

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

FINAL REPORT

**ATOMICALLY DISPERSED SUPPORTED METAL CATALYSTS: UNDERSTANDING
FUNDAMENTALS AND EXTENDING TO NEW CATALYST CLASSES**

DE-FG02-04ER15513

**Bruce C. Gates
University of California, Davis**

We have placed a major emphasis, as planned, on atomically dispersed supported metal catalysts. We wrote recent perspectives and reviews on this topic for *Trends in Chemistry*, *Chemical Reviews*, *Small*, and *Precision Chemistry*, which place the field in perspective and provide details in addition to those summarized here.

Samples with low loadings of metal on well-defined supports provide some of the best opportunities to determine metal–support structure and bonding. We illustrate methods for characterizing atomically dispersed heavy metals on metal oxide supports by aberration-corrected scanning transmission electron microscopy (STEM) complemented by fluorescence-detection extended X-ray absorption fine structure (EXAFS) and infrared spectroscopies. STEM images of Ir atoms derived from $\text{Ir}(\text{C}_2\text{H}_4)_2(\text{acac})$ (acac = acetonato) on high-surface area MgO powder were obtained with minimized electron beam damage by quickly recording images near where focus had been established. The images show that iridium at a loading of 1.0 wt% on MgO calcined at 1073 K was atomically dispersed, populating much of the surface of the MgO particles, which had irregular shapes—consequently the iridium was bonded at various sites, to 2 or 3 surface O atoms. In contrast, MgO calcined at 1273 K consisted of almost perfectly cubic crystals, and Ir atoms at a loading of only 0.01 wt% on this nearly ideal support were anchored preferentially at edges and corners of (100) faces and bonded to 3 surface O atoms. The latter results indicate a path forward for determination of precise structures of atomically dispersed metals on crystalline metal oxide supports.

Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters. When the metals are noble, they are typically unstable—susceptible to sintering—especially under reducing conditions. Embedding the metals in supports such as organic polymers, metal oxides, and zeolites confers stability on the metals, but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants. An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports. The nests include zeolite pore mouths; zeolite surface cups (half-cages); raft-like islands of oxophilic metals bonded to metal oxide supports; clusters of non-noble metals (e.g., hosting noble metals as single-atom alloys); and nano-scale metal oxide islands that selectively bond to the catalytic metals, isolating them from the support. These examples illustrate a trend toward precision in synthesis of solid catalysts, and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.

Single-site $\text{Ir}(\text{CO})_2$ complexes bonded to high-surface-area metal oxide supports, SiO_2 , TiO_2 , Fe_2O_3 , CeO_2 , MgO , and La_2O_3 , were synthesized by chemisorption of $\text{Ir}(\text{CO})_2(\text{acac})$ (acac = acetylacetone) followed by coating with each of the following ionic liquids (ILs): 1-*n*-butyl-3-methylimidazolium tetrafluoroborate, $[\text{BMIM}][\text{BF}_4]$, 1-*n*-butyl-3-methylimidazolium acetate, $[\text{BMIM}][\text{Ac}]$, and 1-(3-cyanopropyl)-3-methylimidazolium dicyanamide, $[\text{CPMIM}][\text{DCA}]$. Extended X-ray absorption fine structure spectroscopy showed that site-isolated iridium was bonded to oxygen atoms of the support. Electron densities on the iridium enveloped by each IL sheath/support combination were characterized by carbonyl infrared spectroscopy of the iridium *gem*-dicarbonyls and by X-ray absorption near-edge structure data. The electron-donor/acceptor tendencies of both the support and IL determine the activity and selectivity of the catalysts for the hydrogenation of 1,3-butadiene, with electron-rich iridium being selective for partial hydrogenation. The results resolve the effects of the IL and support as ligands; for example, the effect of the IL becomes dominant when the support has a weak electron-donor character. The

combined effects of supports and ILs as ligands offer broad opportunities for tuning catalytic properties of supported metal catalysts.

Atomically dispersed iridium complexes were anchored on a reduced graphene aerogel (rGA) by the reaction of $\text{Ir}(\text{CO})_2(\text{acac})$ with oxygen-containing groups on the rGA. Characterization by X-ray absorption, infrared, and X-ray photoelectron spectroscopies and atomic resolution aberration-corrected scanning transmission electron microscopy demonstrates atomically dispersed iridium, at the remarkably high loading of 14.8 wt %. The rGA support offers sites for metal bonding comparable to those of metal oxides, but with the advantages of high density and a relatively high degree of uniformity, as indicated by the same turnover frequencies for catalytic hydrogenation of ethylene at low and high iridium loadings. The atomic dispersion at a high metal loading—and the high density of catalytic sites per unit of reactor volume, a key criterion for practical catalysts—set this catalyst apart from those reported.

The metal complex ($\text{Zr}(\text{CH}_3)_4(\text{THF})_2$) was synthesized, characterized, and grafted onto partially dehydroxylated silica to give two surface species [$(\equiv\text{Si}-\text{O}-)\text{Zr}(\text{CH}_3)_3(\text{THF})_2$] (minor) and [$(\equiv\text{Si}-\text{O}-)_2\text{Zr}(\text{CH}_3)_2(\text{THF})_2$] (major), which have been characterized by solid-state NMR spectroscopy, IR spectroscopy, and elemental analysis. These supported pre-catalysts exhibit the best conversion of CO_2 to cyclic carbonates, as compared to the previously reported catalysts made by surface organometallic chemistry. We also worked on a number of other silica-supported complexes, including those of tungsten.

We worked on fundamental understanding of the interconversion of well-defined metal complexes and well-defined metal clusters in stabilizing environments, including zeolite cages and ligand envelopes. For example, rhodium *gem*-dicarbonyl complexes, $\text{Rh}(\text{CO})_2$, bonded within the pore structure of zeolite HY and formed by the reaction of $\text{Rh}(\text{CO})_2(\text{acac})$ (acac = acetylacetone) with OH groups on the zeolite surface were converted in >95% yield to $\text{Rh}_4(\text{CO})_{12}$ by reaction with CO + water at 308 K, and the process was reversed by treatment of the supported clusters in helium at 353 K. The chemistry of these reactions was characterized by IR and X-ray absorption spectra recorded during the changes and by density functional theory. The cluster formation is driven by the water gas shift half-reaction, leading to generation of CO_2 and zeolite surface protons, and the reverse reaction proceeds via the half-reaction that completes the cycle of the water gas shift reaction. Thus, the overall process is cyclic–catalytic. The yield in the synthesis of $\text{Rh}_4(\text{CO})_{12}$ is the highest reported, and the high selectivity is facilitated by the confining environment for the clusters in the zeolite supercages and the low density of OH groups on the zeolite surface (the zeolite Si:Al atomic ratio was 30). The results provide insights into the first steps of sintering of atomically dispersed metals on supports.

$\text{Rh}(\text{I})(\text{CO})_2$ complexes anchored to zeolite HY were converted into $\text{Rh}_4(\text{CO})_{12}$ in the zeolite supercages upon exposure to flowing $\text{CO} + \text{H}_2\text{O}$ at 35 °C, and the chemistry and kinetics were characterized with infrared spectroscopy. $\text{Rh}_6(\text{CO})_{16}$ formed along with $\text{Rh}_4(\text{CO})_{12}$, but only in low yield, although it is more stable than $\text{Rh}_4(\text{CO})_{12}$. The formation of $\text{Rh}_6(\text{CO})_{16}$ was hindered by trapping of $\text{Rh}_4(\text{CO})_{12}$ in the supercages and by the low rate of transport of the mononuclear rhodium species. However, exposure of the sample to wet helium at 80 °C caused the $\text{Rh}_4(\text{CO})_{12}$ to fragment, generating anchored $\text{Rh}(\text{I})(\text{CO})_2$ and also $\text{Rh}_6(\text{CO})_{16}$. IR spectra recorded under various conditions led to elucidation of the reaction network for cluster formation and breakup and a strategy of repetitive treatments that boosted the yield of $\text{Rh}_6(\text{CO})_{16}$ to >90%. The reversible formation and breakup of the rhodium carbonyl clusters were facilitated by the half-reactions of the water gas shift reaction, with gas-phase products identified by mass spectrometry. The results show how understanding of the reactions within a zeolite allows control of the nuclearity of

encaged metal clusters, an important class of catalyst.

