
Springer Nature 2021 LATEX template

PDMATLAB2D: A Peridynamics MATLAB

Two-Dimensional Code

Pablo Seleson1*, Marco Pasetto2†, Yohan John3,4†, Jeremy
Trageser1,5 and Samuel Temple Reeve6

1Computer Science and Mathematics Division, Oak Ridge
National Laboratory, P.O. Box 2008, MS-6013, Oak Ridge, TN,

37831-6013, United States‡.
2Department of Mechanical and Aerospace Engineering,

University of California San Diego, 9500 Gilman Drive, La Jolla,
CA, 92093, United States.

3George W. Woodruff School of Mechanical Engineering, Georgia
Institute of Technology, 801 Ferst Dr, Atlanta, GA, 30332,

United States.
4Present address: Center for Control, Dynamical Systems, and
Computation, University of California at Santa Barbara, Harold
Frank Hall, Room 5119, Santa Barbara, CA, 93106, United States.
5Present address: Engineering Sciences Center, Sandia National

Laboratories, P.O. Box 5800, MS-1322, Albuquerque, NM,
87185-1322, United States§.

‡This manuscript has been authored in part by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the US Department of Energy (DOE). The US govern-
ment retains and the publisher, by accepting the article for publication, acknowledges
that the US government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow oth-
ers to do so, for US government purposes. DOE will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).
§This article has been authored by an employee of National Technology & Engi-
neering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S.
Department of Energy (DOE). The employee owns all right, title and interest in and
to the article and is solely responsible for its contents. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this article or allow others
to do so, for United States Government purposes. The DOE will provide public access

1

Springer Nature 2021 LATEX template

2 PDMATLAB2D

6Computational Sciences and Engineering Division, Oak Ridge
National Laboratory, P.O. Box 2008, MS-6085, Oak Ridge, TN,

37831-6085, United States.

*Corresponding author(s). E-mail(s): selesonpd@ornl.gov;
Contributing authors: mpasetto@ucsd.edu; yohanjohn@ucsb.edu;

jtrages@sandia.gov; reevest@ornl.gov;
†These authors contributed equally to the code development.

Abstract

PDMATLAB2D is a meshfree peridynamics implementation in MAT-
LAB suitable for simulation of two-dimensional fracture problems. The
purpose of this code is twofold. First, it provides an entry-level peri-
dynamics computational tool for educational and training purposes.
Second, it serves as an accessible and easily modifiable computational
tool for peridynamics researchers who would like to adapt the code
for a multitude of peridynamics simulation scenarios. The current ver-
sion of the code implements a bond-based brittle elastic peridynamic
model and a critical stretch criterion for bond breaking. However, the
code is designed to be extendable for other peridynamic models and
computational features. In this paper, we provide an overview of the
code structure and functions with illustrative examples. Due to the inte-
grated computation and postprocessing MATLAB capabilities, PDMAT-
LAB2D can serve as an effective testbed for testing new constitutive
models and advanced numerical features for peridynamics computations.

Keywords: Peridynamics, Meshfree, Two-dimensional, Fracture

1 Introduction

Peridynamics has become the method of choice for fracture computations for
many researchers worldwide. Beginning with its first publication by Silling
in 2000 [1], the peridynamics community has grown to encompass hundreds
of researchers [2]. With such an increase in the number of peridynamics
researchers, the demand for accessible peridynamics computational tools has
significantly increased in recent years.

In the earliest years, very few peridynamics codes were publicly available.
Among the first such codes was PDLAMMPS (Peridynamics-in-LAMMPS) [3,
4], a peridynamics implementation within the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) [5, 6], initially developed in 2008.

to these results of federally sponsored research in accordance with the DOE Public
Access Plan (https://www.energy.gov/downloads/doe-public-access-plan).

Springer Nature 2021 LATEX template

PDMATLAB2D 3

This was followed by the development of Peridigm [7, 8], made open source
in 2011 and built on top of the Trilinos project [9]. Both of these codes are
written in C++ and still widely used in the peridynamics community. Since
then, many groups have developed research peridynamics codes. Some efforts
focus on new algorithms, including fast convolution-based methods [10–12],
implementation via the finite element method [13], and integration with the
discrete element method [14, 15], but a significant amount of work has also
focused on computational performance. Various peridynamics codes have been
written in recent years for specific new hardware [16], often NVIDIA GPUs
[17, 18], and still others now target many high-performance computing (HPC)
systems by leveraging HPC software libraries including OpenCL [19–21], HPX
[22, 23], and Kokkos [24, 25]. However, few of these codes focus on an entry-
level, easily modifiable tool that can suit the wide variety of needs across
disciplines for both research and education. While the principles of meshfree
peridynamics computations as laid out in [26] are simple, the intricacies of
realistic peridynamics fracture computations, particularly in high dimensions,
make full deployment of peridynamics codes non-trivial.

The meshfree method proposed by Silling and Askari in [26] is probably
the most commonly used discretization method for peridynamics engineer-
ing applications. This meshfree method provides a powerful tool for fracture
computations due to its relatively simple implementation and flexible particle-
based computation, and it is a discretization method used in PDMATLAB2D.
Nevertheless, peridynamics governing equations can be discretized with differ-
ent discretization methods [27] (some other often used discretization methods
include finite elements [28, 29], reproducing kernel [30], and various quadrature
rules, e.g., high-order nodal-based quadratures [31, 32]).

In this paper, we describe PDMATLAB2D, a meshfree peridynamics imple-
mentation in MATLAB intended for simulation of two-dimensional fracture
problems. The current version of the code implements a bond-based brit-
tle elastic peridynamic constitutive model given by a generalization of the
prototype microelastic brittle model and bond breaking based on a criti-
cal stretch criterion [26] and is available online: https://github.com/ORNL/
PDMATLAB2D. This paper discusses version 1.0 of PDMATLAB2D [33].
One of the limitations of peridynamics computations is their computational
cost, as compared to more traditional computational mechanics codes [34]. An
important feature of PDMATLAB2D which justifies being written in MAT-
LAB, as opposed to lower-level programming languages, is the transparency of
the algorithms. Consequently, while many optimizations are possible, we have
generally chosen clarity over computational speedup. An additional feature of
PDMATLAB2D is that, being based on MATLAB, it provides a convenient sin-
gle environment for preprocessing, running, and postprocessing peridynamics
simulations.

The aim of this paper is to present a comprehensive yet relatively concise
description of how peridynamics computations are handled in PDMATLAB2D.
This is achieved by first presenting the overall code structure (see Figure 2),

https://github.com/ORNL/PDMATLAB2D
https://github.com/ORNL/PDMATLAB2D

Springer Nature 2021 LATEX template

4 PDMATLAB2D

followed by an explanation of the functions of the code with supporting illus-
trations. For most functions, we provide demonstrations, either in the form of
plots or tables, which serve as confirmations of the correctness of their compu-
tations; those plots further exemplify different potential adaptations of many
of the functions for a variety of purposes. We omit the use of pseudo-codes for
most functions, since the MATLAB functions themselves are carefully com-
mented, while only including pseudo-codes in a few instances which we consider
necessary for clarity. While the code only incorporates a subset of possible
peridynamics computational features, we made an effort to enable extensions,
such as implementation of state-based peridynamic models [35].

The outline of this paper is as follows. In Section 2, we describe the bond-
based peridynamic theory, a bond-based peridynamic model for brittle elastic
fracture, and the meshfree discretization used in PDMATLAB2D. In Section 3,
which represents the core of this paper, we describe the PDMATLAB2D
code structure and functions. In Section 4, we present numerical examples,
demonstrating the applicability of the code on two-dimensional elastic wave
propagation and crack branching problems. In Section 5, we provide guidance
for some relatively easy code extensions. Finally, in Section 6, we summa-
rize the content of this paper and provide an outlook. A series of appendices
are also included which contain relevant complementary materials, including
useful analytical derivations, numerical confirmations, and input decks.

2 Bond-based peridynamics

The peridynamic (PD) theory of solid mechanics is a nonlocal reformulation
of classical continuum mechanics initially proposed under the bond-based form
in [1] and generalized to the state-based form in [35]. Here, we concern ourselves
only with bond-based PD models. For a review of the PD theory, the reader
is referred to [34, 36, 37].

Let us consider a three-dimensional space represented by a Cartesian coor-
dinate system with axes denoted by x, y, and z. To discuss a two-dimensional
PD formulation, following [38], we consider a plane stress or plane strain struc-
ture of thickness h, represented by a two-dimensional domain Ω. For practical
purposes, Ω is assumed to be a subset of the xy-plane within the three-
dimensional space. The PD governing equation for a material point x ∈ Ω at
time t ⩾ 0 can be expressed as follows:1

ρ(x)ü(x, t) = h

∫
Hx

f(u(x′, t)− u(x, t),x′,x, t)dx′ + b(x, t), (1)

where ρ is the mass density, ü is the second derivative in time of the displace-
ment field u, f is the pairwise force function, and b is a prescribed body force

1We include a separate dependence on x and x′ as well as an explicit time dependence in the
pairwise force function, which is necessary to account for bond breaking.

Springer Nature 2021 LATEX template

PDMATLAB2D 5

density field. The spatial integral in (1) is over the neighborhood of x:

Hx := {x′ ∈ Ω : ∥x′ − x∥ ⩽ δ}, (2)

where δ > 0 is the PD horizon and ∥ · ∥ represents the Euclidean norm; for
points in the bulk of a body, i.e., points farther than δ from the boundary of the
body, the neighborhood represents a disk in two dimensions. It is customary
to use the notation ξ := x′ − x and η := u(x′, t) − u(x, t), which refer to
the relative position in the reference configuration and relative displacement,
respectively, of the material points x′ and x; it is also common to refer to ξ
as a PD bond. Note that ξ + η represents the relative position of x′ and x in
the current configuration. The pairwise force function provides the response
of a given bond under deformation in units of force per volume squared. In
bond-based PD models, the response of a given bond is independent of the
deformation of other bonds.

There are certain conditions imposed on f to satisfy balance principles [1].
The linear admissibility condition,

f(−η,x,x′, t) = −f(η,x′,x, t), ∀η,x′,x ∈ R3, t ⩾ 0, (3)

guarantees conservation of linear momentum. The angular admissibility con-
dition,

(ξ + η)× f(η,x′,x, t) = 0, ∀η,x′,x ∈ R3, t ⩾ 0, (4)

guarantees conservation of angular momentum. Elastic materials are repre-
sented in peridynamics by microelastic models, which are those that derive
from a pairwise potential function (with units of energy per volume squared),
w [1]:

f(η,x′,x, t) =
∂w

∂η
(η,x′,x, t), ∀η,x′,x ∈ R3, t ⩾ 0. (5)

By (3)–(5), a microelastic bond-based PD model is of the following form (see
Appendix A):

f(η,x′,x, t) = f(∥ξ + η∥,x′,x, t)
ξ + η

∥ξ + η∥
, (6)

where f is scalar-valued. The macroelastic energy density of a material point
x ∈ Ω at time t ⩾ 0 can be express as follows:

W (x, t) =
1

2
h

∫
Hx

w(η,x′,x, t)dx′. (7)

2.1 The generalized PMB model

The prototype microelastic brittle (PMB) PD model was proposed in [26] as a
simple brittle elastic PD model. A generalized PMB (GPMB) model was pre-
sented in [39, 40]. The generalization is based on incorporation of an influence

Springer Nature 2021 LATEX template

6 PDMATLAB2D

function (see Section 2.1.1), which allows control of the bond force and energy
based on the bond length.2 The pairwise force function corresponding to the
GPMB model is given by (recall (6))

f(∥ξ + η∥,x′,x, t) = µ(x′,x, t) c ω(∥ξ∥) s(∥ξ + η∥, ∥ξ∥), (8)

where ω is an influence function, c is the micromodulus constant, s is the
stretch defined as

s(∥ξ + η∥, ∥ξ∥) := ∥ξ + η∥ − ∥ξ∥
∥ξ∥

, (9)

which represents the relative change in bond length, and µ is a history-
dependent Boolean function used for bond breaking. In this paper, we employ
a critical stretch criterion [26] for bond breaking, where µ(x′,x, t) takes a value
of 1 if s(∥ξ+η∥, ∥ξ∥) < s0 for all times t̂ ∈ [0, t] with s0 a critical stretch and 0
otherwise. With this bond-breaking model, bonds break irreversibly when they
exceed a critical stretch, i.e., once a bond is broken, it remains broken for the
remainder of a simulation.3 The corresponding pairwise potential function is

w(∥ξ + η∥,x′,x, t) =
1

2
µ(x′,x, t) c ω(∥ξ∥) s2(∥ξ + η∥, ∥ξ∥)∥ξ∥. (10)

The micromodulus constant, c, and the critical stretch, s0, depend on the
choice of influence function. The corresponding expressions as functions of the
influence function are given in Appendix C, and the specific expressions for the
influence functions given in the next section are presented in Section 3.4. The
micromodulus constant depends on the Young’s modulus E, δ, and h, whereas
the critical stretch depends on E, δ, and the fracture energy G0 (see Tables 2
and 3, respectively).

The Boolean-valued bond-breaking function, µ, is also useful for postpro-
cessing purposes. In particular, we can compute a damage field as [26]

φ(x, t) := 1−

∫
Hx

µ(x′,x, t)dx′∫
Hx

dx′
. (11)

Note that φ ∈ [0, 1], where 0 represents an undamaged state and 1 indicates a
fully damaged state.

2While influence functions can be general functions of PD bonds, here we employ spherical
influence functions, which only depend on the bond length [35].

3Another criteria for bond breaking based on a critical energy density was proposed in [41].

Springer Nature 2021 LATEX template

PDMATLAB2D 7

2.1.1 Influence functions

Influence functions are an integral component of PD constitutive models. They
have been introduced in [35] and later studied in [39]. Normally, influence
functions possess finite support, which often coincides with a PD neighborhood
region. However, influence functions can have an independent support from
the PD neighborhood, such as support over the entire space. For isotropic
materials, influence functions depend only on the bond length, i.e., ω = ω(∥ξ∥).
Influence functions can be used to modulate the strength of a bond, so that
longer bonds may have a weaker strength compared to shorter bonds. Here, we
consider influence functions characterized by polynomials of different orders.
Specifically, we consider the following influence functions [42]:

ω0(r) := 1,

ω0.5(r) :=

{
1, r ⩽ δ,
0, else,

ω1(r) :=

{
1− r

δ , r ⩽ δ,
0, else,

ω3(r) :=

{
1− 3

(
r
δ

)2
+ 2

(
r
δ

)3
, r ⩽ δ,

0, else,

ω5(r) :=

{
1− 10

(
r
δ

)3
+ 15

(
r
δ

)4 − 6
(
r
δ

)5
, r ⩽ δ,

0, else,

ω7(r) :=

{
1− 35

(
r
δ

)4
+ 84

(
r
δ

)5 − 70
(
r
δ

)6
+ 20

(
r
δ

)7
, r ⩽ δ,

0, else,

where ω0 is constant, ω0.5 is piecewise constant, ω1 is piecewise linear, ω3 is
piecewise cubic, ω5 is piecewise quintic, and ω7 is piecewise septic. Note that,
except for the constant and piecewise constant ones, these influence functions
approach zero when the bond length approaches the PD horizon value. For
numerical purposes, this property of influence functions has been leveraged to
improve the convergence of PD meshfree discretizations [42–44] to reduce the
need of using partial-area or partial-volume corrections; see Section 2.2 for a
discussion of partial areas and partial volumes.

2.2 Meshfree PD discretization

A meshfree discretization method for PD governing equations was proposed by
Silling and Askari in [26]. In this method, a body Ω is discretized with a set ofN
computational nodes {xi}i=1,...,N , and each node is assigned a corresponding
cell or material volume. A uniform grid of nodes is often employed, such as
a cubic grid in three dimensions (3D) or a square grid in two dimensions
(2D), although sometimes a nonuniform grid is required. In this work, we
consider both cases. The PD governing equation is then evaluated at each
node via a collocation approach, and the integral over the neighborhood of

Springer Nature 2021 LATEX template

8 PDMATLAB2D

the node is discretized as a weighted summation, using neighboring nodes as
quadrature points and the corresponding cell volumes (in 3D) or areas (in 2D)
as quadrature weights.

In the case of (1), the meshfree discretization produces the following
equation for node i at time tn:

ρiü
n
i = h

∑
j∈Fi

f(un
j − un

i ,xj ,xi, t
n)Aj + bn

i , (12)

where ρi := ρ(xi), u
n
i := u(xi, t

n), Aj is the area of the cell j, bn
i := b(xi, t

n),
and Fi is the family of node i:

Fi := {j ̸= i : ∥xj − xi∥ ⩽ δ} . (13)

To solve peridynamics problems, the discrete governing equation (12) is aug-
mented with initial and boundary conditions, and the time integration is
performed via a time-integration scheme (see Section 3.6).

