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Abstract 

This study investigates the nonlinear frequency response of a shaft-bearing assembly with vibro-impacts 

occurring at the bearing clearances. The formation of nonlinear behavior as system parameters change is 

examined, along with the effects of asymmetries in the nominal, inherently symmetric system. The primary 

effect of increasing the forcing magnitude or decreasing the contact gap sizes is the formation of grazing-

induced chaotic solution branches occurring over a wide frequency range near each system resonance. The 

system's nominal setup has very hard contact stiffness and shows no evidence of isolas or superharmonic 

resonances over the frequency ranges of interest. Moderate contact stiffnesses cause symmetry breaking 

and introduce superharmonic resonance branches of primary resonances. Even if some primary resonances 

are not present due to the system's inherent symmetry, their superharmonic resonances still manifest. 

Branches of quasiperiodic isolas (isolated resonance branches) are also discovered, along with a cloud of 

isolas near a high-frequency resonance. Parameter asymmetries are found to produce a few significant 

changes in behavior: asymmetric linear stiffness, contact stiffness, and gap size could affect the behavior 

of primary resonant frequencies and isolas. 

 

Keywords: Nonlinear dynamics, contact/impact, isolas, stability, asymmetry 

 

1. Introduction 

Bearing-mounted shaft structures are common in gear drives and other mechanical engineering 

systems. Nonlinear phenomena including large or plastic deformations, friction, and intermittent 

contact between parts can occur during normal operation. The present work is interested in 

characterizing the resulting complex nonlinear dynamics which can occur in such shaft-bearing 

systems, specifically when the shaft is not rotating. Micro clearances within the bearings can lead to 

contact/impact nonlinearities, and other factors, such as base or forcing excitations [1], unbalance [2], 

and impacts caused by gear dynamics [3], can contribute to both vibrational and shock effects in the 

assembly. Bearing clearances coupled with a sinusoidal forcing causes intermittent contact and turns 

the structure into a vibro-impact system. 
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The techniques used to analyze systems in complex nonlinear environments include classical 

modal analysis [4], perturbation techniques [5], time integration [6], and finite element analysis [7]. 

While time integration methods can capture both nonlinear periodic and aperiodic behaviors, they often 

lack the ability to clearly resolve full solution branches which are easily computed with harmonic 

balancing methods [8]. Harmonic balance is in turn incapable of capturing aperiodic motions such as 

chaos. Well-known and classical methods like linear modal analysis do not hold for nonlinear systems 

unless the nonlinearity is weak and can be linearized with acceptable accuracy. Some nonlinearities, 

such as contact/impact, cannot be linearized easily or may only be linearized in certain limits as the 

contact gaps and stiffnesses become sufficiently large or small [9]. Contact behavior operating within 

these limits, and other effects such as large-amplitude vibrations and mechanical shock, all tend to 

cause strongly nonlinear responses, so approximations with linear modal analysis neglect extremely 

important behaviors. These behaviors may be desirable or undesirable depending on the application. 

An example of beneficial nonlinear behavior is a clearance between moving parts designed to cause 

intermittent contact and the transfer of energy between the modes of the parts. This form of targeted 

energy transfer can mitigate the effects of mechanical shock. Gzal et al. [6] described an intermodal 

target energy transfer (IMTET) mechanism, which used impact constraints on a 2 degree of freedom 

(DOF) dynamical system and later on a 9 DOF building model [10] to transfer the system's energy 

from low-frequency modes to high-frequency modes during a shock excitation. They found that both 

elastic and inelastic impact led to more efficient utilization of the inherent damping in the system 

without the need to change mass, stiffness, or damping properties. On the other hand, an often-

detrimental nonlinear behavior is the potential formation of isolated resonance branches, also known 

as isolas [11]. Isolas tend to be undesirable behavior since they are often difficult to detect, and a 

perturbation in a system can cause an unexpected jump from a low-amplitude response to a high-

amplitude response. Isolas are dependent on forcing magnitude, allowing them to grow in their 

frequency range and even merge with the main branch of the frequency response as system parameters 

are varied. The above examples show that whether a given nonlinear behavior is desirable or not, an 

accurate solution method is nevertheless essential to properly characterize the various behaviors 

possible in a vibro-impact system. Even then, an efficient combination of two or more solution methods 

may further improve the clarity of the results. 

Focusing on bearing-mounted systems, complex nonlinear dynamical behavior, including isola 

formation, has been researched over the years. A work by Ehrich et al. [12] studied a 2 DOF model of 

a rotor-stator system to assess the effect of bearing clearances on the system dynamics. They observed 

that larger bearing clearances lead to hardening behavior in the frequency response. Branches of stable 
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solutions that detached from the main response were also observed, which suggests the formation of 

isolas. Baguet et al. [13] studied a more complex gear drive with a gear, pinion, two shafts, and four 

journal bearings. Time-varying properties and nonlinearities in the gears and bearings with clearances 

were included. They found that the system motion is dominated by mesh excitations for high values of 

torque and by mass unbalance for low values of torque, but no isolas were observed. Gunduz et al. [14] 

analyzed the effects of bearing preloads in a vehicle wheel bearing assembly both analytically and 

experimentally. Increased preloads were found to shift the resonance frequencies and amplitudes. Both 

preload-independent and dependent damping models were also considered, which led to higher and 

lower amplitudes as the axial preload increased, respectively. The effects of axial and radial clearances 

were also included, but a nonlinear study of the clearances was omitted. 

Ehehalt et al. [15] outlined an experimental approach to study a modular kit for rotordynamic 

experiments with rotor-stator contact. They presented several sets of single DOF and multiple DOF 

experimental results and discussed the various types of nonlinear behaviors which appeared including 

stator whirl, super- and sub-harmonic motions, quasiperiodic motions, chaos, modal interactions, and 

isolas. Experimental results used a wide variety of bearings: ball, journal, active magnetic, retainer, 

and elastic bearings. Xu et al. [3] studied a 14 DOF gear-shaft-bearing-housing vibration model to 

understand the effects of vibration caused by progressively larger bearing clearances. They proposed 

a modulation signal bispectrum-sideband estimator, MSB-SE, as a wear indicator. The authors 

extended their work to a two-stage spur gearbox which was run until failure. Molaie et al. [16] 

developed an SDOF model of a spiral bevel gear system accounting for backlash, tooth-profile 

manufacturing errors, teeth spacing errors, and tooth elastic deformation. They observed both softening 

and hardening behavior in the frequency response, along with chaos. Increased backlash led to an 

increase in vibration amplitudes, and increased damping reduced the overall vibration amplitude but 

could lead to chaos and subharmonic resonances. Chen et al. [17] applied a modified harmonic balance 

and alternating frequency/time method to the analysis of a dual-rotor-bearing-casing system with 284 

DOFs. Frequency hardening and the accompanying hysteresis behavior were present, but isolas were 

not observed. As bearing clearance was increased, softening behavior occurs and causes a wider 

hysteresis region. 

For completeness, a superharmonic resonance occurs when a nonlinearity causes a significant 

growth in a system’s response amplitude at a frequency below its primary resonance frequency, usually 

an integer fraction. When the frequency content of that individual solution is observed, e.g. via Fast 

Fourier Transform (FFT), then spikes will be seen at integer-multiple frequencies above the system’s 

primary resonant frequency. This can be confusing because there are two separate frequency spectra: 
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that of the system’s response, and that of individual responses. Subharmonic resonances are the 

opposite of superharmonic resonances: high amplitudes at a response frequency above the primary 

resonance frequency, whose time history has frequency content below the primary resonance 

frequency. Isolated resonances, or isolas, often occur as subharmonic resonances. 

The study of isolas is important because they have implications for the performance and lifetime 

of engineering components. Researchers have discovered and observed many systems in which isolas 

can be present near the primary resonances of the system. If these isolas vary with system parameters 

and merge with the main resonance, then the resonance amplitude and frequency can significantly and 

suddenly shift in value. A leading cause for isola formation is hypothesized to be the interaction 

between different nonlinear normal modes, and this has been observed both numerically [11, 18, 19] 

and experimentally [7, 20, 21]. The strong nonlinearity that gives rise to isolas also tends to promote 

additional nonlinear behaviors as well. Habib et al. [22] developed a nonlinear tuned vibration absorber 

(NLTVA) which, despite having superior qualities to a linear vibration absorber, could not prevent an 

isola forming around the primary system resonance along with quasiperiodic motions. Shaw et al. [7] 

experimentally studied a cantilever beam with variable nonlinear tip spring. The system exhibited a 

3:1 internal resonance, frequency hardening, isolas, quasiperiodic motion with Neimark-Sacker 

bifurcations, and other dynamical behaviors. Hong et al. [23] studied the conditions under which isolas 

can form in a nonlinear tuned mass damper and found symmetry-breaking to play an important role in 

system dynamics. Isolas can also form far away from primary resonances where they are not expected, 

for example near ultra-subharmonic resonances [24, 25] or at amplitudes below the main frequency 

response branch [26, 27]. Furthermore, the presence of contact behavior in a system that also has other 

nonlinearities has been found to accelerate the formation of various nonlinear behaviors, including 

subharmonic and ultra-subharmonic isolas [28]. 