We investigated metal nanoparticles encapsulated in zeolites. Supported rhodium nanoparticles (NPs) are well-known for catalyzing methanation in CO₂ hydrogenation. Now we demonstrate that the selectivity in this process can be optimized for CO production by choice of molecular sieve crystals as supports. The NPs are enveloped within the crystals with controlled nanopore environments that allow tuning of the catalytic selectivity to minimize methanation and favor the reverse water–gas shift reaction. Pure silica MFI (S-1)-fixed rhodium NPs exhibited maximized CO selectivity at high CO₂ conversions, whereas aluminosilicate MFI zeolite-supported rhodium NPs displayed high methane selectivity under the equivalent conditions. Strong correlations were observed between the nanoporous environment and catalytic selectivity, indicating that S-1 minimizes hydrogen spillover and favors fast desorption of CO to limit deep hydrogenation. Materials in this class appear to offer appealing opportunities for tailoring selective supported catalysts for a variety of reactions.

The reaction pathways on supported catalysts can be also tuned by optimizing the structures enveloping the catalyst, including amorphous materials. Such a design is particularly desired for CO₂ hydrogenation, which is characterized by complex pathways and multiple products. We reported an investigation of supported cobalt, which is known for its hydrocarbon production and ability to turn into a selective catalyst for methanol synthesis in CO₂ hydrogenation which exhibits good activity and stability. The crucial technique is to use the silica, acting as a support and ligand, to modify the cobalt species via Co–O–SiO_n linkages, which favor the reactivity of spectroscopically identified *CH₃O intermediates, that more readily undergo hydrogenation to methanol than the C–O dissociation associated with hydrocarbon formation. Cobalt catalysts in this class offer appealing opportunities for optimizing selectivity in CO₂ hydrogenation and producing high-grade methanol. By identifying this function of silica, we provide support for rationally controlling these reaction pathways.

Atomically dispersed supported catalysts are drawing wide attention because they offer properties different from those of conventional catalysts, with maximally efficient use of the metals. However, the performance of single-site catalysts is often limited by the lack of neighboring metal centers to cooperate in catalysis. Thus, there is motivation to extend this class to catalysts incorporating isolated metal pairs. We report pairs of iridium atoms on MgO initially stabilized by support oxygen and cyclooctadiene ligands and activated by the removal of the latter. These catalysts are stable in a range of environments, including CO, H₂, and C₂H₄ + H₂ at 298–353 K and are more active than analogous single-site catalysts in ethylene hydrogenation and hydrogen–deuterium exchange because the neighboring metal centers facilitate hydrogen activation. Moreover, the pair-site catalysts retain activity even in the presence of CO, which poisons the single-site analogues. Supported metal pair-site catalysts open pathways toward understanding and applications of supported molecular catalysts.

Although essentially molecular noble metal species provide active sites and highly tunable platforms for the design of supported catalysts, the susceptibility of the metals to reduction and aggregation and the consequent loss of catalytic activity and selectivity limit opportunities for their application. We demonstrated a new construct to stabilize supported molecular noble-metal catalysts, taking advantage of sterically bulky ligands on the metal that serve as surrogate supports and isolate the active sites under conditions involving steady-state catalytic turnover in a reducing environment. A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium

carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H₂ followed by O₂ led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate. The rate enhancement is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate determining. Electronic structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from that involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H₂ and, alternatively, with D₂ on the cluster incorporating the dioxygen ligands, and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H₂ with D₂ to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.

Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized metal accessibility and utilization. The characterization of these materials, however, remains challenging. Using atomically dispersed platinum supported on crystalline MgO (chosen for its well-defined bonding sites) as a prototypical example, we demonstrate how systematic density functional theory calculations for assessing all the potentially stable platinum sites, combined with automated analysis of EXAFS spectra, leads to unbiased identification of isolated, surface-enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been characterized by atomic-resolution imaging and EXAFS and high-energy resolution fluorescence detection X-ray absorption near edge spectroscopy. The proposed platinum sites are in agreement with experiment. This theory-guided workflow (developed by coauthors Kulkarni and Bare) leads to rigorously determined structural models and provides a more detailed picture of the structure of the catalytically active site than what is currently possible with conventional EXAFS analyses. As this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it will be of broad interest to the materials characterization and catalysis communities.

Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal–support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by EXAFS and XANES, IR spectroscopy of adsorbed CO, and STEM. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.

Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high selectivities for reactions of technological importance. Such catalysts have been suggested to be strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for synthesis gas without coke formation, which requires ensembles of metal sites and is a primary challenge in DRM catalysis. However, investigations of the structures of isolated metal sites on

metal oxide supports under methane reforming conditions are lacking, and the nature of the catalytically active sites is unknown. We report data characterizing the DRM reaction-driven structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically dispersed platinum and the corresponding changes in catalyst performance. X-ray absorption and infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to form small platinum clusters/nanoparticles is necessary for DRM activity. DFT calculations of the energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters support these observations. The results emphasize the need for *in-operando* experiments to assess the active sites in such catalysts. The inferences about the catalytically active species are suggested to pertain generally to a broad class of catalytic conversions involving the rate-limiting dissociation of light alkanes.

Supported atomically dispersed noble metal complexes and clusters provide high atom efficiency and size-dependent catalytic properties, but their stabilization remains a major challenge. We investigated atomically dispersed platinum and platinum clusters consisting of 7–14 atoms stabilized on CeO_x nanoislands on a porous silica support. The clusters were formed by reduction of the platinum single atoms in H_2 at 400 °C. The complexes were stable catalysts under high-temperature CO oxidation conditions. Redox cycles led to cluster formation from the atomically dispersed platinum and breakup at hundreds of °C, with the platinum remaining confined in the respective islands. The catalyst in each form at low temperatures (< 70 °C) was stable for ethylene hydrogenation in a flow reactor. The clusters are characterized by a turnover frequency 70-fold greater than that characterizing the single atoms. Computational results indicate a homolytic H_2 dissociation and moderately strong ethylene adsorption on the Pt_{7-14} clusters, enhancing the catalytic activity by providing lower barriers than on platinum single atoms or the smallest platinum clusters (e.g., Pt_3).

Atomically dispersed cerium catalysts on an inert, crystalline MgO powder support were prepared by using both Ce(III) and Ce(IV) precursors. The materials were used as catalysts for CO oxidation in a once-through flow reactor and characterized by atomic-resolution STEM, XANES, X-ray photoelectron spectroscopy, and temperature-programmed reduction, among other techniques, before and after catalysis. The most active catalysts, formed from the precursor incorporating Ce(III), displayed a performance similar to that reported for bulk ceria under comparable conditions. The catalyst provided stable time-on-stream performance for as long as it was kept on stream, two days, increasing slightly in activity as the atomically dispersed cerium ions were transformed into ceria nanodomains represented as CeO_x and having increased reducibility on the MgO support. The results suggest how highly dispersed supported ceria catalysts with low cerium loadings can be prepared and may pave the way to improved efficiencies of cerium utilization in oxidation catalysis.

Publications

"Synthesis of Oxide- and Zeolite-supported Catalysts from Organometallic Precursors," B. C. Gates, in "Catalyst Preparation Science and Engineering," edited by J. Regalbuto, CRC Press, pp. 237–249, 2007.

"Size-Dependent Catalytic Activity of Zeolite-Supported Iridium Clusters," F. Li and B. C. Gates, *Journal of Physical Chemistry C*, **111**, 262 (2007).

"Silica-Supported Tantalum Clusters: Catalysts for Conversion of Methane with *n*-Butane to give Ethane, Propane, and Pentanes," S. Nemana and B. C. Gates, *Catalysis Letters*, **113**,

73 (2007).

"Redox Behavior of Gold species in Zeolite NaY: Characterization by Infrared Spectroscopy of Adsorbed CO," M. Mihaylov, B. C. Gates, J. C. Fierro-Gonzalez, K. Hadjiivanov, and H. Knözinger, *Journal of Physical Chemistry C*, **111**, 2548 (2007).

"Evidence of Active Species in CO Oxidation Catalyzed by Highly Dispersed Supported Gold," J. C. Fierro-Gonzalez and B. C. Gates, *Catalysis Today*, **122**, 201 (2007).