A general quadrature for the numerical computation of the integral over
the neighborhood in (1) results in the following equation for node i at time tn:

ρiü
n
i = h

∑
j∈F̂i

f(ûn
j(i) − un

i , x̂j(i),xi, t
n)Âj(i) + bn

i , (14)

where F̂i is a set of indices corresponding to the quadrature points, x̂j(i) is the

jth quadrature point, and Âj(i) is the corresponding jth quadrature weight
associated to node i; similar to the above, ûn

j(i) := u(x̂j(i), t
n). One of the

challenges in using general quadratures is that they may require interpolation
procedures, since information for the displacement field at arbitrary points
is not readily available. Consequently, nodal-based quadratures that rely on
available nodal displacements can be advantageous. To attain such quadra-
tures, a piecewise constant assumption for the displacement field (constant
within each nodal cell) can be employed, so that ûn

j(i) = un
j .

In [42], an algorithm using the areas of the intersections between neigh-
bor cells and the neighborhood of a given source node as quadrature weights
(while still using nodes as quadrature points as in (12)) was proposed for the
case of uniform grids in 2D, as a means to improve the convergence of PD cal-
culations relative to (12). To account for every cell-neighborhood intersection,
this algorithm extends the family of a source node to include all nodes whose
cells intersect the neighborhood of the source node4 (see, e.g., Figure 6b). In
such algorithm, Âj(i) represents the area of the intersection between the cell j
and the neighborhood of node i. When the cell j only partially overlaps the
neighborhood of node i, the resulting overlapping area is referred to as a par-
tial area (PA). The proposed algorithm in [42] employs analytical calculations

4Note that the extension of the family of a source node only contributes to the numerical
integration for influence functions whose support is nonzero for the added family nodes.

Springer Nature 2021 LATEX template

PDMATLAB2D 9

(AC) to compute partial areas exactly. Consequently, the algorithm has been
referred to as the PA-AC algorithm. In [42], an improvement to the PA-AC
algorithm in terms of convergence of PD calculations was also proposed by
using the centroids of the intersections between neighbor cells and the neigh-
borhood of a given source node as quadrature points instead of nodes (see,
e.g., Figure 6c). In this case, x̂j(i) is taken as the centroid of the intersec-
tion between the cell j and the neighborhood of node i. The algorithm that
computes analytically both the partial areas and the corresponding centroids
in [42] is named IPA-AC, where the “I” in the name of the algorithm stands for
“improved.” In this work, we implement the PA-AC and IPA-AC algorithms
in addition to the original meshfree discretization method from [26].

Other algorithms have been proposed in the literature for the computa-
tion of partial areas or partial volumes. In 3D, the analogue to a partial area
is a partial volume, which refers to the volume of the intersection between a
neighbor cell and the neighborhood of a source node. Approaches for numerical
approximation of partial areas or partial volumes via the introduction of a lin-
ear area/volume scaling or reduction factor appear in [4, 45, 46]. An extension
to the PA-AC algorithm, applicable to nonuniform grids in 2D, was presented
in [47]. Adaptive schemes to compute partial volumes were proposed based
on recursive subdivision and sampling in [43] and trapezoidal integration with
error control in [46]. Finally, an analytical approach for the computation of par-
tial areas (a variant of the PA-AC algorithm) and a quasi-analytical approach
for the computation of partial volumes were presented in [48].

3 PDMATLAB2D code structure and functions

In this section, we provide an overview of PDMATLAB2D. We begin with
a general description of the code structure, followed by a discussion of each
of the code functions in Sections 3.1–3.7. The folders and file structure are
illustrated in Figure 1.

The code is run by executing the function PDMATLAB2D. This can be done
(from the top-level directory) by typing in the MATLAB command window:

PDMATLAB2D(InputDeck)

where InputDeck is an input deck located inside the folder
InputFiles. For instance, the numerical examples for wave prop-
agation in Section 4.1 and crack branching in Section 4.2 can be
run with the commands “PDMATLAB2D('WavePropagation')” and
“PDMATLAB2D('CrackBranching'),” respectively, where both input decks are
located in the InputFiles folder (see Figure 1). PDMATLAB2D reads the inputs
from the input deck and runs the Main script, which calls functions located in
the Source folder (see Figure 2). If outputs (in the form of saved plots) are
requested by the user in the input deck, these are saved within the Outputs

folder inside a subfolder named to match the input deck name.

Springer Nature 2021 LATEX template

10 PDMATLAB2D

PDMATLAB2D

Source

InputFiles

Tests

BondBreaking.m

ForceEnergyDensity.m

GridGenerator.m

InfluenceFunction.m

Main.m

NeighborAreaBondLengthCoord.m

NeighborList.m

PDBondConstants.m

PlotField.m

PreNotch.m

PlottingExamples

SegmentsIntersection.m

TimeIntegrator.m

Outputs

PDMATLAB2D.m

TestCriticalStretch.m

TestForceEnergyDensity.m

CrackBranching.m

WavePropagation.m

PlotPaperFigures.m

. . .

Fig. 1: PDMATLAB2D folders and file structure.

The Tests folder contains functions to test and verify the
ForceEnergyDensity function (see Appendix F) and the critical stretch
calculations (see Appendix G). In addition, the PlottingExamples folder
contains functions to create figures presented from Section 3.1 to Section 3.6
and in Appendix G. For brevity, we do not display all the functions inside
the PlottingExamples folder in Figure 1. Instead, we only show the function
PlotPaperFigures, which was created for convenience to produce each of
those figures. For instance, to plot Figure 3(a), one simply types the command
“PlotPaperFigures('3(a)')” within the PlottingExamples directory.

Springer Nature 2021 LATEX template

PDMATLAB2D 11

As shown in Figure 2, two options are enabled for generation of the grid
and neighbor list. In Option I, the user generates the grid and neighbor list
outside Main and saves those within a file, e.g., using the command

save(filename,'xx','yy','u NA','IF NA','V NA','r hat NA','x hat NA',
'y hat NA')

where filename is the file name, 'xx' and 'yy' are the x- and y-coordinates,
respectively, of all the nodes in the grid, and 'u NA', 'IF NA', 'V NA',
'r hat NA', 'x hat NA', and 'y hat NA' are neighbor arrays containing the
neighbor numbers, influence function values of neighbor bonds, neighbor areas,
reference lengths of neighbor bonds, and x- and y-coordinates of quadrature
points, respectively (see Section 3.2 for related discussions). Then, the grid
is loaded in Main by providing the file name in the variable GridFile in
the input deck. PDMATLAB2D functions can be used to generate grids and
neighbor lists outside Main (see discussion in Section 3.1.1). In Option II, the
user provides inputs for the GridGenerator and NeighborList functions (see
Table 1); in this case, a (regular or irregular) rectangular grid is generated
(see discussion in Section 3.1) along with a neighbor list.

The rest of the code structure is described in Figure 2. The code has two
major components (indicated by green, dashed-line rectangles): read inputs
from InputDeck and run Main. The Main script has several sections, each one
represented by a blue, solid-line rectangle. PDMATLAB2D functions are in
blue, whereas functions defined by the user in the input deck are in orange. In
some cases, PDMATLAB2D functions call other functions; these and relevant
operations are indicated within magenta, dashed-dotted line rectangles. In
Table 1, we summarize the inputs of an input deck; see Appendices H.1 and H.2
for examples of input decks.

Springer Nature 2021 LATEX template

12 PDMATLAB2D

Main

run(InputDeck)

Generate grid and neighbor list:

Option I:
Load grid and neighbor list: load(GridFile)

Option II:
Generate grid: GridGenerator.m

Generate neighbor list: NeighborList.m

Compute per-bond quantities: NeighborAreaBondLengthCoord.m
Compute influence function for neighbor bonds: InfluenceFunction.m

Create no-fail mask: nofailfunc

Create pre-notch(es): PreNotch.m

Check line segments intersection: SegmentsIntersection.m

Compute PD constants: PDBondConstants.m

Impose initial conditions: vofunc, wofunc, Vvofunc, Vwofunc

Compute initial F and W: ForceEnergyDensity.m

Compute initial b: bvfunc, bwfunc

Compute damage ratio denominator

Time integration loop

Time-integration step: TimeIntegrator.m

Update displacements and velocities
Perform bond-breaking check: BondBreaking.m

Compute F andW: ForceEnergyDensity.m

Plot field(s): PlotField.m

Final outputs: PlotField.m

PDMATLAB2D.m

Fig. 2: PDMATLAB2D code structure.

Springer Nature 2021 LATEX template

PDMATLAB2D 13

Domain geometry and discretization
Option I

GridFile: File name of external grid to load
Option II

Xo: Left boundary of the domain
Xn: Right boundary of the domain
Yo: Lower boundary of the domain
Yn: Upper boundary of the domain
Nx: Number of nodes in the x-direction
Ny: Number of nodes in the y-direction
PG: Grid perturbation coefficient

Time discretization
Ti: Initial time
Tf: Final time
dt: Time step
TimeScheme: Time-integration scheme (‘VVerlet’)

PD model
model: Constitutive model (‘GPMB’)
PlanarModel: Plane elasticity model (‘PlaneStrain’ or ‘PlaneStress’)
del: horizon
omega: Influence function order indicator (0, 0.5, 1, 3, 5, or 7)
flag BB: Flag for bond breaking (0 or 1)

Classical material properties
rho: Mass density
E: Young’s modulus
Go: Fracture energy

Meshfree discretization
AlgName: Algorithm for computation of neighbor areas (‘FA’, ‘PA-AC’, or ‘IPA-AC’)

(for Option II above)

Problem settings
Body force density

bvfunc: x-component of body force density function
bwfunc: y-component of body force density function

Initial conditions
vofunc: x-component of initial displacement function
wofunc: y-component of initial displacement function
Vvofunc: x-component of initial velocity function
Vwofunc: y-component of initial velocity function

No-fail zone (optional)
nofailfunc: Function defining a no-fail zone

Prenotch(es) (optional)
PreNotchCoordinates: Array with coordinates of pre-notch(es) endpoints

(one pre-notch per row)

Postprocessing
flag DynamicPlotting: Flag for plotting during time integration (0 or 1)
DynamicPlotFrequency: Frequency of plotting during time integration

(for flag DynamicPlotting = 1)
TimeStepDisplayFrequency: Frequency of time-integration step display
flag FinalPlots: Flag for plotting at final time
PlotSettings: Plot settings (array with the following entries:

field name (string), field variable (string), colorbar title (string), point size,
colormap limits (1×2 array), colormap (string), axes limits (1×4 array),
configuration (‘Reference’ or ‘Current’))

flag DamagedPrenotches: Flag to visualize pre-notch(es) as damaged (0 or 1) (for flag BB = 1)

Table 1: Description of inputs for an input deck.

Springer Nature 2021 LATEX template

14 PDMATLAB2D

3.1 GridGenerator

The function GridGenerator generates a grid of nodes over a rectangular
domain. The grid contains information about the nodal positions as well as
the vertices and area of the cell surrounding each node. The function allows
generation of either a regular grid or an irregular grid, where the irregular grid
is obtained by perturbing the cell vertices inside the domain (while keeping
the vertices on the domain boundary unperturbed) and then recomputing the
nodal positions and cell areas associated with the resulting cells; the grid
perturbation in each dimension is less than a quarter of the corresponding grid
spacing to guarantee that the resulting cells remain convex (see Appendix B).
The perturbed cell areas are obtained by computing the areas of the resulting
quadrilaterals, and the nodal positions are updated as the centroids of those
quadrilaterals. The tessellation generated by the set of cells is such that it fully
covers the domain. Examples of regular and irregular grids generated by the
GridGenerator function are presented in Figure 3.

(a) Regular grid. (b) Irregular grid.

Fig. 3: Grids generated by the GridGenerator function. The figures are
produced with the PlotGrid function.

Remark 1 The grid generated by the GridGenerator function is based on input
parameters defining the number of cells per dimension. For a regular grid, this results
in all cells having the same area and the set of cells fully covering the domain. On
the other side, the discretization may not result in uniform (square) cells, which are
often desired in peridynamics discretizations (such as for partial-area calculations,
see Section 2.2). To ensure a uniform discretization based on square cells, one could
instead use as inputs the grid spacings, ∆x and ∆y for the x- and y-directions, respec-
tively. However, this alternative discretization approach may result in the physical
domain not exactly coinciding with the domain represented by the discretization,
and boundary corrections would be required. Therefore, this discretization approach
is not used by the GridGenerator function.

Remark 2 While the GridGenerator function only produces (possibly perturbed)
rectangular grids, PDMATLAB2D is designed to handle general grids, such as the one

Springer Nature 2021 LATEX template

PDMATLAB2D 15

presented in Figure 5f. Moreover, by combining various functions of PDMATLAB2D,
one can generate complex shapes, as demonstrated in Section 3.1.1.

3.1.1 Generation of complex shapes

This section demonstrates how a combined use of the functions
GridGenerator, NeighborList (see Section 3.2), and Prenotch (see
Section 3.3) can generate far more complex shapes than the simple rectangu-
lar geometries generated by the GridGenerator function. To provide a variety
of complex shape flavors, we present three examples:
1. L-shape domain,
2. Circular domain,
3. Square domain with a circular hole at its center.

Below, we describe the specifics of how each of these shapes are generated.
These examples are illustrated in Figure 4. The FA algorithm is employed to
generate the neighbor lists.

L-shape domain

The L-shape domain illustrated in Figures 4a and 4d is generated via the
following steps:
1. We generate two rectangular subdomains: Ω1 = (0, 2) × (0, 1) and Ω2 =

(0, 1)× (1, 2) with a regular grid of ∆x = 0.2 and ∆y = 0.1 by calling the
GridGenerator function twice.

2. We combine the resulting grids into a single grid.
3. We generate the neighbor list by calling the NeighborList function with

a choice of δ = 2∆x.
4. We break all the bonds crossing the domain boundary by defining a pre-

notch vertical segment with endpoints (1, 1) and (1, 2) and calling the
PreNotch function.

Circular domain

The circular domain illustrated in Figures 4b and 4e is generated via the
following steps:
1. We generate a square domain: Ω1 = (0, 1)× (0, 1) with a uniform grid of

grid spacing ∆x = ∆y = 1/15 by calling the GridGenerator function.
2. We remove all nodes outside a circle of radius R = 0.5 centered at

(0.5, 0.5).
3. We remove all cell vertices that do not belong to cells corresponding to

nodes inside the circle.
4. We generate the neighbor list by calling the NeighborList function with

a choice of δ = 2∆x.

Square domain with a circular hole at its center

The square domain with a circular hole at its center illustrated in Figures 4c
and 4f is generated via the following steps:

Springer Nature 2021 LATEX template

16 PDMATLAB2D

1. We generate a square domain: Ω1 = (0, 1)× (0, 1) with a uniform grid of
grid spacing ∆x = ∆y = 0.05 by calling the GridGenerator function.

2. We remove all nodes inside a circle of radius R = 0.13 centered at
(0.5, 0.5).

3. We remove all cell vertices that do not belong to cells corresponding to
nodes outside the circle.

4. We generate the neighbor list by calling the NeighborList function with
a choice of δ = 3.5∆x.

5. We approximate the hole as an icosagon (a twenty-sided polygon) and we
consider each side of the icosagon as a “pre-notch”. We loop over each
of the polygon’s sides and break all the bonds intersecting each side by
defining a pre-notch with the side’s endpoints and calling the PreNotch

function. In Figures 4c and 4f, the icosagon is illustrated with a red dotted
thick line.

(a) L-shape domain. (b) Circular domain. (c) Square domain with cir-
cular hole.

(d) L-shape domain with
bonds.

(e) Circular domain with
bonds.

(f) Square domain with cir-
cular hole with bonds.

Fig. 4: Illustration of combining the GridGenerator, NeighborList, and
Prenotch functions to generate complex shapes. The domains are: an L-
shape domain (left column), a circular domain (middle column), and a square
domain with a circular hole at its center (right column). The top figures show
the corresponding grids for each shape, while the bottom figures present in
addition all the generated bonds in cyan. The figures are produced with the
PlotComplexShapes function.

Springer Nature 2021 LATEX template

PDMATLAB2D 17

3.2 NeighborList

The function NeighborList generates a neighbor list and computes per-
bond quantities. It employs the function NeighborAreaBondLengthCoord

(see Section 3.2.1) to compute neighbor areas, reference lengths of neigh-
bor bonds, and coordinates of quadrature points, and it uses the function
InfluenceFunction (see Section 3.2.2) to compute influence function values
of neighbor bonds. The function considers two cases:
1. Uniform grids over rectangular domains.
2. General grids.

Below, we describe how the function loops over cells surrounding a source node
to generate the neighbor list and compute per-bond quantities in each case.

Uniform grids over rectangular domains

In this case, the function employs an efficient algorithm to loop over the cells
that overlap the neighborhood of a given source node, following [42] (see “Algo-
rithm PA-AC Family Interaction” in that reference), as opposed to looping
over all cells in the system for each source node.

General grids

In this case, since information about the grid or domain is not directly
available, the function loops over all cells in the system for each source node.

