Best practices for documenting a scientific Python
project

Gavin M. Wiggins, Gregory Cage, Robert Smith, Seth Hitefield, Marshall McDonnell,
Lance Drane, Jesse McGaha, Michael Brim, Mark Abraham, Richard Archibald
and Addi Malviya-Thakur
Oak Ridge National Laboratory, Oak Ridge, TN USA

Abstract—Documentation is a crucial component of software
development that helps users with installation and usage of
the software. Documentation also helps onboard new developers
to a software project with contributing guidelines and API
information. Without the right tools, generating documentation
can be laborious and distract from code development. The IN-
TERSECT SDK project is an open federated hardware/software
library to facilitate the development of autonomous laboratories.
A documentation strategy using Sphinx has been utilized to
help developers contribute to the source code and help users
understand the INTERSECT SDK Python interface. Docstrings
as well as reStructuredText files are used by Sphinx to generate
HTML and PDF files, which can be hosted online as API
documentation and user guides. The resulting documentation
website is automatically built and deployed using GitLab runners
to create Docker containers with NGINX servers. The approach
discussed in this paper to automatically deploy documentation for
a Python project can improve the user and developer experience
for many scientific projects.

Index Terms—python, documentation, style, formatting, linting

I. INTRODUCTION

Documentation is a crucial component of software develop-
ment and is considered good practice for scientific computing
[1]. For users, it communicates the purpose of the software, as
well as instructions on how to install and use it. Documentation
can help developers onboard new developers by providing con-
tributing guidelines and API information. However, generating
and maintaining documentation can be a burdensome task for
developers and distract from code development.

In this paper, we develop a strategy for providing continu-
ous deployment of documentation for the INTERSECT SDK
Python library to help alleviate tedious documentation tasks.
The INTERSECT SDK project [3], part of Oak Ridge National
Laboratory’s Interconnected Science Initiative [2], is an open
hardware/software library for autonomous laboratories. It uti-
lizes a system of systems and microservices architecture [4],
facilitating seamless collaboration and efficient data sharing
among labs. Clear and easily accessed documentation of its

Notice: This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-000R22725 with the U.S. Department of Energy.
The publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a non-exclusive, paid up, irrevocable, world-
wide license to publish or reproduce the published form of the manuscript, or
allow others to do so, for U.S. Government purposes. The DOE will provide
public access to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

Presented at USRSE2023, Chicago, IL, October 16-18, 2023.

Application Programming Interface (API) is a necessity for
scientific users. We describe a set of coding practices which
provide up-to-date documentation via continuous deployment
to automatically build websites based on source code and
docstrings. The goal of this approach is to allow developers to
focus on code development instead of writing and maintaining
documentation while adhering to best practices for Python
programming.

II. CODING STYLE

Style guides, linters, and formatters help developers main-
tain a coherent code base that can be easily documented. Also,
“clean code” can be enforced via automatic application of
these tools via continuous integration workflows. The sections
below describe the tools utilized by INTERSECT SDK for
code development and documentation.

A. General style

The PEP 8 Style Guide is adhered to for general Python
coding conventions [5]. A style guide defines naming conven-
tions, line length, indentation, and other recommendations for
code quality and readability. By following the best practices
outlined in the PEP 8§ style guide, developers can more easily
maintain code because it is readable and well commented.

B. Linting and formatting

To enforce a coding style such as PEP 8§, the flake§ linter is
used via command-line or as an extension/plug-in for code
editors and IDEs [6]. A linter improves code quality by
issuing warnings and errors for unused imports and variables,
misaligned indentations, missing docstrings, and deviations
from the style guide. In addition to the linter, a formatter tool
named black ensures consistent code formatting throughout the
project [7]. The linter and formatter tools are implemented
in Continuous Integration (CI) workflows to enforce well-
written production code; for example, the CI uses the linter
and formatter results to check a pull request for code style and
formatting before it can be merged to a production branch.