"Role of Cationic Gold in Supported CO Oxidation Catalysts" J. C. Fierro-Gonzalez, J. Guzman, and B. C. Gates, *Topics in Catalysis*, **44**, 103 (2007)

"MgO-supported clusters catalysts with Pt-Ru interactions prepared from $\text{Pt}_3\text{Ru}_6(\text{CO})_{21}(\mu_3\text{-H})(\mu\text{-H})_3$," S. Chotisawan, J. Wittayakun, R. Lobo-Lapidus, and B. C. Gates, *Catalysis Letters*, **115**, 99 (2007).

"Gold Nanoclusters Entrapped in the α -Cages of Y Zeolite: Structural Characterization by X-ray Absorption Spectroscopy," J. C. Fierro-Gonzalez, Y. Hao, and B. C. Gates, *Journal of Physical Chemistry C*, **111**, 6645 (2007).

"Characterization of the Oxidation States of Supported Gold Species by IR Spectroscopy of Adsorbed CO," M. Mihaylov, H. Knözinger, K. Hadjiivanov, and B. C. Gates, *Chemie Ingenieur Technik*, **79**, 795 (2007).

"Increasing the Number of Oxygen Vacancies on TiO_2 by Doping with Iron Increases the Activity of Supported Gold for CO Oxidation," S. Carrettin, Y. Hao, V. Aguilar-Guerrero, B. C. Gates, J. J. Calvino, and A. Corma, *Chemistry—a European Journal*, **13**, 7771 (2007).

"Chemistry of Tantalum Clusters in Solution and on SiO_2 Supports: Analogies and Contrasts," S. Nemana, N. D. Okamoto, N. D. Browning and B. C. Gates, *Langmuir*, **23**, 8845 (2007).

"Genesis of a highly active cerium oxide-supported gold catalyst for CO oxidation," V. Aguilar-Guerrero and B.C. Gates, *Chemical Communications*, **2007**, 3210.

"A Site-Isolated Iridium Diethylene Complex Supported on Highly Dealuminated Y Zeolite: Synthesis and Characterization," A. Uzun, V. A. Bhirud, P. W. Kletnieks, J. F. Haw, and B. C. Gates, *Journal of Physical Chemistry C*, **111**, 15064 (2007).

"Oxidation by CO_2 of Au^0 Species on La_2O_3 -Supported Gold Clusters," M. Mihaylov, E. Ivanova, Y. Hao, K. Hadjiivanov, B. C. Gates, and H. Knözinger, *ChemComm*, **2008**, 175.

"Determination of Nanocluster Sizes from Dark-Field Scanning Transmission Electron Microscopy Images," N. L. Okamoto, B. W. Reed, S. Mehraeen, A. Kulkarni, D. G. Morgan, B. C. Gates, and N. D. Browning, *Journal of Physical Chemistry C*, **112**, 1759 (2008).

"Probing Defect Sites on TiO_2 with $[\text{Re}_3(\text{CO})_{12}\text{H}_3]$: Spectroscopic Characterization of the Surface Species," K. Suriye, R. J. Lobo-Lapidus, G. J. Yeagle, P. Praserthdam, R. D. Britt, and B. C. Gates, *Chemistry—a European Journal*, **14**, 1402 (2008).

"Alumina-Supported Trirhenium Clusters: Stable High-Temperature Catalysts for Methylcyclohexane Conversion," R. J. Lobo-Lapidus, M. J. McCall, M. Lanuza, S.

Tonnesen, S. R. Bare, and B. C. Gates, *Journal of Physical Chemistry C*, **112**, 3383 (2008).

"Reactivity of Binuclear Tantalum Clusters on Silica: Characterization by Transient Time-resolved Spectroscopy," S. Nemana, J. Sun, and B. C. Gates, *Journal of Physical Chemistry C*, **112**, 7477 (2008).

"Catalysis by Gold Dispersed on Supports: The Importance of Cationic Gold," J. C. Fierro-Gonzalez and B. C. Gates, *Chemical Society Reviews*, **37**, 2127 (2008).

"Molecular Chemistry in a Zeolite: Genesis of a Zeolite Y-supported Ruthenium Complex Catalyst," I. Ogino and B. C. Gates, *Journal of the American Chemical Society*, **130**, 13338 (2008).

"Real-Time Characterization of Formation and Breakup of Iridium Clusters in Highly Dealuminated Zeolite Y," A. Uzun and B. C. Gates, *Angewandte Chemie, International Edition*, **47**, 9245 (2008).

"Time-Resolved Structural Characterization of Formation and Break-up of Rhodium Clusters supported in Highly Dealuminated Y Zeolite," A. J. Liang and B. C. Gates, *Journal of Physical Chemistry C*, **112**, 18,039 (2008).

"Gold Supported on La₂O₃: Structure and Reactivity with CO₂ and Implications for CO Oxidation Catalysis," M. Mihaylov, E. Ivanova, Y. Hao, K. Hadjiivanov, H. Knözinger, and B. C. Gates, *Journal of Physical Chemistry C*, **112**, 18,973 (2008).

"Kinetics of CO Oxidation Catalyzed by Highly Dispersed CeO₂-Supported Gold," V. Aguilar-Guerrero and B. C. Gates, *Journal of Catalysis*, **260**, 351 (2008).

"CO Oxidation Catalyzed by Gold Supported on MgO: Spectroscopic Identification of Carbonate-like Species Bonded to Gold during Catalyst Deactivation," Y. Hao, M. Mihaylov, E. Ivanova, K. Hadjiivanov, H. Knözinger, and B. C. Gates, *Journal of Catalysis*, **261**, 137 (2009).

"Genesis of a Cerium Oxide-Supported Gold Catalyst for CO Oxidation: Transformation of Mononuclear Gold Complexes into Clusters as Characterized by X-Ray Absorption Spectroscopy," V. Aguilar-Guerrero, R. J. Lobo-Lapidus, and B. C. Gates, *Journal of Physical Chemistry C*, **113**, 3259 (2009).

"Activation of Dimethyl Gold Complexes on MgO for CO Oxidation: Removal of Methyl Ligands and Formation of Catalytically Active Gold Clusters," Y. Hao and B. C. Gates, *Journal of Catalysis*, **263**, 83 (2009).

"Kinetics of CO Oxidation Catalyzed by Supported Gold: A Tabular Summary of the Literature," V. Aguilar-Guerrero and B. C. Gates, *Catalysis Letters*, **130**, 108 (2009).

"Site-Isolated Iridium Complexes on MgO Powder: Individual Ir Atoms Imaged by Scanning Transmission Electron Microscopy," A. Uzun, V. Ortalan, N. D. Browning, and B. C. Gates, *ChemComm*, **2009**, 4657.

"Role of the Support in Catalysis: Activation of a Mononuclear Ruthenium Complex for Ethene Dimerization by Chemisorption on Dealuminated Zeolite Y," I. Ogino and B. C. Gates, *Chemistry—a European Journal*, **15**, 6827 (2009).

"Tantalum Clusters Supported on Silica-Alumina: Influence of Support Composition and Chemistry on Cluster Structure," J. Sun, M. Chi, R. J. Lobo-Lapidus, S. Mehraeen, N. D. Browning, and B. C. Gates, *Langmuir*, **25**, 10754 (2009).

"Nearly Uniform Decaosmium Clusters Supported on MgO: Characterization by X-ray Absorption Spectroscopy and Scanning Transmission Electron Microscopy," A. Kulkarni, S. Mehraeen, B. W. Reed, N. L. Okamoto, N. D. Browning, and B. C. Gates, *Journal of Physical Chemistry C*, **113**, 13377 (2009).

"Imaging Gold Atoms in Site-isolated MgO-Supported Mononuclear Gold Complexes," A. Uzun, V. Ortalan, Y. Hao, N. D. Browning, and B. C. Gates, *Journal of Physical Chemistry C*, **113**, 16847 (2009).

"Rhenium Complexes and Clusters Supported on γ -Al₂O₃: Effects of Rhenium Oxidation State and Rhenium Cluster Size on Catalytic Activity for *n*-Butane Hydrogenolysis," R. J. Lobo-Lapidus and B. C. Gates, *Journal of Catalysis*, **268**, 89 (2009).