In Figure 5, we demonstrate the function’s computations by presenting
examples of discretized domains with all bonds drawn. To make the distri-
bution of bonds per computational node more clear, we select a particular
source node and emphasize all its bonds as well as the boundary of its neigh-
borhood. The top plots illustrate uniform grids over rectangular domains,
differentiating between different algorithms for computing quadrature points:
FA algorithm (Figure 5a), PA-AC algorithm (Figure 5b), and IPA-AC algo-
rithm (Figure 5c). The bottom plots, in contrast, show nonuniform grids: a
rectangular grid (Figure 5d), a perturbed rectangular grid (Figure 5e), and an
irregular grid over a circular domain (Figure 5f).

3.2.1 NeighborAreaBondLengthCoord

The function NeighborAreaBondLengthCoord computes the following quanti-
ties associated to the neighboring quadrature point x̂j(i) in (14):

1. neighbor area (employed as the quadrature weight, Âj(i), in (14)),
2. bond length relative to a source node i: ∥x̂j(i) − xi∥,
3. coordinates of the quadrature point.

Below, we describe the various computation options enabled by this function.

Computation of the neighbor area

The function allows two options for the neighbor areas:

Springer Nature 2021 LATEX template

18 PDMATLAB2D

Uniform grids

(a) FA algorithm. (b) PA-AC algorithm. (c) IPA-AC algorithm.

Nonuniform grids
(FA algorithm)

(d) Regular grid. (e) Perturbed regular grid. (f) Irregular grid

Fig. 5: Illustration of discretized domains with all bonds drawn in cyan. Grid
nodes are in blue. The neighborhood of a single source node (in black) is
emphasized with neighbor bonds and quadrature points as well as the bound-
ary of the neigborhood in red. The top plots illustrate the three algorithms
for computing quadrature points (FA, PA-AC, and IPA-AC) for the case of
uniform grids. The bottom plots are for nonuniform grids and employ the FA
algorithm, and they illustrate three types of grids: regular, perturbed regular,
and irregular. The list of bonds per node is computed with the NeighborList
function. The figures are produced with the PlotNeighborList function.

• Full Area (FA): The neighbor area associated with a neighboring quadra-
ture point j is simply taken as the area of the cell j.

• Partial Area (PA): The neighbor area associated with a neighboring
quadrature point j is taken as the area (based on analytical calculations)
of the intersection between the cell j and the neighborhood of a source
node i.

Computation of the coordinates of the quadrature point

The function allows two options for the coordinates of quadrature points:
• Nodal coordinates: The coordinates of the quadrature point are simply
taken as the coordinates of node j.

• Centroid coordinates: The coordinates of the quadrature point are taken
as the coordinates of the centroid (based on analytical calculations) of the
intersection between the cell j and the neighborhood of a source node i.

Springer Nature 2021 LATEX template

PDMATLAB2D 19

The following algorithms, which can be selected in the function, combine
the computation of the neighbor area and coordinates of the quadrature point:

• FA algorithm: FA option in combination with nodal coordinates.
• PA-AC algorithm: PA option in combination with nodal coordinates.
• IPA-AC algorithm: PA option in combination with centroid coordinates.

These algorithms are illustrated in Figure 6.

(a) FA algorithm. (b) PA-AC algorithm. (c) IPA-AC algorithm.

Fig. 6: Illustration of the family and neighbor areas of a source node located
at the origin for a PD horizon δ = 1 and a uniform grid with grid spacing
∆x = ∆y = δ/3.1. Family nodes are represented by blue dots and centroids are
represented by white dots (in (c)); for cells fully contained within the neighbor-
hood, centroids coincide with family nodes. The boundary of the neighborhood
is represented by a blue circle. Cell areas and coordinates of quadrature points
are computed with the NeighborAreaBondLengthCoord function. The figures
are produced with the PlotNeighborAreasCoords function.

3.2.2 InfluenceFunction

The function InfluenceFunction computes the influence function. It imple-
ments the influence functions described in Section 2.1.1. These influence
functions are illustrated in Figure 7.

Springer Nature 2021 LATEX template

20 PDMATLAB2D

Fig. 7: Influence functions computed with the InfluenceFunction function
for a choice of δ = 1. The figure is produced with the PlotInfluenceFunction
function.

3.3 PreNotch

The function PreNotch creates a pre-notch described by an arbitrary line seg-
ment. A pre-notch is created by defining a line segment representing it, and
then breaking all bonds that either cross the line segment or overlap it. For
this purpose, the function checks for each intact bond whether it intersects
the pre-notch. This is achieved, in practice, by looping over all nodes and
all their neighbors and checking whether there is an intersection between the
two line segments defined by the bond and the pre-notch, using the function
SegmentsIntersection (see Section 3.3.1). When such an intersection occurs
for a given bond connecting a node i and the quadrature point corresponding
to the cell j, the function removes the cell j from the neighbor list of node i and
the cell i from the neighbor list of node j by replacing the cell numbers by 0.

To illustrate the creation of pre-notches, Figure 8 presents three examples: a
horizontal pre-notch (left column), an inclined pre-notch (middle column), and
multiple random pre-notches (right column). The domain is Ω = (0, 2)×(0, 1),
and it is discretized with a uniform grid of grid spacing ∆x = ∆y = 0.1. For
simplicity, we employ the FA algorithm. In the case of the horizontal pre-notch,
the pre-notch is defined by the line segment connecting the points (0.0, 0.5)
and (1.0, 0.5). In the case of the inclined pre-notch, the pre-notch is defined
by the line segment connecting the points (0.45, 0.28) and (1.45, 0.78). In the
case of the multiple random pre-notches, we generate 15 pre-notches of random
length l with l ∈ (0.1, 0.25), randomly located and oriented within the domain,
as follows. For each pre-notch, we randomly choose an endpoint farther apart
from the domain boundaries than 0.25 to ensure the pre-notch doesn’t extend
outside the domain. Then, we choose the other endpoint by randomly choosing
the line segment length and orientation. The figure shows the domain with the
intact bonds in cyan (top plots) as well as both the intact bonds in cyan and
broken bonds in red (bottom plots).

Springer Nature 2021 LATEX template

PDMATLAB2D 21

(a) Horizontal pre-notch
(intact bonds only).

(b) Inclined pre-notch
(intact bonds only).

(c) Random pre-notches
(intact bonds only).

(d) Horizontal pre-notch
(intact and broken bonds).

(e) Inclined pre-notch
(intact and broken bonds).

(f) Random pre-notches
(intact and broken bonds).

Fig. 8: Illustration of creation of pre-notches in a rectangular domain dis-
cretized with a uniform grid. Three cases are presented: a horizontal pre-notch
(left column), an inclined pre-notch (middle column), and multiple random
pre-notches (right column). Grid nodes are in blue, and the line segments rep-
resenting the pre-notches are plotted with black solid thick lines. Intact bonds
are shown in cyan (top and bottom plots) while broken bonds are shown in red
(bottom plots). The pre-notches are generated with the PreNotch function,
which is called repeated times for the case of multiple random pre-notches.
The figures are produced with the PlotPreNotch function.

3.3.1 SegmentsIntersection

The function SegmentsIntersection checks whether two line segments inter-
sect, following the derivations in Appendix E. In Algorithm 1, we present a
pseudo-algorithm describing the procedure used to detect the intersection of
two arbitrary line segments. Note that we employ the notation (a × b)z to
denote the z-component of the cross product a× b.

To illustrate the performance of the SegmentsIntersection function, we
present in Figure 9 four cases of two line segments and their intersection
or lack of intersection. The first case presents two collinear line segments
(Figure 9a). The second case presents two parallel but not collinear line seg-
ments (Figure 9b). The third and four cases present two non-parallel line
segments, showing a general case (Figure 9c) as well as a case where the sec-
ond line segment intersects an endpoint of the first line segment (Figure 9d).
An intersection case is highlighted by plotting one of the line segments in red
while plotting it in blue otherwise.

Springer Nature 2021 LATEX template

22 PDMATLAB2D

Algorithm 1 Intersection of two line segments

1: Given two line segments defined by x1A & x2A and x1B & x2B , respectively
2: flag intersection = 0 ▷ initialize intersection flag
3: Define 1st line: p+ t r with p := x1A and r := x2A − x1A, t ∈ (−∞,∞)
4: Define 2nd line: q+ u s with q := x1B and s := x2B − x1B , u ∈ (−∞,∞)
5: {Check if lines are parallel}
6: if (r× s)z = 0 then
7: {Lines are parallel: check if lines are collinear}
8: if ((p− q)× s)z = 0 then
9: {Lines are collinear}

10: {Express endpoints p and p+r of 1st segment in terms of 2nd line}
11: u0 = (p−q)·s

s·s
12: u1 = u0 +

r·s
s·s

13: {Check if segments overlap}
14: if min(u0, u1) > 1 or max(u0, u1) < 0 then
15: {Segments do not overlap}
16: else
17: {Segments overlap}
18: flag intersection = 1
19: end if
20: else
21: {Lines are parallel but not collinear: segments do not overlap}
22: end if
23: else
24: {Lines are not parallel: solve for t0 and u0}
25: t0 = ((q−p)×s)z

(r×s)z
▷ parameter of 1st line

26: u0 = ((q−p)×r)z
(r×s)z

▷ parameter of 2nd line

27: {Check if segments intersect}
28: if u0, t0 ∈ [0, 1] then
29: {Segments intersect}
30: flag intersection = 1
31: else
32: {Segments are not parallel but they do not intersect}
33: end if
34: end if

3.4 PDBondConstants

The function PDBondConstants computes the micromodulus constant c and
the critical stretch s0 for the GPMB model (see Section 2.1). These two PD
bond constants are different for the case of plane strain and plane stress, and
they depend on the choice of influence function. The micromodulus constant
depends on the Young’s modulus E, horizon, δ, and thickness, h, whereas the
critical stretch depends on E, δ, and the fracture energy G0. The derivations

Springer Nature 2021 LATEX template

PDMATLAB2D 23

(a) Collinear. (b) Parallel (not collinear).

(c) Non-parallel. (d) Non-parallel with endpoint inter-
section.

Fig. 9: Illustration of different cases of two line segments and their intersection
check. We present four cases for the two line segments: collinear, parallel, non-
parallel, and non-parallel with an endpoint intersection. The first line segment
is plotted in black. The second line segment is plotted in red for the case of
an intersection, while it is plotted in blue for the case of no intersection. The
intersection check is performed with the function SegmentsIntersection. The
figures are produced with the TestSegmentsIntersection function.

for these PD bond constants are presented in Appendix C, and the resulting
expressions are reported for the micromodulus constant in Table 2 and for the
critical stretch in Table 3.

ω0 ω1 ω3 ω5 ω7

Plane strain c 48E
5πhδ3

192E
5πhδ3

48E
πhδ3

1344E
25πhδ3

288E
5πhδ3

Plane stress c 9E
πhδ3

36E
πhδ3

45E
πhδ3

252E
5πhδ3

54E
πhδ3

Table 2: Micromodulus constant expressions for plane strain and plain stress
for different choices of influence functions.

Springer Nature 2021 LATEX template

24 PDMATLAB2D

ω0 ω1 ω3 ω5 ω7

Plane strain s0

√
5πG0
12Eδ

√
25πG0
48Eδ

√
7πG0
12Eδ

√
5πG0
8Eδ

√
55πG0
84Eδ

Plane stress s0

√
4πG0
9Eδ

√
5πG0
9Eδ

√
28πG0
45Eδ

√
2πG0
3Eδ

√
44πG0
63Eδ

Table 3: Critical stretch expressions for plane strain and plain stress for
different choices of influence functions.

A numerical confirmation can be performed for the expressions of micro-
modulus constant and critical stretch. In Appendix F, we report values for the
numerical computation of the macroelastic energy density, which serve as con-
firmation for the expressions of the micromodulus constant. In Appendix G,
we present numerical computations for the fracture energy to confirm the
expressions of the critical stretch.

3.5 ForceEnergyDensity

The function ForceEnergyDensity computes the internal force density (the
first term on the right-hand side of (1)) and the macroleastic energy den-
sity (7) at each grid node based on the GPMB model (see (8) and (10)); the
PDBondConstants function (see Section 3.4) is used to compute the micromod-
ulus constant c of the GPMB model. Similar to the function NeighborList,
the ForceEnergyDensity function considers two cases:
1. Uniform grids over rectangular domains,
2. General grids.

Below, we describe how the function handles each case.

Uniform grids over rectangular domains

In this case, the function employs the linear admissibility condition (3) to
reduce the number of computations, as follows. Given a source node i, when
the pairwise force function and pairwise potential function are evaluated with
respect to the quadrature point corresponding to the cell j, the linear admis-
sibility condition is used to directly assign the corresponding values for the
node j with respect to the quadrature point corresponding to the cell i. In Algo-
rithm 2, we present a pseudo-algorithm describing the general procedure for
the computation of the internal force density and macroelastic energy density
for all nodes in a system. Note that in Line 10 we only perform computations
for j > i, leveraging the linear admissibility condition.

Remark 3 The computation of the internal force density and macroelastic energy
density requires knowledge of the reference bond lengths and neighbor areas which,
in general, can be different for the node i with respect to the cell j and for the node j
with respect to the cell i; however, these quantities are the same for the case of
uniform grids over rectangular domains, reducing the amount of information required
for these computations. While the strategy of using half the bond computations is

Springer Nature 2021 LATEX template

PDMATLAB2D 25

possible for the case of general grids, given a source node i, seeking the neighbor area
of its cell relative to the node j adds significant overhead to the computations.

General grids

In this case, since the neighbor areas may not be symmetric for all bonds (see
Remark 3), the function computes the pairwise force function and pairwise
potential function separately for the bond connecting node i to the cell j and
the bond connecting node j to the cell i. The computation of the internal force
density and macroelastic energy density in this case is identical to Algorithm 2
except for a couple of changes. First, in Line 10, the condition j > i is replaced
by j > 0. Second, we omit the updates for node j in Line 19 and Line 23. The
relevant expressions are highlighted in blue in Algorithm 2.

Remark 4 We note that in Algorithm 2 the history-dependent Boolean function µ
used for bond breaking is absent. The reason for this is that, in practice, when a bond
breaks, the corresponding neighbor cell number is replaced by 0 in the neighbor list
(see Section 3.6.1). Therefore, it is implicitly assumed that µ = 1.

In Appendix F, we present numerical computations for the inter-
nal force density and macroelastic energy density to test and verify the
ForceEnergyDensity function. These computations are carried out with the
TestForceEnergyDensity function.

3.6 TimeIntegrator

The function TimeIntegrator performs a time-integration step. Given quanti-
ties at time step n, the TimeIntegrator function computes quantities at time
step n + 1. The function uses the standard velocity Verlet time-integration
scheme, which can be summarized with the following three equations:

u̇
n+

1
2

i = u̇n
i +

∆t

2
ün
i , (15a)

un+1
i = un

i +∆t u̇
n+

1
2

i , (15b)

u̇n+1
i = u̇

n+
1
2

i +
∆t

2
ün+1
i , (15c)

where un
i , u̇

n
i , and ün

i are, respectively, the displacement, velocity, and accel-
eration of node i (with reference position xi) at time tn. The acceleration of
node i at time step n can be further computed as (see (14)):

ün
i =

Fn
i + bn

i

ρi
,

Springer Nature 2021 LATEX template

26 PDMATLAB2D

Algorithm 2 Computation of internal force density and macroleastic energy
density for the GPMB model (for uniform grids over rectangular domains)

1: Find number of nodes Nnodes from nodal positions array
2: Initialize internal force density F for all nodes
3: Initialize macroelastic energy density W for all nodes
4: Find maximum number of neighbors per node zmax from neighbor list
5: for i = 1 to Nnodes do
6: Get node i reference position: xi

7: Get node i displacement: ui

8: for z = 1 to zmax do
9: Get neighbor cell number j from neighbor list

10: if j > i then
11: Get cell j quadrature point: x̂j(i)

12: Get node j displacement: uj

13: Get per-bond quantities: ω(∥x̂j(i) −xi∥), Âj(i), and ∥x̂j(i) −xi∥
14: s =

∥(uj−ui)+(x̂j(i)−xi)∥−∥x̂j(i)−xi∥
∥x̂j(i)−xi∥ ▷ stretch (see (9))

15: f = c ω(∥x̂j(i) − xi∥)s ▷ pairwise force magnitude (see (8))

16: f = f
(uj−ui)+(x̂j(i)−xi)

∥(uj−ui)+(x̂j(i)−xi)∥ ▷ pairwise force (see (6))

17: {Update nodal internal force density}
18: node i: F(i) = F(i) + fÂj(i)

19: node j: F(j) = F(j)− fÂj(i)

20: w = 1
2c ω(∥x̂j(i) − xi∥)s2∥x̂j(i) − xi∥ ▷ pairwise potential

(see (10))
21: {Update nodal macroelastic energy density}
22: node i: W (i) = W (i) + 1

2wÂj(i)

23: node j: W (j) = W (j) + 1
2wÂj(i)

24: end if
25: end for
26: end for

where Fn
i is the internal force density (the first term on the right-hand side

of (14)) at node i and time tn. Note that numerical computation of the inter-
nal force density at time step n relies on knowledge about which bonds are
intact at that time step. Therefore, before computing the internal force den-
sity, the TimeIntegrator function checks whether bonds need to be broken
based on the status of the deformation of all nodes at time step n and breaks
critically stretched bonds (assuming a bond-breaking check is enabled by a
simulation) with the BondBreaking function (see Section 3.6.1). Moreover, for
all nodes i at time tn, the macroelastic energy densityWn

i is computed (mainly
for postprocessing purposes) in addition to Fn

i . Algorithm 3, summarizes the
operations for a time-integration step. Numerical examples in Section 4 confirm
the performance of the TimeIntegrator function.

