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PROGRAM SUMMARY

During the last two decades, there have been dramatic improvements in the development of optical
sources. Examples of this development range from semiconductor laser diodes to free electron
beam lasers and synchrotron radiation. Before these developments, standards for the measurement
of basic optical parameters (quantities) were less demanding. Now, however, there is a
fundamental need for new, reliable methods for providing fast quantitative results for a very broad
variety of optical systems and sources. This is particularly true for partially coherent optical
beams, since all optical sources are either fully or partially spatially coherent (including Lambertian
sources).

Until now, there has been no satisfactory solution to this problem. During the last two decades,
however, the foundations of physical radiometry have been developed by Walther [1-3], Wolf and
co-workers [4-24], By integrating physical optics, statistical optics and conventional radiometry,
this body of work provides necessary tools for the evaluation of radiometric quantities for partially
coherent optical beams propagating through optical systems [25.26), In this program, Physical
Optics Corporation (POC) demonstrated the viability of such a radiometric approach for the
specific case of generalized energy concentrators called Liouville transformers. We believe that
this radiometric approach is necessary to fully characterize any type of optical system since it takes
into account the partial coherence of radiation.

In this program, POC developed a new theoretical model and techniques for computing the
transformation of radiometric quantities of partially coherent optical beams through linear optical
systems. These techniques employ radiometric ray tracing (R2T) methods based on
semigeometrical phase-space trace formulas that are valid for quasi-homogeneous sources in the
short-wavelength approximation. In particular, in this program the theoretical foundations of the
R2T method for a broad class of sources, systems, and geometries were established. These
foundations included both the first order short wavelength approximation and higher
approximation orders.

Previous attempts to provide quantitative measurements on a physical optics (and statistical optics)
level were too complicated for any practical use. They were based on 4-D Fresnel diffraction
formulas with an 8-D system kernel. By contrast, POC's R2T approach is much more simple and
practical due to the implementation of a new model of generalized radiance in 4-D phase-space
which obtains all basic radiometric quantities, such as radiant emissivity (and optical intensity),
radiant intensity and energy flux. These quantities fully characterize propagation of partially
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coherent beams through optical systems. In addition, POC's R2T method is more general than
geometrical ray tracing because it provides quantitative results in the form of spatial/angular 2-D
distributions of radiometric quantities while still preserving the information about the spatial
coherence of the optical beam. By contrast, the geometric ray tracing is not 2ble to provide either
of those two quantitative results. As a result, POC's R2T model is the only effective quantitative
means-for computing all the above radiometric quantities for partially coherent optical beams for a
broad variety of optical systems. These include free-space propagation [25-26], non-imaging
coneentrators and collimators [23], large aperture waveguides with variable cross-sections [25],
imaging systems [27) based on first order optics [28], holographic systems [29], and other linear
optical systems including aperture stops [25]. The family of optical sources that can be analyzed
by this method includes non-Lambertian quasi-homogeneous sources [7] with non-uniform
intensity 2-D spatial distribution and a statistically homogeneous [30] non-uniform 2-D distribution
of a complex degree of spatial coherence. The broad variety of sources that belongs to this family
includes high-power pulse/CW lasers, synchrotron radiation, semiconductor lasers, Lambertian
(thermal) sources and a broad class of non-Lambertian sources such as tungsten lamps, deuterium
lamps, hollow cathodes, laser induced plasmas and many others. Also, general problems of
radiation transfer and heat transfer can be analyzed by POC's R2T approach.

There are many applications of this program that can benefit the U.S. Department of Energy.
These benefits include progress in x-ray physics, radiometry, plasma physics, laser physics,
spectroscopy, solar physics, in particular, and physical optics, statistical optics and optical
engineering, in general, wherever we deal with partially coherent optical sources. In all these
cases, POC's R2T model can provide the only efficient tool to compute the transformation of
optical beams through linear optical systems, in the form of the spatial/angular distribution of
radiometric quantities. This is especially important in the case where we need to compute the
output distribution of the radiometric quantities, based on the knowledge of the input (source)
distribution of optical radiation as well as the optical system transmitting this radiation. The energy
related areas of interest (discussed in detail in the text) include LLNL's AVLIS program and
synchrotron radiation facilities for high accuracy source calibration, to mention only a few.




Final 0193.3066 DOE NIO (Manley)
DE-FG03-89ER14092

1.0 INTRODUCTION

This section will present the general background of semigeometrical phase-space trajectories and
their significance to physical and statistical optics. '

1.1 Historical Background .

The origins of semigeometrical phase-space trajectories related to POC's R2T model can be traced
to the well-known brightness theorem [321 | obtained on a purely geometrical basis, which is a
basic theorem of conventional radiometry (the oldest area of optics (Leonardo De Vinci)). It can be
shown that the brightness (radiance) theorem for imaging optical systems is a particular form of an
optical analog of the Liouville theorem (Marcuse [33] and others [34:35}). The Liouville theorem
has been successfully applied to evaluating the maximum concentration limit for non-imaging
optical systems and has demonstrated the impossibility of constructing such an ideal non-imaging
system with axial symmetry (Winston and Welford B3}). Using the Liouville theorem in spherical
coordinates (also see Appendix A), however, it is possible to demonstrate an ideal concentration
system with spherical symmetry (Jannson and Winston [34)),

A fundamental breakthrough in theoretical radiometry was achieved by Walther [1:2] who included
spatial coherence in definitions of generalized radiance. Using these definitions, Wolf and co-
workers [3-23] established the foundations for physical radiometry. Using the apparatus of
physical radiometry [3-23:36-38), the physical optics generalization of the brightness theorem was
proven by Walther 3! and Simon and Wolf [27] for Walther's second definition of radiance [2] and
by Kim [24] for the first of Walther's definitions of radiance [1]. (This can be identified with the
Wigner distribution [39], which is well known in quantum mechanics.) Specifically, for this
program, Simon and Wolf [27) provided a rigorous proof of the physical brightmess theorem in the
short-wavelength asymptotic approximation for first order optical system [28:40], and Wolf et
al. [38] proved the physical brightness theorem for all "good" definitions of radiar.ce analyzed by
Friberg et al. [10.38], Moreover, Bastiaan [40] and Kim [24], using Walther's first definition of
radiance, have shown that the physical brightness theorem can be extended to Fresnel diffraction in
free-space, if diffraction aperture effects can be ignored. Furthermore, during this program, it was
shown that the physical brightness theorem can be used in the case of Fresnel diffraction, even if
diffraction aperture effects are included, assuming that certain necessary conditions are satisfied
(Jannson, Tengara [25.26])
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The preliminary formulation of the R2T model was presented by POC at the 1991 Annual Meeting
of the Optical Society of America (Jannson, Tengara, Tin [25.261), and then at the 10th Symposium
on Energy Engineering Sciences, Argonne National Laboratory, May 1992.

In spite of the remarkable progress in physical radiometry [3-23.36-38], rigorous definition of the
area of the validity of the R2T concept still remains an issue. This is basically because of the
asymptotic (A — 0) character of R2T. Of course, the mathematical difficulties of the asymptotic
approximations are well-known, particularly in the context of asymptotic relations between
quantum mechanics and classical mechanics (see, e.g., Ref. [41] ). Fortunately, in free-space, the
semigeometrical asymptotic R2T model is also recognized as a first order term in a Taylor series,
with respect to the dimensionless parameter Azf2 [11), Using this parameter, the higher-order
terms can be ignored if Azf2 << 1 (A is the optical wavelength, z is the distance between the input
and output planes, and f is the maximum spatial frequency of the input intensity spatial
distribution) assuming the quasi-homogeneous source model [7.

Carter and Wolf [7] demonstrated that the concept of quasi-homogeneous sources is fundamental
to physical radiometry. Using the concept of quasi-homogeneous sources, it was possible to
integrate physical radiometry with Fourier optics (Jannson [111), Quasi-homogeneous sources are
statistically homogeneous, and poorly-coherent, in the sense of global spatial coherence. The
concept of global spatial coherence introduced by Kondratienko and Skrinsky 1421, Kim [24], and
Nemez [43], states that an optical beam of interest, is (fundamentally) spatially poorly-coherent, if
its 4-D phase-space effective hyper-area (PSEA) is much larger than the elementary cell
(AxAyApxApy ~ (A/2)2) in 4-D phase-space (x,y:Px-Py), where px and py represeut the optical
directional cosines. By contrast, if PSEA ~ (A/2)2, the optical field is fully spatially coherent (e.g.,
single-mode Gaussian laser beam [31]), as a result of an optical analog of Heisenburg's uncertainty
principle. )

In the case of quasi-homogeneous sources, a number of important theorems of physical optics can
be generalized. Thuse include the Van Cittert Zernike theorem [32], and the 2-D Wiener-
Khintchine theorem 321, Moreover, it has been shown (Carter and Wolf [7]) that, in the case of
quasi-homogeneous sources, both of Walther's definitions of generalized radiance coincide, being
“good” definitions of generalized radiance (since they are always non-negative) in the sense of
Friberg [10). In addition, it was shown that, in the case of statistically-homogeneous optical
fields, the Van Cittert Zernike theorem can be generalized as a general propagation law, since it is
the consequence of satisfying by the complex degree of spatial coherence of the Helmholtz
equation with respect to a difference of coordinates (see Appendix D) [30],
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POC believes that these recent developments in physical radiometry and the theory of coherence
represent an excellent foundation which can lead to a general model of propagation of partially
coherent radiation through optical systems. This can have important implications in many
Department of Energy current interests.

1.2 POC's Approach

As an intermediate approach between geometrical optics and wave diffraction, POC introduced the
new concept of semigeometrical phase-space trajectories and radiometric ray tracing (R2T) during
the initial two years of this DOE program. This development has major implications as a
theoretical and practical tool for the effective computing of partially coherent optical beams
throughout a broad variety of optical systems. These applications include free-space, non-imaging
optical systems, imaging optical systems, laser resonators and holographic optical systems.
Because of their relationship to phase-space density and to the Liouville theorem, the general
theoretical formulas governing semigeometrical phase-space trajectories were referred to before as
Nonuniform Liouville Transformers (NLT).

POC's R2T approach is more general than geometrical optics. This is because it provides
quantitative relations for radiometric quantities such as emissivity, radiant intensity, and energy
flux, while also including the spatial coherence of the optical beam as an additional parameter of the
system. Although R2T is less general than a wave diffraction model, it offers an obvious
advantage over the latter, because R2T provides the necessary quantitative results without
troublesome and time-consuming computations of four-dimensional (4-D) diffraction integrals in
the spatial domain. Furthermore, the R2T concept can be used in sophisticated geometries such as
non-imaging optics, in which standard computing, based on wave diffraction, is hopelessly
complicated. In these cases, geometrical optics provides only qualitative results and not the
quantitative re<ults for radiometric quantities provided by R2T.