"Validation and Generalization of a Method for Precise Size Measurements of Metal Nanoclusters on Supports," B. W. Reed, D. G. Morgan, N. L. Okamoto, A. Kulkarni, B. C. Gates, and N. D. Browning, *Ultramicroscopy*, **110**, 48 (2009).

"Dynamic Structural Changes in a Molecular Zeolite-Supported Iridium Catalyst for Ethene Hydrogenation," A. Uzun and B. C. Gates, *Journal of the American Chemical Society*, **131**, 15887 (2009).

"Spectroscopic Elucidation of First Steps of Supported Bimetallic Cluster Formation," A. Kulkarni and B. C. Gates, *Angewandte Chemie, International Edition*, **48**, 9697 (2009).

"Nanoclusters of Gold on a High-Area Support: Almost Uniform Nanoclusters Imaged by Scanning Transmission Electron Microscopy," A. Uzun, V. Ortalan, Y. Hao, N. D. Browning, and B. C. Gates, *ACS Nano*, **3**, 3691 (2009).

"Transient Spectroscopic Characterization of the Genesis of a Ruthenium Complex Catalyst Supported on Zeolite Y," I. Ogino and B. C. Gates, *Journal of Physical Chemistry C*, **113**, 20036 (2009).

"A Site-Isolated Mononuclear Iridium Complex Catalyst Supported on MgO: Characterization by Spectroscopy and Aberration-Corrected Scanning Transmission Electron Microscopy," A. Uzun, V. Ortalan, N. D. Browning, and B. C. Gates, *Journal of Catalysis*, **269**, 318 (2010).

"Adsorption and Reaction of Rh(CO)₂(acac) on Al₂O₃/Ni₃Al(111)," Y. Lei, A. Uhl, J. Liu, C. Becker, K. Wandelt, B. C. Gates, R. Meyer, and M. Trenary, *PhysChemChemPhys*, **12**, 1264 (2010).

"Essentially Molecular Metal Complexes Anchored to Zeolite β : Synthesis and Characterization of Rhodium Complexes and Ruthenium Complexes Prepared from Rh(acac)(η^2 -C₂H₄)₂ and *cis*-Ru(acac)₂(η^2 -C₂H₄)₂," I. Ogino and B. C. Gates, *Journal of Physical Chemistry C*, **114**, 2685 (2010).

"Reactions of Highly Uniform Zeolite H- β -Supported Rhodium Complexes: Transient Characterization by Infrared and X-ray Absorption Spectroscopies," I. Ogino and B. C. Gates, *Journal of Physical Chemistry C*, **114**, 8405 (2010).

"Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite," V. Ortalan, A. Uzun, B. C. Gates, and N. D. Browning, *Nature Nanotechnology*, **5**, 506 (2010).

"Metal Clusters on Supports: Synthesis, Structure, Reactivity, and Catalytic Properties," A. Kulkarni, R. J. Lobo-Lapidus, and B. C. Gates, *ChemComm*, **46**, 5997 (2010).

"Zeolite-supported metal complexes of rhodium and of ruthenium: a general synthesis method influenced by molecular sieving effects," I. Ogino, C.-Y. Chen, and B. C. Gates, *Dalton Transactions*, **39**, 8423 (2010).

"Probing Surface Sites of TiO_2 : Reactions with $[\text{HRe}(\text{CO})_5]$ and $[\text{CH}_3\text{Re}(\text{CO})_5]$," R. J. Lobo-Lapidus and B. C. Gates, *Chemistry—a European Journal*, **16**, 11386 (2010).

"Supported Rhenium Complexes: Almost Uniform Rhenium Tricarbonyls Synthesized from $\text{CH}_3\text{Re}(\text{CO})_5$ and HY Zeolite," R. J. Lobo-Lapidus and B. C. Gates, *Langmuir*, **26**, 16368 (2010).

"Formation of a Manganese Tricarbonyl on the MgO Surface from $\text{Mn}_2(\text{CO})_{10}$: Characterization by Infrared, Electron Paramagnetic Resonance, and X-ray Absorption Spectroscopies," S. Khabuanchalad, J. Wittayakun, R. J. Lobo-Lapidus, S. Stoll, R. D. Britt, and B. C. Gates, *Journal of Physical Chemistry C*, **114**, 17212 (2010).

"Towards full structure determination of bimetallic nanoparticles with an aberration-corrected electron microscope," V. Ortalan, A. Uzun, B. C. Gates, and N. D. Browning, *Nature Nanotechnology*, **5**, 843 (2010).

"Atomic Resolution of the Structure of a Metal–Support Interface: Triosmium Clusters on $\text{MgO}(110)$," A. Kulkarni, M. Chi, V. Ortalan, N. D. Browning, and B. C. Gates, *Angewandte Chemie International Edition*, **49**, 10089 (2010).

"Prototype Supported Metal Cluster Catalysts: Ir_4 and Ir_6 ," A. Uzun, D. A. Dixon, and B. C. Gates, *ChemCatChem*, **3**, 95 (2011).

"Triosmium Clusters on a Support: Determination of Structure by X-Ray Absorption Spectroscopy and High-Resolution Microscopy," S. Mehraeen, A. Kulkarni, M. Chi, B. W. Reed, N. L. Okamoto, N. D. Browning, and B. C. Gates, *Chemistry—a European Journal*, **17**, 1000 (2011).

"Zeolite-Supported Rhodium Complexes and Clusters: Switching Catalytic Selectivity by Controlling Structures of Essentially Molecular Species," P. Serna and B. C. Gates, *Journal of the American Chemical Society*, **133**, 4714 (2011).

"A Bifunctional Mechanism for Ethene Dimerization: Catalysis by Rhodium Complexes on Zeolite HY in the Absence of Halides," P. Serna and B. C. Gates, *Angewandte Chemie International Edition*, **50**, 5528 (2011).

"Supported Molecular Iridium Catalysts: Resolving Effects of Metal Nuclearity and Supports as Ligands," J. Lu, P. Serna, C. Aydin, N. D. Browning, and B. C. Gates, *Journal of the American Chemical Society*, **133**, 16186 (2011).

"Zeolite- and MgO-Supported Molecular Iridium Complexes: Support and Ligand Effects in Catalysis of Ethene Hydrogenation and H–D Exchange in the Conversion of H₂ and D₂," J. Lu, P. Serna, and B. C. Gates, *ACS Catalysis*, **1**, 1549 (2011).

"Ir₆ Clusters Compartmentalized in the Supercages of Zeolite NaY: Direct Imaging of a Catalyst with Aberration-Corrected Scanning Transmission Electron Microscopy," C. Aydin, J. Lu, M. Shirai, N. D. Browning, and B. C. Gates, *ACS Catalysis*, **1**, 1613 (2011).

"Tracking Iridium Atoms with Electron Microscopy: First Steps of Metal Nanocluster Formation in One-Dimensional Zeolite Channels," C. Aydin, J. Lu, A. J. Liang, C.-Y. Chen, N. D. Browning, and B. C. Gates, *Nano Letters*, **11**, 5537 (2011).

"Atomically Dispersed Supported Metal Catalysts," M. Flytzani-Stephanopoulos and B. C. Gates, *Annual Reviews of Chemical and Biomolecular Engineering*, **3**, 545, 2012.

"Imaging Isolated Gold Atom Catalytic Sites on Zeolite NaY," J. Lu, C. Aydin, N. D. Browning, and B. C. Gates, *Angewandte Chemie, International Edition*, **51**, 5842 (2012).

"Hydrogen Activation and Metal Hydride Formation Trigger Cluster Formation from Supported Iridium Complexes," J. Lu, C. Aydin, N. D. Browning, and B. C. Gates, *Journal of the American Chemical Society*, **134**, 5022 (2012).

"A Smart Catalyst: Sinter-resistant Supported Iridium Clusters Visualized with Electron Microscopy," C. Aydin, J. Lu, N. D. Browning, and B. C. Gates, *Angewandte Chemie International Edition*, **51**, 5929 (2012).

"Site-isolated Molecular Iridium Complex Catalyst Supported in the 1-Dimensional Channels of Zeolite HSSZ-53: Characterization by Spectroscopy and Aberration-Corrected Scanning Transmission Electron Microscopy," J. Lu, C. Aydin, A. J. Liang, C.-Y. Chen, N. D. Browning, and B. C. Gates, *ACS Catalysis*, **2**, 1002 (2012).