Springer Nature 2021 LATEX template

PDMATLAB2D 27

Algorithm 3 Time-integration step: velocity Verlet with bond breaking

1: Given ρ, un, u̇n, Fn, and bn for all nodes at time tn

2: {Compute velocity at time tn+
1
2 := tn + ∆t

2 for all nodes}

3: u̇n+
1
2 = u̇n + ∆t

2 (Fn + bn)/ρ
4: {Compute displacement at time tn+1 := tn +∆t for all nodes}
5: un+1 = un +∆t u̇n+

1
2

6: Check bond breaking for all bonds with the BondBreaking function
7: Compute Fn+1 and Wn+1 for all nodes with the ForceEnergyDensity

function
8: Compute bn+1 for all nodes based on provided functions
9: {Compute velocity at time tn+1 := tn +∆t for all nodes}

10: u̇n+1 = u̇n+
1
2 + ∆t

2 (Fn+1 + bn+1)/ρ

Remark 5 We note that the velocity Verlet time-integration scheme (15) is equiva-
lent to the second-order centered finite difference approximation of the second time
derivative of the displacement field (see, e.g., [49]), which for node i and time tn is:

un+1
i − 2un

i + un−1
i

(∆t)2
= ün

i . (16)

To show this, take (15c) for u̇n
i :

u̇n
i = u̇

n− 1
2

i +
∆t

2
ün
i

and substitute it in (15a) to get:

u̇
n+

1
2

i = u̇
n− 1

2
i +∆tün

i .

Then, use (15b) to substitute expressions for u̇
n+

1
2

i and u̇
n− 1

2
i :

un+1
i − un

i

∆t
=

un
i − un−1

i

∆t
+∆tün

i ,

from which (16) is obtained. Note that for (16), to compute the displacement of
node i at time step n + 1, un+1

i , one requires information about the displacement

at two previous time steps, un
i and un−1

i . In contrast, in (15) one requires instead
information about the displacement and velocity at the previous time step only, un

i
and u̇n

i , respectively. However, we observe that these two different data can be related
using the above equations. A stability analysis for (16) has been derived in [26, 50]
using the case of a one-dimensional bar represented by a linear PD model discretized
with the original meshfree discretization method from [26].

3.6.1 BondBreaking

The function BondBreaking breaks all the bonds with stretch s exceeding a
critical stretch, s0. Since the options for combined grid types and algorithms for
neighbor areas result in symmetric quantities for reference and deformed bond

Springer Nature 2021 LATEX template

28 PDMATLAB2D

lengths between the node i and the quadrature point associated to the cell j
(relative to the node i) and the node j and the quadrature point associated to
the cell i (relative to the node j), if the condition for bond breaking is met for
either of these cases, both bonds get broken. In practice, the function breaks
bonds by replacing the corresponding neighbor cell number in the neighbor
list by 0. Following [51], the function enables the definition of a no-fail zone,
which contains points for which their bonds remain intact; these points can be
grid nodes as well as quadrature points.

To illustrate the bond breaking and the effect of the no-fail zone, in
Figure 10 we present an example of a domain discretized with a uniform
grid, where a single horizontal line of nodes is deformed and bonds exceed-
ing a critical stretch (except for those connected to a no-fail zone, as in
Figure 10c) get broken. The domain is Ω = (−1, 1) × (−1, 1), and the grid
spacing is chosen as ∆x = ∆y = 0.2. The line of deformed nodes is selected
as the first horizontal line of nodes with positive y coordinates. The deforma-
tion for the selected nodes is a linear deformation in the y-direction given by
u(x, y) = (0, 1

2∆y(1−|x|)), and the critical stretch for bond breaking is chosen
as s0 = 0.25. For simplicity, we choose δ = ∆x and employ the FA algorithm.

(a) Undeformed grid. (b) Deformed grid. (c) Deformed grid with no-
fail zone.

Fig. 10: Illustration of the bond breaking in a square domain discretized with
a uniform grid of grid spacing ∆x = ∆y = 0.2. The red nodes represent a single
horizontal layer of nodes which is being deformed; the rest of the nodes are in
blue. The list of bonds is computed based on the FA algorithm with δ = ∆x,
and the resulting bonds are represented by cyan lines. In (a), the grid in the
reference configuration is shown together with all bonds. In (b), the grid in the
deformed configuration is shown, where only intact bonds are displayed. In (c),
the same result as in (b) is presented, except that a no-fail zone is defined;
the no-fail zone contains nodes being deformed having positive x-coordinates
in the undeformed grid (see (a)). The bond breaking is performed with the
BondBreaking function. The figures are produced with the PlotBondBreaking
function.

Springer Nature 2021 LATEX template

PDMATLAB2D 29

Remark 6 Note that for the case of general grids, the FA algorithm is employed, lead-
ing to the above-described symmetry. However, for a more general case, in principle,
the decision of breaking a bond connecting a given node to one of its quadrature
points should be treated independently of the status of the bonds of other nodes.

3.7 PlotField

The function PlotField plots the grid nodes colored by a field value, either
in the reference or current configuration depending on which nodal positions
(reference or current) are provided to the function. This function can be called
multiples times with different input field values to attain plots showcasing
different field quantities. For instance, in Section 4.1, the function is used to
plot the magnitude of the displacement field while, in Section 4.2, the function
is used to plot both the macroelastic energy density and damage fields.

4 Numerical Examples

4.1 Wave propagation

The first example demonstrates application of PDMATLAB2D to a wave
propagation problem with an initial displacement based on a radial Gaus-
sian distribution. The simulation domain is chosen as a square domain Ω =
(0, 5)× (0, 5), and the problem parameters are: horizon δ = 0.1, mass density
ρ = 1, and Young’s modulus E = 1 in consistent units. We employ the GPMB
PD model with the constant influence function (ω0) under plane stress condi-
tion. No external body force density is applied, i.e., b(x, t) = 0. All domain
boundaries are traction free, i.e., we do not explicitly apply any boundary
conditions. The initial conditions are:

u(x, 0) =

{
A exp

(
− (∥x−xm∥−µ)2

(2σ)2

)
x−xm

∥x−xm∥ , µ− 6σ < ∥x− xm∥ < µ+ 6σ,

0, otherwise,

(17)

u̇(x, 0) = 0, (18)

where xm = (2.5, 2.5), A = 1, σ = 1/30, and µ = 6σ. The magnitude of the
initial displacement field is plotted in Figure 11a.

The domain is discretized with a uniform grid of 200×200 nodes, resulting
in a grid spacing of ∆x = ∆y = 0.025. The FA approach (see Section 3.2.1)
is employed for the computation of neighbor areas. For time integration, the
velocity Verlet time-integration scheme (see Algorithm 3) is used with a time
step ∆t = 0.01, and the final time is T = 1.8, resulting in 180 time steps. Since
only the dynamics of wave propagation are of concern in this example, we do
not enable bond breaking. The final simulation output is shown in Figure 11b.
The simulation is run with the WavePropagation input deck (see Section H.1).

Springer Nature 2021 LATEX template

30 PDMATLAB2D

(a) Initial configuration. (b) Final configuration.

Fig. 11: Wave propagation simulation with an initial displacement based on
a radial Gaussian distribution run with the WavePropagation input deck.

4.2 Crack branching

The second example demonstrates application of PDMATLAB2D to a crack
branching problem in a pre-notched soda-lime glass thin plate, following [52].
Due to the thinness of the plate, the problem is modeled with a two-
dimensional plane stress PD model. The simulation domain is a rectangular
plate with dimensions 0.1 m by 0.04 m, defined as Ω = (−0.05, 0.05) ×
(−0.02, 0.02) m2, with a vertically-centered horizontal pre-notch extending
from the left boundary all the way to the center of the plate (see Figure 12a).
The problem parameters are: horizon δ = 0.001 m, mass density ρ = 2440
kg/m3, Young’s modulus E = 72 GPa, and fracture energy G0 = 3.8 J/m2.5

We employ the GPMB PD model with the constant influence function (ω0).
The initial conditions are u(x, 0) = 0 and u̇(x, 0) = 0. Traction boundary con-
ditions with loading magnitude σ = 2 MPa are applied on the top and bottom
boundaries, as illustrated in Figure 12a. No other body forces or bound-
ary conditions are imposed. The traction boundary conditions are applied by
prescribing a body force density, as explained below.

To convert a surface traction to a body force density, we consider a dis-
cretization in the xy-plane with grid spacings ∆x and ∆y in the x- and
y-directions, respectively. Then, the total force magnitude in the y-direction at
a node adjacent to the boundary is |F ext

y | = σh∆x, where h∆x is the area on
which the traction loading is applied for the corresponding cell. The magnitude
of the body force density in the y-direction can be then computed as:

|by| =
|F ext

y |
h∆x∆y

=
σ

∆y
, (19)

5The Poisson’s ratio of soda-lime glass is ν = 0.22; however, the two-dimensional plane stress
PD model has a Poisson’s ratio of ν = 1/3 [53].

Springer Nature 2021 LATEX template

PDMATLAB2D 31

where h∆x∆y is the effective volume of the cell. Consequently, we prescribe a
body force density b(x, t) = (0,+σ/∆y) at any node on the top layer of nodes
and b(x, t) = (0,−σ/∆y) at any node on the bottom layer of nodes. A no-fail
zone is also defined, which contains all points that are closer than δ to the top
or bottom boundaries.

The domain is discretized with a uniform grid of 300 × 120 nodes, result-
ing in a grid spacing of ∆x = ∆y ≈ 3.33e − 4 m. The FA approach (see
Section 3.2.1) is employed for the computation of neighbor areas. For time inte-
gration, the velocity Verlet time-integration scheme (see Algorithm 3) is used
with a time step ∆t = 67e− 3 µs, and the final time is T = 43 µs, resulting in
641 time steps.

In this simulation, we enable bond breaking and compute the damage
field (11). A numerical approximation of the damage at node i and time step n
is given by (see Section 2.2):

φn
i := 1−

∑
j∈F̂n

i

µn
jiÂj(i)

∑
j∈F̂0

i

Âj(i)

,

where µn
ji := µ(x̂j(i),xi, t

n), F̂n
i is the set of quadrature points at time step

n, and Âj(i) is a quadrature weight; note that, due to bond breaking, F̂n
i may

differ from F̂0
i , which is the set of quadrature points at the initial time. We

observe that, in the case of a pre-notched domain, one may compute F̂0
i before

or after introducing pre-notches. If the computation is done prior to intro-
ducing pre-notches, then the damage field will treat pre-notches as damaged
regions, regardless of whether additional bonds are broken during a simula-
tion. In contrast, if the computation is done after introducing pre-notches,
then, unless additional bonds connected to nodes adjacent to the pre-notches
are broken during a simulation, the damage field will treat pre-notches as
undamaged regions.

The final simulation outputs for the macroelastic energy density and dam-
age fields are shown in Figures 12b and 12c, respectively. The simulation is
run with the CrackBranching input deck (see Section H.2).

Springer Nature 2021 LATEX template

32 PDMATLAB2D

� -0.05m

Pre-notch

6
?

0.02m

66666666666

???????????

σ

� -0.1m

6

?

0.04m

(a) Initial configuration.

(b) Final macroelastic energy density
field.

(c) Final damage field.

Fig. 12: Crack branching simulation for a pre-notched soda-lime glass thin
plate under traction loading run with the CrackBranching input deck.

5 Guidance for Code Extensions

There are several possible extensions to PDMATLAB2D. While some exten-
sions are more intrusive and require an extra effort from the user, other
extensions are relatively easy to implement and only require minor modi-
fications to the code. Here, we describe several examples of relatively easy
extensions with guidelines for their implementation.

5.1 Computing additional per-bond quantities

The current implementation of PDMATLAB2D computes and stores sev-
eral per-bond quantities, including neighbor areas, reference lengths of
neighbor bonds, coordinates of quadrature points, and influence function
values within the NeighborList function (see Section 3.2) by calling the
NeighborAreaBondLengthCoord function for the first three quantities and the
InfluenceFunction function for the last one. The NeighborList function can
be modified to compute and store additional per-bond quantities, as follows.
After calling the NeighborAreaBondLengthCoord function, the following if

statement is implemented:

% Only include neighbor if neighbor area > 0
if Vk > 0

Springer Nature 2021 LATEX template

PDMATLAB2D 33

% Evaluate influence function
[IFk] = InfluenceFunction(omega,rk_hat,del);
...

end

where, among other things, for a given source node, the influence function
for the bond corresponding to the kth neighbor is evaluated. Subsequent lines
below the call of the InfluenceFunction function can be added to compute
other per-bond quantities. The outputs of the NeighborList function will then
have to be modified to add the new per-bond quantities, and the inputs may
need to be modified as well if additional information is required to compute
the new per-bond quantities. Moreover, the function call in the Main script
will need to be updated to reflect the change.

5.2 Using a different neighborhood shape

The current implementation of PDMATLAB2D employs a circular neighbor-
hood (see (2)). The function NeighborAreaBondLengthCoord implements an
if statement that allows selection of different algorithms, which can be lever-
aged to use different neighborhood shapes. As an example, if a neighborhood
with a non-circular shape is desired, one could simply add an elseif state-
ment to specify a condition for a new algorithm (let us call it “X” algorithm)
which employs the desired neighborhood shape, as follows:

if strcmp(AlgName,'FA')
% --
% FA algorithm
% --
...

elseif strcmp(AlgName,'PA-AC') || strcmp(AlgName,'IPA-AC')
% --
% PA-AC algorithm or IPA-AC algorithm
% --
...

elseif strcmp(AlgName,'X')
% --
% X algorithm
% --
...

else
error('Invalid AlgName.')

end

Note that, in the FA algorithm, the condition “if r2 < del∧2 + tol” deter-
mines the shape of the circular neighborhood, where r2 is the distance squared
between a source node and a neighboring node, del is the PD horizon, and
tol is a tolerance. Similarly, an alternative condition can be used for the “X”
algorithm to get the desired neighborhood shape.

Springer Nature 2021 LATEX template

34 PDMATLAB2D

5.3 Changing the influence function

The current implementation of PDMATLAB2D incorporates various influence
functions, specifically a constant influence function and various piecewise poly-
nomial ones (see Section 2.1.1). Changing the influence function can be easily
done, as long as the new influence function only depends on the bond length
and the horizon, which are the two inputs of the InfluenceFunction function
besides the influence function choice parameter omega, by adding a new case
to the implemented switch statement. The current switch statement allows
selection between the piecewise constant (case = 0.5), piecewise linear (case
= 1), piecewise cubic (case = 3), piecewise quintic (case = 5), and piecewise
septic (case = 7) influence functions. If a new influence function is desired (let
us refer to it as the “X” influence function), one could add the case “X” with
the corresponding expression for the influence function as follows:

% Evaluate influence function (IF)
if omega == 0

% Constant IF
...

else
...
switch omega

case 0.5
% Piecewise constant IF
...

case 1
% Piecewise linear IF
...

case 3
% Piecewise cubic IF
...

case 5
% Piecewise quintic IF
...

case 7
% Piecewise septic IF
...

case 'X'
% New influence function
...

otherwise
error('Invalid omega.');

end
end

Please note that case expressions can be either numbers or strings.

Remark 7 The expressions for the micromodulus constant and the critical stretch of
the GPMB model depend on the choice of influence function (see Tables 2 and 3,
respectively). Therefore, implementing a new influence function for the GPMB model
within the InfluenceFunction function requires, in addition, to implement con-
sistent expressions for the micromodulus constant and the critical stretch in the

Springer Nature 2021 LATEX template

PDMATLAB2D 35

PDBondConstants function. A similar switch statement as the above is implemented
in the PDBondConstants function, which can be used for this purpose.

Remark 8 For new influence functions with dependence on additional parameters,
the inputs of the InfluenceFunction function needs to be changed to include those
parameters, and the function call in the NeighborList function needs to be updated
to reflect the addition of the new input parameters.

