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ABSTRACT

The paper discusses the problem of resolving the kinematic redundancy
in the closed chain formed when two redundant manipulators mutually
lift a rigid body object. The positional degrees of freedom (DOF) in
the closed chain are parameterized by a set of independent variables
termed pseudovelocities. Due to the redundancy there are more DOF
and thus more pseudovelocities than are required to specify the motion
of the held object. The additional “redundant” pseudovelocities are
used to minimize the distance between the vector of unknown joint
velocities and a vector of “corrective” joint velocities in a Euclidean
norm sense. This leads to an optimal solution for the joint velocities as
a linear function of the Cartesian object velocities and the corrective
velocities. The problem of determining the corrective velecities to avoid
collisions of the links with a wall located in the workspace and to avoid
joint range limits is illustrated by an example of two redundant planar
revolute joint manipulators mutually lifting a rigid object.

KEYWORDS: interacting redundant manipulators, redundant pseu-
dovelocities, collision and joint limit avoidance, corrective action

INTRODUCTION

When two serial link manipulators possessing N; and N, joints, respectively, mutu-
ally lift a rigid body object the values of the joint velocities of the manipulators are
restricted by M rigid body kinematic constraintst [1]. M configuration degrees of
freedom (DOF) are lost and the closed chain system has (N, — M) DOF, where
Niz = N; + N,. In our previous work [1], the configuration DOF were param-
eterized by (N2 — M) independent scalar variables termed pseudovelocities. The
joint velocities were expressed as linear functions of the pseudovelocities. When each
manipulator is kinematically redundant (N; > M), there are more DOF than are
required to control the translational and rotational motion of the object at its center
of mass. In [1}, M of the pseudovelocities were viewed as nonredundant, and were
selected to be the components of translational and angular velocity of the object at its
center of mass. On the other hand, the remaining (N2 — 2 M) pseudovelocities were
viewed as being redundant. A dynamical model comprised of (N;2 — M) second or-
der differential equations governing the motion of the closed chain was derived, where
each of the equations is a linear function of an ((Ny2 — M) x 1) vector containing
the time derivatives of the pseudovelocities. Based on the model, a control scheme
was proposed where each of the pseudovelocities was explicitly controlled to track a
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! M =6 and M = 3 for spatial and planar dual manipulator configurations, respectively.




reference trajectory. Please note that with this approach the M object DOF and the
(N2 — 2 M) redundant DOF are treated in the same way. They are equally impor-
tant. An open problem not addressed in {1] is how to select reference trajectories for
the redundant pseudovelocities.

This paper takes a different approach where the (N; — M) redundant pseudoveloc-
ities associated with manipulator ¢ are used to induce joint self motions (i.e., motions
of the joints that do not contribute to the motion of the held object) to make the
vector of joint velocities tend towards a known vector of “corrective” joint velocities
in some optimal sense. We propose to calculate the redundant pseudovelocities to
minimize the distance between these vectors in a Euclidean norm sense. This leads to
an optimal solution for the joint velocities containing a component that contributes to
the object’s motion and a self motion component that is a function of the corrective
velocities. Since the object’s motion is constrained to follow a reference trajectory
whereas inducing joint self motions is optional, the control of the Cartesian pseudove-
locities takes precedence over calculating the redundant pseudovelocities to minimize
the aforementioned distance.

In our earlier work [2], an algorithm for calculating the corrective joint veloci-
ties was proposed to establish a joint limit avoidance capability for an unconstrained
manipulator. Here it is investigated if the corrective velocities can be determined
to give each manipulator in the closed chain an additional capability via joint self
motions. This will be illustrated by an example where the algorithm in {2] is ex-
tended to give each of two redundant planar revolute joint manipulators mutually
holding a rigid object the complimentary and simultaneous capabilities of avoiding
joint limits and avoiding collisions of the links with a wall located in the workspace.
The planar configuration is shown in Figure 1. There are other approaches to colli-
sion avoidance when dual manipulators share a common workspace such as applying
reflexive action (3], but kinematically redundant manipulators were not considered in
the analysis. Other approaches to utilizing kinematic redundancy in the closed chain
are discussed in [4, 5].