"A Highly Selective Catalyst for Partial Hydrogenation of 1,3-Butadiene: MgO-Supported Rhodium Clusters Selectively Poisoned with CO," D. Yardimci, P. Serna, and B. C. Gates, *ChemCatChem*, **4**, 1547 (2012).

"Structures and Stability of Ir_n(CO)_m," M. Y. Chen, J. E. Dyer, B. C. Gates, A. Katz, and D. A. Dixon, *Molecular Physics*, **110**, 1977 (2012).

"Atomically Resolved Site-Isolated Catalyst on MgO: Mononuclear Osmium Dicarbonyls formed from Os₃(CO)₁₂," C. Aydin, A. Kulkarni, M. Chi, N. D. Browning, and B. C. Gates, *Journal of Physical Chemistry Letters*, **3**, 1865 (2012).

"Mononuclear Zeolite-Supported Iridium Catalyst: Kinetic, Spectroscopic, Electron Microscopic, and Size-Selective Poisoning Evidence for an Atomically Dispersed True Catalyst at 22°C," E. Bayram, J. Lu, C. Aydin, A. Uzun, N. D. Browning, B. C. Gates and R. G. Finke, *ACS Catalysis*, **2**, 1947 (2012).

"Oxide- and Zeolite-Supported Isostructural Ir(C₂H₄)₂ Complexes: Molecular-level Observations of Electronic Effects of Supports as Ligands," J. Lu, C. Aydin, N. D. Browning and B. C. Gates, *Langmuir*, **28**, 12806 (2012).

"Tuning Catalytic Selectivity: Zeolite- and Magnesium Oxide-Supported Molecular Rhodium Catalysts for Hydrogenation of 1,3-Butadiene," D. Yardimci, P. Serna, and B. C. Gates, *ACS Catalysis*, **2**, 2100 (2012).

"Sinter-Resistant Catalysts: Supported Iridium Nanoclusters with Intrinsically Limited Sizes," J. Lu, C. Aydin, N. D. Browning, L. Wang, and B. C. Gates, *Catalysis Letters*, **142**, 1445 (2012).

"Surface-Mediated Synthesis of Dimeric Rhodium Catalysts on MgO: Tracking Changes in Nuclearity and Ligand Environment of the Catalytically Active Sites by X-Ray Absorption and Infrared Spectroscopies," D. Yardimci, P. Serna, and B. C. Gates, *Chemistry—a European Journal*, **19**, 1235 (2013).

"Three-Dimensional Structural Analysis of MgO-Supported Osmium Clusters by Electron Microscopy with Single-Atom Sensitivity," C. Aydin, A. Kulkarni, M. Chi, N. D. Browning, and B. C. Gates, *Angewandte Chemie International Edition*, **4**, 5262 (2013).

"Formation of MgO-Supported Manganese Carbonyl Complexes by Chemisorption of $Mn(CO)_5CH_3$," S. Khabuanchalad, J. Wittayakun, R. J. Lobo-Lapidus, S. Stoll, R. D. Britt, and B. C. Gates, *Langmuir*, **27**, 6279 (2013).

"MgO-Supported Bimetallic Catalysts Consisting of Segregated, Essentially Molecular Rhodium and Osmium Species," J. D. Kistler, P. Serna, and B. C. Gates, *Dalton Transactions*, **42**, 12626 (2013).

"Zeolite-Supported Bimetallic Catalyst: Controlling Selectivity of Rhodium Complexes by Nearby Iridium Complexes," J. Lu, C. Martinez-Macias, C. Aydin, N. D. Browning, and B. C. Gates, *Catalysis Science & Technology*, **3**, 2199 (2013).

"Quantitative Z-Contrast Imaging of Supported Metal Complexes and Clusters – A Gateway to Understanding Catalysis on the Atomic Scale," N. D. Browning, C. Aydin, J. Lu, A. Kulkarni, N. L. Okamoto, V. Ortalan, B. W. Reed, A. Uzun, and B. C. Gates, *ChemCatChem*, **5**, 2673 (2013).

"Supported gold catalysts: new properties offered by nanometer and sub-nanometer structures," B. C. Gates, *ChemComm* **49**, 7876 (2013).

"Zeolite- and MgO-Supported Rhodium Complexes and Rhodium Clusters: Tuning Catalytic Properties to Control Carbon–Carbon vs. Carbon–Hydrogen Bond Formation Reactions of Ethene in the Presence of H_2 ," P. Serna and B. C. Gates, *Journal of Catalysis*, **308**, 201 (2013).

"Formation of supported rhodium clusters from mononuclear rhodium complexes controlled by the support and ligands on rhodium," P. Serna, D. Yardimci, J. D. Kistler, and B. C. Gates, *Physical Chemistry Chemical Physics*, **16**, 1262 (2014).

"Selective molecular recognition by nanoscale environments in a supported iridium cluster catalyst," A. Okrut, R. C. Runnebaum, X. Ouyang, J. Lu, C. Aydin, S.-J. Hwang, S. Zhang, O. A. Olantunji-Ojo, K. A. Durkin, D. A. Dixon, B. C. Gates, and A. Katz, *Nature Nanotechnology*, **9**, 459 (2014).

"Iridium complexes and Clusters in Dealuminated Zeolite HY: Distribution between Crystalline and Impurity Amorphous Regions," C. Martinez-Macias, P. Xu, S.-J. Hwang, J. Lu, C.-Y. Chen, N. D. Browning, and B. C. Gates, *ACS Catalysis*, **4**, 2662 (2014).

"A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms," J. D. Kistler, N. Chotigkrai, P. Xu, B. Enderle, P. Praserthdam, C.-Y. Chen, N. D. Browning, and B. C. Gates, *Angewandte Chemie International Edition*, **53**, 8904 (2014).

"Molecular Metal Catalysts on Supports: Organometallic Chemistry Meets Surface Science," P. Serna and B. C. Gates, *Accounts of Chemical Research*, **47**, 2612 (2014).

"Beyond Relationships between Homogeneous and Heterogeneous Catalysis," D. A. Dixon, A. Katz, I. Arslan, and B. C. Gates, *Catalysis Letters*, **144**, 1785 (2014).

"Mononuclear iridium dinitrogen complexes bonded to zeolite HY," D. Yang, M. Chen, C. Martinez-Macias, D. A. Dixon, and B. C. Gates, *Chemistry a European Journal*, **21**, 631 (2015).

"Agglomerative Sintering of an Atomically Dispersed Ir₁/Zeolite Y Catalyst: Compelling Evidence Against Ostwald Ripening but for Bimolecular and Autocatalytic Agglomeration Catalyst Sintering Steps," E. Bayram, J. Lu, C. Aydin, N. D. Browning, S. Ozkar, E. Finney, B. C. Gates, and R. Finke, *ACS Catalysis*, **5**, 3514 (2015).

"Imaging Individual Lanthanum Atoms in Zeolite Y by Scanning Transmission Electron Microscopy: Evidence of Lanthanum Pair Sites," P. Xu, J. Lu, C. Aydin, L. Debefve, N. D. Browning, C. Y. Chen, and B. C. Gates, *Microporous and Mesoporous Materials*, **213**, 95 (2015).

"From Catalyst Preparation toward Catalyst Synthesis," B. C. Gates, *Journal of Catalysis*, **328**, 72 (2015).

"Genesis of Delaminated-Zeolite Morphology: 3-D Characterization of Changes by STEM Tomography," I. Arslan, J. D. Roehling, I. Ogino, K. J. Batenburg, S. I. Zones, B. C. Gates, and A. Katz, *Journal of Physical Chemistry Letters*, **6**, 2598 (2015).

"Structures, Relative Energies, and Ligand Dissociation Energies of Iridium Carbonyl Phosphine Clusters," S. Zhang, A. Katz, B. C. Gates, and D. A. Dixon, *Computational and Theoretical Chemistry*, **1069**, 18 (2015).

"Single-Site Zeolite-Anchored Organoiridium Carbonyl Complexes: Characterization of Structure and Reactivity by Spectroscopy and Computational Chemistry," C. Martinez Macias, M. Chen, D. A. Dixon, and B. C. Gates, *Chemistry-A European Journal*, **21**, 11825 (2015).