5.4 Changing the constitutive model

The current implementation of PDMATLAB2D only incorporates the GPMB
constitutive model (see Section 2.1). Changing the constitutive model requires
simultaneously changing the pairwise force function and the pairwise poten-
tial function. To this end, the ForceEnergyDensity function implements an
if statement, which can be leveraged to add new constitutive models. As an
example, if the “X” constitutive model is needed, one would simply add an
elseif statement to specify a condition for the desired constitutive model, as
follows:

if strcmp(model,'GPMB')
...

elseif strcmp(model,'X')
...

else
error('Invalid model.')

end

Remark 9 Changing a constitutive model generally requires modifying the PD bond
constants, which can be done by using the PDBondConstants function. If the new
constitutive model only requires a micromodulus constant and a critical stretch,
and it does not require additional input parameters for their computation, then the
required constants can be added by using the same if statement as above, which is
also implemented in the PDBondConstants function. However, if the new constitutive
model uses other PD bond constants or requires a different set of parameters to
compute the PD bond constants, the inputs or outputs of the PDBondConstants

function need to be modify accordingly, and the function call in the Main script needs
to be updated to reflect the change.

5.5 Changing the time-integration scheme

The current implementation of PDMATLAB2D only implements the
velocity Verlet time-integration scheme (see Algorithm 3). The function
TimeIntegrator implements an if statement, which can be leveraged to add
new time-integration schemes. As an example, if the “X” time-integration
scheme is desired, one would simply add an elseif statement to specify a

Springer Nature 2021 LATEX template

36 PDMATLAB2D

condition for the desired time-integration scheme, as follows:

if strcmp(TimeScheme,'VVerlet')
...

elseif strcmp(TimeScheme,'X')
...

else
error('Invalid TimeScheme.')

end

5.6 Changing the bond-breaking criterion

The current implementation of PDMATLAB2D only incorporates the critical
stretch bond-breaking criterion proposed in [26] (see Section 2.1). To include
alternative bond-breaking criteria, the user can do either of the following:

• Option 1: write a modified bond-breaking function,
• Option 2: change the BondBreaking function,
• Option 3: add an if statement to the BondBreaking function, allowing
to choose the desired bond-breaking criterion based on conditional state-
ments, similar, for example, to the if statement implemented for choosing
the force model in the ForceEnergyDensity function (see Section 5.4).

6 Summary

This paper provides an overview of PDMATLAB2D, a meshfree peridynam-
ics implementation in MATLAB suitable for simulation of two-dimensional
fracture problems. PDMATLAB2D provides an entry-level peridynamics com-
putational tool, which can serve educational and training goals, and an
accessible and easily modifiable computational environment that peridynam-
ics researchers can adapt to simulate different peridynamics problems. The
code implements a bond-based brittle elastic peridynamic model and a criti-
cal stretch criterion for bond breaking, and it is designed to be extendable for
other peridynamic models and computational features. We reviewed the code
structure and functions at a high level, while providing confirmations of the
correctness of the computations via figures or tables. The MATLAB functions
themselves are carefully commented; thus, we focused their descriptions on
the rationale and implementation. Numerical examples for wave propagation
and crack branching are presented to demonstrate application of PDMAT-
LAB2D. The corresponding input decks should serve users as a reference for
running alternative simulations. While the present version of the code is quite
flexible and incorporates various peridynamics modeling and computational
features, the addition of other components will be considered in the future,
such as state-based peridynamic models, displacement and velocity boundary
conditions, and contact algorithms.

Acknowledgments. Research sponsored by the Laboratory Directed
Research and Development Program of Oak Ridge National Laboratory,

Springer Nature 2021 LATEX template

PDMATLAB2D 37

managed by UT-Battelle, LLC for the US Department of Energy under con-
tract DE-AC05-00OR22725. This work was supported in part by the U.S.
Department of Energy, Office of Science, Office of Workforce Development for
Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory
Internship program.

Appendix A Derivation of a microelastic
bond-based PD model

In this appendix, we derive the functional form of a microelastic bond-based
PD model, following [1].

Let a bond-based PD pairwise force function be of the following form:
f(η,x′,x, t) with η,x′,x ∈ R3 and t ⩾ 0, where η := u(x′, t)− u(x, t). Then,
the linear admissibility condition implies:

f(−η,x,x′, t) = f(η,x′,x, t), ∀η,x′,x ∈ R3, t ⩾ 0, (A1)

and the angular admissibility condition implies:

(ξ + η)× f(η,x′,x, t) = 0, ∀η,x′,x ∈ R3, t ⩾ 0, (A2)

where ξ := x′−x. By (A1) and (A2), we can express the pairwise force function
as follows:

f(η,x′,x, t) = F (η,x′,x, t)(ξ + η), (A3)

where F is a symmetric scalar-valued function:

F (−η,x,x′, t) = F (η,x′,x, t), ∀η,x′,x ∈ R3, t ⩾ 0. (A4)

For a microelastic material, the following condition holds:

∇η × f(η,x′,x, t) = 0, ∀η,x′,x ∈ R3, t ⩾ 0. (A5)

Assuming F is continuously differentiable on η, we have:

∇η × f(η,x′,x, t) = εijk
∂

∂ηi
(fj(η,x

′,x, t)) ek

= εijk
∂

∂ηi
(F (η,x′,x, t)(ξj + ηj)) ek

= εijk
∂F

∂ηi
(η,x′,x, t)(ξj + ηj)ek

=
∂F

∂η
(η,x′,x, t)× (ξ + η),

where εijk is the Levi-Civita symbol, {ek}k=1,2,3 is the set of standard Carte-
sian unit vectors, and we used Einstein summation convention for repeated

Springer Nature 2021 LATEX template

38 PDMATLAB2D

indices. Then, by (A5), we have

∂F

∂η
(η,x′,x, t) = A(η,x′,x, t)(ξ + η),

where A is a scalar-valued function. Note that

∂

∂ηi
(∥ξ + η∥) = ξi + ηi

∥ξ + η∥
, i = 1, 2, 3.

Consequently, we can express F as follows:

F (η,x′,x, t) = H(∥ξ + η∥,x′,x, t), (A6)

where H(p,x′,x, t) with p = ∥ξ + η∥ is a scalar-valued function continuously
differentiable on p.

Combining (A6) and (A3), we can express the microelastic bond-based PD
pairwise force function as follows:

f(η,x′,x, t) = f(∥ξ + η∥,x′,x, t)
ξ + η

∥ξ + η∥
, (A7)

where f is a scalar-valued function given by

f(∥ξ + η∥,x′,x, t) = ∥ξ + η∥H(∥ξ + η∥,x′,x, t).

Appendix B Derivation of maximum
perturbation in GridGenerator

Consider a rectangular cell centered at node i with coordinates (xi, yi) with
edge lengths ∆x and ∆y in the x- and y-directions, respectively, and assume a
perturbation of the cell vertices. For the purpose of the derivations below, we
assume only three of the four vertices are perturbed, and we denote these by A,
B, and C, as illustrated in Figure B1. The perturbed vertices are denoted byA′,
B′, and C ′, respectively (see Figure B1). Each of the vertices is independently
perturbed, and the region of admissible new positions for a given vertex after
perturbation is given by a rectangular region of size 2α∆x×2α∆y centered at
the vertex (see Figure B1), where α is a given parameter. We seek the value
of the parameter α for which C ′ falls on the line connecting A′ and B′ (see
Figure B1), which represents the limiting value for which the shape of the
deformed cell remains convex.

Springer Nature 2021 LATEX template

PDMATLAB2D 39

Δ𝑥

Δ𝑦

𝐴′

𝐴

𝐵′

𝐵

𝐶

𝐶′

𝛼Δ𝑦

𝛼Δ𝑥

(𝑥!, 𝑦!)

Fig. B1: Representation of perturbation of the vertices of a cell centered at
node i with coordinates (xi, yi). The cell dimensions are ∆x and ∆y in the x-
and y-directions, respectively. The unperturbed cell vertices are represented
by blue circles, whereas the perturbed cell vertices are represented by orange
circles. Only the vertices A, B, and C are perturbed, and their corresponding
vertices after perturbation are A′, B′, and C ′. The region of perturbation for
each of these vertices is represented by an empty rectangle with green dashed
border line. The size of the rectangle is defined as a fraction of the original cell
via a parameter α.

Consider the following three vertices:

A := (xi − ∆x
2 , yi − ∆y

2),

B := (xi +
∆x
2 , yi +

∆y
2),

C := (xi +
∆x
2 , yi − ∆y

2).

To consider the worst case scenario, we assume the following perturbed vertices
(see Figure B1):

A′ := (xi − ∆x
2 + α∆x, yi − ∆y

2 − α∆y),

B′ := (xi +
∆x
2 + α∆x, yi +

∆y
2 − α∆y),

C ′ := (xi +
∆x
2 − α∆x, yi − ∆y

2 + α∆y).

Let the line connecting the nodes A′ and B′ be

y(x) = a1x+ a0, (B8)

Springer Nature 2021 LATEX template

40 PDMATLAB2D

where a1 and a0 are parameters. The slope of the line, a1, is given by

a1 =
∆y

∆x
. (B9)

Substituting a1 in (B8), and evaluating the line for the vertex A′, we have

yi − ∆y
2 − α∆y =

∆y

∆x
(xi − ∆x

2 + α∆x) + a0,

from which a0 can be obtained:

a0 = yi −
∆y

∆x
xi − 2α∆y. (B10)

We now substitute the coordinates of C ′ in the line given by (B8) with
coefficients defined by (B9) and (B10):

yi − ∆y
2 + α∆y = a1(xi +

∆x
2 − α∆x) + a0

=
∆y

∆x
(xi +

∆x
2 − α∆x) + yi −

∆y

∆x
xi − 2α∆y,

from which we obtain, after some algebraic manipulations,

α =
1

4
.

Appendix C Derivation of c and s0

This appendix presents derivations of the micromodulus constant, c, and crit-
ical stretch, s0, for the GPMB model (see Section 2.1) in two dimensions,
following analogous derivations for the PMB model in three dimensions [26].

C.1 Micromodulus constant

The micromodulus constant, c, can be obtained by equating the PD macroe-
lastic energy density and the strain energy density from the classical theory of
elasticity, under a suitable deformation.

Consider a static isotropic extension given by u(x) = s̄x with s̄ constant.
In this case, η = s̄ξ, which results in a constant stretch: s(∥ξ + η∥, ∥ξ∥) = s̄
for all η, ξ ∈ R2. Then, we can express the macroelastic energy density of the
GPMB model for a point x in the bulk of a body (assuming µ ≡ 1) as follows
(see (7) and (10)):

W =
1

4
h

∫
H
c ω(∥ξ∥) s̄2∥ξ∥dξ,

Springer Nature 2021 LATEX template

PDMATLAB2D 41

where we used the change of variable x′ = x+ ξ and

H := {ξ ∈ R2 : ∥ξ∥ ⩽ δ}

is the neighborhood around the origin (cf. (2)). Using polar coordinates,

W =
1

4
chs̄2

∫ 2π

0

∫ δ

0

ω(r)r rdrdθ = c
π

2
h

(∫ δ

0

ω(r)r2dr

)
s̄2. (C11)

Note that the arguments of W have been omitted. The time dependence has
been omitted because the imposed deformation is static; the spatial depen-
dence, on the other hand, has been omitted because the macroelastic energy
density is spatially independent in the bulk of a body for an isotropic extension.
Below, we similarly omit these arguments for clarity.

The integral in (C11) can be computed by direct computation for the
influence functions presented in Section 2.1.1, resulting in the following
expressions:∫ δ

0

ω0(r)r
2dr =

δ3

3
,

∫ δ

0

ω1(r)r
2dr =

δ3

12
,

∫ δ

0

ω3(r)r
2dr =

δ3

15
, (C12)∫ δ

0

ω5(r)r
2dr =

5

84
δ3,

∫ δ

0

ω7(r)r
2dr =

1

18
δ3.

Plane strain: In classical linear elasticity, the strain energy density for an
isotropic material in a state of plane strain is given by (see, e.g. [53]):

WCε =
E

2(1 + ν)(1− 2ν)

[
(1− ν)(ε211 + ε222) + 2νε11ε22 + 2(1− 2ν)ε12

]
,

(C13)

where E is the Young’s modulus, ν is the Poisson’s ratio, and εij with i, j = 1, 2
are the components of the infinitesimal strain tensor:

εij :=
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2.

For the isotropic extension given by u(x) = s̄x, we have ε11 = ε22 = s̄ and
ε12 = 0. Then,

WCε =
E

2(1 + ν)(1− 2ν)

[
(1− ν)(s̄2 + s̄2) + 2νs̄2

]
=

Es̄2

(1 + ν)(1− 2ν)
.

Springer Nature 2021 LATEX template

42 PDMATLAB2D

In the case of plane strain, two-dimensional bond-based PD models are
restricted to a Poisson’s ratio of ν = 1/4 [38, 53]. In this case,

WCε =
8

5
Es̄2. (C14)

Assuming W = WCε, we thus obtain from (C11) and (C14):

c =
16

5π

E

h

∫ δ

0

ω(r)r2dr

, (C15)

where the result depends on the choice of influence function. Using (C12),
the resulting expressions corresponding to the different influence functions are
summarized in Section 3.4 (see Table 2 (top row)).

Plane stress: In classical linear elasticity, the strain energy density for an
isotropic material in a state of plane stress is given by (see, e.g. [53]):

WCσ =
E

2(1− ν2)

[
ε211 + ε222 + 2νε11ε22 + 2(1− ν)ε12

]
. (C16)

For the isotropic extension given by u(x) = s̄x, we have (recall ε11 = ε22 = s̄
and ε12 = 0)

WCσ =
E

2(1− ν2)

[
s̄2 + s̄2 + 2νs̄2

]
=

Es̄2

(1− ν)
.

In the case of plane stress, two-dimensional bond-based PD models are
restricted to a Poisson’s ratio of ν = 1/3 [38, 53]. In this case,

WCσ =
3

2
Es̄2. (C17)

Assuming W = WCσ, we thus obtain from (C11) and (C17):

c =
3

π

E

h

∫ δ

0

ω(r)r2dr

, (C18)

where the result again depends on the choice of influence function. Using (C12),
the resulting expressions corresponding to the different influence functions are
summarized in Section 3.4 (see Table 2 (bottom row)).

Remark 10 We observe that, while the expressions for the micromodulus constant c
in (C15) and (C18) depend on h, in practice, h cancels out when c is substituted in
expressions for the computation of PD quantities (see, e.g., (1)).

Springer Nature 2021 LATEX template

PDMATLAB2D 43

C.2 Critical stretch

𝛿

𝑟
𝜃
𝑥

𝛿

Fracture Surface

Bond

Fig. C2: Illustration of the integration for computation of the fracture energy
G0 in (C19) in two dimensions, analogously to [26]. Given a fracture surface,
we compute the energy per unit area collectively provided by the pairwise
potentials of all the bonds connecting any point on the left side of the fracture
surface along a line perpendicular to the surface with distance 0 < x ⩽ δ to
points within their neighborhood on the right side of the fracture surface.

To compute the critical stretch, s0, we assume any bond breaks irreversibly
when its stretch exceeds the critical stretch. Then, we consider a fracture
surface and compute the total energy per unit area released by breaking all
bonds crossing that surface and compare the result to the fracture energy, G0.

Mimicking the calculations in [26], adapted to a two-dimensional case, we
have (cf. (10))

G0 = h

∫ δ

0

∫ δ

x

∫ cos−1(x/r)

− cos−1(x/r)

(
1

2
c ω(r)s20r

)
rdθdrdx. (C19)

We now have

G0 =
1

2
chs20

∫ δ

0

∫ δ

x

ω(r)r22 cos−1(x/r)drdx.

Changing the order of integration:

G0 = chs20

∫ δ

0

∫ r

0

ω(r)r2 cos−1(x/r)dxdr.

Springer Nature 2021 LATEX template

44 PDMATLAB2D

Using the change of variable a = x/r, we have

G0 = chs20

∫ δ

0

∫ 1

0

ω(r)r2 cos−1(a)rdadr = chs20

∫ δ

0

ω(r)r3
[∫ 1

0

cos−1(a)da

]
dr

= chs20

∫ δ

0

ω(r)r3dr,

where ∫ 1

0

cos−1(a)da = 1.

The value of s0 can be then expressed as follows:

s0 =

√√√√√ G0

ch

∫ δ

0

ω(r)r3dr

. (C20)

The integral in (C20) can be computed by direct computation for the influence
functions presented in Section 2.1.1, resulting in the following expressions:∫ δ

0

ω0(r)r
3dr =

δ4

4
,

∫ δ

0

ω1(r)r
3dr =

δ4

20
,

∫ δ

0

ω3(r)r
3dr =

δ4

28
, (C21)∫ δ

0

ω5(r)r
3dr =

5

168
δ4,

∫ δ

0

ω7(r)r
3dr =

7

264
δ4.

Using these expressions as well as the expressions for the micromodulus con-
stant c from Section 3.4 (see Table 2) in (C20), the resulting expressions for
the critical stretch corresponding to the different influence functions are sum-
marized in Section 3.4 (see Table 3) for both plane strain (top row) and plane
stress (bottom row).