C. Docstrings

Docstrings are comments in Python code that help users and
developers with documentation. The NumPy style guide [11]
is often used for scientific projects for formatting docstrings in
classes, functions, and modules to provide clear communica-
tion of the usage, effects, inputs, and outputs of the code. The

Google style guide [12] is another format commonly used for
Python docstrings. The INTERSECT SDK developers chose
the Google style because of its more compact design compared
to the NumPy style. The use of a standardized format ensures
that the library’s documentation is consistent across the entire
API. The Sphinx tool uses these docstrings to automatically
generate HTML and PDF documentation.

III. GENERATING DOCUMENTATION

Tools such as Doxygen [13], pdoc [14], and Sphinx [15]
can generate documentation for Python projects. However,
Sphinx is preferred because it is the most comprehensive (and
recommended) documentation generator for Python, it sup-
ports the NumPy and Google docstring styles, and has many
professional HTML themes. Sphinx uses reStructuredText (rst)
or Markdown (md) files to automatically generate HTML to
publish documentation online. While Sphinx can be used for
self-hosted documentation, services such as Read the Docs
[16] will automatically build and host the documentation. The
INTERSECT SDK project uses Sphinx to automatically create
API documentation from Python docstrings which allows
developers to write documentation directly in the source code.
Without a tool like Sphinx, developers would have to write
API documentation twice: as docstrings in the code and as
external documentation pages. Such a manual approach is time
intensive and a burden to maintain.

The tree diagram shown in Figure 1 demonstrates a typical
project structure for a Python package. The source code
for the package is located in the src directory, while the
documentation files are in the docs directory. Sphinx uses
the files in the docs directory to build the documentation
related to the Python package. Notice the func.rst file
which is used by Sphinx to automatically generate the API
documentation for the code contained in func.py. This
project structure is utilized by INTERSECT SDK but it should
be applicable to many scientific code bases.

my_project/

|-— docs/

| | -— index.rst

| |-— conf.py

| | == func.rst
|-— src/

| | -— my_package/
| |-— __init___.py
| |-— func.py
|-— tests/

| -— pyproject.toml
| -— LICENSE.md

| -—— README.md

Figure 1. Basic structure of a Python project with Sphinx documentation.

All of the API generation is achieved through the Sphinx
autodoc extension [17]. This extension requires a level of
initial setup, but afterward automatically picks up changes
within different files in the project it is being used in. For
INTERSECT SDK, this setup was the creation of various rst
files that correspond to the various Python files in the project.

These rst files are placed inside a dedicated documentation
directory for organization.

The rst files contain configurations telling the autodoc ex-
tension which class this file should document, the descriptions
that will appear alongside the documentation, and statements
that control exactly which parts of the Python code will be
included. After all the rst files are created, by running Sphinx
along with its autodoc extension, documentation pages are
created for each code file. Since Sphinx can build the doc-
umentation locally, developers can easily review their changes
before pushing their documentation to production. Users can
provide feedback on published documentation by submitting
labeled issues on the repository. By integrating Sphinx into
our continuous deployment, we are able to automatically
generate the documentation without manual intervention from
developers.

IV. CONTINUOUS DEPLOYMENT

The INTERSECT SDK project uses an internal GitLab
instance for managing the code repositories. GitLab runners
start build jobs on each commit to the development branches.
Docker [8] containers are built containing NGINX [9] web
servers, and saved to the GitLab Container Registry. Sphinx is
run to generate the HTML pages to be served by NGINX.
Helm charts [18] are published and pushed to the GitLab
Package Registry; they are configured in a dedicated chart
directory. Once the containers and charts have been built, a
GitLab trigger can start a job in a dedicated deployments
repository. This deployments repository utilizes the Helm
umbrella chart concept [19] to deploy an entire configurable
INTERSECT instance made up of many individual Helm
charts. These individual Helm Charts and the umbrella chart
can be utilized on any Kubernetes [10] cluster. This allows
for reuse across any cloud platform that supports managed
Kubernetes or on “bare metal” installs of Kubernetes.