More specifically, POC's R2T model generalization of conventional non-imaging optics [34.35]
falls into the following four major categories (three of them are related to optical source features
and the fourth to non-imaging system geometry):

1. Nonuniform intensity 2-D spatial distribution in the input source plane
2. Partial spatial coherence of a source
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3. Non-Lambertian source angular distribution
4. Anisotropic (e.g., elliptic) cross-section of non-imaging concentrator/collimator
systems

These categories are summarized in Table 1-1.

Table 1-1. R2T Non-lrr_laging Optics vs Conventional Non-Imaging Optics

Conventional R2T
Feature Non-Imaging Optics | Non-Imaging Optics
1. Source Intensity Spatial Uniform Generally Nonuniform
Distribution
et (N/A, Indirectly Assumed :
2. Source 3patial Cpherence Incoherence) Partial
3. Source Angular Distribution Lambertian Generally Non-Lambertian
of Radiation
4. Geometry of Non-Imaging Isotropic Generally Anisotropic
System

In general, R2T quantification can be applied to a broad variety of optical systems. These systems
include free-space, astigmatic and stigmatic imaging systems (in the first order optics
approximation) [28:401, jsotropic and anisotropic non-imaging systems and holographic imaging
systems (Figurc 1-1). Moreover, under certain conditions, weak diffraction effects on apertures
(edges and slits, etc.) can also be included.

The variety of optical sources which can be computed using the R2T model is also very broad.
This range includes the majority of partially-coherent sources, such as high-power pulse lasers,
semiconductor lasers (laser diodes), synchrotron radiation, all classical (Lambertian) sources, non-
Lambertian sources, and a broad variety of secondary optical sources, such as video displays.
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Figure 1-1
lllustration of Optical Systems That Can Be Computed by the R2T Model. They include
(a) imaging systems (stigmatic and astigmatic) with aperture stops, (b) non-imaging systems
(isotropic and anisotropic), and (c) holographic imaging systems. -

1.2.1 Summary of Theoretical Results

The foundations of the radiometric and the R2T approach were established by POC during this
program. In particular, the following results were established by POC:
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1. A more general model than the short-wavelength asymptotic approximation R2T model,
based on Taylor series expansion of radiance transfer function (RTF), has been formulated
for free-space (see Refs. [25, 26]), including not only the so-called asymptotic (first order)
approximation [27], but also the second order and the third order approximation containing
O(A) and O(A?) terms, respectively.

2. A rigorous derivation of the R2T model for the imaging systems in the first-order optics

- approximation has been formulated (see Ref. [27] and Appendix C). Another approach to

imaging optical systems, based on Fourier optics was formulated by the author ten years

ago (111, Also, the R2T model has been compared with conventional approach, from a
computer time budget point of view.

3. Using the second order short wavelength approximation, the validity of the R2T model has
been evaluated in free-space, based on the four conditions (see Refs. [25, 26]), defining
the Fresnel diffraction approximation quasi-homogeneity of the optical source, the R2T
first order approximation, and the non-existence of non-homogeneous waves. Those
conditions have been proven to be necessary and sufficient by using direct computing.

4, The generalized van Cittert Zernike theorem for statistically-homogeneous optical fields has
been proven (see Ref. [30] and Appendix D), demonstrating that the propagation of spatial
coherence can be described by (linear) Helmholtz wave equation.

5. The R2T model has been extended to non-imaging optics, far beyond Winston's model
based on uniform Lambertian sources (see Table 1-1).

6. The graphic method of phase-space diagrams demonstrating the evolution of optical beams
has been demonstrated. This method has been confirmed experimentally by using a PSEA
measuring device. '

7. For experimental purposes, sources with regulated spatial coherence, based on POC's
rotating (graded refractive index) GRIN diffusers, were designed and demonstrated.

8. A theoretical model of holographic optical elements (HOEs) with tunable angular coherence
characteristics has been demonstrated (see Ref. [29]), and preliminary experimental results
have been obtained using such HOEs as radiation sources.
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Some of the major results of previous studies were based on a paper by the PI of this project [11],
They integrate physical radiometry with Fourier optics (see Results 1, 2, 3)). Other relevant
publication prepared under this program include:

A. T. Jannson, L. Sadovnik, T. Aye, 1. Tengara, "Radiometric Ray Tracing," J. Opt. Soc.
Am. (Dec. 1991), Proc. of the 1991 OSA Annual Meeting, San Jose (Nov. 1991); MCC4;
- see also T. Jannson, 1. Tengara, "Radiometric Ray Tracing," Proc. of the 10th Symposium

on Energy Engineering Sciences, Argonne National Laboratory (May 1992).

B. - R. Simon, E. Wolf, "Transfer of Radiance by Gaussian-Schell Model Beams in Paraxial
System," submitted to J. Opt. Soc. Am. B.

C. E. Wolf, J. Jannson, T. Jannson, "Analogue of the van Cittert Zernike Theorem for
Statistically Homogeneous Wave Field," Opt. Lett., 5, 1032 (1990).

D. T. Jannson, 1. Tengara, "Lippmann-Bragg Broadband Holographic Mirrors," J. Opt. Soc.
Am., 8, 201 (1991).

E. T. Jannson, 1. Tengara, and D. Erwin, "Semigeometrical Phase-Space Trajectories in
Physical Radiometry," in preparation.

1.3 The Basic Principles of the R2T Model

Conventionally, a linear optical system can be described either qualitatively by geometrical optics
or quantitatively by a wave diffraction model. Considering the spatial coherence of the optical
beam, the general diffraction formula for the monochromatic case has the following form [(44:45];

W(x1y1:%2,¥2) = [l G(x1,¥15%2,¥2:%01. Yo1:%02:Y02)

1-1)
Wo (%01, Yo13%02,Y02) d%01 dyo1 dx2 dyo2 ¢

where G is an 8-D kernel describing the linear optical system, and W is the cross-spectral density,
in the form [32I;

W(x1.y1 ;XZ’YZ) = {U *(XI'YI) U(xz’yz)}ens (1-2)

where U(x,y) is the complex amplitude. The asterisk denotes the conjugation operation and

{ ... Jens denotes the ensemble average. In general, the cross-spectral density can be represented
as [32]
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W(x1,y13%2,¥2) = B(x1,Y15%2,y2)  1(x1,31) 4 1(x2,Y2) (1-3)
where [ is the complex degree of spatial coherence (Il < 1), and I is the optica_l intensity.

It should be emphasized that, in spite of the remendous complexity of the 4-D diffraction formula
(Eq. (1-1)), this is only the first step in computing more sophisticated optical systems such as
those illustrated in Figure 1-1. In fact, in the case of non-imaging systems, it is necessary to use
this formula many times in an iterative manner, a hopelessly complicated scenario from a computer
time budget perspective.

Obviously, a simplified method for computing radiometric quantities which preserves the features
of the optical beams, such as non-uniform intensity and partial spatial coherence, is highly desired.
This is particularly true for energy-related applications. We believe that the R2T computing method
based on semigeometrical phase-space trajectories can fill this gap. As illustrated in Figure 1-2, the
general R2T computing procédure can be broken down into three major steps:

1. Calculation of input phase-space density, By (generalized brightness and the
generalized radiance function are among several names used for this function),
from optical intensity (I,), degree of spatial coherence (Jio), and spatial distribution;

ie.,
2. Projection of the radiance function (B) in phase-space according to Fermat's
principle:
Bo(Ro,%) = B(R.3) (1-52)
where

(ﬁ o ,'s’o) Fermat's Principli (ﬁ,'s’) (1-5b)

Here, R = (x,y,2),and §= (sx,sy,sz) is unit vector of observation.

10
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' 3. Integration of radiance function, either in the space domain (x,y) or the direction
domain (sx, sy), in order to obtain measurable radiometric quantities such as
emissivity (E), radiant intensity (J), and energy flux (F). For example, the
direction integral is

E(x.y) = [|B(x,y:5x,5y ) dsx dsy T a6

This 2-D integral is very simple, since it does not contain an oscillating 4-D kernel
(in contrast to 2-D Fourier integrals, for example).

| ]
] | p

| |

I Projection |

Bo H (B

@ : In Phase Space;

] |

] ]

| |

| i

! |

input Plane Optical System Output Plane

Figure 1-2
A Schematic of the General R2T Computing Procedure. l, is the input optical intensity, o is the
input complex degree of spatial coherence, By, is the generalized input radiance, B is the
generalized output radiance, E is the output emissivity, J is the output radiant intensity, and 1 is the
' output optical intensity.

Comparing Egs. (1-4) to (1-6) with Eq. (1-1), it is seen that the R2T computing model, Eqgs. (1-4)
to (1-6), is indeed much simpler than the wave diffraction model, Eq. (1-1), and that the computer
time savings are therefore obvious. We can safely say that the R2T approach is the only practical
approach that can be used for computing propagation radiometric quantities of partially coherent
optical beams through linear optical systems. It should be noted that in paraxial aporoximation

E=1l 17
Therefore, the R2T model provides an indirect transformation of optical intensity through an optical
system:

[lo(X0,¥0) 2 1,1 (1-8)
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even for partially spatially coherent optical beams, providing at the same time a factor of about
100:1 computer time saving in comparison to the scalar diffraction model for free- -space. In the
case of more sophisticated optical systems, especially including non-imaging optics based on total
internal reflection (TIR), the R2T approach is the only method for providing quantitative results for

radiometric quantities.

1.3.1 Elementary Example--Free-Space in Paraxial Approximatica

For Fresnel scalar diffraction, we have [4445]

I(x,y) = [[[]G (x,y; xq1, Y01,XO;.,Y02)

Ro(x01: Y015 %02 Y02 \/I (x01» YOI)\/I "02,)’02)
dxo1dyo1dx02dyor

~

1-9)

where G is the 6-D Fresnel diffraction kernel [44.451 The respectlve R2T diagram, illustrated in
Figure 1-3, consists of three basic steps:

Bo(T.B) =5, 1o(%)fo (/1) (1-10a)
B(,5) =B, [F - (z/s;) $.5] (1-10b)
I(F) = || B(%.5)d?p; d’p = dp, dpy;; (1-10c)

where [L(5/1)=F{u( )}

(1.10)
o (D

Figure 1-3
Elementary R2T Diagram for Free-Space in Paraxial Approximation

Comparing Egs. (1-9) and (1-10), instead of 4-D intégration (1-9) with a 6-D kernel, we have 2-D
projection (1-10b) and 2-D integration (1-10c) with a 4-D kernel. In addition, in order to evaluate
the input radiance, B, (F,p), it is usually sufficient to know only the input intensity 2-D spatial
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distribution, Io ('1'5), since the input 2-D distribution of the complex degree of spatial coherence
Ko (T') is usually determined by the general character of the optical source, as it is in the case of

synchrotron radiation (24.46] (see Figure 1-3).