Appendix D Quadratic deformation test for
the ForceEnergyDensity function

Consider a quadratic static deformation given by a displacement field u(x, y) =
(v(x, y), w(x, y)) of the following form:

v(x, y) = V11x
2, (D22a)

w(x, y) = 0, (D22b)

where V11 is a constant. We would like to evaluate the internal force density
and macroelastic energy density at a point x in the bulk of a body for the
GPMB model. For this purpose, we approximate these quantities by resorting

Springer Nature 2021 LATEX template

PDMATLAB2D 45

to their linearization under the assumption that ∥η∥ ≪ δ. In this case, the
stretch in (9) can be approximated via a Taylor expansion, as follows:

s(∥ξ + η∥, ∥ξ∥) = s(∥ξ∥, ∥ξ∥) + ∂s(∥ξ + η∥, ∥ξ∥)
∂ηi

∣∣∣∣
η=0

ηi +O(∥η∥2), (D23)

where we used Einstein summation convention for repeated indices, and we
note that s(∥ξ∥, ∥ξ∥) = 0 for all ξ ∈ R2 (see (9)). Expressing the stretch as
follows:

s(∥ξ + η∥, ∥ξ∥) = 1

∥ξ∥
√

(ξ1 + η1)2 + (ξ2 + η2)2 − 1,

where ξ = (ξ1, ξ2) and η = (η1, η2), we can easily compute

∂s(∥ξ + η∥, ∥ξ∥)
∂ηi

=
1

∥ξ∥
(ξi + ηi)

∥ξ + η∥
, i = 1, 2,

which results in (see (D23))

s(∥ξ + η∥, ∥ξ∥) ≈ ξ · η
∥ξ∥2

,

where we omitted terms of order O(∥η∥2). The GPMB pairwise force func-
tion (6) with (8) and pairwise potential function (cf. (10)) can be then
approximated (assuming µ ≡ 1 and omitting the time dependence) as follows:

f(η,x′,x) ≈ c ω(∥ξ∥) 1

∥ξ∥3
(ξ · η)ξ, (D24)

w(η,x′,x) ≈ 1

2
c ω(∥ξ∥) 1

∥ξ∥3
(ξ · η)2. (D25)

Using the linearized expression for the pairwise force function and pairwise
potential function in (D24) and (D25), respectively, we compute the internal
force density and macroelastic energy density for a point x in the bulk of a
body under the quadratic deformation in (D22). To this end, we first note
that, in this case, the relative displacement is given by

η = (V11(x
′)2 − V11x

2, 0) = (V11(x+ ξ1)
2 − V11x

2, 0)

= (V11(x
2 + 2xξ1 + ξ21)− V11x

2, 0,) = (V11(2xξ1 + ξ21), 0).

We then obtain,

ξ · η = (ξ1, ξ2) · (V11(2xξ1 + ξ21), 0) = V11(2xξ
2
1 + ξ31).

Springer Nature 2021 LATEX template

46 PDMATLAB2D

Then,

f1(η,x
′,x) ≈ c ω(∥ξ∥) 1

∥ξ∥3
V11(2xξ

3
1 + ξ41),

f2(η,x
′,x) ≈ c ω(∥ξ∥) 1

∥ξ∥3
V11(2xξ

2
1 + ξ31)ξ2,

w(η,x′,x) ≈ 1

2
c ω(∥ξ∥) 1

∥ξ∥3
V 2
11(4x

2ξ41 + 4xξ51 + ξ61).

The components of the internal force density at x are given by:

F int
1 (x) := h

∫
Hx

f1(η,x
′,x)dx′≈h

∫
Hx

c ω(∥ξ∥) 1

∥ξ∥3
V11(2xξ

3
1 + ξ41)dx

′

= h

∫
Hx

c ω(∥ξ∥) 1

∥ξ∥3
V11ξ

4
1dx

′ = h

∫ 2π

0

∫ δ

0

c ω(r)
1

r3
V11(r cos(θ))

4rdrdθ

=
3π

4
chV11

∫ δ

0

ω(r)r2dr,

F int
2 (x) := h

∫
Hx

f2(η,x
′,x)dx′≈0,

where we used antisymmetry considerations to eliminate the term with ξ31
in the expression for F int

1 (x) and to conclude that F int
2 (x)≈0. Using the

expressions for c for plane strain (C15) and plane stress (C18), we obtain

F int
1 (x) ≈

{ 12
5 V11E, Plane strain,

9
4V11E, Plane stress,

(D26a)

F int
2 (x)≈0. (D26b)

We now compute the macroelastic energy density at x:

W (x) :=
1

2
h

∫
Hx

w(η,x′,x)dx′ ≈ 1

4
h

∫
Hx

c ω(∥ξ∥) 1

∥ξ∥3
V 2
11(4x

2ξ41 + 4xξ51 + ξ61)dx
′

=
1

4
h

∫
Hx

c ω(∥ξ∥) 1

∥ξ∥3
V 2
11(4x

2ξ41 + ξ61)dx
′

=
1

4
h

∫ 2π

0

∫ δ

0

c ω(r)
1

r3
V 2
11(4x

2(r cos(θ))4 + (r cos(θ))6)rdrdθ

=
1

4
chV 2

11

∫ δ

0

ω(r)
1

r3

(
4x2 3π

4
r4 +

5π

8
r6
)
rdr

=
π

32
chV 2

11

∫ δ

0

ω(r)
(
24x2r2 + 5r4

)
dr.

Springer Nature 2021 LATEX template

PDMATLAB2D 47

ω0 ω1 ω3 ω5 ω7

Plane strain W
EV 2

11
10

[
24x2 + 3δ2

] EV 2
11

10

[
24x2 + 2δ2

] EV 2
11

10

[
24x2 + 45δ2

28

]
EV 2

11
10

[
24x2 + 7δ2

5

]
EV 2

11
10

[
24x2 + 14δ2

11

]
Plane stress W

3EV 2
11

32

[
24x2 + 3δ2

] 3EV 2
11

32

[
24x2 + 2δ2

] 3EV 2
11

32

[
24x2 + 45δ2

28

]
3EV 2

11
32

[
24x2 + 7δ2

5

]
3EV 2

11
32

[
24x2 + 14δ2

11

]
Table D1: Macroelastic energy density for a point x = (x, y) in the bulk of a
body under the quadratic deformation given in (D22).

Using the expressions for c for plane strain (C15) and plane stress (C18), we
can express the macroelastic energy density, as follows:

• Plane strain

W (x) ≈ π

32

16

5π

E

h

∫ δ

0

ω(r)r2dr

hV 2
11

∫ δ

0

ω(r)
(
24x2r2 + 5r4

)
dr

=
EV 2

11

10

24x2 + 5

∫ δ

0

ω(r)r4dr∫ δ

0

ω(r)r2dr

 . (D27)

• Plane stress

W (x) ≈ π

32

3

π

E

h

∫ δ

0

ω(r)r2dr

hV 2
11

∫ δ

0

ω(r)
(
24x2r2 + 5r4

)
dr

=
3EV 2

11

32

24x2 + 5

∫ δ

0

ω(r) r4dr∫ δ

0

ω(r)r2dr

 . (D28)

We now have∫ δ

0

ω0(r)r
4dr =

δ5

5
,

∫ δ

0

ω1(r)r
4dr =

δ5

30
,

∫ δ

0

ω3(r)r
4dr =

3δ5

140
, (D29)∫ δ

0

ω5(r)r
4dr =

δ5

60
,

∫ δ

0

ω7(r)r
4dr =

7δ5

495
.

Using the expressions in (C12) and (D29) in (D27) and (D28), we obtain the
results reported in Table D1.

Remark 11 Given the quadratic deformation in (D22), the strain components are:
ε11 = 2V11x, ε12 = 0, and ε22 = 0. Consequently, the corresponding strain energy

Springer Nature 2021 LATEX template

48 PDMATLAB2D

density in classical linear elasticity, for the case of plane strain (ν = 1/4), is
(see (C13))

WCε =
E(1− ν)

2(1 + ν)(1− 2ν)
(2V11x)

2 =
12

5
EV11x

2

and, for the case of plane stress (ν = 1/3), is (see (C16))

WCσ =
E

2(1− ν2)
(2V11x)

2 =
9

4
EV11x

2,

which correspond to the expressions reported in Table D1, in the limit as δ → 0.

Remark 12 The stress-strain relation in plane-strain classical linear elasticity is given
by:  σ11

σ22
σ12

 =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0

0 0 1
2 (1− 2ν)

 ε11
ε22
2ε12

 , (D30)

where σij , i, j = 1, 2, are the components of the stress tensor and εij , i, j = 1, 2, are
the components of the strain tensor, and where E is the Young’s modulus and ν is
the Poisson’s ratio. Under the quadratic deformation given in (D22), ε11 = 2V11x,
ε12 = 0, and ε22 = 0, and we get (for ν = 1/4):

σ11 =
12

5
EV11x,

σ22 =
4

5
EV11x,

σ12 = 0.

The internal force density is given by FCE := ∇ · σ, which, in component form in
this case, is:

FCE
1 =

∂σ11
∂x

+
∂σ12
∂y

=
12

5
V11E,

FCE
2 =

∂σ12
∂x

+
∂σ22
∂y

= 0.

Similarly, the stress-strain relation in plane-stress classical linear elasticity is given
by:  σ11

σ22
σ12

 =
E

(1− ν2)

 1 ν 0
ν 1 0

0 0 1
2 (1− ν)

 ε11
ε22
2ε12

 . (D31)

Under the quadratic deformation given in (D22), ε11 = 2V11x, ε12 = 0, and ε22 = 0,
and we get (for ν = 1/3):

σ11 =
9

4
EV11x,

σ22 =
3

4
EV11x,

σ12 = 0.

The internal force density, in component form in this case, is:

FCE
1 =

9

4
V11E,

FCE
2 = 0.

Springer Nature 2021 LATEX template

PDMATLAB2D 49

p

p+ r

Lp
(t
)

q

q+ s

L
q (u)

Fig. E3: Illustration of line segments Lp(t) with endpoints p and p+ r and
Lq(u) with endpoints q and q+ s.

The results for both plane strain and plane stress coincide with the ones in (D26);
i.e., for the given quadratic deformation, the linearized GPMB model possesses the
same internal force density (for points in the bulk of a body) as in classical linear
elasticity.

Appendix E Intersection of two line segments

This section describes a method for determining if two line segments in a plane
intersect. It is a planar treatment of the line segment intersection algorithm
found in [54].

Consider two line segments in the xy-plane. Without loss of generality, one
may select points p and q and directions r and s so that the line segments are
defined parametrically as:

Lp(t) = p+ tr, t ∈ [0, 1] (E32)

and
Lq(u) = q+ us, u ∈ [0, 1]. (E33)

An illustration is shown in Figure E3.
We start by determining if the two line segments are parallel, which is easily

determined by calculating the cross product r×s. Specifically, r×s = 0 implies
the segments are parallel and r× s ̸= 0 implies the segments are not parallel.
The two cases are treated separately, starting with parallel line segments.

Line segments are parallel (r× s = 0):

The next step is to determine if the line segments are collinear, which is true
if and only if q−p is parallel to r, i.e., (p−q)×r = 0. If the segments are not
collinear, they clearly do not intersect. On the other hand, if the segments are

Springer Nature 2021 LATEX template

50 PDMATLAB2D

collinear, one must check whether the segments overlap. This is accomplished
by writing the endpoints p and p+ r of the line segment Lp in terms of the
line segment Lq:

p = q+ u0s and p+ r = q+ u1s. (E34)

Solving for u0 and u1 in (E34) yields

u0 =
(p− q) · s

s · s
and u1 =

(p+ r− q) · s
s · s

= u0 +
r · s
s · s

. (E35)

There is no overlap if and only if max {u0, u1} < 0 or min {u0, u1} > 1. Geo-
metrically, these two conditions imply that along the line containing the two
line segments, Lp is entirely to the left of Lq or Lp is entirely to the right of
Lq. Next, line segments which are not parallel are considered.

Line segments are not parallel (r× s) ̸= 0:

The line segments intersect if there exist u0 and t0 in the interval [0, 1] such
that

Lp(t0) = Lq(u0) ⇒ p+ t0r = q+ u0s. (E36)

This may be determined by solving for t0 and u0. In (E36), subtracting p and
then taking the cross product with respect to s results in (note s× s = 0)

t0(r× s) = (q− p)× s. (E37)

Since r, s, and q−p are in the xy-plane, the first two components of the cross
products in (E37) are zero. We conclude

t0 =
((q− p)× s)z

(r× s)z
, (E38)

where the subscript z signifies the third component of the vector. Similarly,
in (E36) subtracting q and then taking the cross product with respect to r
results in (note r× r = 0)

u0(s× r) = (p− q)× r ⇒ u0 =
((p− q)× r)z

(s× r)z
=

((q− p)× r)z
(r× s)z

. (E39)

If u0, t0 ∈ [0, 1], one may conclude the line segments intersect. Otherwise, they
do not.

Springer Nature 2021 LATEX template

PDMATLAB2D 51

Appendix F Numerical computation of the
internal force density and
macroelastic energy density

We present a numerical computation of the internal force density, F, and
macroelastic energy density, W , to check the correctness of their computation
by the ForceEnergyDensity function (see Section 3.5). For this purpose, we
consider a domain Ω = (0, 1) × (0, 1) and we impose a deformation on all
nodes in the domain. We choose a PD horizon δ = 0.2 and a Young’s modulus
E = 1 in consistent units. To check the computation of W , we consider an
isotropic extension with constant stretch s̄ = 0.1 for which W = 8Es̄2/5 for
plane strain (see (C14)) and W = 3Es̄2/2 for plane stress (see (C17)). To
check the computation of F, we consider a quadratic deformation given by
u(x, y) = (V11x

2, 0) with V11 = 0.01 for which F≈(12V11E/5, 0) for plane
strain and F≈(9V11E/4, 0) for plane stress (see (D26)).6 Table F2 reports the
corresponding results for a point in the bulk of the body, for a discretization
given by a uniform grid of grid spacing ∆x = ∆y = δ/6, using the function
TestForceEnergyDensity based on the computations for uniform grids over
rectangular domains (see Section 3.5); the same results are obtained based on
the computations for general grids.

Remark 13 The results reported in Table F2 depend on the particular discretization
chosen. A comparative study between the different partial-area algorithms is pre-
sented in [42]. Note that for the case of ω0.5, the accuracy of the PA-AC algorithm
is reduced; this is expected since this choice of influence function does not allow
evaluation of quadrature points outside the neighborhood, as opposed to ω0.

Remark 14 The selection of problems and quantities reported in Table F2 was based
on having quantities that neither vanish nor change for the different influence func-
tions, for brevity. For the isotropic extension case, the internal force density, F,
vanishes for points in the bulk of a body, so we only report the macroelastic energy
density, W . For the quadratic deformation case, the y-component of the internal
force density, F2, vanishes (see (D26b)) while the macroelastic energy density, W ,
becomes a function of the influence function (see Table D1), so we only report the
x-component of the internal force density, F1.

Appendix G Numerical computation of the
fracture energy

We present a numerical computation of the fracture energy to confirm
the expressions of critical stretch reported in Section 3.4 (see Table 3) by
computing the numerical analogue of (C19), as described below.

6The choice of value for V11 was to ensure a small deformation, because the derivations in
Appendix D are for a linearized model.

Springer Nature 2021 LATEX template

52 PDMATLAB2D

Isotropic Extension

Plane strain

ω0 ω0.5 ω1 ω3 ω5 ω7 Continuum

W : FA 1.60e-02 1.60e-02 1.59e-02 1.60e-02 1.60e-02 1.60e-02
W : PA-AC 1.61e-02 1.49e-02 1.58e-02 1.60e-02 1.60e-02 1.60e-02 1.60e-02
W : IPA-AC 1.62e-02 1.62e-02 1.62e-02 1.60e-02 1.60e-02 1.60e-02

Plane stress

ω0 ω0.5 ω1 ω3 ω5 ω7 Continuum

W : FA 1.50e-02 1.50e-02 1.49e-02 1.50e-02 1.50e-02 1.50e-02
W : PA-AC 1.51e-02 1.40e-02 1.48e-02 1.50e-02 1.50e-02 1.50e-02 1.50e-02
W : IPA-AC 1.52e-02 1.52e-02 1.52e-02 1.50e-02 1.50e-02 1.50e-02

Quadratic Deformation

Plane strain

ω0 ω0.5 ω1 ω3 ω5 ω7 Continuum

F1: FA 2.38e-02 2.38e-02 2.40e-02 2.41e-02 2.41e-02 2.41e-02
F1: PA-AC 2.42e-02 2.22e-02 2.39e-02 2.41e-02 2.41e-02 2.41e-02 2.40e-02
F1: IPA-AC 2.44e-02 2.44e-02 2.44e-02 2.42e-02 2.41e-02 2.41e-02

Plane stress

ω0 ω0.5 ω1 ω3 ω5 ω7 Continuum

F1: FA 2.23e-02 2.23e-02 2.25e-02 2.26e-02 2.26e-02 2.26e-02
F1: PA-AC 2.27e-02 2.08e-02 2.24e-02 2.26e-02 2.26e-02 2.26e-02 2.25e-02
F1: IPA-AC 2.28e-02 2.28e-02 2.29e-02 2.27e-02 2.26e-02 2.26e-02

Table F2: Computation of the macroelastic energy density, W , and the x-
component of the internal force density, F1, at a node in the bulk of a body
for the case of an isotropic extension with constant stretch s̄ = 0.1 and a
quadratic deformation given by u(x, y) = (V11x

2, 0) with V11 = 0.01, respec-
tively. The computation employs δ = 0.2 and a uniform grid of grid spacing
∆x = ∆y = δ/6. The rightmost column provides reference values computed
with the analytical expressions of the corresponding quantities for the contin-
uum case. We report results for both plane strain and plane stress assumptions
for the different influence functions. The values reported are computed with
the TestForceEnergyDensity function.

