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We have placed a major emphasis, as planned, on atomically dispersed supported metal catalysts. 
We wrote recent perspectives and reviews on this topic for Trends in Chemistry, Chemical Reviews, 
Small, and Precision Chemistry, which place the field in perspective and provide details in addition 
to those summarized here. 
Samples with low loadings of metal on well-defined supports provide some of the best 
opportunities to determine metal–support structure and bonding. We illustrate methods for 
characterizing atomically dispersed heavy metals on metal oxide supports by aberration-corrected 
scanning transmission electron microscopy (STEM) complemented by fluorescence-detection 
extended X-ray absorption fine structure (EXAFS) and infrared spectroscopies. STEM images of 
Ir atoms derived from Ir(C2H4)2(acac) (acac = acetonato) on high-surface area MgO powder were 
obtained with minimized electron beam damage by quickly recording images near where focus 
had been established. The images show that iridium at a loading of 1.0 wt% on MgO calcined at 
1073 K was atomically dispersed, populating much of the surface of the MgO particles, which had 
irregular shapes—consequently the iridium was bonded at various sites, to 2 or 3 surface O atoms. 
In contrast, MgO calcined at 1273 K consisted of almost perfectly cubic crystals, and Ir atoms at 
a loading of only 0.01 wt% on this nearly ideal support were anchored preferentially at edges and 
corners of (100) faces and bonded to 3 surface O atoms. The latter results indicate a path forward 
for determination of precise structures of atomically dispersed metals on crystalline metal oxide 
supports. 
Supported catalysts that are important in technology prominently include atomically dispersed 
metals and metal clusters. When the metals are noble, they are typically unstable—susceptible to 
sintering—especially under reducing conditions. Embedding the metals in supports such as 
organic polymers, metal oxides, and zeolites confers stability on the metals, but at the cost of 
catalytic activity associated with the lack of accessibility of metal bonding sites to reactants. An 
approach to stabilizing noble metal catalysts while maintaining their accessibility involves 
anchoring them in molecular-scale nests that are in or on supports. The nests include zeolite pore 
mouths; zeolite surface cups (half-cages); raft-like islands of oxophilic metals bonded to metal 
oxide supports; clusters of non-noble metals (e.g., hosting noble metals as single-atom alloys); and 
nano-scale metal oxide islands that selectively bond to the catalytic metals, isolating them from 
the support. These examples illustrate a trend toward precision in synthesis of solid catalysts, and 
the latter two classes of nested catalysts offer realistic prospects for economical large-scale 
application. 
Single-site Ir(CO)2 complexes bonded to high-surface-area metal oxide supports, SiO2, TiO2, 
Fe2O3, CeO2, MgO, and La2O3, were synthesized by chemisorption of Ir(CO)2(acac) (acac = 
acetylacetonate) followed by coating with each of the following ionic liquids (ILs): 1-n-butyl-3-
methylimidazolium tetrafluoroborate, [BMIM][BF4], 1-n-butyl-3-methylimidazolium acetate, 
[BMIM][Ac], and 1-(3-cyanopropyl)-3-methylimidazolium dicyanamide, [CPMIM][DCA]. 
Extended X-ray absorption fine structure spectroscopy showed that site-isolated iridium was 
bonded to oxygen atoms of the support. Electron densities on the iridium enveloped by each IL 
sheath/support combination were characterized by carbonyl infrared spectroscopy of the 
iridium gem-dicarbonyls and by X-ray absorption near-edge structure data. The electron-
donor/acceptor tendencies of both the support and IL determine the activity and selectivity of the 
catalysts for the hydrogenation of 1,3-butadiene, with electron-rich iridium being selective for 
partial hydrogenation. The results resolve the effects of the IL and support as ligands; for example, 
the effect of the IL becomes dominant when the support has a weak electron-donor character. The 
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combined effects of supports and ILs as ligands offer broad opportunities for tuning catalytic 
properties of supported metal catalysts. 