In order to compare the scalar Fresnel diffraction model and the R2T model with respect to
computer time expenditure, three computers were used: a Sun Sparc Station, a CRAY Y-MP and
an Everex PC. The results are summarized in Table 1-2. It is seen that the difference in duration
of computer use is quite significant, up to 778:1 for the Everex PC and the 1-D case (1.06 h vs.
4.9 sec) and about 30:1 for the 2-D case. Of course, only the free-space case (and space-invariant
imaging system) can be used for comparison, since non-imaging optical systems, space-invariant
imaging systems, and holographic systems [29] are too complicated to use the Fresnel diffraction
model in an iterative manner. It should be emphasized that only POC's Everex PC R2T software is
specially adjusted ior this type of computation. The Gaussian-correlated (og) circular source of

radius a with either a Gaussian intensity disaibution (Gs) or with a constant profile (O = e) was |

used for comparison: ¥
2
I,(T)= ex (- I circ(z-) -
o(T) pk 203) - (1-11a)
2
- r
Ho(T")=exp [—5—7} Og << G (1-11b)
Cg

Using Walther's second definition of generalized radiance [2] and the radiance transfer function
(RTF) model [11), it has been shown that the R2T model is valid in free-space for z < z1, where

23 ==L, (1-12)

and A is the resolving element of the spatial intensity distribution. For example, for typical
synchrotron sources, Aj=1mm and z; =10 cm for A = 1 um.

13
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In order to independently confirm this result, the Fresnel diffraction and R2T methods have been
computed directly for free-space using Egs. (1-9) and (1-10a) through (1-10c), respectively, for
the (1-11a) and (1-11b) 1-D source model with Og = o, and the following criteria:

3 4
Q= (—z-) 4r (l + i) >>1 (Fresnel approximation) . (1-13a)
a/ ma a .
- a/og >> 1 (quasi-homogeneity approximation) (1-13b)

E=Azf12 << 1
¢ ! (1-13c)

(RT first order approximation equivalent to Eq. (1-12) for f; = Xl-)
1

Og/A > 1 (no evanescent waves) (1-13d)

In Figure 1-4 it is seen that these two models indeed nearly coincide for Q = 98, a/cg = 25,
Og/A =3, and ¢F = 0.62; i.e., where all four criteria are satisfied. Computing results suggest
that the criteria (1-13) indeed create the set of necessary and sufficient conditions for the reliability
of a specific R2T theoretical model of physical radiometry.

Considering the parallel results [24] based on the first of Walther's definitions of generalized
radiance [1], further studies are necessary to establish a solid base for the R2T model.

The reliability of the RTF model [11], represented by Eq. (1-12) has been tested by verifying that
the criteria (1-13a,b,c,d) constitute the set of necessary and sufficient conditions for agreement
between the output spatial emissivity distributions, obtained by using either Eq. (1-5) or
Egs. (1-10). Since, Eqgs. (1-9) and (1-10a,b,c) do not depend on any specific definition of
generalized radiance, they should constitute objective criteria to evaluate any theoretical R2T model
of physical radiometry, dependent on any specific definition of generalized radiance.

15
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Figure 1-4
Comparison of Emissivity Distribution for Fresnel Diffraction (Solid Line) and R2T (Broken Line).
1-D Free-Space Models for Q = 98, a/ag = 25, og/A = 3, and ¢F = 0.62.

1.3.2 Numerical Results for the R2T Model

Using the Gaussian-correlated circular source model defined by Egs. (1-11a and b), a broad
variety of linear optical systems have been analyzed by using the radiometric ray tracing
(R2T) model. They include free-space [25:26], imaging systems in the first order optics
approximation {27, and non-imaging concentrators/collimators and large-aperure waveguides (23]
with a curved profile and anisotropic cross section (see Figure 1-1). Here, we present only one
simple example of a truncated non-imaging cone with circular input and output radii of 0.15 mm
and 0.6 mm, respectively. The input is a Gaussian correlated circular source of radius a with a
Gaussian intensity at z/a = 0; 2nog/A =20, 2na/A = 1771, and 2n0s/A = 2000. For this
cone, statistical ray-tracing was provided with up to 3 total internal reflections, and the total
number of rays was 7,110, 861. Using the R2T model illustrated in Figure 1-2, a 2-D spatial
distribution of emissivity E (T) was computed at the output plane z/a = 200 (see Figure 1-5).

16
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Figure 1-5
lllustration of 2-D Spatial Distribution of Output Emissivity (Optical Intensity) Computed by Using
the R2T Model. The output of the non-imaging optics truncated cone with input and output radii
of 0.15 mm and 0.6 mm, respectively, is z/a = 200. The input is a Gaussian-correlated circular
source of radius a with a Gaussian intensity at 2/a = 0; 2rog/A = 20, 2na/A = 1771 .
2nog/A = 2000. The total number of rays using up to 3 total internal reflections is 7,110,861.

Using an approach similar to that illustrated in Figure 1-5, the analogous 2-D distributions of
radiometric quantities (radiance, emittance, radiant intensity, energy flux) have been computed for
the broad variety of optical systems illustrated in Figure 1-1. Using the R2T method; the computer
time saving factor is about 100:1 for free-space and practically infinite for more sophisticated non-
imaging systems with reflection walls. The broad variety of quasi-homogeneous optical
sources [7] that can be analyzed by using the R2T model includes all Lambertian sources and a
broad variety of non-Lambertian sources such as synchrotron radiation, high power pulse/CW

lasers, semiconductor lasers, tungsten lamps, deuterium lamps, hollow cathodes, and laser
induced plasma.

1.4 Program Philosophy

Much of conventional radiometry is concerned with the propagation of radiance through optical
systems. However, as is well known, the radiance function is not a directly measurable quantity.
The reason for this is that the radiance function B(7,P) requires knowledge of both spatial and

angular distribution, in contradiction to the Heisenberg uncertainty principle. Only certain averages

17
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and integrals involving B(T,B) represent physical observations, such as radiant emittance E(F),
optical intensity I(T), radiant intensity J(B), and energy flux E.

In this program, POC developed ray tracing techniques using the phase-space formation similar to
that used to calculate quantities both in image-forming systems and in non-imaging concentrators.
In particular, we developed computational techniques for tracing the radiance of optical beams
through lens systems, utilizing the ABCD matrices which have been so successful in laser
physics [31) . This program extends this theory to fields which are not beam like and for which
the ABDC matrices cannot be used. The results would be of particular interest for non-imaging
optics and for optics utilizing wide-angle systems. Light sources of particular interest include
synchrotron radiation and wiggler radiation. These sources can be considered quasi-homogeneous
while undulator radiation is less often quasi-homogeneous. . -

The remarkable success of applying semiclassical trace formulas [41] for the phase-space
integration of energy density levels in quantum mechanics has created the opportunity for adapting
these results into physical optics, in general, and to the generalization of semigeometrical phase-
trajectories, in particular. The formal analogy between non-relativistic quantum mechanics and 2-D
monochromatic paraxial physical optics has been developed by Gloge and Marcuse [48] and
Eichmann [49) (with the z-coordinate "playing the role" of time in quantum mechanics). This
analogy has been generalized in this program into "mixed" quantum states, with an optical analog
of the quantum density matrix [53] governing the spatial coherence of the optical beam in the space-
domain representation. In general, three density matrix representations have been shown to be
closely related to radiometric quantities (see Appendix A) since they are related to cross-spectral
density (1-14a), the radiance function (1-14b), and radiant intensity (1-14c):

(Z1p]7) (1-14a)
(%][5) (1-14b)
(plp13) (1-140)
where P is the density operator |
p={luxul},, - (1-14d)
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IU) is the complex amplitude in Dirac notation [50-52], { ... }ens is the ensemble average,
T=(xy), and P = (sx.Sy). As aresult, it has been shown in paraxial optics (equivalent to non-
relativistic quantum mechanics) that the equation of motion for the optical density operator
collapses to the optical Liouville theorem in the "classical” (i.e., short-wavelength) approximation,
where A plays the role of Planck's constant, h. This analogy played some role in the development
of the R2T model by either learning from recent semiclassical developnients in quantum
mechanics [41] or by using 2-D optical media in an analogy of "essentially 2-D" geometries of
quantum mechanics.

Future areas of study will include a comprehensive evaluation of the validity of the R2T model,
further engineering development of this model as well as its generalization into more general
sources and system geometries as well as into time-dependent polarization states (non-
homogeneous source case) and higher orders of short wavelength approximation. The results
should be useful for establishing new higher accuracy source calibration standards, based on
synchrotron radiation [47] as well as for many problems in spectroscopy, high energy physics,
plasma physics, solar physics, photonics, radiometry, etc., wherever quantitative evaluation of
partially-coherent optical system is required.

2.0 - TECHNICAL RESULTS
2.1 Semi-Geometrical Phase-Space Trace Formulas
2.1.1 Basic Definitions

Consider a monochromatic complex amplitude u(ﬁ) satisfying the Helmholtz equation, where

R= (x,y,z) = (T,2); then the 2-D Fourier transform has the form

i(F) = F{u(®)} = [u(F)e 27 *Ta2r @-1)
where f'= (fx', fy") is a spatial frequency vector of the complex amplitude and d2r = dxdy.