The above works mentioned the existence of chaotic motions, super- and sub-harmonic resonances, 

hysteretic jump phenomenon, quasiperiodic motions, isolas, and other well-known nonlinear behaviors 

[29]. The possibility of such behavior controls the design of a system, influences prediction of fatigue 

life, and even governs the type of simulation methods used to model the system. The objective of this 

paper is to investigate the complex nonlinear dynamic behavior of a non-rotating bearing-mounted 

structure with known clearances within the bearings. The bearing clearances turn the otherwise linear 

system into a vibro-impact system. Such systems are strongly influenced by the piecewise linear 

behavior of the contacting components and asymmetries in the system and can lead to complexity when 

characterizing the system’s dynamics. The structure of interest is the experimental system introduced 

in Goldberg et al. [30], in which an idealized shaft-bearing assembly was designed to allow for 
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variations in the system configurations, including suspension and contact stiffness, contact gaps, mass, 

and asymmetry. A three degree-of-freedom (DOF) model is developed and parameterized with respect 

to these design variables, and the dynamics are studied using the computation of the nonlinear forced 

response curves. By leveraging both time integration methods and the multi-harmonic balance method 

(MHB), the complex behavior is more clearly described and uncovered, allowing for preliminary 

predictions of the experimental setup. The goal of this work is to investigate the formation of nonlinear 

behaviors, such as isolas or other secondary resonances, with respect to the test setup parameters such 

as contact stiffness and gap sizes. In addition, this study explores the effects of asymmetries in the 

system, such as unequal stiffnesses or gap sizes at the locations subject to contact. 

The remainder of the paper is structured as follows. Section 2 introduces the system of interest and 

its simplified model, along with the numerical methods used to simulate the system response. Section 

3 presents a modal analysis of the linearized system in order to understand the fundamental behavior 

of the natural frequencies and mode shapes in both symmetric and asymmetric configurations. Sections 

4 through 7 present results showing the effects of several important parameters of the nonlinear system, 

namely, forcing magnitude, contact gap size, contact stiffness, and damping. Section 8 presents 

nonlinear analyses of asymmetric system configurations and highlights trends of behavior also 

observed in the symmetric configuration. Lastly, Section 9 summarizes the analyses with conclusions. 

2. System formulation and numerical methods 

A bearing-and-shaft assembly is studied in this work, continuing the research of Goldberg et al. 

[30]. Their experimental setup consists of a beam (“impact beam”) representing a non-rotating shaft, 

with the contact effects of the bearing clearances represented by impact hammer tips. The impact tips 

are designed to have variable gap heights through rotation of the threaded rods, while different impact 

stiffnesses are achieved through different impact hammer tips installed on the load cell. Compression 

springs on both ends are used to hold the impact beam within a box frame and are meant to represent 

soft suspension springs such that the lowest frequency modes imitate those of pseudo rigid body modes. 

The impact tips are also mounted to the frame structure. The center of the beam can be excited directly 

with a stinger via a hole in the bottom center of the box frame, or directly on the box frame itself. Fig. 

1 shows a CAD image detailing the impact beam and full assembly. Goldberg et al. [30] demonstrated 

that the beam’s response and the natural frequencies, overall, were “highly accurate” between the 

model and the test. 



6 

 

 
Fig. 1: The experimental box frame, impact tips, and impact beam assembly representing a non-rotating, 

bearing-supported shaft.  
 

The shaft-bearing assembly under consideration is analyzed as a three degree-of-freedom system, 

as seen in Fig. 2. The impact beam’s bending stiffness is included as a torsional spring, and the bearing 

impact effects are included as contact springs on the left and right DOFs, namely 𝑥1 and 𝑥3. The contact 

springs on a DOF only contribute to the system when the displacement of the DOF exceeds the contact 

gap. This behavior results in a piecewise-smooth force on the two DOFs. Contact damping was 

neglected in the original study [30] and is also neglected in the present work. Dissipation effects were 

included for some of the analyses in [30] in the form of a linear viscous damper applied equally to each 

DOF. A parameterized model is developed in this work by considering that the linear stiffnesses and 

contact parameters on DOFs 𝑥1 and 𝑥3 could be unequal and therefore make the system asymmetric, 

and by applying a harmonic forcing to any of the DOF. However, the nominal results are obtained for 

the symmetric system in which the parameters on DOFs 𝑥1 and 𝑥3 are identical, and for only a mono-

harmonic excitation applied to the central DOF 𝑥2, unless otherwise stated. It is noted that the model 

neglects the effects of gravity. Using Euler-Lagrange principle, the resulting simplified model is a 

nonlinear spring-mass system with the following equations of motion, given in matrix form and 

expanded form: 

𝐌𝐱̈ + 𝐂𝐱̇ + 𝐊𝐱 + 𝐟𝑛𝑙(𝐱) = 𝐟 cos(𝜔𝑡) (1𝑎) 
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[

𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

] [

𝑥̈1

𝑥̈2

𝑥̈3

] + [
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0 𝑐 0
0 0 𝑐
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] +
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[
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]

+ [

𝑓𝑔1(𝑥1)

0
𝑓𝑔3(𝑥3)

] = [

𝑝1

𝑝2

𝑝3

] cos(𝜔𝑡) (1𝑏)

 

 

𝑓𝑔𝒊(𝑥𝒊) = {

𝑘𝑔𝒊(𝑥𝒊 + 𝑔𝒊),

0,
𝑘𝑔𝒊(𝑥𝒊 − 𝑔𝒊),

𝑥𝑖 < −𝑔𝑖

−𝑔𝑖 ≤ 𝑥𝑖 ≤ 𝑔𝑖

𝑥𝑖 > 𝑔𝑖

, 𝑖 = 1,3 (1𝑐) 

 

 
Fig. 2: Reduced-order model of the shaft-bearing assembly. 

 

Table 1 lists the parameter values used in [30] and subsequently in this work. When the system is 

symmetric, 𝑘𝑠1 = 𝑘𝑠3 = 𝑘𝑠, 𝑘𝑔1 = 𝑘𝑔3 = 𝑘𝑔, and 𝑔𝟏 = 𝑔𝟑 = 𝑔. Also, the mass is distributed such that 

𝑚1 = 𝑚3 = 𝑚 and 𝑚2 = 2𝑚. 

Table 1: Default parameter values for the shaft-bearing model [30]. 

Description Symbol Value 

Suspension spring stiffness 𝑘𝑠 8.03𝑒3 𝑁/𝑚 

Torsional spring stiffness 𝜅 79161 𝑁 ∗ 𝑚/𝑟𝑎𝑑 

Gap spring stiffness 𝑘𝑔 3.502𝑒7 𝑁/𝑚 

Half-length 𝐿 0.1614 𝑚 

Gap 𝑔 2.54𝑒 − 4 𝑚 

Left mass 𝑚1 0.629 𝑘𝑔 

Middle mass 𝑚2 1.258 𝑘𝑔 

Right mass 𝑚3 0.629 𝑘𝑔 

Damping coefficient 𝑐 4 𝑁 ∗ 𝑠/𝑚 
 

Numerical simulations are performed in two ways. The first method is numerical time integration, 

specifically the MATLAB® ode45 solver with the Event Location feature active [31, 32]. Each time 
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integration is started from a random initial condition (IC) from a range of realistic values. The 

integration time is chosen to be long enough for the transient-solution component to decay and allow 

the system to settle onto one attractor. This method distinguishes periodic, quasiperiodic, and chaotic 

motions, in addition to revealing the presence of multi-stable behavior by overlaying the results of 

multiple simulations. Fig. 3 is an example diagram of this ode45/Event Location scheme in order to 

show how the simulation behaves as a solution passes between in-contact and out-of-contact time 

domains. The black dashed lines mark the location of contacting springs; no contact occurs within this 

region, except at the boundaries where the solution can move into or out of contact. Near these points, 

mathematical expressions (such as those in Equation (1c)) are checked for sign changes which indicate 

the boundary has been crossed. Ode45 activates a root finder to accurately locate the crossing, and the 

initial conditions are re-set to that point before the simulation starts again. 