Let us consider a vertical line representing a surface at x = 0. We numeri-
cally approximate the energy per unit area resulting from all the interactions
between points along a horizontal line to the left of the vertical line and their
neighboring points on the right side of the vertical line, under the assumption
that all the corresponding bonds are critically stretched. For this purpose, we
discretize the horizontal line with a set of segments of length ∆x, and we dis-
cretize the right side of the vertical line with a uniform grid of cells of area
∆x∆y. In practice, we sum all pairwise potentials of bonds connecting the
nodes centered at the line segments to their neighboring cells while weighting
each pairwise potential by the product of the segment length and the neigh-
boring area. An illustration of the system is presented in Figure G4. This
calculation is inspired by the numerical computations of nonlocal tractions
presented in [55].

Springer Nature 2021 LATEX template

PDMATLAB2D 53

Choose a horizon δ = 1 and grid spacing ∆x = ∆y = δ/6, and let a domain
be Ω = (−1, 1) × (−1 − ∆y

2 , 1 + ∆y
2), which is uniformly discretized based on

the grid spacing. Let the point intersecting the horizontal and vertical lines be
x0 = (x0, y0). Define the set SL of nodes on the horizontal line on the left side
of the vertical line within Ω (see green nodes in Figure G4):

SL := {(x0 − ∆x
2 , y0), . . . , (x0 − δ + ∆x

2 , y0)}

and the set SR of nodes on the right side of the vertical line within Ω (see
black nodes in Figure G4) as:

SR := {x0 +
∆x
2 , . . . , x0 + δ − ∆x

2 , } × {y0 − δ, . . . , y0 + δ},

which is built as a Cartesian product. Let xL
i ∈ SL, i =1, . . . , NL, and xR

j ∈
SR, j =1, . . . , NR, be the reference positions of the nodes within each set. The
numerical analogue of (C19), Gh

0 , can be expressed as follows:

Gh
0 := h

NL∑
i=1

∑
j∈F̂R

i

1

2
c ω(∥x̂R

j(i) − xL
i ∥)s20∥x̂R

j(i) − xL
i ∥∆xÂR

j(i), (G40)

where F̂R
i is a set of indices corresponding to the quadrature points for the

two inner integrals in (C19), x̂R
j(i) is the jth quadrature point, and ÂR

j(i) is

the corresponding jth quadrature weight associated to node i located at xL
i

(cf. (14)).
Let the Young’s modulus be E = 1 and the fracture energy be G0 = 1

in consistent units. We compute Gh
0 for both plane strain and plane stress

assumptions for the different influence functions, and we compare the results
with G0. These results are reported in Table G3. Note that the value of chs20
is the same for both plane strain and plane stress, for each influence function,
so we report both results together.

Springer Nature 2021 LATEX template

54 PDMATLAB2D

Fig. G4: Illustration of a domain discretization for the numerical computa-
tion of the fracture energy in (G40). We consider a vertical line representing
a surface (thick magenta line) at x = 0. The computation considers all
bonds connecting nodes on a horizontal line to the left of the vertical line
(green nodes) and their neighbor cells on the right side of the vertical line.
The intersecting point between the horizontal and vertical lines is (x0, y0) =
(0, 0). For clarity, the intersection between the boundary of the neighbor-
hood of the rightmost node on the horizontal line and the cells to the right
side of the vertical line is plotted in blue. The figure is produced with the
PlotNumericalFractureEnergy function. Figure adapted from [55].

Plane strain / Plane stress

ω0 ω0.5 ω1 ω3 ω5 ω7 G0

Gh
0 : FA 0.996 0.996 0.989 0.991 0.989 0.988

Gh
0 : PA-AC 1.006 0.913 0.980 0.990 0.989 0.988 1.000

Gh
0 : IPA-AC 0.996 0.996 1.013 0.998 0.991 0.989

Table G3: Computation of the fracture energy using (G40) for the system
illustrated in Figure G4. The computation employs a horizon δ = 1 and a
uniform grid of grid spacing ∆x = ∆y = δ/6. The Young’s modulus is taken as
E = 1 and the fracture energy is also taken as G0 = 1 in consistent units. The
micromodulus constant, c, and the critical stretch, s0, are computed with the
PDBondConstants function using the expressions in Section 3.4 (see Tables 2
and 3, respectively). The computations reported in the table are computed
with the TestCriticalStretch function.

Springer Nature 2021 LATEX template

PDMATLAB2D 55

Appendix H Input decks for numerical
examples

H.1 WavePropagation input deck

% ===
% Input deck for a wave propagation problem with an initial displacement
% based on a radial Gaussian distribution (the parameters are provided
% in consistent units)
% ===

% ---
% Domain geometry and discretization
% ---

% Domain boundaries
Xo = 0; % Left boundary of the domain
Xn = 5; % Right boundary of the domain
Yo = 0; % Lower boundary of the domain
Yn = 5; % Upper boundary of the domain

% Number of nodes
Nx = 200; % Number of nodes in the x-direction
Ny = 200; % Number of nodes in the y-direction

% Grid perturbation coefficient
PG = 0;

% ---
% Time discretization
% ---

% Initial time
Ti = 0;

% Final time
Tf = 1.8;

% Time step
dt = 0.01;

% Time-integration scheme
TimeScheme = 'VVerlet'; % Velocity Verlet

% ---
% PD model
% ---

% Constitutive model
model = 'GPMB'; % Generalized Prototype Microelastic Brittle (GPMB) model

% Plane elasticity model
PlanarModel = 'PlaneStress';

% Horizon
del = 0.1;

% Influence function order indicator
omega = 0; % Constant influence function

Springer Nature 2021 LATEX template

56 PDMATLAB2D

% Flag for bond breaking
flag_BB = 0;

% ---
% Classical material properties
% ---

% Mass density
rho = 1;

% Young’s modulus
E = 1;

% Fracture energy
Go = 1;

% ---
% Meshfree discretization
% ---

% Algorithm for computation of neighbor areas
AlgName = 'FA'; % FA algorithm

% ---
% Problem settings
% ---

% ------------------
% Body force density
% ------------------

bvfunc = @(x,y,t) (0.*x + 0.*y)*t; % x-component of body force density
bwfunc = @(x,y,t) (0.*x + 0.*y)*t; % y-component of body force density

% ------------------
% Initial conditions
% ------------------

% Initial displacement functions

% Tolerance
tol = 1E-15;

% Parameters
xm = 2.5; % x-coordinate of pulse center
ym = 2.5; % y-coordinate of pulse center
A = 1; % amplitude of radial Gaussian distribution
sigma = 1/30; % standard deviation of radial Gaussian distribution
mu = 6*sigma; % radial distance from pulse center of radial Gaussian

% distribution mean

% Functions
r = @(x,y) sqrt((x-xm).^2+(y-ym).^2); % distance from pulse center
uo = @(x,y) (r(x,y) > mu-6*sigma & r(x,y) < mu+6*sigma).* A

.* exp((-(r(x,y) - mu).^2) / (2*sigma)^2); % magnitude of initial
% displacement

vofunc = @(x,y) uo(x,y).*(x-xm)./(r(x,y) + tol); % x-component of initial
% displacement

wofunc = @(x,y) uo(x,y).*(y-ym)./(r(x,y) + tol); % y-component of initial
% displacement

Springer Nature 2021 LATEX template

PDMATLAB2D 57

% Initial velocity functions

Vvofunc = @(x,y) 0.*x + 0.*y; % x-component of initial velocity
Vwofunc = @(x,y) 0.*x + 0.*y; % y-component of initial velocity

% ---
% Postprocessing
% ---

% Flag for plotting during time integration
flag_DynamicPlotting = 1;

% Frequency of plotting during time integration
DynamicPlotFrequency = 10; % Plot every 10 time steps

% (beginning from the first one)

% Frequency of time-integration step display
TimeStepDisplayFrequency = 10;

% Flag for plotting at final time
flag_FinalPlots = 1;

% Plot settings
% Field Name Field variable Colorbar title
PlotSettings = {'DisplacementMagnitude','sqrt(v.^2 + w.^2)','$\| bf u \|$',

Point size Colormap limits Colormap Axes limits
8 , [0 1.0] , 'parula' , [Xo Xn Yo Yn] ,

Configuration
'Reference'};

% ---

H.2 CrackBranching input deck

% ===
% Input deck for a crack branching problem on a pre-notched soda-lime
% glass thin plate
% ===

% ---
% Domain geometry and discretization
% ---

% Domain boundaries
Xo = -0.05; % [m]: Left boundary of the domain
Xn = 0.05; % [m]: Right boundary of the domain
Yo = -0.02; % [m]: Lower boundary of the domain
Yn = 0.02; % [m]: Upper boundary of the domain

% Number of nodes
Nx = 300; % Number of nodes in the x-direction
Ny = 120; % Number of nodes in the y-direction

% Grid perturbation coefficient
PG = 0;

Springer Nature 2021 LATEX template

58 PDMATLAB2D

% ---
% Time discretization
% ---

% Initial time
Ti = 0;

% Final time
Tf = 4.3e-5; % [s] : 43 microsec

% Time step
dt = 6.7E-8; % [s] : 67E-3 microsec

% Time-integration scheme
TimeScheme = 'VVerlet'; % Velocity Verlet

% ---
% PD model
% ---

% Constitutive model
model = 'GPMB'; % Generalized Prototype Microelastic Brittle (GPMB) model

% Plane elasticity model
PlanarModel = 'PlaneStress';

% Horizon
del = 0.001; % [m]

% Influence function order indicator
omega = 0; % Constant influence function

% Flag for bond breaking
flag_BB = 1;

% ---
% Classical material properties
% ---

% Mass density
rho = 2440; % [kg/m^3]

% Young’s modulus
E = 72e+9; % [Pa] : 72 GPa

% Fracture energy
Go = 3.8; % [J/m^2]

% ---
% Meshfree discretization
% ---

% Algorithm for computation of neighbor areas
AlgName = 'FA'; % FA algorithm

Springer Nature 2021 LATEX template

PDMATLAB2D 59

% ---
% Problem settings
% ---

% ------------------
% Body force density
% ------------------

% Compute dy
dy = (Yn - Yo)/Ny;

% Traction amplitude
sigma = 2E6; % [Pa] : 2 MPa

bvfunc = @(x,y,t) (0.*x + 0.*y)*t; % x-component of
% body force density

bwfunc = @(x,y,t) (abs(y) > Yn - dy).*sigma.*sign(y)/dy; % y-component of
% body force density

% ------------------
% Initial conditions
% ------------------

% Initial displacement functions

vofunc = @(x,y) 0.*x + 0.*y; % x-component of initial displacement
wofunc = @(x,y) 0.*x + 0.*y; % y-component of initial displacement

% Initial velocity functions

Vvofunc = @(x,y) 0.*x + 0.*y; % x-component of initial velocity
Vwofunc = @(x,y) 0.*x + 0.*y; % y-component of initial velocity

% -------------------
% No-fail zone
% -------------------

% No-fail function
nofailfunc = @(x,y) (abs(y) > Yn - del);

% ------------------
% Prenotch
% ------------------

% Xc1 Yc1 Xc2 Yc2
PreNotchCoordinates = [-0.05 0.0 0.0 0.0];

% ---
% Postprocessing
% ---

% Flag for plotting during time integration
flag_DynamicPlotting = 1;

% Frequency of plotting during time integration
DynamicPlotFrequency = 40; % Plot every 40 time steps

% (beginning from the first one)

% Frequency of time-integration step display
TimeStepDisplayFrequency = 20;

Springer Nature 2021 LATEX template

60 PDMATLAB2D

% Flag for plotting at final time
flag_FinalPlots = 1;

% Plot settings
% Field Name Field variable Colorbar title
PlotSettings = {'StrainEnergyDensity' , 'log10(W)' , '$\log_10(W)$',

Point size Colormap limits Colormap Axes limits
8 , [0 3.5] , 'jet' , [Xo Xn Yo Yn] ,

Configuration
'Reference';
Field Name Field variable Colorbar title
'Damage' , 'phi' , 'φ' ,

Point size Colormap limits Colormap Axes limits
8 , [0 0.4] , 'parula' , [Xo Xn Yo Yn] ,

Configuration
'Reference' };

% Flag to visualize pre-notch as damaged
flag_DamagedPrenotches = 1;

% ---

Declarations

Ethical Approval. Not applicable

Competing interests. The authors have no competing interests to declare
that are relevant to the content of this article.

Authors’ contributions. P.S. led the overall code development and paper
writeup, supervised Y.J. on the writing of the initial version of the code and
numerical examples, worked with M.P. on updating the initial version of the
code, wrote most of the sections of the paper, and performed the analytical
derivations. M.P. assisted in updating the initial version of the code as well
as on the writeup of many sections of the paper, and he wrote the initial
version of the numerical examples’ sections. Y.J. wrote the initial version of
the code and numerical examples. J.T. wrote the appendix of the paper on the
intersection of two line segments and an initial version of some visualization
functions, and he optimized and cleaned up several parts of the code. S.T.R
wrote the literature review of peridynamics codes and handled the software
version control and release. All authors reviewed the manuscript.

Funding. Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory, managed by UT-
Battelle, LLC for the US Department of Energy under contract DE-AC05-
00OR22725. This work was supported in part by the U.S. Department of
Energy, Office of Science, Office of Workforce Development for Teachers and
Scientists (WDTS) under the Science Undergraduate Laboratory Internship
program.

Availability of data and materials. The code described in this work
is openly available: https://github.com/ORNL/PDMATLAB2D, including

https://github.com/ORNL/PDMATLAB2D

Springer Nature 2021 LATEX template

PDMATLAB2D 61

direct reproduction of the numerical examples and demonstrations within the
paper.

