multiplying the embedded query with the embedded text
segments. The top-5 scoring segments are decoded and
used as context for the next stage.

Embedding of text is performed offline where possible
to save computational time. For example, inspecta cur-
rently has the IAEA safeguards glossary [1] as a reference,
which is split, embedded, and stored as an internal file dur-
ing the application complication stage before deployment
to the mobile device.

Question and answering: The second stage com-
bines context and a query to generate an answer. Here,
a SciBERT model [41] that is finetuned on the SquadV2
dataset [42] is used. The query and context are both to-
kenized using WordPiece and concatenated before being
passed to the SciBERT model as input. Postprocessing
is then required to ensure the query is not returned as
the answer. The top scoring answer candidate is decoded
and then returned. The on-device inspecta provides this
answer through the synthetic speech module.

The information recall module generally exhibits mixed
levels of performance. Query and answer pairs with more
nuclear specific vocabulary tend to perform poorly whereas
more general knowledge pairs work well. This likely relates
to poor representations of nuclear-specific concepts in the
underlying model vocabulary. Two different approaches
are being considered to improve performance. First, the
context generator could be pretrained on a more nuclear-
specific dataset (e.g., OSTI dataset as demonstrated in
Burke [43]). Second, the question and answering mod-
ule could leverage the “salt-and-pepper” technique demon-
strated by Wilson [44] to generate a better context for
nuclear-specific terms.

3.8. Robotics: Object detection
For the robotic component of inspecta, Spot needs

object detection to better understand its environment to
semi-autonomously perform inspection activities. One way
to accomplish this is through implementing object detec-
tion algorithms. Object detection is a branch of computer
vision that involves classifying and localizing objects of in-
terest in an image or video. This is done by computing a
compact bounding box around a detected object and pro-
viding a confidence score associated with its classification.
Specifically, object detection allows Spot to detect objects
of interest during autonomous inspection, e.g. drums stor-
ing nuclear material and the presence and location of their
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seals, along with other common objects such as people,
chairs, tables etc.

The robotic component of inspecta uses the YOLO
(You Only Look Once) algorithm for this capability, which
is an incredibly fast state-of-the-art algorithm that com-
putes bounding boxes and class probabilities all in one
shot. This is a faster and more efficient method com-
pared to predecessor algorithms, such as sliding window
or region proposal methods, that required multiple com-
putation steps and ran significantly slower. Speed is a
high priority when performing object detection on video
streams rather than still images. YOLO works by divid-
ing an image into a grid of cells which are all run through
a neural network at once, in parallel. The network com-
putes bounding boxes and class predictions for each grid
cell, given the context of the entire image [45]. Next, Inter-
section over Union (IOU) and Non-Max Suppression are
used to filter out low-confidence or duplicate predictions,
so that each object has a single bounding box and predic-
tion associated with it.

There are many iterations of the YOLO algorithm,
YOLOv5 (version 5) [46] is used here. YOLOv1 intro-
duced the major algorithmic ideas, while v2 through v4
were largely incremental optimizations. YOLOv5 is easier
to use than its predecessors, is written in Python and Py-
torch, and has many built-in tools for data augmentation
and training monitoring.. YOLOv5 comes pretrained to
classify all the objects in the Common Objects in COn-
text (COCO) dataset [47].

inspecta runs real-time object detection on video streams
from Spot’s cameras, which are captured through the SDK.
All neural computation is perfomed on the Nvidia Jetson
mounted on Spot. Pretrained YOLOv5 applied to Spot’s
six on board cameras is shown in Figure 7. Note the pre-
trained model makes many erroneous classifications, but
these initial results are still promising and can be improved
with more data and tuning.

Figure 7: YOLOv5 on Spot.

While common objects are useful, inspecta has more
specific needs.The team uses transfer learning to fine tune
the pre-trained YOLOv5 model with the Limbo dataset
[48]. Limbo contains synthetic images of various uranium
hexaflouride containers which are part of the nuclear fuel

cycle. Early results on training data are shown in Figure
8.

Figure 8: Initial results of YOLOv5 on Limbo dataset training data.

Next, to facilitate the move from synthetic data to a
physical laboratory environment, the team created custom
in house datasets for identifying drums and seals. These
custom datasets are created by capturing videos and ex-
tracting images/frames containing drums and seals under
different conditions (i.e. varied lighting, size, occlusion,
etc). Some of these training images are blurry (due to
motion during capture of these videos), which is advan-
tageous since these are representative of the motion blur
experienced by Spot when it moves and takes video. These
images are then labeled using LabelMe [49] and Roboflow
[50], and the pretrained YOLOv5 model is fine tuned for
these objects via transfer learning. Figure 9 shows four ex-
ample images from the training set, with bounding boxes
of different colors as a visual representation of the labelling
process.