The second simulation method utilizes a harmonic balance solver formulated for nonlinear 

systems, the details of which are given by Colaïtis et al. [33]. This method captures the entirety of 

periodic solution branches and allows for Floquet stability analysis as a byproduct of the continuation 

scheme [33, 34]. This solver provides accurate results for systems with soft to moderately hard contact 

[35]. 

 
Fig. 3: Example diagram of the ode45/Event Location scheme. 

 

The frequency response curves (FRC) are used to plot the results of the simulations, in which the 

maximum of the steady-state response is plotted with respect to forcing frequency and oftentimes a 

second parameter, such as gap size or forcing amplitude, for example. These plots are shown in both 

2D and 3D forms, depending on which way provides clearer visualization of the results. Several isolas 

are encountered in the vibro-impact system’s response and are detected by running multiple time 
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integrations from random ICs and overlaying the results in each plot. For harmonic balance results, 

isola continuation is initiated by first obtaining a time-integration solution on the isola and then curve-

fitting a Fourier series to each DOF response. The resulting Fourier coefficients are then used as the 

initial guess. There is ongoing research on how to effectively detect isolas and other solutions besides 

the system’s main solution branch [36, 37]. A more robust approach to discover isolas is beyond the 

scope of this work, but it remains an interesting topic for the research community. 

3. Linearized analysis: system characteristics and asymmetry effects 

3.1. Symmetric configuration 

A first step in exploring the dynamics of the system is to calculate the linear undamped modes to 

serve as a reference to the forthcoming nonlinear results. Using eigenvalue analysis for the linear 

undamped system, the analytical natural frequencies and mode shapes of the shaft-bearing assembly 

in its nominal, symmetric configuration are as follows: 

𝜔1,2,3 = 𝜔0√𝛾 − 1,𝜔0
√𝛾 + 3 ± √𝛾2 − 2𝛾 + 17

2
(3𝑎) 

𝑿1 = [

1
𝛾 − 5 + 𝛼

𝛾 + 3 − 𝛼
1

] , 𝑿2 = [
1
0

−1
] , 𝑿3 = [

1
𝛾 − 5 − 𝛼

𝛾 + 3 + 𝛼
1

] , (3𝑏) 

where 𝜔0 = √
𝜅

𝑚𝐿2
, 𝛾 =

2𝑘𝑠𝐿
2

𝑘
+ 1, and 𝛼 = √𝛾2 − 2𝛾 + 17. 

The nominal system values shown in Table 1 result in the following natural frequencies and 

magnitude-normalized linear normal modes of vibration: 

𝜔1 ≈ 17.9 𝐻𝑧, 𝜔2 ≈ 25.4 𝐻𝑧, 𝜔3 ≈ 699.9 𝐻𝑧, (4𝑎) 

𝑿̂1 ≈
√3

3
[
1
1
1
] , 𝑿̂2 =

√2

2
[

1
0

−1
] , 𝑿̂3 ≈

√3

3
[

1
−1
1

] (4𝑏) 

The first two modes of the system under investigation represent the pseudo rigid body modes due 

to the impact beam being suspended by soft support springs. These relate to a translational mode (all 

DOF translating in unison) or rotational mode (rotating about the center node). The first two natural 

frequencies are close in magnitude and are well separated from the third mode. The third mode of the 

system represents the fundamental bending mode of the impact bar in free-free boundary conditions 

where the middle node is moving out-of-phase with the two end nodes. 

By taking the usual transformation with modal coordinates, the analytical solution to the forced 

undamped system can be obtained: 

𝑥1(𝑡) = X11

𝑝1
∗

𝜔2 − 𝜔1
2 cos(𝜔𝑡) + X12

𝑝2
∗

𝜔2 − 𝜔2
2 cos(𝜔𝑡) + X13

𝑝3
∗

𝜔2 − 𝜔3
2 cos(𝜔𝑡), (5𝑎) 
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𝑥2(𝑡) = X21

𝑝1
∗

𝜔2 − 𝜔1
2 cos(𝜔𝑡) + X22

𝑝2
∗

𝜔2 − 𝜔2
2 cos(𝜔𝑡) + X23

𝑝3
∗

𝜔2 − 𝜔3
2 cos(𝜔𝑡), (5𝑏) 

𝑥3(𝑡) = X31

𝑝1
∗

𝜔2 − 𝜔1
2 cos(𝜔𝑡) + X32

𝑝2
∗

𝜔2 − 𝜔2
2 cos(𝜔𝑡) + X33

𝑝3
∗

𝜔2 − 𝜔3
2 cos(𝜔𝑡) (5𝑐) 

where 𝑋𝑖𝑗 denotes the 𝑗𝑡ℎ component of the 𝑖𝑡ℎ mode shape, 𝜔𝑖 the 𝑖𝑡ℎ natural frequency, and 𝑝𝑗
∗ 

the 𝑗𝑡ℎ generalized forcing. As observed by the modes of the linear symmetric system, when the 

forced excitation is applied to the middle DOF, the second mode of the system does not get excited. 

For the full nonlinear system, therefore, the second resonance will only be activated via modal 

interaction resulting from the nonlinear contact force. 

The above results are valid for the system with a fully open gap 𝑔 ≫ 0 large enough that contact 

never occurs. Fig. 4 shows the relationship between the contact stiffness, when the gap is fully closed 

(𝑔 = 0), and the linear undamped natural frequencies and mode shapes. The contact is continuous in 

this configuration, and so intermittent contact due to vibration still does not occur. Herrera et al. [9] 

indicate that these two extremes of the contact spectrum act as limiting behaviors, such that the system 

with an open gap (for which intermittent contact, and therefore nonlinear behaviors, can occur) will 

respond in some manner between these limiting behaviors. These results are obtained by appropriately 

adding the contact stiffness 𝑘𝑔 to the system’s stiffness matrix and performing an eigenvalue analysis. 

The results highlight the limiting behavior of the system, since the configurations with both a fully 

open gap and a fully closed gap are linear regardless the value of 𝑘𝑔, and both configurations coincide 

when 𝑘𝑔 = 0 regardless the value of 𝑔. The closed-gap natural frequencies at the nominal contact 

stiffness are listed in Table 2 to be 451.1 Hz, 1188.0 Hz, and 1303.0 Hz, which agrees with the limiting 

behavior of the nonlinear modal analysis performed by Goldberg et al. [30]. Table 2 also lists the 

frequencies in the limiting cases of soft and hard contact stiffness. As 𝑘𝑔 → ∞, the lowest natural 

frequency approaches 494.7 Hz, and the higher two frequencies converge onto each other and grow 

proportionally to 𝑘𝑔
1/2

. The corresponding mode shapes consist of two bending modes and one 

rotational mode. In this limit of contact stiffness, DOFs 𝑥1 and 𝑥3 become fixed boundary conditions 

with zero amplitude, and only 𝑥2 is able to move in the first mode shape. The second mode shape 

(rotational) is unaffected by the change in contact stiffness, and the third mode shape (bending) remains 

a bending mode, but with zero motion at the middle node. 
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                                           (a)                               (b) 

Fig. 4: Linear undamped (a) natural frequencies and (b) mode shapes as a function of contact stiffness 

when the contact gap is fully closed 𝑔 = 0. The vertical dashed line denotes the nominal contact stiffness 

𝑘𝑔 = 3.502 ∗ 107𝑁/𝑚 from Table 1. 
 

Table 2: Natural frequencies at the nominal value and limiting values of contact stiffness. 

𝑘𝑔 (N/m) 𝜔1 (Hz) 𝜔2 (Hz) 𝜔3 (Hz) 

3.502 ∗ 101 18.0 25.4 699.9 

3.502 ∗ 107 451.1 1,180 1,303 

3.502 ∗ 1010 494.7 37,560 37,560 
 

3.2. Asymmetric configuration 

For the linear system without contact, the system can lose symmetry if the linear springs on either 

side have different stiffnesses. If the 𝑥1 linear stiffness is held fixed at 𝑘𝑠 from Table 1 and the 𝑥3 linear 

stiffness varies on the range 𝑘𝑠3 ∈ [0, 𝑘𝑠], then the results in Fig. 5 are obtained for the natural 

frequencies and mode shapes. The first natural frequency is found to vary in proportion to 𝑘𝑠
1/2

 and 

decreases to zero as the asymmetry intensifies. The second natural frequency decreases a small amount 

from 25.43 Hz to 22.02 Hz, and the third natural frequency decreases negligibly. Table 3 lists the 

natural frequencies at the low and high limits shown in the figures. The breaking of symmetry due to 

the suspension spring, 𝑘𝑠3, causes the first two modes to no longer behave as purely translational and 

rotational pseudo-rigid body modes. This results in each mode mixing to both have a combination of 

rotation and translation about the central DOF as 𝑘𝑠3 → 0. The third mode shape is negligibly affected 

and remains a fundamental bending mode of the impact beam. 
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(a)                                (b) 

Fig. 5: (a) Linear natural frequencies and (b) mode shapes as functions of the linear stiffness on DOF 𝑥3. 