KINEMATIC REDUNDANCY RESOLUTION

Let the (M x 1) vector v, denote the the Cartesian velocity of the object at its
center of mass with respect to a stationary world reference coordinate frame. In the
closed chain, v, can be expressed as a linear function of the joint velocities of either
manipulator [1}:

Vo = Aigi (1)
where ¢; denotes the (NV; x 1) vector of joint velocities of manipulator 7 and A;(g;) is

a (M x N;) matrix. It is assumed that A; has full rank M (< N;).
An underspecified solution to eq. (1) is given by:

¢ = Eiv, + Fiy; (2)

where E; and F; are (N; x M) and (NV; x (IV; — M)) full rank matrices, respectively,
which satisfy the matrix identities A; E; = In and A; F; = Opy(v,—m). Here I
signifies a (k x k) identity matrix and Okx; a (K X [) matrix of zeros. The components
of v, constitute the Cartesian pseudovelocities in the closed chain. The components
of the ((N; — M) x 1) vector v; are the redundant pseudovelocities associated with
manipulator 7. They parameterize the null space of A;. Therefore (F; v;) induces joint
self motions which do not affect object motion. It is assumed that the quantities
{E;, F;} (i=1,2) are known (see [2] for methods to determine them) and that a
reference trajectory for the center of mass of the held object has been specified. Thus
v, is known and the only unknown quantity in eq. (2) is u;.
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Figure 1. Closed Chain With Two Planar Manipulators

Let ¢¢ denote an (N; x 1) vector of “corrective” joint velocities which represents a
desired target or goal that the joint velocities of manipulator 7 should tend to in some
optimal manner. It must be emphasized that ¢f is a not a “reference” trajectory to be
explicitly tracked by ¢; using servo control techniques. Besides, the N; components
of ¢; cannot be independently controlled to track reference trajectories because their
values must satisfy M rigid body kinematic constraints A; §; — Ay gy = Oy arising
from eq. (1) . It is assumed that ¢ has a component lying in the null space of 4; but it
may also have a component which is orthogonal to every vector in the null space in the
general case. ¢f is a known function of the measured or sensed variables associated
with manipulator ¢ and is calculated by an algorithm furnished by the designer.
An example of such an algorithm to give two interacting planar manipulators the
capabilities of avoiding collisions with a wall located in the workspace and avoiding
joint limits is presented in the next section.

In this paper we propose to determine v; to minimize the distance between ¢; and
¢¢ in a Euclidean norm sense. To accomplish this objective, a performance index is
introduced:

Pi=(G— ) (G- ) = (Bvo + Fovi — &)7 (Bivo + Fivi — ¢ (3)
where superscript 7" denotes a transpose and where eq. (2) has been applied. The
necessary optimality condition is obtained from d P,/dv; = O(n,-ar)x1- Solving this

equation for v; and substituting the result into eq. (2) yields the symbolic solution
for the joint velocities of manipulator

G = Evvo+ Fi (FF F) 7 FF (¢ — Evvo) = AT (4 AD) o, + B (FT )T FF & (8)
Eq. (4) was obtained by choosing E; to be:
E; = AT B + Fiv (5)

where 3 and v are (M x M) and ((N; — M) x M) parameter matrices, respectively.
Using this definition, (E; v,) always contains a component (AT 8v,) which contributes




to the held object’s motion, but it may also contain a component (F;~ywv,) which
induces joint self motions in the general case. Interestingly, the self motion component
of (E;v,) vanishes from the final solution for ¢; in eq. (4) . It is easy to verify that
B = (4 A;fr)—1 by premultiplying eq. (5) by A;.

Although the vector of corrective velocities does not lie entirely in the null space
of A;, eq. (4) reveals that ¢ has been projected into the null space (of A;) by its
coefficient matrix. Therefore any “corrective action” applied to the system using ¢¢
does not affect the motion of the held object.

CALCULATION OF CORRECTIVE ACTION

Let ¢f; denote the corrective velocity corresponding to the jth joint of manipulator .
In this section an algorithm is presented for calculating ¢;; for each and every joint
that, when used in conjunction with eq. (4) , induces self motions of the joints of each
manipulator to avoid collisions of the links with a wall located in the workspace and

to avoid joint limits. It is assumed that the dual-manipulator closed chain is a planar
system, and that all manipulator joints are of the revolute type.

Wall Collision Avoidance Strategy

Suppose there is a wall that is perpendicular to the the plane of motion located
in the workspace of the closed chain system (see Figure 1). This wall is modeled by
a straight line:

y =az +b , (6)

Further, let the position of the outer end of the jth link of manipulator ¢ be signiﬁed
by the coordinates (z; ;, yi;) With respect to a stationary world reference frame. The
Cartesian coordinates are related to the joint coordinates by:

J J
(Zij, %ij) = {ﬂ?z',j—l + l;; cos (Z Qi,p) i Yij—1 + lij sin (Z Qi,p)} (7)

p=1 =1
where (1 < j < N;) and (zi0, ¥i0) is the position of the base of manipulator @ g¢;;
and [; ; signify the jth joint angle and jth link of manipulator ¢, respectively.
The line passing through the point (; j, ¥; ;) that is perpendicular to the wall is:
1

y = == (2~ 2i5) + vy 8)
and the distance from (z;;, ¥;;) to the wall is:
dij = (azij — yij + )/ (i Va? F 1) (9)

where the sign in the denominator is chosen such that d; ; is nonnegative.