Atomically dispersed iridium complexes were anchored on a reduced graphene aerogel (rGA) by 
the reaction of Ir(CO)2(acac) with oxygen-containing groups on the rGA. Characterization by X-
ray absorption, infrared, and X-ray photoelectron spectroscopies and atomic resolution aberration-
corrected scanning transmission electron microscopy demonstrates atomically dispersed iridium, 
at the remarkably high loading of 14.8 wt %. The rGA support offers sites for metal bonding 
comparable to those of metal oxides, but with the advantages of high density and a relatively high 
degree of uniformity, as indicated by the same turnover frequencies for catalytic hydrogenation of 
ethylene at low and high iridium loadings. The atomic dispersion at a high metal loading—and the 
high density of catalytic sites per unit of reactor volume, a key criterion for practical catalysts—
set this catalyst apart from those reported. 
The metal complex (Zr(CH3)4(THF)2) was synthesized, characterized, and grafted onto partially 
dehydroxylated silica to give two surface species [( Si–O–)Zr(CH3)3(THF)2] (minor) and [(
Si–O–)2Zr(CH3)2(THF)2] (major), which have been characterized by solid-state NMR 
spectroscopy, IR spectroscopy, and elemental analysis. These supported pre-catalysts exhibit the 
best conversion of CO2 to cyclic carbonates, as compared to the previously reported catalysts made 
by surface organometallic chemistry. We also worked on a number of other silica-supported 
complexes, including those of tungsten. 
We worked on fundamental understanding of the interconversion of well-defined metal complexes 
and well-defined metal clusters in stabilizing environments, including zeolite cages and ligand 
envelopes. For example, rhodium gem-dicarbonyl complexes, Rh(CO)2, bonded within the pore 
structure of zeolite HY and formed by the reaction of Rh(CO)2(acac) (acac = acetylacetonato) with 
OH groups on the zeolite surface were converted in >95% yield to Rh4(CO)12 by reaction with CO 
+ water at 308 K, and the process was reversed by treatment of the supported clusters in helium at 
353 K. The chemistry of these reactions was characterized by IR and X-ray absorption spectra 
recorded during the changes and by density functional theory. The cluster formation is driven by 
the water gas shift half-reaction, leading to generation of CO2 and zeolite surface protons, and the 
reverse reaction proceeds via the half-reaction that completes the cycle of the water gas shift 
reaction. Thus, the overall process is cyclic–catalytic. The yield in the synthesis of Rh4(CO)12 is 
the highest reported, and the high selectivity is facilitated by the confining environment for the 
clusters in the zeolite supercages and the low density of OH groups on the zeolite surface (the 
zeolite Si:Al atomic ratio was 30). The results provide insights into the first steps of sintering of 
atomically dispersed metals on supports. 
Rh(I)(CO)2 complexes anchored to zeolite HY were converted into Rh4(CO)12 in the zeolite 
supercages upon exposure to flowing CO + H2O at 35 °C, and the chemistry and kinetics were 
characterized with infrared spectroscopy. Rh6(CO)16 formed along with Rh4(CO)12, but only in low 
yield, although it is more stable than Rh4(CO)12. The formation of Rh6(CO)16 was hindered by 
trapping of Rh4(CO)12 in the supercages and by the low rate of transport of the mononuclear 
rhodium species. However, exposure of the sample to wet helium at 80 °C caused the Rh4(CO)12 to 
fragment, generating anchored Rh(I)(CO)2 and also Rh6(CO)16. IR spectra recorded under various 
conditions led to elucidation of the reaction network for cluster formation and breakup and a 
strategy of repetitive treatments that boosted the yield of Rh6(CO)16 to >90%. The reversible 
formation and breakup of the rhodium carbonyl clusters were facilitated by the half-reactions of 
the water gas shift reaction, with gas-phase products identified by mass spectrometry. The results 
show how understanding of the reactions within a zeolite allows control of the nuclearity of 
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encaged metal clusters, an important class of catalyst. 