V. CONCLUSION

We have described a set of best practices that produce
legible and up-to-date documentation for a scientific Python
project. This strategy is easily generalized to other scientific
libraries, as there is a one-time cost associated with creating
the deployment pipeline to stand up the web server. Once that
is completed, merely adhering to good code commenting and
styling practices is sufficient to maintain the library’s docu-
mentation. Thus, the strategy can be easily applied to any code
base written in Python. The resulting documentation is easily
accessible and readable by the API’s users and developers.
This approach also creates a PDF of the documentation for
offline viewing; therefore, eliminating the need for developers
to write separate documentation in Microsoft Word or LaTeX.
Overall, the implementation of these best practices not only
enhances the accessibility and readability of the documentation
for a scientific Python project like INTERSECT SDK but also
significantly impacts the wider adoption and long-term value
of the software within the scientific community.

REFERENCES

[1] Greg Wilson et al. Good enough practices in scientific com-
puting. PLOS Computational Biology, vol. 13, pp. 1-20, 2017.
https://doi.org/10.1371/journal.pcbi. 1005510

[2] Oak Ridge National Laboratory, “Interconnected science ecosys-
tem website,” https://www.ornl.gov/intersect, 2023, (Accessed on
05/02/2023).

[3] Thakur, A.M. et al. (2022). Towards a Software Development Frame-
work for Interconnected Science Ecosystems. In: Accelerating Science
and Engineering Discoveries Through Integrated Research Infrastruc-
ture for Experiment, Big Data, Modeling and Simulation. SMC 2022.
https://doi.org/10.1007/978-3-031-23606-8_13

[4] Engelmann, C. et al.(2022). The intersect open federated architecture for
the laboratory of the future,” in Accelerating Science and Engineering
Discoveries Through Integrated Research Infrastructure for Experiment,
Big Data, Modeling and Simulation. SMC 2022.

[5] PEP 8 Style Guide for Python Code. https://peps.python.org/pep-0008/.
Accessed May 3, 2023.

[6] Flake8: Your Tool For Style Guide Enforcement. Flake 8 v6.0 docu-
mentation. https://flake8.pycqa.org/en/latest/. Accessed May 3, 2023.

[7]1 Black: The Uncompromising Code Formatter. Black 23.3 documenta-
tion. https://black.readthedocs.io/en/stable/. Accessed May 8, 2023.

[8] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 239, pp. 2, March 2014.

[9] Nginx documentation. https://nginx.org/en/docs/. Accessed May 15,
2023.

[10] Kubernetes for automating deployment, scaling, and management of
containerized applications. https://kubernetes.io. Accessed May 15,
2023.

[11] NumPy Style Guide. https://numpydoc.readthedocs.io/en/latest/format.html.
Accessed June 30, 2023.

[12] Google Python Style Guide. https://google.github.io/styleguide/pyguide.html.
Accessed April 27, 2023.

[13] Doxygen. https://www.doxygen.nl/index.html. Accessed June 30, 2023.

[14] Pdoc API documentation for Python. https://pdoc.dev. Accessed June
30, 2023.

[15] Sphinx Python Documentation Generator. https://www.sphinx-
doc.org/en/master/. Accessed May 3, 2023.

[16] Read the Docs. https://readthedocs.org. Accessed May 3, 2023.

[17] Autodoc extension for the Sphinx documentation generator.
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html.
Accessed May 4, 2023

[18] Helm Charts for Kubernetes Package Management. https://helm.sh/,
Accessed May 9, 2023.

[19] Helm Umbrella Chart Concept from “Tips and Tricks:
Complex Charts with Many Dependencies” Helm Website.
https://helm.sh/docs/howto/charts_tips_and_tricks/#complex-charts-
with-many-dependencies. Accessed May 9, 2023.