The frequencies are highlighted for the cases when the system is fully symmetric and fully asymmetric. 
 

Table 3: Natural frequencies at the nominal value and limiting values of contact stiffness. 

𝑘𝑠3 (N/m) 𝜔1 (Hz) 𝜔2 (Hz) 𝜔3 (Hz) 

8.03 ∗ 10−1 0.2 22.0 699.8 

8.03 ∗ 103 18.0 25.4 699.9 
 

The formation of asymmetry results in a non-zero second component of the second mode shape. 

From Equation (5), this behavior leads to a resonance peak at the second natural frequency on all three 

DOFs, as seen in the linear forced response curves in Fig. 6. The six plots denote the frequency response 

of all three DOFs near each resonance due to a 25 𝑁 force applied to only DOF, 𝑥2. The first resonance 

peak decreases in frequency and amplitude towards 0 Hz as 𝑘𝑠3 → 0. The formation of the second 

resonance, with a nearly constant frequency and asymmetry-dependent amplitude, is also evident. 

Additionally, the third resonance is negligibly influenced by the asymmetry in terms of both frequency 

and amplitude. 
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Fig. 6: 3D frequency response diagrams of all three DOFs with respect to forcing frequency and the linear 

stiffness on DOF 𝑥3, for the purely linear system configuration. A forced excitation of 25 𝑁 is applied to 

only DOF 𝑥2. The colorbar denotes peak response amplitude. 
 

The above results demonstrate how the primary factor behind the presence of the second resonance 

in the forced response curves is inherently due to the symmetry of the system. The location of the 

forced excitation is a secondary factor, as highlighted by Fig. 7. These plots denote the frequency 

response for all three DOFs as a function of the linear stiffness on DOF 𝑥3, near each resonance. The 

forcing is modified to act with 25 𝑁 on only DOF 𝑥1. When the system is perfectly symmetric, the 

second resonance does not appear for the second DOF regardless of the forcing behavior on the system. 

Instead, only the first and third resonances exist. The forcing behavior governs the existence of the 

second resonance on the first and third DOFs, as the plots indicate the modified forcing induces the 

second resonance on DOFs 𝑥1 and 𝑥3. As the system loses symmetry, all three resonances again exist 

for the modified forcing and behave similarly to the default forcing configuration. The first resonance 

gradually disappears to 0 Hz on all DOFs as the asymmetry increases, the second resonance grows in 

amplitude on all DOFs, and the third resonance remains unchanged on all DOFs. 
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Fig. 7: 3D frequency response diagrams of all three DOFs with respect to forcing frequency and the linear 

stiffness on DOF 𝑥3, for the purely linear system configuration. A forced excitation of 25 𝑁 is applied to 

only DOF 𝑥1. The colorbar denotes peak response amplitude. 
 

These results provide a baseline understanding of the linear dynamics of the system at the extreme 

limits of the operation, either at low or high levels of excitation. The observance of the peaks is 

understood well through the concepts of controllability and observability from linear system theory 

and modal analysis. The following sections demonstrate the behavior of the shaft-bearing system when 

operating in the nonlinear regime and how the nonlinearity introduces behavior that challenges the 

understanding of the dynamics based on linear theory. The results will also serve as a linear-system 

reference for the asymmetry study provided in Section 8. 

4. Forcing excitation effects on the vibro-impact properties of the system 

The nonlinear forced response curves are calculated for the nonlinear system using the two methods 

outlined in Section 2. The forcing is applied to the center of the impact beam (i.e., DOF 𝑥2) with the 

nominal values given in Table 1, i.e. the symmetric system. Fig. 8 shows the frequency response curves 

for each DOF with respect to forcing magnitude 𝑝2. The dash-dot line denotes the upper contact 

boundary, and it is evident that nonlinear behavior occurs only around the resonance peaks. Each curve 

is the combined result of multiple random ICs, and no isolas are detected away from the resonance 

peaks. The nonlinear behavior consists primarily of amplitude flattening due to the hard contact and 

significant frequency hardening of both the low- and high-frequency resonances. In addition, solutions 

are observed at both higher and lower frequencies than the resonance peak near 700 Hz. 



15 

 

The zoomed insets reveal a decrease in the stability of the solutions along the higher-amplitude 

branches due to the scatter of points at these excitation frequencies. Upon closer inspection, the entirety 

of each upper solution branch is found to be chaotic (see Fig. 9), and the system response jumps at an 

arbitrary time from the higher-amplitude chaotic attractor to the lower-amplitude periodic attractor. 

This jumping behavior causes the regions of ‘scattered’ solution points between 50-150 Hz and 650-

750 Hz, and further simulations indicate this is due to the chaotic nature of the system at these 

frequency ranges. These regions are referred to as grazing-induced chaotic solution branches, since 

grazing behavior due to the contact springs causes the system response to become chaotic. Even small 

discretization errors from the time integration method are influencing the trajectory of the system, 

namely, by causing it to perturb and settle onto the lower-amplitude solution branch. The chaotic 

behavior is robust and is not just a numerical artefact; the small error persists both with and without 

the event location feature and with different ODE solvers (e.g., ode23, ode113, ode15s). This behavior 

was only observed for the case of chaotic solutions with hard contact stiffness values defined for 𝑘𝑔. 

   
(a) 𝑥1       (b) 𝑥2 

 
(c) 𝑥3 
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Fig. 8: Frequency response curves for each DOF with respect to forcing magnitude 𝑝2 applied at DOF 𝑥2. 

The dash-dot line denotes the upper contact boundary, and the dashed line denotes the multi-harmonic 

balance response of the system when 𝑝2 = 25𝑁. 
 

The system response for 𝑝2 = 25𝑁 is also obtained using the MHB solver with 36 harmonics, 

denoted with a black dashed curve in Fig. 8. The MHB results show excellent agreement with the lower 

solution branch, but some discrepancies exist near the resonance peaks. It captures a flat-top response 

of nearly constant amplitude from 0 Hz to about 38.2 Hz, with no presence of a turning point 

bifurcation. The MHB solution captures the hardening behavior of the third resonance peak near 700 

Hz, with a region of multiple solutions. It is well-known that the MHB code can only capture periodic 

solutions, and so Fig. 9 further interrogates the solutions obtained from the numerical time integration 

for the steady-state responses of DOF 𝑥1 at 25 Hz, 80 Hz, and 700 Hz. The plots are presented in terms 

of time histories, phase portraits, and Poincaré maps. It is evident that all three high-amplitude time-

integrated responses are chaotic, as the Poincaré maps are irregular shapes and neither finite sets of 

points nor closed loops [29]. This confirms that the upper branches of solutions are unobtainable with 

the MHB solver in the case of hard contact. In addition, the responses at 80 Hz and 700 Hz are jumping 

from high-amplitude to low-amplitude solutions. As this behavior can occur at any arbitrary time due 

to the chaotic nature of the system, this behavior is unpredictable and is the source of the scatter of 

points between the upper and lower solution branches. At 80 Hz, the phase portrait and Poincaré map 

of both the high-amplitude chaotic response (blue with red dots) and the low-amplitude periodic 

response (yellow with black dots) are shown to highlight the change in behavior before and after the 

jump. 
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Fig. 9: Time history, phase portrait, and Poincaré map (dots) of DOF 𝑥1 at three different forcing 

frequencies, and forcing magnitude 25 N, from Fig. 8. At 80 Hz, the phase portrait and Poincaré map of 

both the steady-state chaotic and steady-state periodic responses are shown using blue/red and 

yellow/black colors, respectively. 

 

The presence of hard contact in the system presents challenges when predicting the nonlinear 

forced response. Discrepancies exist between the numerical time integrated solution and the MHB 

solver due to the chaotic nature of the system and the extreme sensitivity to initial conditions. These 

results highlight the need for careful interpretation of the results if only one solution method is utilized, 

and that chaos may go undetected if one solely relies on MHB. 