Using the second of Walther's definitions [2] of generalized radiance, we have
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B(f,B) = 20ks, Re[{u(f) & * (5/4)},,, exp(-ikp-7)] @2)

where (...} is the ensemble average, S= (sx, Sy, Sz) = (P, s) is the unit vector of the observation
direction. We can also define the remaining radiometric quantities, such as energy flux:

F=[[[[B(%,5) d®r d%p ' (2-3)
emit-tance,
E(x,y)= [|B(%.5) d’p (2-4)
and radiant intensity,
I(px:py) =5, [®(%,5) d%r — (2-5)

It is also useful to introduce the complex radiance function, in the form [11]

B™(7,5) = 20ks, {u(F) d* (5/2)},,, exp(-ikp-F)
= 2wks, [[W(F',F)exp ikp(F'~7)d?r (2-6)

where W (T',T) is the cross spectral density function 4],
W(G.%) = {u*(7) u(B)} @7

ens

and
B(%,5) = Re[B™ (%.5)] (2-8)

We can write Eq. (2-7) in the form [4]

W) =1GE) V1) LG.5) 2-9)

where | is the complex degree of spatial coherence, I(T) = W(F,T) is the optical intensity, and due

to well-known Schwartz inequality,
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<1 (2-10)

Egs. (2-1) through (2-10) define the basic apparatus of physical radiometry [1-23] that integrates the
radiometric quantities (radiance, emittance, radiant intensity, energy flux) with physical optics
(complex wave amplitude, of)tical intensity), and the theory of spatial coherence (cross-spectral
density, complex degree of spatial coherence). The formalism of physical radiometry, through
statistical ensemble averaging, provides the fundamentals of statistical wave optics [45, equivalent
to a "mixed states" representation of quantum mechanics [53], based on density matrix
formalism [53],

The formal analogy between the cross-spectral density function (2-7) and the density matrix,
discussed in Appendix A, provides a mechanism for the derivation of an optical analog of the
Liouville theorem: (331 as a semigeometrical asymptotic approximation of the density matrix
dynamic equation.

2.1.2 Quasi-Homogeneous Sources

In the quasi-homogeneous source approximation (7], Eq. (2-9) becomes

S T +TF - =
W, (%)= Io( = 2) o (7.%2) @-11)
as well as [26]
B,(*) (7,5) = (1/2)B, (.5) (2-12)

where index "o" denotes the source plane. Also, the generalized radiance function (2-2)
becomes (7]

B, (T,) = 2wks, I, (F)i(B/A) (2-13)

where
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i(f) = F{u()
In this approximation, both of Walther's definitions of generalized radiance coincide [7), and they
-are non-negative, and also satisfy all three Friberg's conditions (defining the properties of a
physically-correct definition of radiance; non-negativeness; zeroing outside the source boundaries;

and linear relation with cross-spectral density function) [10]. This approximation holds for
statistically homogeneous spatial coherence:

Ho (fl. -f2) = o (T ~B) . (2-14)
and for slowly-varying source intensity I,, in respect to spatial coherence degree, such as, that [11]
a>> Peoh (2-15)

where a is the resolution element of the intensity spatial distribution Io(T), and pcon is the spatial
coherence radius.

2.1.3 Paraxial Approximation

Using Egs. (2-2) and (2-4), we obtain the following formula for the generalized radiant
emissivity [36); '

E(T) = (c/k) Im {u *%}em (2-16)

where Im{ ... } determines the imaginary part and the Poynting vector (in scalar approximation)
is [36]

S =(c/k) Im {u*Vu}__ (2-17)
In the paraxial approximation, we have

=iks,u (2-18)

4k
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thus, using Eq. (2-16), we obtain (sz = 1),
E(f)=cs, {IUIZ}ens <I(¥) | (2-19)

i.c., the emissivity is proportional to the optical intensity.

2.1.4 Semigeometrical Phase-Space Trace Formulas in the First Order
Short Wavelength Approximation

The geometrical brightness theorem, obtained by a geometrical ray tracing analysis, is well

known [32), Here, we will obtain the physical optics generalization of brightness theorem,

obtained on the basis of physical radiometry and Fourier optics [44]. A more comprehensive

analysis of this problem, obtained for the Gaussian-Schell model beams in paraxial systems, has

been provided for this program by Simon and Wolf [27] in Appendix C.

The generalized radiance propagation through space-invariant linear systems has the form

B(%,5) = [[g(F~%.5)Bo (%.5) 41, (2-20)

where g is the radiance spread function. In the case of short-wavelength (A — 0): the radiance
spread function reduces to the Dirac delta function {11]

g(r—10.p) = 8[?“%"(2/52)5] (2-21)
and the 2-D integral of Eq. (2-20) reduces to the simple phase-space (T,P) trace relation [11]:
B(%,5) = B, [T—(2/s,)P.7] (2-22)
thus, the radiant emittance is

E(F) = J|B(%.5)d> p = [ B, [F—(z/s,)5.5]d% p C (223)
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and the radiant intensity is
J(7) =5, [[B(%.5) d’r= sz J[Bqg ['f—(z/ 52) -ﬁvﬁ] d’r _ (2-24)

where p = sin@, px = cos6 cos9, and py = cosBsing.

In the first order optics approximation [40], the radiometric rays can be transmitted through the
system according to the following transformation rule:

K
=8/ | -
el e

-~

where the 4-D column phase-space vectors with components (X,y; Px. Py) are multiplied by the so-
called ray transfer matrix [27

s_[A B
=lc b (2-26)

where A, B, C, D are matrix components and
detS=AD-BC=1 (2-27)
as a consequence of Liouville theorem (331,

For propagation through a distance in free-space in the z direction, we have

S—[l z]
01 (2-28)

and for a thin lens, we have

=Ly 1]
/R (2-29)
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where f is the focal length of the lens. According to Ref. [38] (also see Ref. [3]), the
semigeometrical phase-space transport formula, Eq. (2-22), is preserved for all radiance definitions
satisfying the three Friberg conditions [10) and for the first-order systems described by the
transformation (Eq. (2-25)). ‘

Moreover, the physical optics analog of the brightness theorem holds for. paraxial optical beams
ransformed through any first-order optical systems, if the Fermat principle can be applied
including Fresnel refiection from a locally-flat interface, and Fresnel refraction through locally flat
interface.

In Ref. [11], the physical optics analog to the brightness theorem has been proven for a general
class of space-invariant linear optical systems. These systems include free-space and imaging
optical systems. This general formalism, based on the Radiance Transfer Function (RTF) allows
the development of semigeometrical phase-space formulas not only in the first order short-
wavelength approximation but also in the higher approximation orders. As an illustration of this
formalism, the second order approximation will be discussed in the next section.

2.1.5 Semigeometrical. Phase-Space Formulas in the Second Order
Approximation and Validity of the First Order Approximation

The relation (Eq. (2-22)) represents the first order short-wavelength approximation. It transforms
phase-space points from input space (T,5), into the output space (¥,5). Unfortunately, this

formula does not provide any criterion of validity of this asymptotic in nature approximation. In
this chapter, using results of the author's paper [11], we will show that in free-space, we can
define dimensionless parameter that could be used for bower expansion of a system transfer
function in order to evaluate the higher orders approximation as well as to evaluate the validity of
the first order approximation.

The Fourier transform of Eq. (2-20) has the form:
B(£.5)=G(f.5) B (f.5) @30)

where ﬁ(?,'ﬁ) = IE{B (-f','ﬁ)}, and G is the Radiance Transfer Function (RTF), introduced by the .
author in Ref, {11].
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In free-space, the RTF has the form [11];

ey 2
G('f,i)') = %—exp (~ikzs,) 1-\-/ 1- 2ng _(E)

: Sz Sz
| 1 05F (A} |
) +Ecxp (LI.CZSZ) I-41+ Sz2 —(—s:) (2-31)

Expanding the square roots of Eq. (2-31) into a Taylor series containing powers of

- 2

2Ap-f , (Af

sz—i(-s—) » and assuming that p/s, = tan6 is not larger than a few units, we obtain, in the
Z Z

quadratic approximation, the following expression: -

6(f.5)= exp(_igz ’p"f') cos{(ﬂlf%(ﬁ-f-)]} 232)
Sz Sz Sz

According to Eq. (2-22), for

=\2
&= (ﬂiﬁ +[Bi) } <«<1 (2-33)
Sz Sz

the RTF reduces to the form:

G(f.5)= cxP[—ian—z ﬁ?)=f={8(f—(z/sz)‘ﬁ)}

z

i.e., it coincides with Eq. (2-21) representing the first order approximation. In an analogous way,
we can calculate the third order approximation (containing O(A2) terms) and higher orders as well.

In order to evaluate the influence of the second order RTF terms, consider an example of a
sinusoidal intensity distribution:

I(%,)= A[1+a cos(21r-f'1 5 +B)]
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then, using Egs. (2-20) and (2-30), we obtain
B(%.p)= Amlszﬁ(p/l)[ 1+aM(ﬁ,'p’)] X cos[Znﬁ (’r’-si'p'}»ﬁ]
A

where M-factor has the form of cosinusoidal term in Eq. (2-32). Therefore, the radiance function
still projects along straight lines defined by Eq. (2-21), with modulation, however, dependent on
the spatial frequency vector f1 This result shows that the semigeometrical phase-space trace

formulas can be extended beyond the first order short-wavelength approximation, the result shown
first by the author in Ref. [11].

Introducing p-f = p-fcosa, and considering that p = sin 6, and s, = cos 0, where 6 is the angle
between the z-axis and the direction of observation, we obtain,

TZAf2 .2
b= 1- o sin X
( o030 )[ (sina sin@) ] (2-34)

where a is the angle between f and P. As an example, we can consider the sinusoidal distribution
of the spatial intensity distribution, illustrated in Figure 2-1, where ﬁ is its spatial frequency vector
and A} =1/1j is its spatial period. Assuming, as an arbitrary criterion, that

L
<— .
) 10 (2-35)
(then cos ¢ = cos (—) 0.95 = 1), we obtain, for ¢ = E the following relation:
cos> 0 2
=10zAf;* = W(8,0) (2-36)

1-(sina sin 6)2
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Figure 2-1
Geometry of the Diffraction System. The diregﬁon of observation is determined by the unit vector
s situated at angle 6 with respect to z axis. The vectors ro and r are the position vectors in the
planes (xo,Yo) and (x,y), respectively. A typical sinusoidal source intensity is represented bv the
spatial frequency vectors +f1; A = 1/f1 is the "grating constant" of this intensity distribution. The
angle o is measured between the vector fy and the projection p of the unit vector s onto the (x.y)
plane.

This relation preserves ¢ = constant = %; thus, the angular distribution W(6,a) defines the

relation between W, a, 6, preserving the constant value of ¢. This relation is illustrated in
Figure 2-2 for only one quadrant because W(c) = W(nm + o), where n = 0, £1, ... Itis seen
that
VA (2-37)
Indeed, for oo =n/2, W = Wp,,, =cos 6 < 1. Also, for 6 =0, i.e., for the normal direction,
W(6,00) =W(0,0) =1 (2-38)
i.e., it does not depend on a.. Otherwise, we have anisotropic behavior, illustrated in Figure 2-2.