Let a; ; signify the angle between the “perpendicular line” defined by eq. (8) and
link ; ;, which is measured positive in the counterclockwise sense with respect to the
perpendicular line (see Figure 2). a;; can be expressed as a function of the slopes of
l;; and the perpendicular line:

tan(ai;) = {a (¥ — ¥i-1) + (z: — zi-1)} /{a (z: — 7)) — (v — wi-1)} (10)

Let the positive quantity tol® denote a constant threshold distance from the wall. If
the distances from the tips of one or more of the lower (/V;—2) links of manipulator i to
the wall are less than tol?, it is regarded that a shutdown or damage to the manipulator
are imminent due to those links colliding with the wall. Accordingly, it is desired to
compute corrective velocities for the joints corresponding to these links that, when
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Figure 2. Parameters for Wall Collision Avoidance

used in conjunction with the optimal solution for the joint velocities given by eq. (4) ,
tends to move them away from the wall using self motion of the joints.

Joint Limit Avoidance Strategy

The corrective velocities for the two outermost joints of manipulator 7 and for those
joints (among its lower (N; — 2) joints) whose corresponding link tips are located at
a distance greater than tol® from the wall can be calculated to provide a joint limit
avoide;nce (JLA) capability via joint self motions when used in conjunction with
eq. (4) . '

Let ¢ and ¢f;" signify the absolute hardware limits in the range of joint j
of manipulator i. In our strategy, the positive, constant angles tol* and toll® are

§ It is important to note that the trajectory of the outermost N;th link of each manipulator is
determined because the trajectory of the held rigid object is specified and each manipulator securely
holds the object. Therefore, self motions of the joints do not affect the trajectory of the N;th link,
and the corrective velocities for the outermost two joints of each manipulator are not computed in
the wall collision avoidance strategy.




introduced to define the ranges (q{f‘j‘”‘ - tol?i) < gij < ¢ and ¢ < qi; <
(q{f‘ji" + tolf"). When ¢;; lies within either of these ranges, it is regarded that a

shutdown and damage to the manipulator are imminent due to the joint reaching a
limit. Accordingly, a corrective velocity ¢;, is desired to drive joint j back into the

range (q{?f“ + tol§°) < G = (q?jam — tol} i)'

Based on the aforementioned strategies, the algorithm for wall collision avoidance
(WCA) and JLA is presented next.

The Proposed Algorithm

g ; is calculated for each and every joint (i=1,2;7=1,2,... N;) by the following
conditional algorithm, where distance d; ; is computed as a function of the measured
joint angles {g; 1, 2, - .., ¢i;} using egs. (7) and (9) whenever (j < N; — 2):

0 <di; < tol and j < N; — 2: Calculate o; ; by eq. (10) and g5 ; for WCA using;:

d jmaz
% 954

0< oy <90°andg; < (g — tolf*) : ¢, = i (tol* — dy)(11)
0L Q4 < 90° and gij; > (q,’f;‘” - tOl?i) : qzc’J =0
o min lo . zld q';njaa: d

—-90° < &G 4 < 0 and qi.j > (qi,j + tOli ) : qi,j = — ——t—o'l’d_ (tOl - di,j) (12)

—-90°< o;; <O0andg; < (q{f‘ji" + tolﬁ") 1g5; =0

(di,j > toland j < N; — 2)orj > N; — 2: Calculate g ; for JLA based on the
measured value of g; ; using:

. , . 2 G :
" <y < (a5 v tol) o dgfy = =k (o + toll — i) (13)
i

Smax

- . 2; G :
(afy = tol) < aug < af ;= B (g - toll — ) (14)
%

(grm +toll*) < gy < (g™ — tolf) = ¢ =0
where ¢%**(> 0) denotes the maximum or peak time rate of change of joint ¢;;. In
eqs. (11) and (12), 2¢ is a constant scaling factor whose value is restricted to the
range:

z¢ is introduced to enable to designer to specify a scaled peak velocity (2 ¢[%**) in

the WCA scheme. Scalar z; in egs. (13) and (14) is defined in a similar manner for
the JLA scheme.
The WCA portion of the algorithm is conditioned on the value of ¢; ; and the sub-

range that the measured value of ¢; ; lies in. Consider eq. (11), which is the equation
of a line segment connecting (but not including) the points (d;; = 0, ¢f; = 2¢ (j{f‘j“"‘)
and (tol?, 0). It is easy to see that ¢ ; is positive and that its magnitude is based on

the distance from the tip of link /; ; to the wall when calculated by eq. (11). Observing
Figure 2, the basic idea here is to apply a corrective action to induce g;; to rotate




counterclockwise which moves the outer tip of link /; ; away from the wall. However,
it is logical that eq. (11) be applied only when g; ; does not lie in its upper prohibitive
subrange. Indeed, to calculate ¢;; using eq. (11) when ¢;; > ¢%** — tol* may reduce
the possibility of I;; colliding with the wall at the expense of increasing the already
high possibility of g¢;; reaching its upper range limit. No corrective action can be
applied to joint g;; to alleviate this situation, and we set ¢;; to zero.