5. Influence of the gap size on the system’s response 

As discussed previously, the experimental apparatus in [30] allows for several parameters to be 

altered to investigate the nonlinear dynamics of a shaft-bearing system with idealized clearances due 

to bearings. In this section, the focus is on the change of the gap size as these are readily adjusted by 

altering the spacing between the impact tips and impact beam with the rotation of a threaded rod. Fig. 

10 shows the frequency response plots with respect to gap size around the two resonance regions, 

plotted in 3D for a clearer view, with a 25 N force applied at the middle DOF. The value range is 

chosen such that the largest gap size produces no contact even at the highest-amplitude resonance, 

resulting in limiting behavior of the system. The low-frequency resonance becomes flattened and 

shifted to higher frequency as the gap size decreases. Grazing-induced chaotic solution branches are 

again observed to occur over a widening frequency range as well, as observed by the presence of the 

scattered points. The resonance peak near 700 Hz is also flattened in amplitude as the gap size 
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decreases, but interestingly it expands to both lower and higher frequencies. However, there is no other 

formation of nonlinear behavior observed, such as isolas or superharmonic resonances, that can be 

explored in further detail. 

   
(a) 𝑥1, 0 − 150𝐻𝑧     (b) 𝑥1, 670 − 770𝐻𝑧 

Fig. 10: 3D frequency response diagrams of DOF 𝑥1 with respect to forcing frequency and gap size 𝑔. 

The colorbar denotes peak response amplitude. 
 

The adjustment of the gap size in the contacts produces linear behavior in the extreme upper limit 

of gap size, as expected. As the gap size decreases, the solutions produce more grazing-induced chaotic 

responses and cause flattening of the resonance peaks, as was seen when varying the forcing amplitude. 

The onset of chaos can thus be realized with both changes of gap size and forcing amplitude, so long 

as the system has hard contact stops. The next section explores the evolution of behavior as the contact 

stiffness is changed. 

6. Nonlinear characteristics of the shaft-bearing assembly due to contact stiffness 

Next, the influence of the contact stiffness 𝑘𝑔 on the shaft-bearing assembly is examined. This can 

be modified in the experimental apparatus by exchanging different hammer tips to adjust the stiffness 

of the contact occurring on the impact bar. The nonlinear behavior observed in the previous sections 

consisted primarily of chaotic behavior, which is likely due to the hard contact in the system. The 

system response is expected to show less broadband chaos when the contact stiffness becomes softer. 

This change is confirmed in Fig. 11, which presents the frequency response of DOF 𝑥1 as a function of 

𝑘𝑔 for a 25 N force applied at the middle DOF. The corresponding plots for DOFs 𝑥2 and 𝑥3 are omitted 

because they appear nearly identical at both the low- and high-frequency resonances. The value range 

is chosen such that the softest contact stiffness has negligible effect on the system response, and the 

hardest contact stiffness (corresponding to the value in Table 1) induces a predominantly chaotic 

response region at low frequency. 
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The most notable feature in Fig. 11(a) as the hard contact stiffness is relaxed is the gradual 

formation of a resonance peak out of the region of chaotic solutions. This resonance decreases in 

frequency and grows in amplitude before settling near 20 Hz at soft stiffness. At frequencies higher 

than the resonance, there exist multiple bands of isolas that shift to lower frequency before disappearing 

for soft stiffness as well. At frequencies lower than the resonance, bands of nonlinear behavior are 

resolved out of the chaotic motions for hard contact stiffnesses. These bands experience slight 

frequency softening and become more distinct as the contact stiffness softens. Fig. 11(b) shows the 

system’s response near the 700-Hz resonance, and the contact stiffness is significantly less influential 

at these higher frequencies. The resonance peak is high enough in amplitude to be subject to contact at 

all stiffness levels, but its frequency and amplitude is nearly unchanged until 𝑘𝑔 ≈ 105𝑁/𝑚. As the 

hard stiffness is relaxed, the resonance resolves out of the region of chaotic motions, shifts slightly to 

lower frequency, and becomes a distinct peak. There exist two narrow ranges of contact stiffness near 

𝑘𝑔 = 106𝑁/𝑚 at which solution points exist with higher amplitudes than the resonance peak. 

   
(a) 𝑥1, 0 − 150𝐻𝑧     (b) 𝑥1, 670 − 770𝐻𝑧 

Fig. 11: Detailed frequency response diagrams of DOF 𝑥1 with respect to forcing frequency and contact 

stiffness 𝑘𝑔. The colorbar denotes peak response amplitude. The dashed lines denote contact stiffnesses 

which are further studied in Figures 11 and 12. 
 

Two intermediate values of contact stiffness are investigated in more detail, namely, 𝑘𝑔 = 2.626 ∗

104𝑁/𝑚 and 1.4 ∗ 106𝑁/𝑚, which are indicated by the black dashed lines in Figures 10(a) and 10(b), 

respectively. The system response for the first frequency range (0 to 100 Hz) and contact stiffness 

(𝑘𝑔 = 2.626 ∗ 104𝑁/𝑚) pair is presented in Fig. 12 showing both the time integration and harmonic 

balance simulations. The overlay of the two approaches generally shows excellent agreement, except 

for a few regions. It is noted that the largest resonance peak is at 28.9 Hz, and there exist two 

subharmonic isolas of order 2 and 3 over the frequency ranges between 42-47 Hz and 55-73 Hz, 
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respectively. There are another two isolas over the frequency ranges 20-22 Hz and 74-85 Hz, consisting 

of quasiperiodic solutions, and there is another quasiperiodic region connected to the main branch from 

32 to 35Hz. These solutions are only captured with the time integration method since the MHB solver 

is unable to capture non-periodic solutions. 

 
Fig. 12: Frequency response curve of the system in Fig. 11(a) for DOF 𝑥1, with the contact stiffness fixed 

at 2.626 ∗ 104𝑁/𝑚. The colored dots indicate solutions from the time integration solver. The dashed 

lines denote solution curves with the MHB solver. The dash-dot line denotes the upper contact boundary. 

In the smaller zoomed figures are the low-frequency response comparing DOFs 𝑥1 and 𝑥3 to DOF 𝑥2; all 

time integration results are colored orange for clarity, and the pink curves denote superharmonic 

resonance branches of the second natural frequency. 
 

At lower frequencies, below 21 Hz, numerous superharmonic resonances exist for this system 

configuration. The MHB solution shows that the shape of the resonance peak takes on two forms: the 

first relates to regions where the main solution branch loops around on itself, generating a “tongue” 

along the main branch. The other type of solution is where there exist separate solution branches that 

intersect the main branch tangentially and connect to the main solution branch at symmetry-breaking 

bifurcations [29]. In these regions, the upper and lower solutions at a given frequency are asymmetric 

pairs of coexisting solutions, meaning the time histories of each DOF on these branches tend to take 

the form 𝑥𝑢𝑝𝑝𝑒𝑟(𝑡) = −𝑥𝑙𝑜𝑤𝑒𝑟(𝑡), with a possible phase shift. 

The time history behavior simulated with the MHB solver is shown in Fig. 13 for the two 

superharmonic resonances centered near 12 Hz and 18 Hz. It is observed that the symmetry-breaking 

behavior along the nonlinear forced response curve does not necessarily affect DOF 𝑥2 on some of 

these superharmonic resonance branches. For example, near 12 Hz all three DOFs exhibit two pairs of 

asymmetric motions along the superharmonic resonance. For both motions, each DOF moves in unison 
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and thus the net behavior of the full system is a translational motion, resembling the behavior of the 

system’s first linear mode. Near 18 Hz, however, only DOFs 𝑥1 and 𝑥3 exhibit two pairs of asymmetric 

motions, while both solutions for DOF 𝑥2 are identical and symmetric in time about the rest position. 

This symmetry on DOF 𝑥2 causes the full system to move with a rotational motion, resembling the 

behavior of the system’s second linear mode. This is notable because the solution of all DOFs is 

expected to be symmetric in time based on the linear mode shapes and forcing at DOF 𝑥2, but the 

contact nonlinearity introduces asymmetry into the system. Consequently, even though no primary 

resonance exists for the second natural frequency, the contact nonlinearity introduces superharmonic 

resonances of the second natural frequency. The superharmonic resonance branches with symmetric 

DOF 𝑥2, i.e. which occur near 18 Hz, 8 Hz, and 6 Hz, make approximate integer ratios of 2: 1, 4: 1, 

and 6: 1 with the second resonance frequency, which can be seen later in Fig. 21 is near 36 Hz. These 

resonance branches are colored pink in the zoomed plots of Fig. 12 to distinguish them from the 

superharmonic resonances of the first natural frequency, which experience total symmetry breaking 

due to the contact nonlinearity. This provides further evidence that the contact nonlinearity is activating 

the hidden second resonance that is not present from a linear analysis perspective. 