It should be noted that s, = cos © can not be too small, otherwise the Taylor expansion does not
hold. Therefore, only 6 < 60° is illustrated in Figure 2-2.
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ouds

7 ~ .\
6a30° 6=15 0=0

Figure 2-2

lllustration of the Relation (2-36) in Polar Coordinates (W,0) Where the Dimensionless Parameter
W = 224112 and o is the Angle Between the Vector f1 and p. The relation W(q) is illustrated in

the range 0°-90°, for five values of observation angle 6: 0°, 15°, 30°, 45°, and 60°.

For those large 6 angles, a strong anisotropic effect can be observed. For example, for 6 = 60°, W
increases from W = 0.13 for & = 0 to W = 0.5 for o = 90°.

Assuming W = 1, Eq. (2-36) becomes

1

A12

10M2 104

(2-39)

For A =1 mm and A =1 um, we obtain z; = 10 cm; i.e., the radiometric ray tracing method can
be used for z < 10 cm; while for A} = 1 pm, 2 < 1 mm. The other cases are also illustrated in

Table 2-1.
Table 2-1. Validity of the Radiometric Ray Tracing Method (W = 1)
Aq H 100 um imm 2mm 5mm icm 10 cm
24 H 1mm 10cm 40cm 25m 10m 1km

It is seen that the radiometric ray tracing method is valid for quite long distances, assuming that

intensity variation is not significant. This is quite often the case for many high energy conventional
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and non-conventional sources, even with a high degree of spatial coherence. We
illustrate this with a number of examples.

Example 1. - r igh-Ener
In the case of a multi-mode laser, the spatial coherence radii p,qp, is frequently on the order of

100 pum, and there is an intensity variation maximum frequency on the order of a few lines per
cm. Assuming pcop =50 Um and f; = 5/cm, we obtain Aj = 2 mm; i.e., A; >> p.op, and the

source is quasi-homogeneous. Then, according to Table 2-1, for z < 40 cm the radiometric ray
tracing method holds.

Example 2:  Pardally-Coherent Laser Beam -
In this case, even assuming pcop = 1 cm, we need to have A; > 10 cm in order to satisfy the
quasi-homogeneity requirement. Assuming A; = 10 cm, we obtain from Table 2-1, z; = 1 km;

i.e., the radiometric ray tracing approximation is valid for z < 1 km.

Example 3:  Typical Conventional Source

In this case, peop < 10 A. Assuming A; = 1 mm, the quasi-homogeneity condition is well
satisfied; then, from Table 2-1, z; = 10 cm.

Example 4:  Non-Uniform Conventional Source

Assuming Ay = 100 pm and z; = 1 mm, the radiometric ray tracing approximation only holds for

very short distances (z < 1 mm)

These examples demonstrate that the radiometric ray tracing approximation can be used even for
partially coherent laser sources, while it may not necessarily be valid for some types of
conventional sources. Approximately, in order to use this method, the following two conditions
need to be satisfied:

Ay >>poon (2-40)

and
A;>1mm (2-41)

In summary, a broad variety of fairly uniform and non highly-coherent sources, both conventional
and non-conventional, satisfy the radiometric ray tracing approximation.
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2.1.6 _ Validity of the First Order Approximation for Paraxial Optics Case

2.1.6.1 W Walth iance Funct finiti

In the paraxial case, s, = 1, f<< 1/A, and the coherent transfer function [44] reduces to the

H(f) = exp [xkz [ - (—}‘iﬁﬂ =

= exp (ikz) exp (—ikz (Af ')2 /2) =
= expikz exp (-inzxf'z) (2-42)

Using Eq. (2-42), the RTF, is
G(f,'ﬁ)F = exp (—i27rz P- -f) cos (nzlf 2) (2-43)
This result can be obtained directl); from Eq. (2-32) by putting s; = 1 and lﬁ f[/f 2<<l. Thus, the
phase factor ® (see Eq. (2-33)), describing the departure from the ray-tracing case (2-21) is
Of = nzZAf2 (2-44)
i.e., using the second of Walther's definitions of radiance, we do not, in general obtain the validity
of radiometric ray tracing, in the paraxial approximation. On the contrary, as was shown by

Kim [24], using the first of Walther's definitions of radiance [1] in the form

B'(f,5) = const [[d®r' {u* (F + #/2) u (F - 1/2)},,; exp(ikpT) (2-45)

and the Fresnel diffraction approximation, we obtain exactly the conventional ray tracing
formula [24]. Of course, this rather surprising result does not need to have any fundamental
consequences because, according to the Heisenberg uncertainty principle, the radiance function is
not a measurable function. Yet, the results obtained after integration of the radiance function over
either angular or space domain should be independent of the radiance function definitions. (It
should be noted that in addition to the two radiance definitions presented above, Wolf et al. [38]
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obtained an entire class of radiance function definitions physically identical to those above.) This
problem is discussed in detail in the next section.

2.1.6.2 Comparison Q_f Fresnel Diffraction Model with Radiometric Ray Tracing By Direct

Computing

In erder to verify the validity of the radiometric ray tracing approximation, independently of the
definition of the radiance function, a computer modeling was performed, to compare the results for
the emittance function, based either on the Fresnel diffraction integral (see, ¢.g., Ref. [44]), or on
radiometric ray tracing (R2T). Since radiometric ray tracing is based on the short-wavelength
asymptotic formula, Eq. (2-22), it does not depend on the radiance function definition. Obviously,
the Fresnel diffraction integral does not depend on the radiance function definition either. For the
sake of simplicity, the 1-D diffraction model has been used.

The 1-D Fresnel diffraction integral can be presented in the form [44):

1
U(x)= o JK(x,%0:2)Uq (x0)d % (2-46)

where U and U, are output and input complex amplitudes, respectively, and Fresnel diffraction
kernel is

ik(x—x,)*
K(x,x9;2) = exp| ———2L_ (2-47)
2z
where k = 27/A.
Using the cross-spectral density function:
*

W(x1,x2) = {U (Xl)U(xz)}ens (2-48)

the optical intensity is
I(x) =W (x,x) (2-49)
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and using Eqs. (2-46) through (2-48), the output intensity is

1 * ‘
I(x)= W(x.x) =~ W JIK (x,xol;z)K(x,xoz;z) X W(xol,xoz)dxol dxg2 (2-50)

In the quasi-homogeneous source approximation [7], the cross-spectral density can be presented in
the form:

W(Xsz)EI(xl ;xz)u(xl—x2) (2-51)

where [ is complex degree of spatial coherence. According to Ref. [44], the Fresnel diffraction
approximation is valid if the following condition is satisfied:

b 4
z3>> Zx(x—xo) (2-52)

and the quasi-homogeneous source approximation is satisfied if
a>>0og (2-53)

where a is the characteristic length of intensity variation, where I (x,) is approximately constant,
while oy is the characteristic size of the spatial coherence region.

The radiometric ray tracing approximation is based on the radiometric formula Eq. (2-22), and the
radiometric relation for emissivity:

E(x)=[ B(x,px )dpx (2-54)

where B is the radiance function and py is the x-component of optical direction cosines (we assume
here n = constant).

In the paraxial (Fresnel diffraction) approximation, we have [7]

E(x) =I(x) (2-55)
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Thus, we can compare Egs. (2-50) and (2-54), using Eq. (2-55). This approach gives us the
chance to compare both theoretical models: the Fresnel diffraction model (Eq. (2-50)) and the
radiometric ray tracing model (Eq. (2-54)), without using a specific definiton for the radiance
function. This is possible due to Eq. (2-55) and the fact that, according to Ref. [7], all definitions
of generalized radiance coincide in the quasi-homogeneous source plane.

In order to compute both cases, we assume the rectangular model of the intensity distribution
Xo
I(xo)=rect > (2-56)

where the rectus function is

[1 for [E|<1/2 )

rect(é) - [ 0 otherwise 2-57)

i.e., a is the size of the input slit.

We also assume the Gaussian model of spatial coherence distribution in the form
2
(x) = = )
H{x)=exp o, (2-58)

In order to evaluate the validity of the all approximation models included, we introduce four criteria
(see also Section 1):

a
= a 4 (2-59a)
(TC/ 4) x (1 + ;)
2 o>1
o—g >> (2-59b)
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Az
=hzf2 =22 ¢ X
bp=Az —7 << (2-59¢)
g >1 |
A (2-594)

The first criterion determines the validity of Fresnel diffraction approximation. and it is obtained
from Eq. (2-52) assuming Ax = la + Xlpay.

The second criterion determines the validity of the quasi-homogeneous source approximation and
also the validity of ignoring the edges of the spatial intensity distribution (a >> A).

The third criterion determines the validity of the R2T model (¢ << 1).
The fourth criterion determines the partial coherence condition (og > A).

Using the above four criteria, the Fresnel diffraction model is compared with the radiometric ray
tracing model for a variety of cases.

In the first case, illustrated in Figure 2-3, the normalized intensity/emissivity has been computed
for both models, for z/a = 10, assuming 2rog/A = 20, and 2rta/A = 100. Then, Q =4, a/og =5,
Og/h =3.3, and ¢F = 1. Obviously, both models, R2T and Fresnel diffraction, are not well
satisfied.
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Figure 2-3 .
Computer Modeling of Two Approximation Models (Fresnel Diffraction - Broken Line, and .
Radiometric Ray Tracing - Continuous Line) for Qutput Intensity/Emissivity at 2/a = 10 and
Rectangular Input Intensity Distribution. Q = 4, a/og="5,09/A=3.3, ¢ = 1.

In the second case (Figure 2-4), for the same distance z/a=10,Q =178, z/og =5, 6g/h = 3.3,
and ¢F = 12, the Fresnel diffraction approximation is very well satisfied, but the radiometric ray
tracing approximation is not satisfied. As a result, the differences between the two models are very
significant.

In the third case, illustrated in Figure 2-5, the distance is larger (z/a = 15), and the radiometric
model is even less satisfied (Q = 264, a/og =5, og/h = 3, o = 36). Again, the differences
are very significant. In the fourth case (Figure 2-6), the situation is similar.