"Isostructural Zeolite-Supported Rhodium and Iridium Complexes: Tuning Catalytic Activity and Selectivity by Ligand Modification," C. Martinez-Macias, P. Serna, and B. C. Gates, *ACS Catalysis*, **5**, 5647 (2015).

"Molecular Models of Site-Isolated Cobalt, Rhodium, and Iridium Catalysts Supported on Zeolites: Ligand Bond Dissociation Energies," M. Chen, P. Serna, J. Lu, B. C. Gates, and D. A. Dixon, *Computational and Theoretical Chemistry*, **1074**, 58 (2015).

"Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces: Aberration-Corrected STEM Imaging and Ab Initio Calculations," C. W. Han, H. Iddir, A. Uzun, L. A. Curtiss, N. D. Browning, B. C. Gates, and V. Ortalan, *Journal of Physical Chemistry Letters*, **6**, 4675 (2015).

"Controlling the Hydrogenolysis of Silica-Supported Tungsten Pentamethyl Leads to a Class of Highly Electron Deficient Partially Alkylated Metal Hydrides," N. Maity, S. Barman, E. Callens, M. K. Samantaray, E. Abou-Hamad, Y. Minenkov, V. D'Elia, A. S. Hoffman, C. M. Widdifield, L. Cavallo, B. C. Gates, and J.-M. Basset, *Chemical Science*, **7**, 1558 (2016).

"Surface Metal Complexes and their Applications," J. D. Kistler, P. Serna, K. Asakura, and B. C. Gates, in "X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications," J. van Bokhoven and C. Lamberti, editors, Wiley, Chichester, 2016, pp. 773-808.

"Rhodium pair-sites on magnesium oxide: Synthesis, characterization, and catalysis of ethylene hydrogenation," D. Yang, P. Xu, E. Guan, N. D. Browning, and B. C. Gates, *Journal of Catalysis*, **338**, 12 (2016).

"Concluding remarks: Progress toward design of solid catalysts," B. C. Gates, *Faraday Discussions*, **188**, 591 (2016).

"Transmission and Fluorescence X-ray Absorption Spectroscopy Cell/Flow Reactor for Powder Samples under Vacuum or in Reactive Atmospheres," A. S. Hoffman, L. M. Debefve, A. Bendjeriou-Sedjerari, S. Ould Chikh, S. R. Bare, J.-M. Basset, and B. C. Gates, *Review of Scientific Instruments*, **87**, 073108 (2016).

"Tracking Rh Atoms in Zeolite HY: First Steps of Metal Cluster Formation and Influence of Metal Nuclearity on Catalysis of Ethylene Hydrogenation and Ethylene Dimerization," D. Yang, P. Xu, N. D. Browning, and B. C. Gates, *Journal of Physical Chemistry Letters*, **7**, 2537 (2016).

"Homogeneity of Surface Sites in Supported Single-Site Metal Catalysts: Assessment with Band Widths of Metal Carbonyl Infrared Spectra," A. S. Hoffman, Chia-Yu Fang, and B. C. Gates, *Journal of Physical Chemistry Letters*, **7**, 3854 (2016).

"Supported Catalysts," I. Ogino, P. Serna, and B. C. Gates, in R. Dronskowski, S. Kikkawa, and A. Stein, editors, "Handbook of Solid State Chemistry," Wiley, New York, vol. 6, pp. 313-337 (2016).

"Single-site osmium catalysts on MgO: reactivity and catalysis of CO oxidation," D. Yang, S. Zhang, P. Xu, N. D. Browning, D. A. Dixon, and B. C. Gates, *Chemistry—a European Journal*, **23**, 2532 (2017).

"High-Energy Resolution X-Ray Absorption Spectroscopy for Identification of Reactive Surface Species on Supported Single-Site Catalysts," A. S. Hoffman, D. Sokaras, S. Zhang, L. M. Debefve, C.-Y. Fang, A. Gallo, T. Kroll, D. A. Dixon, S. R. Bare, and B. C. Gates, *Chemistry—a European Journal*, **23**, 14760 (2017).

"Dialing in single-site reactivity of a supported calixarene-protected tetrairidium cluster catalyst," A. Palermo, A. Solovyov, D. Ertler, A. Okrut, B. C. Gates, and A. Katz, *Chemical Science*, **8**, 4951 (2017).

"Role of N-Heterocyclic Carbenes as Ligands in Iridium Carbonyl Clusters," S. J. Zhang, S. D. Foyle, A. Okrut, A. Solovyov, A. Katz, B. C. Gates, and D. A. Dixon, *Journal of Physical Chemistry A*, **121**, 5029 (2017).

"From single-site tantalum complexes to nanoparticles of Ta_xNy and TaO_xNy supported on silica: elucidation of synthesis chemistry by dynamic nuclear polarization surface enhanced NMR spectroscopy and X-ray absorption spectroscopy," J. C. Mohandas, E. Abou-Hamad, E. Callens, M. K. Samantaray, D. Gajan, A. Gurinov, T. Ma, S. Ould-Chikh, A. S. Hoffman, B. C. Gates, and J.-M. Basset, *Chemical Science*, **8**, 5650 (2017).

"A Pd@Zeolite Catalyst for Nitroarene Hydrogenation with High Product Selectivity by Sterically Controlled Adsorption in the Zeolite Micropores," J. Zhang, L. Wang, Y. Shao, Y. Wang, B. C. Gates, and F.-S. Xiao, *Angewandte Chemie International Edition*, **56**, 9747 (2017).

"Molecular Rhodium Complexes Supported on the Metal-Oxide-Like Nodes of Metal Organic Frameworks and on Zeolite HY: Catalysts for Ethylene Hydrogenation and Dimerization," V. Bernales, D. Yang, J. Yu, G. Gumuslu, C. Cramer, B. C. Gates, and L. Gagliardi, *ACS Applied Materials and Interfaces*, **9**, 33511 (2017).

"Tuning the Selectivity of Single-Site Supported Metal Catalysts with Ionic Liquids," M. Babucci, C.-Y. Fang, A. S. Hoffman, S. R. Bare, B. C. Gates, and A. Uzun, *ACS Catalysis*, **7**, 6969 (2017).

"Atomically dispersed supported metal catalysts: perspectives and suggestions for future research," B. C. Gates, M. Flytzani-Stephanopoulos, D. A. Dixon, and A. Katz, *Catalysis Science and Technology*, **7**, 4259 (2017).

"Beyond Ordered Materials: Understanding Catalytic Sites on Amorphous Solids," B. R. Goldsmith, B. Peters, J. K. Johnson, B. C. Gates, and S. L. Scott, *ACS Catalysis*, **7**, 7543 (2017).

"Stable Rhodium Pair Sites on MgO: Influence of Ligands and Rhodium Nuclearity on Catalysis of Ethylene Hydrogenation and H-D Exchange in the Reaction of H₂ with D₂," E. Guan and B. C. Gates, *ACS Catalysis*, **8**, 482 (2018).

"A Silica-Supported Monoalkylated Tungsten Dioxo Complex Catalyst for Olefin Metathesis," N. Maity, S. Barman, Y. Minenkov, S. Ould-Chikh, E. Abou-Hamad, T. Ma, Z. S. Qureschi, L. Cavallo, V. D'Elia, B. C. Gates, and J.-M. Basset, *ACS Catalysis*, **8**, 2715 (2018).

"Beating Heterogeneity of Single-Site Catalysts: MgO-Supported Iridium Complexes," A. S. Hoffman, L. M. Debefve, S. Zhang, J. E. Perez-Aguilar, E. T. Conley, K. R. Justl, I. Arslan, D. A. Dixon, and B. C. Gates, *ACS Catalysis*, **8**, 3489 (2018).

"Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation," L. Wang, E. Guan, J. Zhang, J. Yang, Y. Zhu, Y. Han, M. Yang, C. Cen, G. Fu, B. C. Gates, and F.-S. Xiao, *Nature Communications*, **9**, 1362 (2018).

"Supported cluster catalysts synthesized to be small, simple, selective, and stable," E. Guan, C.-Y. Fang, D. Yang, L. Wang, F.-S. Xiao, and B. C. Gates, *Faraday Discussions*, **28**, 9 (2018).