 
Fig. 13: MHB time histories of the system response on the superharmonic resonance solution branches 

highlighted in Fig. 12. Upper and lower plots correspond to solutions on the upper and lower solution 

branches, respectively. These solutions are captured near 12.47 Hz and 18.49 Hz. 
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Fig. 14 depicts the system response for the second frequency range and contact stiffness pair of 

interest, which was taken from the black dashed line in Fig. 11(b). Based on the MHB solution, the 

third resonance peak is observed to bend towards higher frequencies and produce a turning point 

bifurcation around 707 Hz due to hardening effect of the contacts. This produces a frequency shift of 

about 1%. In addition to the main resonance curve, several isolas exist around the primary resonance 

that are detached from the main solution, producing a cloud of isolas with frequencies below and above 

the main resonance peak. Given a forcing frequency ω and corresponding period 𝑇, these isolas 

correspond to period-𝑛 motions for which the solution’s frequency is 
𝜔

𝑛
 and period is 𝑛𝑇. There are 

observed 𝑛 = 5,7,9,10,11,12, and 13. In addition, the highest-amplitude points seen between 710 and 

715 Hz are parts of two quasiperiodic isolas that were only computed using numerical time integration. 

The family of isolas that exist around the third resonance peak explain the existence of solutions at 

frequencies below the linearized natural frequency, as the isolas span a broad bandwidth around the 

peak. These isolas are captured by using a single vector of Fourier coefficients as a starting guess and 

simply changing the order of the subharmonic in the MHB code. Further, isolas of each period-number 

appear in symmetry-complementing pairs. For example, there are two isolas of period 𝑛 = 7 past the 

resonance peak, one for which 𝑥1 has a larger amplitude than 𝑥3 and one for which the opposite is true. 

This occurs because the system is inherently symmetric, so there is no difference between numbering 

the system DOFs relative to the left or right DOF. The individual DOF motions at a given frequency 

tend to be asymmetric, however, since the total system motion is primarily a combination of bending 

and rotation about DOF 𝑥2. 

 
Fig. 14: Frequency response curve of the system in Fig. 11(b) for DOF 𝑥1, with the contact stiffness fixed 

at 1.4 ∗ 106𝑁/𝑚. The colored dots indicate solutions from the time integration solver. The dashed lines 

denote solution curves traced out with the MHB solver. The dash-dot line denotes the upper contact 

boundary. 
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A stability analysis is useful to determine to what extent these isolas can be realized in the 

experimental setup. Fig. 15 shows the stability of each MHB solution branch in Fig. 14. The time 

integration solutions are all colored blue for clarity, and the black and red dots correspond to stable 

and unstable MHB solutions, respectively. The majority of each isola is observed to be unstable, 

partially accounting for the sparsity of isolas captured with the direct time integration method. The 

distribution range from which initial conditions are randomly selected is the second explanation for the 

time integration results. Namely, initial displacements are set to be chosen from within the contact gap 

range, and initial velocities from within an arbitrary range a few orders of magnitude larger, i.e., 

{x0}1,2,3 ∈ [−𝑔,+𝑔] 𝑚 and {𝑣0}1,2,3 ∈ [−0.5,+0.5] 𝑚/𝑠. The relatively limited ranges of initial 

conditions may lead the system to settle onto the low-amplitude solution branch more often than if the 

initial conditions came from a larger range beyond the contact gaps. 

 

 
Fig. 15: Floquet stability results for Fig. 14 for DOF 𝑥1. The blue dots denote time integration results, the 

black dots denote stable solution branches from MHB, and red dots denote unstable branches. The dash-

dot line denotes the upper contact boundary. The vertical lines are placed at 687 Hz and 705 Hz, for 

which basins of attraction are later presented. 
 

Given the family of isolas and their stability characteristics of the system’s coexisting responses 

near the resonance in Fig. 15, the basins of attraction are computed using direct time integration to 

show the likelihood of the system settling onto any given attractor. Fig. 16 shows the basins of attraction 

at the two forcing frequencies of 687 Hz and 705 Hz. In both plots, the maximum values of DOF 𝑥1 

resulting from 10,000 sets of initial conditions are plotted against the corresponding initial 

displacement and velocity of 𝑥1. The full range of initial conditions consists of 6-dimensional space, 

so a Latin Hypercube Sampling (LHS) scheme is utilized to efficiently obtain the total set of ICs used 

in the simulations. A larger range of initial displacements are employed for these simulations, i.e., 

{x0}1,2,3 ∈ [−10−3, +10−3] 𝑚, to more easily capture the highest amplitude isolas seen in Fig. 15. The 

gap size is still the nominal value of 2.54 ∗ 10−4𝑚. Note that the white space in the plots represents 
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values where no sampling occurred. At 687 Hz, the difference between lowest- and highest-amplitude 

solutions is nearly a factor of 30, and six stable solutions are expected to coexist based on the result of 

the MHB solution. However, in Fig. 16(a) only three solutions are observed: the lowest-amplitude main 

branch solution, and two isolas. The basin for the lowest-amplitude solution takes up nearly the entire 

figure, to such extent that the only evidence for the isolas is two purple- and magenta-colored points 

near (−5.3 ∗ 10−4 𝑚, −0.16 𝑚/𝑠) and (8.6 ∗ 10−4 𝑚, 0.72 𝑚/𝑠). 

Similarly, Fig. 16(b) indicates the main solution branch, post resonance, has the largest basin out 

of all solutions observed. This frequency (705 Hz) cuts through the main solution branch twice and 

through six isolas for a total of eight expected stable solutions, but only six of them are observed: the 

lower- and higher-amplitude main branch, isolas of period number 𝑛 = 5 and 11, and two 

undetermined solutions. The amplitudes of the two undetermined solutions do not correspond to any 

of the frequency response results. They may be yet-undiscovered isolas with period-number greater 

than n = 20, or they may be quasiperiodic isolas. Regardless of the nature of the known and unknown 

solutions, there is still low likelihood that any arbitrary initial conditions or arbitrary perturbation will 

cause the system to settle onto any isola. 

   
(a) ω = 687 𝐻𝑧     (b) ω = 705 𝐻𝑧 

Fig. 16: Basins of attraction of the system in Fig. 14 at forcing frequencies of (a) ω = 687 𝐻𝑧 and (b) 

ω = 705 𝐻𝑧. In each figure, the color corresponds to the maximum value of 𝑥1(𝑡), and the horizontal and 

vertical axes correspond to the initial conditions of 𝑥1, i.e., (𝑥1)0, (𝑣1)0. 

 

The adjustment of the contact stiffness produced a suite of complex nonlinear behavior for different 

stiffness values, ranging from hard to soft contact limits. A few interesting phenomena were 

specifically identified and interrogated, the first being the existence of superharmonic resonances of 

the hidden second primary resonance of the system. Due to the symmetry in the model and the choice 

of excitation location, the second resonance does not get excited; however, it was discovered that the 
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superharmonic resonances appear at low frequencies in one of the investigated configurations. There 

exist symmetry-breaking bifurcations along the main solution branch at low frequencies that could be 

realized during experiments performed on the test apparatus. It was also discovered that a cloud of 

isolas exist in the vicinity of the third resonance peak, providing further explanation of the observed 

solutions at frequencies below and above the main resonance. Stability analysis and the computed basin 

of attraction reveal that these solutions are unlikely to be realized for these system parameters, but this 

may not necessarily hold generally true for other configurations. 