While in the four Fresnel diffraction cases, the radiometric ray tracing approximation was not
satisfied, the next two cases satisfy both models much better. Specifically, in case 5, illustrated in
Figure 2-7, z/fa=10, Q =98, a/og =35, 0g/h =16, and ¢F =0.66. It is seen that both
models are agreeable in the central region, but the Gibbs' effect [54] creates a difference at the
edges, due to relatively high spatial coherence, and relatively short distance from the input plane.
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Figure 2-4
Same as Figure 2-3; Q =78, a/ag =5, og/A =3, ¢F=12.
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Figure 2-5
Same as Figure 2-3, but for z/a = 15, Q = 264, a/og =5, 6g/A =3, ¢r = 36.
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Figure 2-6
Same as Figure 2-3, but for z/a = 50, Q = 98, a/og =5, og/h = 3, ¢ = 63.
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Figure 2-7
Same as Figure 2-3, but for 2/a = 10, Q = 98, a/og = 5, 6g/A = 16, ¢F = 0.66.
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In the sixth case, illustrated in Figure 2-8, the Fresnel diffraction approximation is not valid
(Q=0.19), but the radiometric ray tracing approximation is valid (¢ << 1). Yet the spatial
coherence is high (cg >> A ), and the Gibbs effect is very significant.
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~hE8 -1.00 -0.76--0.50 -0.25 0.00 025 080 ode 1 oc " r2s

normalized axis x/a

Figure 2-8
Same as Figure 2-3, but for z7a = 10, Q = 0.19, a/og =5, og/A = 66, ¢F = 0.03.

In order to "kill" the Gibbs effect, we modify Case 5 by increasing the distance from z/a = 10 to
z/a=50. As a result, Case 7, as illustrated in Figure 2-9, demonstrates the significant
improvement (Q =98, a/og =5, Og/A =16, ¢F =0.62), but the quasi-homogeneous
approximation is still poorly satisfied (a/og =5).

Finally, in Case 8, illustrated in Figure 2-10, we improve the quasi-homogeneous source
approximation from a/cg =15 to a/dg =25 (z/a = 50, Q =98, a/og =25, og/h =3.3,
¢F = 0.62), and, as a result, the good agreement between the Fresnel diffraction model and the
radiometric ray tracing model can be observed.
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Figure 2-9
Same as Figure 2-3, but for z/a = 50, Q = 98, a/og =5, og/A = 16, ¢F = 0.62.
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Figure 2-10
Same as Figure 2-3, but for z/a = 50, Q = 98, a/og = 25, og/A = 3, ¢F = 0.62.
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The final system design is (for A = 1 pm)

A=1pum ‘ (2-60a)
6g =33um (2-60b)
a=83pum - (2-60c)
Zz=4mm . (2-60d)

The final result, illustrated in Figure 2-10, confirms our hypothesis that in order to obtain good
agreement between two models (Fresnel diffraction and radiometric ray tracing), all four criteria
Eq. (2-59) need to be satisfied. As a conclusion, the radiometric ray tracing method is only
effective if the following criteria are satisfied:

a. Fresnel diffraction approximation (2-59a)
b. Radiometric ray tracing approximation (2-59c)
c. Quasi-homogeneous source approximation (2-59b)
d. Moderate source spatial coherence (to kill Gibbs' effect).
2.2 mpl icabili i

The semigeometrical phase-space trajectories constituting the model of radiometric ray tracing
(R2Ts) cover almost all areas of physical optics.

Based on the physical optics version of the brightness theorem as a short-wavelength asymptotic
approximation of physical optics, R2T has been applied to non-imaging optics, free-space and
imaging optics. The experimental results have been provided for the phase-space cffective area
(PSEA) used for evaluating the global coherence of the optical beam for its evolution in phase-
space. The classic Van Cittert Zernike theorem, conventionally known as determining the
propagation of spatial coherence of the optical beam from the incoherent source, has been
generalized for statistically-homogeneous optical fields [30), The relations between the density
matrix, radiance function, spatial coherence, and the Liouville theorem, based on a formal analogy
between nonrelativistic quantum mechanics and 2-D paraxial physical optics with the z-coordinate
as a parameter, are discussed in Appendix A.
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The results presented in this chapter, especially in Section 2.2.1, demonstrate the potential of the
R2T method. Specifically, such result as illustrated in Fxgurc 2-18 (see also Section 1.0) can not
be obtained by any other method.

2.2.1 Non-Imaging Optics

Non-imaging optics (NIO) have been the focus of POC's R2T model applications and are the
original area which stimulated the initiation of this program. This occurred as a response to
growing interest in a better understanding of the propagation of partially-coherent optical beams
through large-aperture fibers and waveguides with variable cross-section, for high-energy beam
transmission, collimation, and concentration. The R2T model, presented in this section, allows us
to quantitatively analyze the light sources, providing the results for all basic radiometric quantities.
The model holds for partially-coherent non-Lambertian sources and anisotropic wavegmde '
geometries.

In order to apply the R2T model to non-imaging optics, the first step is to look at conventional
geometrical ray tracing, illustrated in Figure 2-11. The second step is to apply the physical
brightness theorem and, finally, to use simple integration in order to obtain the measurable
radiometric quantities such as emissivity and radiant intensity. As a simple example, the truncated
cone geometry illustrated in Figure 2-12 has been selected. Yet, the presented method holds for
arbitrary cones with curved profiles and anisotropic cross sections. A Gaussian-correlated circular
source of radius a with Gaussian intensity distribution can be presented in the form

2\
I,(T)= exp(—-r—2 circ(i) ;1?2 =x2+y?, A<<a
205")  \a _(2-61a)
( 2
() =exp ~2o7 |1 0g<< O
\ “¢ (2-61b)

where

o (r) 1 forr<a
e~ =
a Oforr>a

42




Final 0193.3066 DOE NIO (Maniey)
DE-FG03-89ER14092

Cldding with refracuve index ne g{xfaacugn V(X v.2)=0
Anal (xn-l- Yp-ye Zn- )

1?n-l-l

Vout

Jwhee 2, = 2.,

Definition of Notations:
V(X, Y. 2) = 0, NIO surface equatio4n i
No = refractive index outside NIO
Nt = refractive index of NIO
Ne = refractive index of cladding
1; = incident unit vector at z = Zmin
Th+1 = transmitted unit vector at z = Zmax

Figure 2-11
Representation of NIO Surface Profile and Notations for the R2T

Based on R2T, the input emissivity of this source is illustrated in Figure 2-13. For the truncated
cone total internal reflection (TIR) geometry, using the R2T model, the output radiance angular
distribution for x =0, y = 0 has been computed at z/a = 200, for two locations, assuming no
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total internal reflection (TIR) (see Figure 2-14). Assuming three TIRs, the output radiance is
illustrated in Figure 2-15. It is seen that the central area is unchanged, confirming the Liouville
theorem. The same distribution for a peripheral location is illustrated in Figure 2-16 for a single
TIR, and in Figure 2-17 for three TIRs. Finally, the output emissivity is computed for
Figure 2-18.

Figure 2-12
Truncated Cone Geometry

H?mﬂmmwyn:/..a

Figure 2-13 -
Emissivity Plot for Free-Space at 2/a = 0 for a Gaussian-Correlated Circular Source of Radius
a=0.15 mm with Gaussian intensity at z/a = (; 2nog/A = 20, 2na/A = 1771,
2rnos/A = 2000
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x/a=0, y/a=0, z/a=200

x/a=28, y/a=0.4, z/a=200

s TER, O A
\wmm

Figure 2-14
The Output of NIO Angular Distribution of Generalized Radiance at z/a = 200 for Central
(x =y = 0) and Peripheral (x/a = 2.8, y/a = 0.4) Locations. The NIO geometry is a truncated
cone with circular input and output radii a =0.15 mm) and b =0.6 mm, respectively, assuming
no TIRs. The input is a Gaussian-correlated circular source of radius a with Gaussian intensity at
z/a = 200; 2rog/A =20, 2ra/A = 1771, 2n6¢/A = 2000.

x/a=0, y/a=0, 2/a=200

S &
- — 3 o o f
RN &
3
.Qb).‘“ '4?@ 99' f
Figure 2-15

The Output of NIO Angular Distribution of Generalized Radiance at z/a = 200 for a Central
Location. The NIO geometry is a truncated cone with circular input and output radii a = 0.15 mm
and b = 0.6 mm, respectively assuming three TIRs. The input is a Gaussian-correlated circular
source of radius a with Gaussian intensity at z/a = 200; 2ncg/A = 20, 2ra/k = 1771,
2nog/A = 2000.
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X/a=28, y/a=04, 2/as200

Figure 2-16
The Output of NIO Angular Distribution of Generalized Radiance at z/a = 200 for a Peripheral
Location (x/a = 2.8, y/a = 0.4. The NIO geometry is a truncated cone with circular input and

output radii a = 0.15 mm and b = 0.6 mm, respectively for one TIR. The input is a Gaussian-
correlated circular source of radius a with Gaussian intensity at z/a =

200; 21:0'9/7\ =20,
2na/A = 1771, 2rnos/A = 2000.

X/a=28, y/a=(0.4, 2/a=200
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Figure 2-17
The Output of NIO Angular Distribution of Generalized Radian

ce at z/a = 200 for a Peripheral
Location (x/a = 2.8, y/a = 0.4). The NIO geometry is a truncated cone with circular input and
output radii a = 0.15 mm and b = 0.6 mm, respectively,

assuming three TIRs. The input is a
Gaussian-correlated circular source of radius a with Gaussian intensity at z/a = 0; 2nog/A = 20,
2ra/k = 1771, 2rnos/A = 2000.
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Figure 2-18

The Output of NIO Generalized Emissivity Spatial Distribution at z/a = 200. The NIO geometry is
a truncated cone with circular input and output radii a =0.15 mm and b = 0.6 mm, respectively.
The input is a Gaussian-correlated circular 52-*-~e of radius a with Gaussian intencity at z/a = 0;
2nog/A = 20, 2ra/A = 1771.574, 2nog/A = 2000. The total number of rays used up to 3 total
internal reflections is 7,110,861. Peak value at (x, y) = (0, 0) is 0.00056.

Figure 2-18, also illustrated in Section 1, demonstrates the capability of the R2T method. It is
impossible to obtain this result by any other method. Even if the Fresnel diffraction approach were

possible (such an approach does not yet exist), it would take z hopeless amount of computer time
(even using a CRAY) to obtain this result.

2.2.2 Free-Space

The radiance angular distribution of the same source at the input plane z =0 and at the center.
(x =y = 0) is illustrated in Figure 2-19 and the spatial distribution is shown in Figure 2-20. The

same distribution at z/a = 200, illustrated in Figure 2-21, shows the obvious narrowing of angular
size. Figure 2-22 shows the peripheral (x/a = y/a = 0.8) location.
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Figure 2-19
The Generalized Radiance of a Gaussian-Cogrelated Circular Source of Radius a = 0.15 mm with
a Gaussian Intensity Profile in Free-Space. The values of the parameters are: 2nog/A = 20,
2na/A = 177, 2n0s/A = 2000, x/a =0, y/a =0, z/a = 0. og and o are the variances for
spectral coherence and density, respectively. ky and ky are directional cosines with respect to the
x and y axes, respectively.