We investigated metal nanoparticles encapsulated in zeolites. Supported rhodium nanoparticles 
(NPs) are well-known for catalyzing methanation in CO2 hydrogenation. Now we demonstrate that 
the selectivity in this process can be optimized for CO production by choice of molecular sieve 
crystals as supports. The NPs are enveloped within the crystals with controlled nanopore 
environments that allow tuning of the catalytic selectivity to minimize methanation and favor the 
reverse water–gas shift reaction. Pure silica MFI (S-1)-fixed rhodium NPs exhibited maximized 
CO selectivity at high CO2 conversions, whereas aluminosilicate MFI zeolite-supported rhodium 
NPs displayed high methane selectivity under the equivalent conditions. Strong correlations were 
observed between the nanoporous environment and catalytic selectivity, indicating that S-1 
minimizes hydrogen spillover and favors fast desorption of CO to limit deep hydrogenation. 
Materials in this class appear to offer appealing opportunities for tailoring selective supported 
catalysts for a variety of reactions. 
The reaction pathways on supported catalysts can be also tuned by optimizing the structures 
enveloping the catalyst, including amorphous materials. Such a design is particularly desired for 
CO2 hydrogenation, which is characterized by complex pathways and multiple products. We 
reported an investigation of supported cobalt, which is known for its hydrocarbon production 
and ability to turn into a selective catalyst for methanol synthesis in CO2 hydrogenation which 
exhibits good activity and stability. The crucial technique is to use the silica, acting as a support 
and ligand, to modify the cobalt species via Co‒O‒SiOn linkages, which favor the reactivity of 
spectroscopically identified *CH3O intermediates, that more readily undergo hydrogenation to 
methanol than the C‒O dissociation associated with hydrocarbon formation. Cobalt catalysts in 
this class offer appealing opportunities for optimizing selectivity in CO2 hydrogenation and 
producing high-grade methanol. By identifying this function of silica, we provide support for 
rationally controlling these reaction pathways. 
Atomically dispersed supported catalysts are drawing wide attention because they offer properties 
different from those of conventional catalysts, with maximally efficient use of the metals. 
However, the performance of single-site catalysts is often limited by the lack of neighboring metal 
centers to cooperate in catalysis. Thus, there is motivation to extend this class to catalysts 
incorporating isolated metal pairs. We report pairs of iridium atoms on MgO initially stabilized by 
support oxygen and cyclooctadiene ligands and activated by the removal of the latter. These 
catalysts are stable in a range of environments, including CO, H2, and C2H4 + H2 at 298–353 K 
and are more active than analogous single-site catalysts in ethylene hydrogenation and hydrogen–
deuterium exchange because the neighboring metal centers facilitate hydrogen activation. 
Moreover, the pair-site catalysts retain activity even in the presence of CO, which poisons the 
single-site analogues. Supported metal pair-site catalysts open pathways toward understanding and 
applications of supported molecular catalysts. 
Although essentially molecular noble metal species provide active sites and highly tunable 
platforms for the design of supported catalysts, the susceptibility of the metals to reduction and 
aggregation and the consequent loss of catalytic activity and selectivity limit opportunities for their 
application. We demonstrated a new construct to stabilize supported molecular noble-metal 
catalysts, taking advantage of sterically bulky ligands on the metal that serve as surrogate supports 
and isolate the active sites under conditions involving steady-state catalytic turnover in a reducing 
environment. A longstanding challenge in catalysis by noble metals has been to understand the 
origin of enhancements of rates of hydrogen transfer that result from bonding of oxygen near metal 
sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium 
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carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. 
Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity 
as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced 
CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-
fold increase in the catalytic reaction rate. The rate enhancement is explained by the electron-
withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference 
that reductive elimination is rate determining. Electronic structure calculations demonstrate an 
additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from that 
involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism 
is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions 
with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands, and is a 
consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism 
accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction 
of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands 
facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis 
by oxide-supported noble metals. 
Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized 
metal accessibility and utilization. The characterization of these materials, however, remains 
challenging. Using atomically dispersed platinum supported on crystalline MgO (chosen for its 
well-defined bonding sites) as a prototypical example, we demonstrate how systematic density 
functional theory calculations for assessing all the potentially stable platinum sites, combined with 
automated analysis of EXAFS spectra, leads to unbiased identification of isolated, surface-
enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been 
characterized by atomic-resolution imaging and EXAFS and high-energy resolution fluorescence 
detection X-ray absorption near edge spectroscopy. The proposed platinum sites are in agreement 
with experiment. This theory-guided workflow (developed by coauthors Kulkarni and Bare) leads 
to rigorously determined structural models and provides a more detailed picture of the structure of 
the catalytically active site than what is currently possible with conventional EXAFS analyses. As 
this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it 
will be of broad interest to the materials characterization and catalysis communities. 
Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. 
Developing an understanding of where and how the metals are bonded to the supports is 
challenging because support surfaces are heterogeneous, and most reports lack a detailed 
consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts 
having markedly different metal–support interactions: platinum in the first layer of crystalline 
MgO powder and platinum in the second layer of this support. Structural models have been 
determined on the basis of data and computations, including those determined by EXAFS and 
XANES, IR spectroscopy of adsorbed CO, and STEM. The data demonstrate the transformation 
of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst 
performance data demonstrate the lower activity but greater stability of the subsurface platinum 
than of the surface platinum. 
Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high 
selectivities for reactions of technological importance. Such catalysts have been suggested to be 
strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for 
synthesis gas without coke formation, which requires ensembles of metal sites and is a primary 
challenge in DRM catalysis. However, investigations of the structures of isolated metal sites on 
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metal oxide supports under methane reforming conditions are lacking, and the nature of the 
catalytically active sites is unknown. We report data characterizing the DRM reaction-driven 
structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically 
dispersed platinum and the corresponding changes in catalyst performance. X-ray absorption and 
infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to 
form small platinum clusters/nanoparticles is necessary for DRM activity. DFT calculations of the 
energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters 
support these observations. The results emphasize the need for in-operando experiments to assess 
the active sites in such catalysts. The inferences about the catalytically active species are suggested 
to pertain generally to a broad class of catalytic conversions involving the rate-limiting dissociation 
of light alkanes. 
Supported atomically dispersed noble metal complexes and clusters provide high atom efficiency 
and size-dependent catalytic properties, but their stabilization remains a major challenge. We 
investigated atomically dispersed platinum and platinum clusters consisting of 7–14 atoms 
stabilized on CeOx nanoislands on a porous silica support. The clusters were formed by reduction 
of the platinum single atoms in H2 at 400 °C. The complexes were stable catalysts under high-
temperature CO oxidation conditions. Redox cycles led to cluster formation from the atomically 
dispersed platinum and breakup at hundreds of °C, with the platinum remaining confined in the 
respective islands. The catalyst in each form at low temperatures (< 70 °C) was stable for ethylene 
hydrogenation in a flow reactor. The clusters are characterized by a turnover frequency 70-fold 
greater than that characterizing the single atoms. Computational results indicate a homolytic H2 
dissociation and moderately strong ethylene adsorption on the Pt7–14 clusters, enhancing the 
catalytic activity by providing lower barriers than on platinum single atoms or the smallest 
platinum clusters (e.g., Pt3). 
Atomically dispersed cerium catalysts on an inert, crystalline MgO powder support were prepared 
by using both Ce(III) and Ce(IV) precursors. The materials were used as catalysts for CO oxidation 
in a once-through flow reactor and characterized by atomic-resolution STEM, XANES, X-ray 
photoelectron spectroscopy, and temperature-programmed reduction, among other techniques, 
before and after catalysis. The most active catalysts, formed from the precursor incorporating 
Ce(III), displayed a performance similar to that reported for bulk ceria under comparable 
conditions. The catalyst provided stable time-on-stream performance for as long as it was kept on 
stream, two days, increasing slightly in activity as the atomically dispersed cerium ions were 
transformed into ceria nanodomains represented as CeOx and having increased reducibility on the 
MgO support. The results suggest how highly dispersed supported ceria catalysts with low cerium 
loadings can be prepared and may pave the way to improved efficiencies of cerium utilization in 
oxidation catalysis. 
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