7. Damping modeling effects on the system’s response 

This section explores the effect of the viscous damping model on the system’s dynamics. The 

representation of the damping for the shaft-bearing assembly influences the nonlinear characteristics 

of the system, and it is often challenging to determine which form to utilize since damping mechanisms 

come from various sources. Since an accurate model of the damping is not known with certainty, two 

different models are chosen for study, namely, the model using discrete grounded dashpots attached to 

each mass as proposed by Goldberg et al. [30], and a more conventional type based on mass 

proportional damping. Both damping models are as follows: 

𝐂1 = [
𝑐 0 0
0 𝑐 0
0 0 𝑐

] , 𝐂2 = [
𝑐 0 0
0 2𝑐 0
0 0 𝑐

] =
𝑐

𝑚
𝐌 (5) 

Fig. 17 shows the effects of the first damping model around the primary resonances as the damping 

coefficient is varied from the nominal value in Table 1 to 46 times the nominal value. All other 

parameters are held nominal to Table 1, and only the results for DOF 𝑥1 is shown, since the results for 

all three DOFs look similar. The frequency responses are originally computed by varying the damping 

within an uncertainty range of ±15% of the nominal damping, but this proves to not influence the 

system response. Fig. 17(a) shows that the system’s response at low frequency is moderately affected 

by an increase in damping. At all damping values, the upper solution branch from 0 Hz to 100 Hz is 

still abruptly limited in amplitude by the contact boundaries. The large cloud of points, which result 

from the system jumping from the higher solution branch to the lower branch, disappear with increased 

damping. The maximum frequency to which the upper branch extends is shortened from almost 100 

Hz to about 27.5 Hz. Simultaneously, the hysteresis region between the lower and upper branches also 

shrinks and the branches nearly coalesce for the highest damping. There are no isolas observed for any 

damping values. However, there is a superharmonic resonance or other nonlinear behavior present for 

large damping below 25 Hz that is explored in more detail later in this section. At higher frequency, 

Fig. 17(b) depicts that the resonance peak with nominal damping is flattened and extends to both lower 
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and higher frequencies. This behavior quickly disappears as the damping increases, resulting in a much 

lower-amplitude resonance peak that falls within the contact gap and gradually widens out with 

increased damping. There is no indication of isola or any other nonlinear behavior around this 

resonance. 

   
(a) 𝑥1, 0 − 150𝐻𝑧     (b) 𝑥1, 670 − 770𝐻𝑧 

Fig. 17: 3D frequency response diagrams of DOF 𝑥1 with respect to forcing frequency and damping 

coefficient 𝑐, using the damping model assumed by Goldberg et al. [30]. The colorbar denotes peak 

response amplitude. 
 

The frequency response results of the second damping model are observed to be similar to the 

results of the first model and are omitted for brevity. The most notable difference is in the nonlinear 

behaviors observed at low frequency for large damping, which is explored in Fig. 18. The frequency 

response of the system with a damping coefficient of 139 𝑁 ∗ 𝑠/𝑚 is plotted using both the original 

and the proportional damping models, and distinct branches of high-amplitude solutions become 

visible for both models. The time histories of the various solutions at 5 Hz, 15 Hz, and 25 Hz are 

plotted underneath. At 5 Hz, one solution is present for both models, in which the system experiences 

chattering behavior (i.e., a cascade of contacts with increasingly rapid occurrence) as it comes into 

contact with either the upper or lower contacts [38, 39, 40]. The chatter occurs until the system comes 

out of contact altogether. The MHB procedure is unable to resolve this behavior because the chattering 

behavior itself is aperiodic in form. At 15 Hz, the solutions for the two damping models start to differ. 

The original damping model induces several similar types of solutions which differ mainly around the 

points of contact. These responses tend to come into contact with each contact boundary twice without 

chatter behavior. The proportional damping model, however, shows a single solution which still 

resembles chatter with two or three contacts occurring with each contact boundary. At 25 Hz, the 

original damping model induces two solutions which resemble chatter with only the lower contact 
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boundary, and one solution which hits each contact boundary once without any chatter. The 

proportional damping model induces two solutions, one with chatter and one without chatter. 

 
Fig. 18: Frequency responses and time histories of the system at 5, 15, and 25 Hz, with both the original 

and the proportional damping models with damping coefficient 𝑐 = 139 𝑁 ∗ 𝑠/𝑚. In the large plot, red 

and blue denote time integration results for the original and proportional damping models, respectively. In 

the small plots, the different colors denote the time histories of coexisting solutions at each frequency in 

no particular order. 
 

Fig. 19 explores the chatter behavior by showing a zoomed in time history, phase portrait, and 

frequency spectrum of the system response at 5 Hz with the original damping model. It is clear from 

the phase portrait that the system response away from the contact events behaves periodically, but the 

response nearby the contact points behaves irregularly. The net result of these two behaviors is to make 

the overall response aperiodic. The Poincaré map is an irregular shape, implying chaos. The frequency 

spectrum shows there are harmonics of the forcing frequency up to 2,000 Hz, but there is not broadband 

frequency content between the harmonics that would further suggest the response is chaotic. The 

harmonic peaks tend to decay according to a −3/2 power law with frequency. There is also a decrease 
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in the harmonic content from 200-700 Hz. These results explain why the MHB solver is unable to 

capture this solution, even if up to 360 harmonics are used. 

 
                              (a)                                                     (b)                                                   (c) 

Fig. 19: (a) Time history, (b) phase portrait and Poincaré map (red dots), and (c) frequency spectrum of 

the system response at 5 Hz, with the original damping model and damping coefficient 𝑐 = 139 𝑁 ∗ 𝑠/𝑚. 

The dashed lines denote contact boundaries. 

8. Existence of asymmetry and its effects on the system’s nonlinear characteristics  

The effects of the parameters that contribute to the inherent symmetry in the shaft-bearing assembly 

are explored at a high level to examine their influences on the dynamical responses of the system. 

These parameters are the linear stiffnesses, the contact stiffnesses, and the gap sizes on DOFs 𝑥1 and 

𝑥3. In the next results, the system is made inherently asymmetric by keeping the value of each 

parameter on DOF 𝑥1 constant and setting the parameter value on DOF 𝑥3 to vary over a range of 

values. This is valuable because the actual physical apparatus is unlikely to be perfectly symmetric in 

its shape and in every parameter of interest. As in Section 7, each parameter is initially varied over an 

uncertainty range of ±15% to explore the effects of small and moderate asymmetries on the robustness 

of the system response. All three asymmetries have minimal influence on the system’s response given 

this uncertainty range. This implies that the nonlinear system has a level of robustness against 

asymmetries in the physical system, and these original results are omitted for brevity. It is then desired 

to explore the limits of this robustness with much larger parameter uncertainties, and to observe trends 

in behavior that were seen in the previous sections. 

Fig. 20 shows the frequency responses of DOF 𝑥1 under the variation of the linear stiffness of DOF 

𝑥3, for both a soft and hard symmetric contact stiffness. Namely, the soft stiffness 2.626 ∗ 104𝑁/𝑚 

from Fig. 11(a) and the nominal hard stiffness from Table 1 are studied. The responses for the upper-

most values of 𝑥3 linear stiffness are symmetric and are thus equivalent to the results in Fig. 12 and 

Fig. 8 (orange curve), respectively. The results for DOFs 𝑥2 and 𝑥3 are similar and are omitted. The 
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system response in Fig. 20(a) and 20(b) differs from the linear case of Fig. 6 in that the second resonance 

forms near 40 Hz and grows in amplitude as the asymmetry appears. Further, the first resonance does 

not shrink to 0 Hz but decreases from 29 Hz to 24.5 Hz. Fig. 21 plots the natural frequencies as linear 

stiffness 𝑘𝑠3 varies, analogous to Fig. 5, but with the contact gaps fully closed so the contact stiffnesses 

are added and the system configuration is linear. The first resonance is now easily seen to plateau, and 

the third resonance is observed to change negligibly. At lower frequencies, the same superharmonic 

resonances from Fig. 12 are present and do not vary significantly with the asymmetry. Isolas remain 

present between 40-100 Hz. One isola at the lower end of this frequency range grows with the 

asymmetry, while one at the higher end gradually disappears. Another isola appears to form and then 

disappear as asymmetry increases. The system’s third resonance remains unchanged in both frequency 

and amplitude as the asymmetry changes. As in Fig. 12, there is no evidence of isolas around the third 

resonance peak for the soft value of contact stiffness. 

   
(a) 𝑥1, 0 − 150𝐻𝑧     (b) 𝑥1, 670 − 770𝐻𝑧 

   
(c) 𝑥1, 0 − 150𝐻𝑧     (d) 𝑥1, 670 − 770𝐻𝑧 

Fig. 20: 3D frequency response diagrams of DOF 𝑥1 with respect to forcing frequency and the linear 

stiffness on DOF 𝑥3, for both (a, b) soft and (c, d) hard contact stiffnesses. The colorbar denotes peak 

response amplitude. 
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Fig. 21: Linear natural frequencies shapes as functions of the linear stiffness on DOF 𝑥3, when the contact 

gap is fully closed 𝑔 = 0 and contact stiffness is 𝑘𝑔 = 2.626 ∗ 104𝑁/𝑚. The labels indicate the 

frequencies at the left and right ends of the plot where the linear stiffness is asymmetric and symmetric, 

respectively. 
 

The system response with hard contact stiffness in Figures 19(c) and (d) is largely unaffected, both 

at low frequency and high frequency, as the linear stiffness of 𝑥3 decreases to zero stiffness. In Fig. 