Figure 2-20
The Generalized Radiance of a Gaussian-Correlated Circular Source of Radius a = 0.15 mm with
a Gaussian Intensity Profile in Free-Space of a Smaller Scale than Figure 2-13. The values of the
parameters are: 2rog/A = 20, 2na/A = 177.574, 2rnog/A = 2000, a=0, kx = 0, Ky =0,
og and os are the variances for spectral coherence and density, respectively. ky and ky are the
directional cosines with respect to the x and y axes, respectively.
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Figure 2-21
The Generalized Radiance of a Gaussian-Correlated Circular Source of Radius a = 0.15 mm with
a Gaussian Intensity Profile in Free-Space. The values of the parameters are: 2nog/A = 20,
2ra/A = 177.574, 2nos/h = 2000, x/a =0, y/a - 2, z/a = 200. og and o are the variances
for spectral coherence and density, respectively. kx and ky are the directional cosines with
respect to the x and y axes, respectively. Comparing this figure with Figure 2-20, an obvious
narrowing of the angular spectrum can be observed.

Figure 2-22
The Generalized Radiance of a Gaussian-Correlated Circular Source of Radius a = 0.15 mm with
a Gaussian Intensity Profile in Free-Space at a Peripheral Location (x/a = 0.8, y/a = 0.8). The
values of the parameters are: 2nog/h = 20, 2na/A = 177.574, 2nog/A = 2000, x/a = 0.8,
y/a=0.8, za = 200. og and o5 are the variances for spectral coherence and density, ‘
respectively. ky and ky are the directional cosines with respect to the x and y axes, respectively.
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The evolution of the phase-space trajectories in free-space can be computed directly on the basis of

the first order optics using the (ABCD) matrix in the form:

MNE N |
= 2-62
Px 0 1]|pox (2-62)
or
X = Xo +ZPox
Px = Pox (2-63)

In Figures 2-23 and 2-24, the straight line in the input phase-space is transformed into the straight
line in the outpur phase-space, according to Eq. (2-62). Finally, the output 1-D generalized

emissivity spatial distibution is summarizec for various distances in Figure 2-25.
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Figure 2-23
Model of Source Generalized Radiance in Phase Spaceforz=0
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The Phase-Space Density (General Radiance) Distribution for z/a =
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Figure 2-24
10. Being more general

than the first-order optics model, it confirms the validity of Eq. (2-62) for this geometry.
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One-Dimensional Normalized Emissivity of Gaussian-Correlated Source of Uniform Intensity

2.2.3

Located at z/a =0 and |x/a| < 1.

Phase-Space Effective Area (PSEA)

A powerful method for optical system evaluation is based directly on phase-space trajectories:

q=q() ,

p=p()

(2-64)

where (p,q) are generalized coordinates, either spatial () or related to linear momentum (p).

These trajectories describe the z-motion of the set of 4-D phase-space points characterizing the

phase-space density function:
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P 9= plp(a),q (2] (2-65)

The relation between generalized radiance (B) and phase-space density (p) is discussed in
Appendix A.

According to the Liouville theorem, this function remains constant along the phase-space
trajectories, i.e.,

&8
)

(2-66)

It is useful to define the phase-space effective area (PSEA) A (p, q) surrounded by the phase-space
boundary

p (p, @) = constant (2-67)
ie.,

A(pg)= édpdq (2-68)

where the boundary, C, is defined by Eg. (2-67). According to the Heisenberg uncertainty
principle, the PSEA cannot be smaller than the elementary cell PSEA:

A>A, Ap=(Apdg),=4i2 (2-69)
where X = A/2n. The elementary cell PSEA, Ay, can be identified as the phase-space coherent
area, introduced by Kondratienko, Skrinsky [42], and Kim [24]. Using more direct reasoning, the
origin of the elementary cell PSEA, Ao, can be derived from the van Cittert Zernike theorem [32],

where the phase-space boundary, C,, defined for Po = 0.81 pmax, is obtained from the
following relation (see Ref. [32], p. 511):

T,
P P2 =016 (2-70)
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where rg is the source diameter, R is the distance between the source and observation plane, and
P1P; is the spatial coherence radius, where pg = 0.81 ppax; thus, the elementary area, A,, is

2 2( 1 2 2 A 2 A
A, =7° (P Py) (io-) = 7(0.16) X (—2-) (2-71)
in agreement with Ref. [24]. As Kim [24] and Nemez [43] point out, the ratio A/A, can be used as
a criterion of global spatial coherence. Specifically, for A = Ao, the optical beam is fully
spatially-coherent and for A > A,, the field is (globally) partially spatially-coherent.

The evolution of the optical system can be monitored through observation of the phase-space
boundary, C, as it changes with the z-coordinate. According to Lichtenberg [55] and Nemez [431,
parallel straight-line phase-space boundaries are transformed into parallel straight-line boundaries.
Also, elliptic contours are invariant [43],

The parallel line invariance has been verified by computer modeling (see Section 2.2.2). In this
section, the above phase-space invariances (also related to the Poincare invariants analyzed by
Jannson and Winston [34]) are based on Nemez' experimental modeling [43],

Experimental Results Based on PSEA Measuring Device

The block diagram of the PSEA-measuring device is illustrated in Figure 2-26. Using the first
order optics and ABCD matrix formalism in cascade form, we obtain [43]

b ab). bf
x5=‘f_xo+(b+fo"f—) xo-7°yo - (2-72)
(o) (s}
bf, . ab b,
Y5 ===2%, +| b+fy—— [yo——, 2-73)
f £ £

where the ﬁarameters a, b, and f,, are defined in Figure 2-26. The optical quadrupole, twisted at
45° with respect to (x, y), is described by the following set of equations in the new twisted (x, y)
coordinate system:
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Figure 2-26
Block Diagram of the PSEA-Measuring Device -

Two slits secure the narrow angular spectrum in the y-direction.

Setting the second terms in Egs. (2-72) and (2-73) to zero gives

b+fo—:—b =0 (2-76)

(o]

The third terms are automatically zero (Yo=0, Yo =0) because of the two horizontal slits,
illustrated in Figure 2-26. We obtain

0 (2-77a)
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bf, .
=‘-—-x
Ys PR

(2-77b)

i.e., indeed, the phase-space coordinates (X0, Xo) are displayed on the screen (xs, ys); i.e.,

(X0, Xg) = (x5, ¥5)

Egs. (2-70) to (2-78) show that the proposed device indeed measures the PSEA.

A schematic of the PSEA-measuring device is illustrated in Figure 2-27. Such a device can be
used for monitoring phase-space diagrams and phase-space trajectories [56). The design

parameters are

fo=184 mm

f=65mm

Slit Width = 0.5 um

Second Slit Near Plane (1)

(0) - source plane

(5) - phase-space monitoring screen

b(a - fo) = f02
a> fo
45" - Twisted Optical
Sourc_:g Plane Quadrupole
Slit (1) r
/ /Slit {2)
/ ’i_/
e TG4
/ PSEA-Observing
. Screen
_J Spherical Lens

Figure 2-27

(2-78)

(2-79a)
(2-79b)
(2-79c¢)
(2-7949)
(2-79)
(2-791)
(2-79g)
(2-7%h)

Schematic of the PSEA-Measuring Device. Such a device can be used for monitoring phase-

space diagrams and phase-space trajectories as a function of z-coordinate.
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In Figure 2-28, a 1-D point source is illustrated in phase-space for three different z-distances. It is
seen that the characteristic rotation of the PSEA is similar to those illustrated in Figures 2-23 and
2-24,

Waist

Point
Source He Ne

@

40 x
Microscope
Objective

Laser Beam as a "Point Source"

(b) © - (d)
Figure 2-28

Experimental Results for the PSEA of the 1-D Point source (a) at Three Different Free-Space z-
Distances (z = 0) (b),'183 mm (c), 396 mm (d)). The point source is a laser beam.

2.2.4 Imaging Optics
Using the PSEA method, we can also experimentally illustrate the phase-space trajectories for

paraxial and non-paraxial (aberrated) imaging optical systems; see Figure 2-29. The illustration of
comatic aberration in phase-space is presented in Figure 2-30.
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Experimental Results for the PSEA
Nondeformed Wavefront (A) and

B
EEEE——
N + f=1400 mm
| —
(A)
— + _ f=1400 mm
Figure 2-29

of the 1-D Plane Wave, Partially Transformed by a Lens with
Deformed Wavefront (B) by a Lens at the Top (a) and at the
Bottom (b)
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. Twisted Lenses

@ .
p——— v — e w— — -
(b)

el - — o —" - -

f= 1400 mm
TRt —— TR G —— a— — -
() .
e o = e - o

Figure 2-30
llustration of Comatic Aberration in Phase Space Obtained with (a) Two Twisted Lenses, and (b)
and (c) a Single Twisted Lens
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2.3 mpari f Computer Time B 2T_Model and
the Fresnel Diffraction Mode]

This section considcrs the possibility of comparing the radiometric (ray-u‘écing) approximation
with the results of direct integration of the propagation equation based on the cross-spectral density
(see also Section 1): ' ’

. IE) o= [11] W (%1,%2) K (F:%1) K (% %2) d%01 d2ron (2-80)

where W(3,%,) is the cross-spectral density, I(T) is the intensity at a point T = (x,y) in the z
plane and Ty =(Xoby°l) and T2 are points in the source plane (z = 0). K is the diffraction
kernel, given for the Fresnel case as

K(7;%,) = exp (ikz) exp ;—kz- [(x -xo)2 + (y-yo)z] (2-81)

Eq. (2-80) is a four-dimensional integral, which must be performed at each point P in the plane at
z.