By observing Figure 2 and applying the same reasoning, g;; is calculated as a
negative quantity using eq. (12) when (—90° < a;; < 0), provided that ¢;; does
not lie in its lower prohibitive subrange. But if ¢;; < g% + toll?, ¢f; is set to zero.

The logic of the JLA portion of the algorithm is now explained. Eq. (13) is
the equation of a line segment connecting (but not including) the points (g;; =

g + toll®, ¢f; = 0) and (q{f}i", % qz";“’”) Likewise, eq. (14) is the equation of line
segment, between the points (q{f‘j“” — toll O) and (q{f‘j“”, —2;g"**). It is easy to
see that ¢f; is positive when calculated by eq. (13). This is logical since it is desired
to rotate joint g; ; counterclockwise away from the lower hardware limit. By the same
reasoning ¢ ; is negative when evaluated using eq. (14). It should be mentioned that

the JLA algorithm given here, unlike the WCA algorithm, is directly applicable to
the spatial case.

When d; ; > tol? (if applicable, i.e., if j < N; — 2) and (qi,jm +tol§°) < gy <

(q{f‘jaz - tol?‘), no correction action is needed for joint g;; and d¢;; is set to zero. It

follows that if all of the lower (N; — 2) links of manipulator ¢ are sufficiently away
from the wall and all N; of its joints lie in their respective center subranges, then
¢ = Op,x1 and there is no corrective action applied to manipulator ¢ This supports
our contention that the corrective action component in the joint velocity solution is
nonzero only when it is detected, by sensing, that it is required. This reduces the
computational burden and yields a minimum Euclidean norm solution for ¢;.

The approach given here contrasts sharply from the result obtained using gradient
projection [6, 7, 8], where the solution for ¢; would contain one or multiple terms that
project the gradients of scalar functions into the null space of A;. In some approaches,
each term represents a distinct secondary criteria, e.g., joint limit- and wall collision-
avoidance. The problem is that each gradient projecting term is always computed,
regardless of whether or not any links are close to the wall or any joints are close
to their hardware range limits. In the author’s opinion this computation is wasteful
when feedback sensing indicates that manipulator : is in a configuration where JLA
and WCA are not needed.

The aforementioned gradient projection technique would assign a scalar weighting
factor to each gradient projecting term to establish a priority of importance among
the multiple secondary criteria. On the other hand, the algorithm presented here for
calculating ¢f; is done on a joint by joint basis depending on sensed conditions.

CONCLUSION

The paper proposed an alternative approach to applying the “redundant” pseudove-
locities to the modeling of the closed chain motion of two serial link, kinematically
redundant manipulators mutually lifting a rigid body object. In our previous work
the redundant pseudovelocities were treated in the same way as the “nonredundant”
pseudovelocities (i.e., those assigned to be the Cartesian velocities of the held object)
and were explicitly controlled to track reference trajectories. Here the redundant
pseudovelocities were applied to resolve the kinematic redundancies of the manipu-
lators, where it was assumed that their joint self motions do not affect the motion
of the held object. An optimal solution for the joint velocities was determined by




applying the redundant pseudovelocities to minimize the distance between the vector
of joint velocities and a vector of “corrective” velocities ¢f in a minimum Euclidean
norm sense. Based on an example of a planar dual-manipulator closed chain, a novel
algorithm for calculating the components of ¢i was proposed where ¢;; is computed
to (4) induce joint g;; to rotate in a direction that moves the tip of link /; ; away from
a wall located in the workspace if it is within a critical distance to the wall (however,
if g; ; is to be rotated counterclockwise (clockwise) but the joint lies in close proximity
to its upper (lower) range limit, ¢¢; is set to zero), or if condition (i) tests false or
if ¢;; is one of the two outermost joints of manipulator ¢, to (%) induce joint g¢;; to
move away from an upper or lower hardware range limit if it is in close proximity to
either limit, or if condition (i) tests false, to (i) set ¢f; equal to zero. Thus each
corrective velocity is computed only when it is needed. An interesting aspect of our
approach is that when none of the joints are in close proximity of their range limits
and none of the links are in close proximity to the wall, the corrective velocities are
set to zero and there is no corrective action (self motion) component in the joint
velocity solution.

The future work involves simulating the proposed redundancy resolution method
to test its effectiveness and determining how to calculate the corrective velocities to
avoid collisions with an object of complex shape that cannot not be described by an
analytic expression.
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