Figure 9: Examples of training images with red bounding boxes for
drums and green for seals.

So far, training has been completed on the drum data,
but not the seal data. Results of this training are shown
on test data in Figure 10.
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Figure 10: YOLOv5 on in house drum dataset test data.

3.9. Robotics: Speech recognition
To reduce effort and/or training for an inspector team-

ing with Spot, a voice control module was added to the
robotic inspecta platform. It currently enables an oper-
ator to control the basic functionality of Spot’s movement
and is integrated with Spot’s underlying behavior tree. We
mounted an additional microphone and speaker on Spot to
enable this functionality.

Similar to the voice command option in the on-device
app, the module implemented here utilizes the pre-trained
models in the wav2vec2.0 [16] PyTorch library. However,
to enable this part of inspecta to work independently
from the on-device app, the voice controller is deployed
on the Nvidia Jetson which is directly connected to Spot
via ethernet. This has the added the benefit of expediting
the processing time of Wave2Vec2 using the Jetson’s GPU,
as compared to the relatively limited computation of the
on-device app.

Voice commands are initiated using a push button sys-
tem connected to the Jetson’s general purpose input/out-
put (GPIO) pins, which triggers a recording window. Dur-
ing this time, inspecta captures the desired command
using a multichannel spatial microphone controlled by the
Linux-based recording utility, arecord. Next, the audio
is processed by the wav2vec2.0 model, and the output is
fed into a simple filter that uses the Levenshtein distance
to convert potentially incorrect spelling or misnomers into
desired commands. The multichannel microphone carried
by Spot also features a speaker, which is used to repeat the
command out loud once it is processed. Text-to-Speech is
done with the pyttsx3 library. This enables the operator
to be aware of any movement prior to its execution and
cancel the command if necessary. Spot is shown with the
mic/speaker and prototype push button interface installed
in Figure 11.

Current Spot motion commands include walking, side-
stepping, or rotating in place by a set angular displace-
ment. Additional commands have been added to incorpo-
rate Spot’s existing behavior tree, which includes a com-
mand to locate and move toward a fiduciary marker, as
a proxy for visually identified inspection relevant objects.
The goal of the behavior tree is to have simple behavioral

Figure 11: Spot with mic/speaker and prototype push button inter-
face installed.

entry points to standard sets of flexible inspection proce-
dures.

Initial attempts at running vocal command using only
the CPU on the Jetson resulted in processing times on
the order of ten to twenty seconds. After switching to
GPU processing, the voice controller now processes com-
mands in under a second. Additionally, the push button
system enables the Spot-inspecta duo to be completely
standalone, without need for any desktop terminal connec-
tion, or the on-device app. However, this system is still
limited in the need for tactile interaction with Spot, which
may be inconvenient in some inspection scenarios. Trigger
word detection should be investigated further as a true
hands-free solution for the operator. Additionally, while
the setup works well in a controlled lab environment, fur-
ther testing must be done in noisier scenarios. To overcome
the difficulty of operating in such environments, there are
two proposed solutions: investing in a microphone with
better noise mitigation and utilizing audio post-production
to filter the waveform before command recognition is run,
at the cost of some processing time. Finally, this system
worked when tested on audio tracks from the team, but
further testing may be required to ensure adequate perfor-
mance on the variety of accents present in the inspection
community.

3.10. Device-Robot Interface
The team has conducted some initial work towards

fully integrating the on-device app and robotic compo-
nents of inspecta. The initial prototype is a simple trans-
mission control protocol (TCP) connection that exchanges
text and images. A diagram is shown in Figure 12.

4. Discussion and future work

There are a number of ongoing challenges for the ca-
pabilities demonstrated here that are not readily solved
using off the shelf components. The wake word pipeline,
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Figure 12: inspecta connectivity diagram.

while significantly improved, still exhibits mixed perfor-
mance particularly for recognizing the wake word. There
is no guarantee that the audio buffer contains the full wake
word audio, which can only be partially filled depending
on when the buffer is read. Comparison of the translated
speech to a list of hard coded possible permutations of
“Hey Inspecta” using Levenshetein distance can also lead
to missed activations. One potential solution would be
to replace the VAD and Speech Recognition pipeline with
an end-to-end machine learning wake word approach (e.g.,
OpenWakeWord, Picovoice Porcupine, and Fluent Wake-
word).

OCR works well for the seal identification task, but
challenges remain for document scanning. First, the pre-
processing stages in the dewarping step have a strong im-
pact on downstream recognition tasks. While two different
deep learning methods for page dewarping were consid-
ered, performance was found to be inferior to the existing
cubic model approach. Document scanning might be im-
proved by either using a different optimization algorithm
or by fine-tuning a deep learning approach. The text recog-
nition portion of the document scanning pipeline could
also be improved through better optimized preprocessing
steps. Further, TrOCR is being considered to improve the
recognition portion of the OCR pipeline as it represents
the current state-of-the-art in machine learning OCR.