20(c) at low frequency, the system exhibits the flattened upper solution branch of chaotic solutions and 

jumping behavior from upper branch to lower branch that was observed previously in Fig. 8. Both of 

these behaviors are present as the 𝑥3 linear stiffness decreases to 0 𝑁/𝑚, and the only notable change 

is that the maximum frequency of the upper branch extends from 100 Hz to about 150 Hz. There is no 

other nonlinear behavior present, such as isolas or superharmonic resonances. In Fig. 20(d) at high 

frequencies, similar results are observed in the upper solution branch around the resonance peak. A 

moderately or significantly asymmetric linear stiffness on 𝑥3 has little effect on the amplitude, 

frequency range, or jumping behavior of the upper branch, until the stiffness is zero. At zero linear 

stiffness, the frequency range of the upper branch extends from about 680-740 Hz to about 670-760 

Hz. Otherwise, there are no other nonlinear behaviors, such as isolas, present around the resonance 

peak. 

Fig. 22 shows the frequency responses of all three DOFs under the asymmetry variation of the 

contact gap size of DOF 𝑥3, holding the contact parameters on DOF 𝑥1 nominal from Table 1. It is 

clear that the system is significantly more sensitive to the 𝑥3 gap size than to the 𝑥3 linear stiffness, so 

these plots are created with more detail and are viewed from above for clarity. At low frequency in Fig. 

22(a), as the gap size increases and becomes more asymmetric, a second resonance branch appears out 

of the original upper branch. This second upper branch grows in amplitude and shrinks in frequency 

range, and for the largest gap sizes it forms a resonance peak near 22 Hz. This solution branch is most 

easily seen in the 𝑥2 or 𝑥3 DOFs than in the 𝑥1 DOF. The original upper branch of solutions remains 

relatively unchanged. There are no isolas observed at frequencies beyond 50 Hz, but there is faint 
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superharmonic resonance behavior present which forms below 20 Hz as the gap size increases. At high 

frequency in Fig. 22(b), the upper solution branch around the resonance peak is lower in amplitude 

than the resonances at low frequency, and it is less affected by the asymmetric gaps. The clouds of 

points jumping from high to low amplitude shrink in frequency range towards the resonance peak as 

the gap increases. The frequency and amplitude of the resonance peak itself does not change. For gap 

sizes larger than 10−3m, there are several solid lines of intermediate amplitude (i.e., yellow and orange) 

which may indicate the presence of isolas around the resonance peak. This resembles the system’s 

behavior as seen in Section 6 and is not studied further here. 

 
(a) 0 − 150𝐻𝑧 

 
(b) 670 − 770𝐻𝑧 

Fig. 22: Detailed frequency response diagrams of all three DOFs with respect to forcing frequency and 

the contact gap size on DOF 𝑥3. The colorbar denotes peak response amplitude. 
 

The last parameter of interest is studied in Fig. 23, which shows the frequency responses of all three 

DOFs under the variation of the contact stiffness size of DOF 𝑥3. The contact parameters on DOF 𝑥1 

are nominal from Table 1. As with the 𝑥3 gap size, the system response is significantly influenced by 

the contact stiffness. The system becomes more asymmetric as the stiffness decreases, and another 

high-amplitude resonance peak is again observed to form and converge towards 21 Hz. This resonance 

does not appear to form until the 𝑥3 stiffness is below about 106𝑁/𝑚, at which point the resonance 

forms between 100-150 Hz and begins to both increase in amplitude and decrease in frequency towards 
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21 Hz. The original upper solution branch, extending from 0 Hz to between 50 and 100 Hz, still exists 

and remains relatively unchanged by the decreasing 𝑥3 contact stiffness. The high-amplitude points 

above 100 Hz, near the formation of the resonance peak, may be isolas. These isolas form only for 

contact stiffnesses at least one to two orders of magnitude harder compared to the isolas seen in Section 

6. The cloud of intermediate amplitudes (i.e., green color) near 50 Hz for contact stiffnesses less than 

about 105𝑁/𝑚, when plotted in 3D, are simply due to solutions jumping from high to low amplitude 

and do not indicate some other nonlinear behavior. At frequencies below the highest resonance peak, 

there exist small bands of additional nonlinear behavior, likely superharmonic resonances as seen in 

Section 6. 

The high-frequency resonance is shown in Fig. 23(b), and it is more affected by the 𝑥3 contact 

stiffness than by the 𝑥3 gap size. A cloud of high-amplitude solutions is seen extending from about 680 

Hz to 740 Hz for hard contact stiffness, and this frequency range decreases to about 695 Hz to 715 Hz 

as the contact stiffness softens. The resonance amplitude for DOF 𝑥1 remains constant, but the 

resonance peaks for DOFs 𝑥2 and 𝑥3 noticeably decrease in amplitude as the contact softens below 

106𝑁/𝑚. None of the high-amplitude solutions away from the resonance peak are characteristic of the 

isolas seen in Section 6; they simply indicate the point scattering behavior due to chaos. 

 
(a) 0 − 150𝐻𝑧 

 
(b) 670 − 770𝐻𝑧 
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Fig. 23: Detailed frequency response diagrams of all three DOFs with respect to forcing frequency and 

the contact stiffness on DOF 𝑥3. The colorbar denotes peak response amplitude. 
 

9. Conclusions 

In this work, the nonlinear frequency responses and characteristics of an idealized shaft-bearing 

assembly, operating as a vibro-impact system due to the bearing clearances, have been investigated. 

The system is versatile in that many design variables such as spring and contact stiffnesses, gap sizes, 

and forcing levels and locations can be easily changed to produce symmetric, asymmetric, linear, and 

nonlinear configurations. Several complex nonlinear dynamical behaviors were observed and 

characterized using both time integration and harmonic balance methods. Regions of chaotic solution 

branches were observed over a wide frequency range near each primary system resonance, and these 

became more evident with increasing levels of forcing or decreasing contact gap sizes. These regions 

of chaos are initialized by grazing bifurcations. The chaotic behavior can be mitigated by relaxing the 

system's nominally hard contact stiffnesses, and doing so also leads to the formation of isolas and 

secondary resonances over the frequency ranges of interest. Superharmonic resonances of both the first 

and second resonant frequencies were observed, even though there was no primary resonance peak for 

the second natural frequency due to the system’s symmetry. 

Branches of quasiperiodic isolas were also discovered after the first resonance. These can currently 

only be captured using the time integration, but there has been recent promising work combining 

harmonic balance and continuation principles for quasiperiodic motions [41, 42, 43]. Around the high-

frequency third resonance, a cloud of many isolas formed. A basin of attraction analysis showed the 

system has low likelihood of settling onto any of these isolas if perturbed. Chaotic behavior in the 

nominal system can also be reduced by increasing the damping level. An additional result was the 

presence of chatter behavior at low frequency excitation, which could only be predicted with the time 

integration approach. The chatter was persistent and observed using both the original damping model 

proposed by Goldberg et al. [30] and a mass-proportional model. 

The complex nonlinear behaviors described above were also evidenced in various asymmetric 

system configurations with unequal linear stiffnesses, gap sizes, or contact stiffnesses. Initial studies 

showed the system was insensitive to parameter asymmetries of as much as ±15%, indicating the 

experimental setup is likely robust to small discrepancies in spring stiffnesses, gap sizes, etc. An 

asymmetry in the linear stiffness is less influential on the dynamics of the nonlinear system than on the 

dynamics of the linear system, both for harder and softer contact stiffnesses. It did, however, cause the 

first resonance to fundamentally change behavior: it plateaued to a constant natural frequency when 

the contact springs were present and fully closed rather than decrease to 0 Hz as it does without the 
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contact springs. Low frequency superharmonic resonances are unaffected, but different isolas can 

either grow or disappear as asymmetry grows. Two resonance peaks occur at low frequency if there is 

an asymmetry in either the gap sizes or the contact stiffness, and there was evidence of both isola 

formation and superharmonic resonances as well for specific design values. There was evidence of 

isola behavior around the high-frequency resonance, which was relatively unchanged from the 

symmetric configurations. 

The results of this work can help to better understand the types of nonlinear behaviors that may 

occur in bearing-shaft systems. For example, ball bearings produce small gaps between the inner and 

outer races leading to intermittent contact behavior. The clearances and stiffness are functions of the 

bearing design, and thus the results from this research highlight the influence of these parameters on 

the performance of an idealized bearing-mounted shaft. Furthermore, the results of this study can be 

used to inform and design further experiments on the simplified physical system to study the various, 

complex phenomena predicted by the system model. Future work would benefit from further 

experimental validation of the system model. Namely, a more certain representation of the damping in 

the system, along with the influence of any contact damping, would be valuable. 
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