"Sinter-Resistant Metal Nanoparticle Catalysts Achieved by Immobilization within Zeolite Crystals via Seed-Directed Growth," J. Zhang, L. Wang, B. Zhang, H. Zhao, U. Kolb, Y. Zhu, L. Liu, Y. Han, G. Wang, C. Wang, D. S. Su, B. C. Gates, and F.-S. Xiao, *Nature Catalysis*, **1**, 540 (2018).

"Weakly Interacting Solvation Spheres Surrounding a Calixarene-Protected Tetrairidium Carbonyl Cluster: Contrasting Effects on Reactivity of Alkane Solvent and Silica Support," A. P. Palermo, S. J. Zhang, S.-J. Hwang, D. A. Dixon, B. C. Gates, and A. Katz, *Dalton Transactions*, **47**, 13550 (2018).

"Imine Metathesis Catalyzed by a Silica-Supported Hafnium Imido Complex," M. A. Aljuhani, S. Barman, E. Abou-Hamad, A. Gurinov, S. Ould-Chikh, E. Guan, A. Jedidi, L. Cavallo, B. C. Gates, J. D. A. Pelletier, and J.-M. Basset, *ACS Catalysis*, **8**, 9440 (2018).

"Controlling Catalytic Activity and Selectivity for Partial Hydrogenation by Tuning Environment around Active Sites in Iridium Complexes Bonded to Supports," M. Babucci, C.-Y. Fang, J. E. Perez-Aguilar, A. S. Hoffman, A. Boubnov, E. Guan, S. R. Bare, B. C. Gates, and A. Uzun, *Chemical Science*, **10**, 2623 (2019).

"Catalysis by Design: a Tungsten Catalyst incorporating a Well-Defined Lewis Acidic Surface Ligand for Selective Metathesis of Propane, $[(\equiv\text{Si}-\text{O}-\text{Si}\equiv)(\equiv\text{Si}-\text{O}-)_{2}\text{Al}-\text{O}-\text{W}(\equiv\text{CtBu})(\text{H})_{2}]$," B. Werghi, A. Bendjeriou-Sedjerari, A. Jedidi, N. Morlanes, E. Abou-Hamad, K. Bhatte, E. Guan, T. Ma, A. Aguilar, S. Ould Chikh, L. Cavallo, B. C. Gates, and J.-M. Basset, *ChemCatChem*, **11**, 614 (2019).

"Bulky Calixarene Ligands Stabilize Supported Iridium Pair-Site Catalysts," C. Schöttle, E. Guan, A. Okrut, N. A. Grossi-Giordano, A. Palermo, A. Solovyov, B. C. Gates, and A. Katz, *Journal of the American Chemical Society*, **141**, 4010 (2019).

"Reversible Metal Aggregation and Redispersion Driven by the Catalytic Water Gas Shift Half Reactions: Interconversion of Single-Site Rhodium Complexes and Tetrarhodium Clusters in Zeolite HY," C.-Y. Fang, S. Zhang, Y. Hu, M. Vasiliu, J. Perez-Aguilar, E. Conley, D. A. Dixon, C. Y. Chen, and B. C. Gates, *ACS Catalysis*, **9**, 3311 (2019).

"Atomically Dispersed Supported Metal Catalysts: Seeing is Believing," B. C. Gates, *Trends in Chemistry*, **1**, 99 (2019).

"Designing clusters for HETEROGENEOUS CATALYSIS," E. Jimenez-Izal, B. C. Gates, and A. N. Alexandrova, *Physics Today*, July 2019, p. 38.

"Product Selectivity Controlled by Nanoporous Environments in Zeolite Crystals Enveloping Rhodium Nanoparticle Catalysts for CO₂ Hydrogenation," C. Wang, E. Guan, L. Wang, X. Chu, Z. Wu, J. Zhang, Z. Yang, Y. Jiang, L. Zhang, X. Meng, B. C. Gates, and F.-S. Xiao, *Journal of the American Chemical Society*, **141**, 8482 (2019).

"Mechanistic Study of Hydroamination of Alkyne through Tantalum- Based Silica-Supported Surface Species," M. A. Aljuhani, Z. Zhang, S. Barman, M. El Eter, L. Failvane, S. Ould-Chikh, E. Guan, E. Abou-Hamad, A.-H. Emwas, J. D. A. Pelletier, B. C. Gates, L. Cavallo, and J.- M. Basset, *ACS Catalysis*, **9**, 8719 (2019).

"MgO-Supported Iridium Pair-Site Catalysts are More Active and Resistant to CO Poisoning than Analogous Single-Site Catalysts for Ethylene Hydrogenation and H-D Exchange," E. Guan, L. Debefve, M. Vasiliu, S. Zhang, D. A. Dixon, and B. C. Gates, *ACS Catalysis*, **9**, 9545 (2019).

"Spectroscopic Characterization of $\mu\text{-}\eta^1\text{:}\eta^1$ -Peroxo Ligands Formed by Reaction of Dioxygen with Electron-Rich Iridium Clusters," A. P. Palermo, C. Schöttle, S. Zhang, N. Grossogiordano, A. Okrut, D. A. Dixon, H. Frei, B. C. Gates, and A. Katz, *Inorganic Chemistry*, **58**, 14338 (2019).

"Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Catalyst with an Iridium Loading of 14.8 wt %," M. Babucci, F. E. Sarac Oztuna, L. M. Debefve, A. Boubnov, S. R. Bare, B. C. Gates, U. Unal, and A. Uzun, *ACS Catalysis*, **9**, 9905 (2019).

"Iridium Atoms Bonded to Crystalline Powder MgO: Characterization by Imaging and Spectroscopy," L. M. Debefve, A. S. Hoffman, A. Yeh, R. C. Runnebaum, S. Shulda, R. Richards, I. Arslan, and B. C. Gates, *Journal of Physical Chemistry C*, **124** 459 (2020).

"Synthesis of $\text{Rh}_6(\text{CO})_{16}$ in Supercages of Zeolite HY: Reaction Network and Kinetics of Formation from Mononuclear Rhodium Precursors via $\text{Rh}_4(\text{CO})_{12}$ Facilitated by the Water Gas Shift Half-Reaction," C.-Y. Fang, J. Valecillos-Diaz, E. T. Conley, C.-Y. Chen, P. Castaño, and B. C. Gates, *Journal of Physical Chemistry C*, **124**, 2513 (2020).

"Silica accelerates the selective hydrogenation of CO_2 to methanol on cobalt catalysts," L. Wang, E. Guan, Y. Wang, L. Wang, Z. Gong, Y. Cui, X. Meng, B. C. Gates, and F.-S. Xiao, *Nature Communications*, (2020)11:1033

"Docking of Tetra-methyl Zirconium to the Surface of Silica: A Well-Defined Pre-catalyst for Conversion of CO_2 to Cyclic Carbonates, W. Almaksoud, A. Saidi, M. Samantaray, E. Abou-Hamad, A. Poater, S. Ould-Chikh, X. Guo, E. Guan, T. Ma, B. C. Gates, and J.-M. Basset, *Chem Commun* **56**, 3528 (2020).

"Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO_2 ," S. Das, J. Pérez-Ramírez, J. Gong, N. Dewangan, K. Hidajat, B. C. Gates, and S. Kawi, *Chemical Society Reviews*, **49**, 2937 (2020).

"Unraveling the individual influences of supports and ionic liquid coatings on the catalytic properties of supported iridium complexes and iridium clusters," M. Babucci, A. S. Hoffman, L. M. Debefve, S. F. Kurtoğlu, S. R. Bare, B. C. Gates, and A. Uzun, *Journal of Catalysis*, **387**, 186 (2020).

"Atomically Dispersed Ru on Manganese Oxide Catalyst Boosts Oxidative Cyanation," H. Wang, D. Xu, E. Guan, L. Wang, J. Zhang, C. Wang, S. Wang, H. Xu, X. Meng, B. Yang, B. C. Gates, and F.-S. Xiao, *ACS Catalysis*, **10**, 6299 (2020).

"Isostructural Atomically Dispersed Rhodium Catalysts Supported on SAPO-37 and on HY Zeolite," J. E. Perez-Aguilar, C. Y. Chen, J. T. Hughes, C.-Y. Fang, and B. C. Gates, *Journal of the American Chemical Society*, **142**, 11474 (2020).