The largest existing challenge is improving information
recall. While context generation generally performs well,
question and answering has mixed performance based on
the type of question asked. Nuclear specific questions often
lead to poor answers as the models are unable to under-
stand nuclear-specific vocabulary. Two potential improve-
ments are hypothesized. First, base question and answer-
ing model (i.e., SciBERT) could be fine-tuned on a nuclear
specific text corpus. A similar approach has already been
demonstrated by Burke [43]. Secondly, the down-stream

task (i.e., question and answering) could be trained on a
modified SquadV2 dataset using the salt and pepper tech-
nique described by Wilson [44]. Both approaches would
improve the model’s ability to understand nuclear con-
cepts.

There is work remaining on the robotic side as well.
The in house custom datasets need to be expanded, as
they are currently only on the order of hundreds of im-
ages. Training needs to be expanded from drums only to
drums and seals, and we need to integrate optical character
recognition for seal identification. The team is also work-
ing on a seal pose estimation and grasp planning pipeline,
so that Spot can autonomously test the physical integrity
of seals. The interface between the on-device app and the
robotic platform needs to be fully fleshed out and defined.
Finally, the inspection behavior trees need to stitch these
capabilities together to enable initial demos of flexible au-
tonomous inspection and inspector teaming.

5. Conclusions

The current machine learning capabilities of the on-
device application and robotic companion of the inspecta
platform are presented. Several key capabilities have been
integrated to support the initial seal examination use case.
A key focus of this project is the integration of extisting,
off-the-shelf, pretrained models. Satisfactory performance
is largely met for tasks that are not specific to nuclear
safeguards such as the OCR and speech recognition capa-
bilities. However, performance for nuclear specific tasks,
such as information recall, needs to be improved through
fine tuning on domain specific datasets. Existing models
for the robotics platform, such as object detection, have al-
ready been adapted for the nuclear specific task of canister
and seal recognition. Ongoing efforts are being conducted
to improve both platforms with a goal for an integrated
demonstration in 2024.
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Appendix

Parameters used for the individual capabilities are de-
scribed in the following sections.

6.1. Voice activity detection
• Model: Silero VAD v4 (https://github.com/snakers4/

silero-vad)

• Activation threshold: Score ≥ 0.25 (score ∈ [0, 1])

• Deactivation threshold: Two sequential scores ≤
0.25

• Buffer size: 32000

– Type: float (4 byte)

• Sample frequency: 16kHz

6.2. Speech recognition
• Model: Wave2Vec2.0 (https://huggingface.co/

facebook/wav2vec2-base-960h)

• Buffer size: 12000

– Type: float (4 byte)

• Sample frequency: 16 kHz

6.3. Real-time OCR
Real-time OCR is used for the seal examination task.

• Raw image size: 720x480 (width, height)

• Detection model: CRAFT (https://github.com/
clovaai/CRAFT-PyTorch)

• Detection image size: 160x120 (width, height)

• Recognition model: CRNN (https://www.jaided.
ai/easyocr/modelhub/)

• Recognition image size: Varies depending on text

– Max size: Nx64 (width, height)
– Min size: Nx32 (width, height)

∗ There is a minimum height requirement based
on the convolution window sizes. Segments
smaller than this are resized to a height of
32 while maintaining the original aspect ra-
tio.

∗ Resizing attempts to hold the same aspect
ratio while scaling height to 32 if smaller
than 32 and 64 is larger than 64.

• Image contrast adjustment: 2.5

– Applied to both models

• Acceptance threshold: 0.85 (value ∈ [0, 1])

6.4. Offline OCR
Offline OCR is used for the document scanning task.

Parameters are the same as the Real-time OCR unless
otherwise noted.

• Raw image size: 4080x3072 (width, height)

• Detection image size: 960x722 (width, height)

• Image contrast adjustment: Varies

– Detection: 2.5
– Recognition:

∗ With dewarping algorithm: 0, pipeline pro-
duces a binary image so no adjustment is
performed

∗ Without dewarping algorithm: 2.5
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6.5. Document dewarping
There are many parameters involved in the document

dewarping algorithm. Rather than listing them here, the
reader is referred to the code provided here https://github.
com/nshoman/page_dewarp.

6.6. Information recall
• Context model: DistilBERT TAS-B (https://

huggingface.co/sentence-transformers/msmarco-DistilBERT-base-tas-b)

– Tokenizer: WordPiece

• Question and answering model: SciBERT fine-
tuned on SquadV2 (https://huggingface.co/jbrat/
SciBERT-squadv2)

– Tokenizer: WordPiece
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