References

[1] Silling, S.A.: Reformulation of elasticity theory for discontinuities and
long-range forces. Journal of the Mechanics and Physics of Solids 48(1),
175–209 (2000). https://doi.org/10.1016/S0022-5096(99)00029-0

[2] Dahal, B., Seleson, P., Trageser, J.: The evolution of the peridynamics
co-authorship network. Journal of Peridynamics and Nonlocal Modeling
(2022). https://doi.org/10.1007/s42102-022-00082-5

[3] Parks, M.L., Lehoucq, R.B., Plimpton, S.J., Silling, S.A.: Implement-
ing peridynamics within a molecular dynamics code. Computer Physics
Communications 179(11), 777–783 (2008). https://doi.org/10.1016/j.cpc.
2008.06.011

[4] Parks, M.L., Seleson, P., Plimpton, S.J., Silling, S.A., Lehoucq, R.B.:
Peridynamics with LAMMPS: A user guide v0.3 beta. Technical Report
SAND2011-8523, Sandia National Laboratories, Albuquerque, New Mex-
ico 87185 and Livermore, California 94550 (November 2011). https://doi.
org/10.2172/1031301

[5] Thompson, A.P., Aktulga, H.M., Berger, R., Bolintineanu, D.S., Brown,
W.M., Crozier, P.S., in ’t Veld, P.J., Kohlmeyer, A., Moore, S.G., Nguyen,
T.D., Shan, R., Stevens, M.J., Tranchida, J., Trott, C., Plimpton, S.J.:
LAMMPS - a flexible simulation tool for particle-based materials mod-
eling at the atomic, meso, and continuum scales. Computer Physics
Communications 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.
108171

[6] Plimpton, S.J., Kohlmeyer, A., Thompson, A.P., Moore, S.G., Berger, R.:
LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator.
https://doi.org/10.5281/zenodo.3726416

[7] Parks, M.L., Littlewood, D.J., Mitchell, J.A., Silling, S.A.: Peridigm users’
guide v1.0.0. Technical Report SAND2012-7800, Sandia National Labora-
tories, Albuquerque, New Mexico 87185 and Livermore, California 94550
(September 2012). https://doi.org/10.2172/1055619

[8] Peridigm. https://github.com/peridigm/peridigm

[9] Heroux, M.A., Willenbring, J.M.: A new overview of the Trilinos project.
Scientific Programming 20(2), 83–88 (2012). https://doi.org/10.3233/
SPR-2012-0355

https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1007/s42102-022-00082-5
https://doi.org/10.1016/j.cpc.2008.06.011
https://doi.org/10.1016/j.cpc.2008.06.011
https://doi.org/10.2172/1031301
https://doi.org/10.2172/1031301
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.5281/zenodo.3726416
https://doi.org/10.2172/1055619
https://github.com/peridigm/peridigm
https://doi.org/10.3233/SPR-2012-0355
https://doi.org/10.3233/SPR-2012-0355

Springer Nature 2021 LATEX template

62 PDMATLAB2D

[10] Jafarzadeh, S., Mousavi, F., Bobaru, F.: PeriFast/Dynamics: a MATLAB
code for explicit fast convolution-based peridynamic analysis of defor-
mation and fracture (2022). https://doi.org/10.21203/rs.3.rs-2019917/
v1

[11] Wang, L., Jafarzadeh, S., Bobaru, F.: PeriFast/Corrosion: a 3D pseudo-
spectral peridynamic Matlab code for corrosion (2022). https://doi.org/
10.21203/rs.3.rs-2046856/v1

[12] PeriFast. https://github.com/PeriFast/Code

[13] Han, F., Li, Z.: A peridynamics-based finite element method (PeriFEM)
for quasi-static fracture analysis. Acta Mechanica Solida Sinica 35(3),
446–460 (2022). https://doi.org/10.1007/s10338-021-00307-y

[14] Jha, P.K., Desai, P.S., Bhattacharya, D., Lipton, R.: Peridynamics-based
discrete element method (PeriDEM) model of granular systems involv-
ing breakage of arbitrarily shaped particles. Journal of the Mechanics
and Physics of Solids 151, 104376 (2021). https://doi.org/10.1016/j.jmps.
2021.104376

[15] Jha, P.K.: PeriDEM. https://doi.org/10.5281/zenodo.4733259

[16] Li, X., Ye, H., Zhang, J.: Large-scale simulations of peridynamics on
Sunway Taihulight supercomputer. In: 49th International Conference
on Parallel Processing-ICPP, pp. 1–11 (2020). https://doi.org/10.1145/
3404397.3404421

[17] Wang, X., Wang, Q., An, B., He, Q., Wang, P., Wu, J.: A GPU paral-
lel scheme for accelerating 2D and 3D peridynamics models. Theoretical
and Applied Fracture Mechanics 121, 103458 (2022). https://doi.org/10.
1016/j.tafmec.2022.103458

[18] Zhong, J., Han, F., Zhang, L.: Accelerated peridynamic computation
on GPU for quasi-static fracture simulations (2022). https://doi.org/10.
21203/rs.3.rs-1937120/v1

[19] Mossaiby, F., Shojaei, A., Zaccariotto, M., Galvanetto, U.: OpenCL
implementation of a high performance 3D Peridynamic model on graph-
ics accelerators. Computers & Mathematics with Applications 74(8),
1856–1870 (2017). https://doi.org/10.1016/j.camwa.2017.06.045

[20] Boys, B., Dodwell, T.J., Hobbs, M., Girolami, M.: PeriPy-A high per-
formance OpenCL peridynamics package. Computer Methods in Applied
Mechanics and Engineering 386, 114085 (2021). https://doi.org/10.1016/
j.cma.2021.114085

https://doi.org/10.21203/rs.3.rs-2019917/v1
https://doi.org/10.21203/rs.3.rs-2019917/v1
https://doi.org/10.21203/rs.3.rs-2046856/v1
https://doi.org/10.21203/rs.3.rs-2046856/v1
https://github.com/PeriFast/Code
https://doi.org/10.1007/s10338-021-00307-y
https://doi.org/10.1016/j.jmps.2021.104376
https://doi.org/10.1016/j.jmps.2021.104376
https://doi.org/10.5281/zenodo.4733259
https://doi.org/10.1145/3404397.3404421
https://doi.org/10.1145/3404397.3404421
https://doi.org/10.1016/j.tafmec.2022.103458
https://doi.org/10.1016/j.tafmec.2022.103458
https://doi.org/10.21203/rs.3.rs-1937120/v1
https://doi.org/10.21203/rs.3.rs-1937120/v1
https://doi.org/10.1016/j.camwa.2017.06.045
https://doi.org/10.1016/j.cma.2021.114085
https://doi.org/10.1016/j.cma.2021.114085

Springer Nature 2021 LATEX template

PDMATLAB2D 63

[21] PeriPy. https://github.com/alan-turing-institute/PeriPy

[22] Jha, P.K., Diehl, P.: NLMech: Implementation of finite difference/mesh-
free discretization of nonlocal fracture models. Journal of Open Source
Software 6(65), 3020 (2021). https://doi.org/10.21105/joss.03020

[23] Diehl, P., Jha, P.K.: NLMech: Release for the JOSS Paper. https://doi.
org/10.5281/zenodo.5532697

[24] Reeve, S., Seleson, P.: CabanaPD. https://doi.org/10.5281/zenodo.
7087781

[25] Dark, J., Sansom, K., Littlewood, D., Trageser, J., Wolf, I., Patton, C.:
Peridot (2019). https://doi.org/10.11578/dc.20191118.1

[26] Silling, S.A., Askari, E.: A meshfree method based on the peridynamic
model of solid mechanics. Computers & Structures 83(17–18), 1526–1535
(2005). https://doi.org/10.1016/j.compstruc.2004.11.026

[27] Emmrich, E., Weckner, O.: The peridynamic equation and its spatial dis-
cretisation. Mathematical Modelling and Analysis 12(1), 17–27 (2007).
https://doi.org/10.3846/1392-6292.2007.12.17-27

[28] Chen, X., Gunzburger, M.: Continuous and discontinuous finite element
methods for a peridynamics model of mechanics. Computer Methods in
Applied Mechanics and Engineering 200(9–12), 1237–1250 (2011). https:
//doi.org/10.1016/j.cma.2010.10.014

[29] Ren, B., Wu, C.T., Askari, E.: A 3D discontinuous Galerkin finite element
method with the bond-based peridynamics model for dynamic brittle
failure analysis. International Journal of Impact Engineering 99, 14–25
(2017). https://doi.org/10.1016/j.ijimpeng.2016.09.003

[30] Pasetto, M., Leng, Y., Chen, J.-S., Foster, J.T., Seleson, P.: A reproducing
kernel enhanced approach for peridynamic solutions. Computer Methods
in Applied Mechanics and Engineering 340, 1044–1078 (2018). https://
doi.org/10.1016/j.cma.2018.05.010

[31] Trask, N., You, H., Yu, Y., Parks, M.L.: An asymptotically compati-
ble meshfree quadrature rule for nonlocal problems with applications to
peridynamics. Computer Methods in Applied Mechanics and Engineering
343, 151–165 (2019). https://doi.org/10.1016/j.cma.2018.08.016

[32] Shojaei, A., Hermann, A., Cyron, C.J., Seleson, P., Silling, S.A.: A hybrid
meshfree discretization to improve the numerical performance of peridy-
namic models. Computer Methods in Applied Mechanics and Engineering
391, 114544 (2022). https://doi.org/10.1016/j.cma.2021.114544

https://github.com/alan-turing-institute/PeriPy
https://doi.org/10.21105/joss.03020
https://doi.org/10.5281/zenodo.5532697
https://doi.org/10.5281/zenodo.5532697
https://doi.org/10.5281/zenodo.7087781
https://doi.org/10.5281/zenodo.7087781
https://doi.org/10.11578/dc.20191118.1
https://doi.org/10.1016/j.compstruc.2004.11.026
https://doi.org/10.3846/1392-6292.2007.12.17-27
https://doi.org/10.1016/j.cma.2010.10.014
https://doi.org/10.1016/j.cma.2010.10.014
https://doi.org/10.1016/j.ijimpeng.2016.09.003
https://doi.org/10.1016/j.cma.2018.05.010
https://doi.org/10.1016/j.cma.2018.05.010
https://doi.org/10.1016/j.cma.2018.08.016
https://doi.org/10.1016/j.cma.2021.114544

Springer Nature 2021 LATEX template

64 PDMATLAB2D

[33] Seleson, P., Pasetto, M., John, Y., Trageser, J.: PDMATLAB2D: Ver-
sion 1.0. https://doi.org/10.5281/zenodo.7348668

[34] Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A. (eds.): Handbook
of Peridynamic Modeling, 1st edn. Chapman and Hall/CRC, New York,
NY (2016). https://doi.org/10.1201/9781315373331

[35] Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic
states and constitutive modeling. Journal of Elasticity 88(2), 151–184
(2007). https://doi.org/10.1007/s10659-007-9125-1

[36] Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. In:
Aref, H., van der Giessen, E. (eds.) Advances in Applied Mechanics.
Advances in Applied Mechanics, vol. 44, pp. 73–168. Elsevier, Amster-
dam, The Netherlands (2010). https://doi.org/10.1016/S0065-2156(10)
44002-8

[37] Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications,
1st edn. Springer, New York, NY (2014). https://doi.org/10.1007/
978-1-4614-8465-3

[38] Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of plain and
reinforced concrete structures. In: 18th International Conference on Struc-
tural Mechanics in Reactor Technology (SMiRT 18), pp. 54–68 (2005).
http://www.lib.ncsu.edu/resolver/1840.20/31420

[39] Seleson, P., Parks, M.: On the role of the influence function in
the peridynamic theory. International Journal for Multiscale Com-
putational Engineering 9(6), 689–706 (2011). https://doi.org/10.1615/
IntJMultCompEng.2011002527

[40] Seleson, P.D.: Peridynamic multiscale models for the mechanics of materi-
als: constitutive relations, upscaling from atomistic systems, and interface
problems. PhD thesis, The Florida State University (2010). http://purl.
flvc.org/fsu/fd/FSU migr etd-0273

[41] Foster, J.T., Silling, S.A., Chen, W.: An energy based failure criterion for
use with peridynamic states. International Journal for Multiscale Com-
putational Engineering 9(6), 675–688 (2011). https://doi.org/10.1615/
IntJMultCompEng.2011002407

[42] Seleson, P.: Improved one-point quadrature algorithms for two-
dimensional peridynamic models based on analytical calculations. Com-
puter Methods in Applied Mechanics and Engineering 282, 184–217
(2014). https://doi.org/10.1016/j.cma.2014.06.016

https://doi.org/10.5281/zenodo.7348668
https://doi.org/10.1201/9781315373331
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1016/S0065-2156(10)44002-8
https://doi.org/10.1016/S0065-2156(10)44002-8
https://doi.org/10.1007/978-1-4614-8465-3
https://doi.org/10.1007/978-1-4614-8465-3
http://www.lib.ncsu.edu/resolver/1840.20/31420
https://doi.org/10.1615/IntJMultCompEng.2011002527
https://doi.org/10.1615/IntJMultCompEng.2011002527
http://purl.flvc.org/fsu/fd/FSU_migr_etd-0273
http://purl.flvc.org/fsu/fd/FSU_migr_etd-0273
https://doi.org/10.1615/IntJMultCompEng.2011002407
https://doi.org/10.1615/IntJMultCompEng.2011002407
https://doi.org/10.1016/j.cma.2014.06.016

Springer Nature 2021 LATEX template

PDMATLAB2D 65

[43] Seleson, P., Littlewood, D.J.: Convergence studies in meshfree peridy-
namic simulations. Computers & Mathematics with Applications 71(11),
2432–2448 (2016). https://doi.org/10.1016/j.camwa.2015.12.021

[44] Seleson, P., Littlewood, D.J.: In: Voyiadjis, G.Z. (ed.) Numerical Tools for
Improved Convergence of Meshfree Peridynamic Discretizations, pp. 1–27.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-22977-5 39-1

[45] Bobaru, F., Ha, Y.D.: Adaptive refinement and multiscale model-
ing in 2D peridynamics. International Journal for Multiscale Com-
putational Engineering 9(6), 635–660 (2011). https://doi.org/10.1615/
IntJMultCompEng.2011002793

[46] Yu, K., Xin, X.J., Lease, K.B.: A new adaptive integration method for the
peridynamic theory. Modelling and Simulation in Materials Science and
Engineering 19(4), 045003 (2011). https://doi.org/10.1088/0965-0393/
19/4/045003

[47] Zheng, G., Wang, J., Shen, G., Xia, Y., Li, W.: A new quadrature
algorithm consisting of volume and integral domain corrections for
two-dimensional peridynamic models. International Journal of Fracture
229(1), 39–54 (2021). https://doi.org/10.1007/s10704-021-00540-z

[48] Scabbia, F., Zaccariotto, M., Galvanetto, U.: Accurate computation of
partial volumes in 3D peridynamics. Engineering with Computers (2022).
https://doi.org/10.1007/s00366-022-01725-3

[49] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illus-
trated by the Störmer–Verlet method. Acta Numerica 12, 399–450 (2003).
https://doi.org/10.1017/S0962492902000144

[50] Seleson, P., Parks, M.L., Gunzburger, M., Lehoucq, R.B.: Peridynamics
as an upscaling of molecular dynamics. Multiscale Modeling & Simulation
8(1), 204–227 (2009). https://doi.org/10.1137/09074807X

[51] Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack
branching with peridynamics. International Journal of Fracture 162(1-2),
229–244 (2010). https://doi.org/10.1007/s10704-010-9442-4

[52] F. Bobaru, G. Zhang: Why do cracks branch? A peridynamic investigation
of dynamic brittle fracture. International Journal of Fracture 196, 59–98
(2015). https://doi.org/10.1007/s10704-015-0056-8

[53] Trageser, J., Seleson, P.: Bond-based peridynamics: A tale of two Poisson’s
ratios. Journal of Peridynamics and Nonlocal Modeling 2(3), 278–288
(2020). https://doi.org/10.1007/s42102-019-00021-x

https://doi.org/10.1016/j.camwa.2015.12.021
https://doi.org/10.1007/978-3-319-22977-5_39-1
https://doi.org/10.1615/IntJMultCompEng.2011002793
https://doi.org/10.1615/IntJMultCompEng.2011002793
https://doi.org/10.1088/0965-0393/19/4/045003
https://doi.org/10.1088/0965-0393/19/4/045003
https://doi.org/10.1007/s10704-021-00540-z
https://doi.org/10.1007/s00366-022-01725-3
https://doi.org/10.1017/S0962492902000144
https://doi.org/10.1137/09074807X
https://doi.org/10.1007/s10704-010-9442-4
https://doi.org/10.1007/s10704-015-0056-8
https://doi.org/10.1007/s42102-019-00021-x

Springer Nature 2021 LATEX template

66 PDMATLAB2D

[54] Goldman, R.: Intersection of two lines in three-space. In: Glassner, A.S.
(ed.) Graphics Gems, p. 304. Morgan Kaufmann, San Diego. CA (1990).
https://doi.org/10.1016/B978-0-08-050753-8.50064-4

[55] Ongaro, G., Seleson, P., Galvanetto, U., Ni, T., Zaccariotto, M.: Over-
all equilibrium in the coupling of peridynamics and classical continuum
mechanics. Computer Methods in Applied Mechanics and Engineering
381, 113515 (2021). https://doi.org/10.1016/j.cma.2020.113515

https://doi.org/10.1016/B978-0-08-050753-8.50064-4
https://doi.org/10.1016/j.cma.2020.113515

	Introduction
	Bond-based peridynamics
	The generalized PMB model
	Influence functions

	Meshfree PD discretization

	PDMATLAB2D code structure and functions
	GridGenerator
	Generation of complex shapes
	L-shape domain
	Circular domain
	Square domain with a circular hole at its center

	NeighborList
	Uniform grids over rectangular domains
	General grids

	NeighborAreaBondLengthCoord
	Computation of the neighbor area
	Computation of the coordinates of the quadrature point

	InfluenceFunction

	PreNotch
	SegmentsIntersection

	PDBondConstants
	ForceEnergyDensity
	Uniform grids over rectangular domains
	General grids

	TimeIntegrator
	BondBreaking

	PlotField

	Numerical Examples
	Wave propagation
	Crack branching

	Guidance for Code Extensions
	Computing additional per-bond quantities
	Using a different neighborhood shape
	Changing the influence function
	Changing the constitutive model
	Changing the time-integration scheme
	Changing the bond-breaking criterion

	Summary
	Acknowledgments

	Derivation of a microelastic bond-based PD model
	Derivation of maximum perturbation in GridGenerator
	Derivation of c and s0
	Micromodulus constant
	Critical stretch

	Quadratic deformation test for the ForceEnergyDensity function
	Intersection of two line segments
	Line segments are parallel (r s = 0):
	Line segments are not parallel (r s) =0:

	Numerical computation of the internal force density and macroelastic energy density
	Numerical computation of the fracture energy
	Input decks for numerical examples
	WavePropagation input deck
	CrackBranching input deck
	Ethical Approval
	Competing interests
	Authors' contributions
	Funding
	Availability of data and materials