"Dispersed Nickel Boosts Catalysis by Copper in CO₂ Hydrogenation," L. Wang, E. Guan, Z. Wang, L. Wang, Z. Gong, Y. Cui, Z. Yang, C. Wang, J. Zhang, X. Meng, P. Hu, X.-Q. Gong, B. C. Gates, and F.-S. Xiao, *ACS Catalysis*, **10**, 9261 (2020).

"Supported Metal Pair-Site Catalysts," J. Ciston, S. R. Bare, R. C. Runnebaum, A. Katz, A. Kulkarni, C. X. Kronawitter, and B. C. Gates, *ACS Catalysis*, **10**, 9065 (2020).

"Electronic Structure of Atomically Dispersed Supported Iridium Catalyst Controls Iridium Aggregation," S. F. Kurtoğlu, A. S. Hoffman, D. Akgül, M. Babucci, V. Aviyente, B. C. Gates, S. R. Bare, and A. Uzun, *ACS Catalysis*, **10**, 12354 (2020).

"Atomically Dispersed Metals on Well-Defined Supports including Zeolites and Metal–Organic Frameworks: Structure, Bonding, Reactivity, and Catalysis," M. Babucci, A. Guntida, and B. C. Gates, *Chemical Reviews* **120**, 11956 (2020).

"Prototype Atomically Dispersed Supported Metal Catalysts: Iridium and Platinum," Y. Chen, H. Sun, and B. C. Gates, *Small*, **17**, 2004665 (2021).

"Pair Sites on Nodes of Metal–Organic Framework **hcp** UiO-66 Catalyze *tert*-Butyl Alcohol Dehydration," Y. Xiao, L. Han, L. Zhang, B. C. Gates, and D. Yang, *Journal of Physical Chemistry Letters*, **12**, 6085 (2021).

"Transformation of Atomically Dispersed Platinum in SAPO-37 into Platinum Clusters: Catalyst for Ethylene Hydrogenation, J. E. Perez-Aguilar, J. T. Hughes, C.-Y. Chen, and B. C. Gates, *Catalysis Science and Technology*, **11**, 6666 (2021).

"A Theory-guided X-ray Absorption Spectroscopy Approach for Identifying Active Sites in Atomically Dispersed Transition Metal Catalysts," Y. Chen, R. Rana, T. Sours, F. D. Vila, S. Cao, T. Blum, J. Hong, A. S. Hoffman, C.-Y. Fang, Z. Huang, C. Shang, C. Wang, J. Zeng, M. Chi, C. X. Kronawitter, S. R. Bare, B. C. Gates, and A. R. Kulkarni, *Journal of the American Chemical Society*, **143**, 20144 (2021).

"Propane Dehydrogenation Catalyzed by Single Pt Atoms in SiOZn OH Nests in Dealuminated Zeolite Beta," L. Qi, M. Babucci, Y. Zhang, A. Lund, L. Liu, Y. Chen, A. S. Hoffman, S. R. Bare, Y. Han, B. C. Gates, and A. T. Bell, *Journal of the American Chemical Society*, **143**, 21364 (2021).

"Atomically Dispersed Platinum in Surface and Subsurface Sites on MgO Have Contrasting Catalytic Properties for CO Oxidation," Y. Chen, R. Rana, Z. Huang, F. D. Vila, T. Sours, J. E. Perez-Aguilar, X. Zhao, J. Hong, A. S. Hoffman, X. Li, C. Shang, T. Blum, J. Zeng, M. Chi, M. Salmeron, C. X. Kronawitter, S. R. Bare, A. R. Kulkarni, and B. C. Gates, *Journal of Physical Chemistry Letters*, **13**, 3896 (2022).

"Transformation of Reduced Graphene Aerogel-Supported Atomically Dispersed Iridium into Stable Clusters Approximated as Ir₆ during Ethylene Hydrogenation Catalysis," S. F. Kurtoğlu-Öztulum, K. Yalçın, Y. Zhao, H. Pelin Çağlayan, A. S. Hoffman, B. C. Gates, S. R. Bare, U. Ünal, and A. Uzun, *Journal of Catalysis*, **413**, 603 (2022).

"Dehydrogenation of Propane and *n*-Butane Catalyzed by Isolated PtZn₄ Sites Supported on Self-Pillared Zeolite Pentasil Nanosheets," L. Qi, Y. Zhang, M. Babucci, C. Chen, P. Lu, J. Li, C. Dun, A. S. Hoffman, J. J. Urban, M. Tsapatsis, S. R. Bare, Y. Han, B. C. Gates, and A. T. Bell, *ACS Catalysis*, **12**, 11177 (2022).

"Interconversion of Atomically Dispersed Platinum Cations and Platinum Clusters in Zeolite ZSM-5 and Formation of Platinum *gem*-Dicarbonyls," N. Felvey, J. Guo, R. Rana, L. Xu, S. R. Bare, B. C. Gates, A. Katz, A. R. Kulkarni, R. C. Runnebaum, and C. X. Kronawitter, *Journal of the American Chemical Society*, **144**, 13874 (2022).

"Ionic Liquid Sheath Stabilizes Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Complexes during Ethylene Hydrogenation Catalysis," Kurtoğlu-Öztulum, K. Yalçın, A. S. Hoffman, A. Jalal, Y. Zhao, B. C. Gates, S. R. Bare, U. Unal, and A. Uzun, *ChemCatChem*, **14**, e2022200553 (2022).

"Functional CeO_x Nanogluces for Robust Atomically Dispersed Catalysts," X. Li, X. I. P. Hernandez, Y. Chen, J. Xu, J. Zhao, C. Pao, C.-Y. Fang, J. Zeng, Y. Wang, B. C. Gates, and J. Liu, *Nature*, **611**, 284 (2022).

"Ethene Hydroformylation Catalyzed by Rhodium Dispersed with Zinc or Cobalt in Silanol Nests of Dealuminated Zeolite Beta," L. Qi, S. Das, Y. Zhang, D. Nozik, B. C. Gates, and A. T. Bell, *Journal of the American Chemical Society*, **145**, 2911 (2023).

"Nested Metal Catalysts: Metal Atoms and Clusters Stabilized by Confinement with Accessibility on Supports," B. C. Gates, A. Katz, and J. Liu, *Precision Chemistry*, **1**, 3 (2023).

"Genesis of Active Pt/CeO₂ Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters," S. Das, U. Anjum, K. H. Lim, Q. He, A. S. Hoffman, S. R. Bare, S. M. Kozlov, B. C. Gates, and S. Kawi, *Small*, 2207272 (2023).

"Observations of Ethylene-for-CO Ligand Exchanges on a Zeolite-Supported Single-Site Rh Catalyst by X-ray Absorption Spectroscopy," A. S. Hoffman, O. Müller, J. Hong, G. A. Canning, C.-Y. Fang, J. E. Perez-Aguilar, B. C. Gates, and S. R. Bare, *Journal of Physical Chemistry Letters*, **14**, 4591 (2023).

"Catalysts Prepared from Atomically Dispersed Ce(III) on MgO Rival Bulk Ceria for CO Oxidation," O. Sodpiban, T. Kessarati, J. Smith, G. Ren, S. Del Gobbo, S. Das, M. Chi, V. D'Elia, and B. C. Gates, *ACS Applied Materials and Interfaces*, **15**, 55885 (2023).

"Remotely Bonded Bridging Dioxygen Ligands Enhance Hydrogen Transfer in a Silica-Supported Tetrairidium Cluster Catalyst," A. P. Palermo, S. Zhang, A. Okrut, C. Schöttle, N. A. Grosso-Giordano, R. C. Runnebaum, K. C. Edwards, E. Guan, D. Ertler, A. Solovyov, J. D. Kistler, C. Aydin, J. Liu, I. Busygin, D. A. Dixon, B. C. Gates, and A. Katz, *Journal of the American Chemical Society*, **146**, 3773 (2024).

"Atomically Dispersed Zeolite-Supported Rhodium Complex: Selective and Stable Catalyst for Acetylene Semi-Hydrogenation," Y. Zhao, Ö. D. Bozkurt, S. F. Kurtoğlu-Öztulum, M. S. Yordani, A. S. Hoffman, J. Hong, J. E. Perez-Aguilar, A. Saltuk, D. Akgül, O. Demircan, T. A. Atesin, V. Aviyente, B. C. Gates, S. R. Bare, and A. Uzun, *Journal of Catalysis*, **429**, 115196 (2024).