It is logical to begin this process by examininé to the artificial two-dimensional case, in which the
source is assumed to be fully coherent (constant phase) and to have infinite extent in the y-
direction, but to have a finite coherence length and finite extent in the x-direction. For the 2-D case,
Eq. (2-80) becomes

I(x) <[] \7‘(("01”‘02)18r (x3xol)K(x'x02) dxo1 dxo2 (2-82)

where x is the location in the z plane and xo1, xo2 are points in the source plane. The 1-D Fresnel
kernel is then

K(x,x,) = exp (ikz) exp[% (x-x, )2] (2-83)

This is a two-dimensional integral for each x in the z plane, and is a completely tractable problem.
In the present context, the analysis should start with the problem of a Gaussian source profile I(x)
(with oy corresponding to the electron beam spatizl disiribution) with a Gaussian cross-spectral
density function. That is,
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W (x1,%2) = [1(x1)I(x, )]I/Z B (x1~%2) . (2-84)

where [t is a Gaussian with 6 corresponding to the Gaussian sum of electron beam and single-
electron radiation divergences. The quasi-homogeneous assumption takes the form Og << O}.
We can compare the results of Eq. (2-82) with the ray-tracing method for a large range of the ratio
1/ in order to determine the range of applicability of the ray-tracing method that is, the real
limits of the quasi-homogeneous assumption.

The 2-D problem is convenient for performing large numbers of comparisons, but the results of the
2-D analysis must be validated with results from the full 3-D problem. We present an analysis for
the condition, appropriate for synchrotron radiation, that the source is statistically homogeneous.

(The Gaussian cross-spectral density, generahzed to 3-D from the above, is a special case of this.)
Eq. (2-80) may be rewritten as

Xo1+4X12/2 Yo1+Ay12/2

IT)e [ dxg; | dyg | dxo2
—oo . Xo1—-AX12/2 Yo1—4y12/2

(2-85)
dy02[1(E)1(%a)] " 1 () (Go2) K" (F: T1)K (F:T0)

where Ax)3 is the range of x; - x2 over which g is nonzero, and similarly for Ayja. The integral
may be approximated by a sum over discrete values of the four variables of integration. To
determine how many times the integrand must be evaluated, the needed fineness of the
discretization must be calculated.

The discretization of the variables of integration is determined both by the shapes of I and g and by
the rapidity of variation of the kernel. If 8x; represents the separation of adjacent discrete values
of Xo1, then the latter consideration requires

Az

o
X << 27 (xq; ~x)

(2-86)

This ensures that the kernel varies only slowly from one value of Xo1 to the next. Similar
constraints apply to yo1 and yg).
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Consider numbers appropriate for the propagation of undulator radiation. Take
Ox=0y=02mm, =1000A, Axi2=Ayj2=30pum, and z=10m. Then the
discretization interval is 8x; = 80 um at x =0 (case A) and 1.6 um at x=1cm (case B),
assuming that the kemel is allowed to vary by 10% between discrete values ofxo1.

In case A, the kernel variation is sufficiently slow that the discretization of Xo1 is in fact determined
by the shape of I, so 80 um is too large and Ax; should be more like 20 microns to capture the
source profile. Comrespondingly, Axa should be on the order of 3 um. The calculation of the
intensity at x = 0 will then require (assuming the integration over x,1 and Yol COVET two Ox)
(20)2(10)2 = 40,000 evaluations of the integrand. The calculation at x = 1 cm will require
(250)2 (20)2 = 2.5 x 107 evaluations since it is a more rapidly varying kernel.

The evaluation of the integral will be speeded up if the terms in the integrand are ;;recomputed and
stored in tables for look up during the summation. If tables are created for the values of I, j,
exp (ik/2z)(x - xo2)2 and exp (ik/22)(y - yo2)2, then each evaluation of the integrand will require
a square root, six complex multiplications, and a complex addition. A 10 Mflop machine will
require of order one minute to perform the integration at x = y =1 cm. Assuming conservatively
that the average time of integration is one minute per point in the z plane, a 30 x 30 profile would
be obtained in 900 minutes or 15 hours. Using similar assumptions, the corresponding simplified
2-D problem would execute in a fraction of a minute.

The computation was performed using three computers: a Sparc Station 1+, a Cray Y-MP and an
Everex PC 486/33 MHz. The integral is performed by using the extended Simpson's rule,
doubling the number of points until the relative tolerance of 10-6 is reached. The results are given
in Table 1-2 in Section 1. It is seen that the difference in duration of computer use is quite
significant, up to almost three orders of magnitude for the Everex PC 1-D case. It should be
emphasized that such a comparison can be made only for free-space and first order optics.
Otherwise, the problem is too sophisticated to apply to the Fresnel diffraction model (see Table 1-2
in Section 1).

2nc, 2na . L
Here, X, = xo/a, X1 =x1/a, X =x/a,Z=2/a, P= e P1= B E is the output emissivity,

and the source model is described by Eq. (2-61) for s = oo, It is seen that saving time by the use
of a supercomputer (Cray) or workstation (Sun) is problematic since no special programming has
been done. The issue here, however, is saving time on the same computer when using the R2T
instead of the conventional Fresnel diffraction approach, as illustrated in Table 2-2.

62

14




Final 0183.3066 DOE NIO (Maniay)
DE-FG03-89ER14092

Table 2-2 Comparison of Time Budgets for Three Computers/Software
PC 486/33 MH2

Sun (sec) | Cray (sec)

X Y P P1 E(XYZ;p,p1) (sec)
(Fortran) | (Fortran) | (MS Basic 7.1)

0 50 20 500 0.19257 10.2 0.605 6.1

0 10 400 - 2000 0.03146 616 34.7 .96

0.5 110 400 2000 0.03136 | 741 41.8 96

The 1-D Fresnel diffraction integral was computed at USC using a 64-bit word size. The values of
the integrals are given for each case together with the computational time (CPU seconds) for the
three machines, Sun, Cray, and 486 PC.

2.4

F | Anal B Paraxial Oni | Non-Relativisti
Quantum Mechanics

Using the formal analogy between monochromatic paraxial optics and non-relativistic quantum
mechanics, developed by Marcuse [48] and Eichmann [49), and discussed in Appendix A, we can’
better understand statistical optics as an analogy of statistical "mixed states" in non-relativistic
quantum mechanics. It is seen that the z-coordinate in paraxial optics is equivalent to the t-
coordinate in non-relativistic quantum mechanics. Therefore, only 2-D quantum mechanics can be
compared to an analogous optical problem. Specifically, such essentially 2-D quantum mechanical
problems as Multi-Quantum-Well (MQW) problem can be traced to analogous optical problems by
comparison of 2-D potential energy V (x,y) with the analogous 2-D spatial index distribution:
V(x,y) = -n(x,y) (2-87)
Also, the optical analog of the Liouville theorem can be derived from the density matrix motion
equation by identifying the optical density matrix with cross-spectral density (see Appendix A).

This formal analogy was exploited in this program to better understand the semi-geometrical phase-
space trace formulas as an optical analog of semiclassical phase-space trace formulas in quantum
mechanics, developed to investigate the spectra of quantum-mechanical systems when the classical
dynamics is non-integrable [41],
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)5 DOE-Related_Applications of Semi rical Phase-Space T

Formulas

The focus of a comprehensive review of DOE-related applications was on synchrotron radiation.
Other applications include Schell model beams that cover quasi-homogeneous sources as well as
fully coherent laser radiation. Obviously, those beams have many energy related applications since
they include the vast majority of laser sources--semiconductor laser diodes, free-electron lasers,
solid state lasers, and many others. Using the analog of the van Cittert Zernike theorem for
statistically homogeneous wave fields allows investigation of the propagation of spatial coherence
in time and space, when the boundary conditions can be ignored. Also, holographic systems have
been used in many DOE programs, including x-ray holography [80:82.83], solar physics [84], and
plasma diagnostics [85]. The radiation/heat transfer problems that can be treated by the R2T
method are also discussed in this chapter.

2.5.1 Synchrotron Radiation

By synchrotron radiation we mean radiation emitted by an electron beam passing through a
bending magnet, wiggler or undulator. Comprehensive reviews are given in Refs. [46, 71-73].
Synchrotron radiation is characterized by small source size (of order 1 mm); low beam divergence
(of order 1 mr); high average power (up to tens of kW for bending-magnet radiation; tens of watts
for undulator radiation); and linear polarization (helical undulators produce circular polarization).
The radiation from bending magnets and wigglers is broadband, peaking typically in the x-ray
region but extending through the visible and into the infrared. Undulators (which consist of a large
number [say, 30] of wiggling magnets in series) produce narrowband output via constructive
interference from the individual wigglers; this is analogous to the operation of a multilayer
interference filter or of a phased-array linear antenna. Undulator output may be tuned by varying
the magnetic field strength.

Synchrotron radiation is produced by bunches of electrons circulating in a storage ring; electron
encrgies range from hundreds of MeV up to the GeV range. The rings have diameters of tens or
hundreds of meters, so the bunch orbit time is typically on the order of 100 - 1000 ns. Each bunch
is localized to a few cm in size. The temporal structure of a synchrotron radiation is therefore a
series of pulses of a few ns width, with pulse frequency of order 1 - 10 MHz. The radiation
continues during the decay time of the storage ring, generally many hours.
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For applications requiring short wavelengths (vacuum ultraviolet to x-rays), synchrotron radiation
possesses the same advantages that lasers have over other visible and near-visible sources.
Standard methods of active spectroscopy (absorption, fluorescence, photoelectron, etc.) are used
for crystallography, surface science, and inner-shell electron study [74-77), Two major
technological applications are submicron lithography for semiconductor processing and x-ray
angiography of coronary disease [78.79], Despite the short coherence length, synchrotron radiation
has been used in x-ray holography (801,

2.5.1.1 neral Pr ies of h n Radiation

The basic equation of electromagnetic emission from a magnetically deflected electron, in cgs
units [73], is

237»,4

P= -
3p2 (2-88)

where P is the power emitted by an electron moving in a circle of radius p, e s the electron charge,
cis the speed of light and vy is the relativistic energy ratio E/mc2. The total average power emitted
may be expressed as

Piot [kW] = 0.0265E3[GeV]B[Tli[ma] (2-89)

where B is the magnetic field strength and i is the time-averaged beam current. For electron energy
2 GeV, 1-T fields, and current of 100 mA, the total emitted power is 21 kW. The radiation has a
broadband spectral distribution, proportional to the function

Gi(y)=y | Kss3(t)dt ' (2-90)
y

Ksy3 is a modified Bessel function of the second kind,

3cy3

4rp

y=v/ve; ve=

(291)
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V is the photon frequency, and v, is the critical frequency. For example, typical numbers for a
hard x-ray source give a critical photon energy of hve =5 keV or Ac = 2.5 A.

The function Gy(y) is plotted in Figure 2-31. The spectral peak is at somewhat lower energy than
the critical photon energy, falling off sharply on the high-energy side but quite slowly on the low-
energy side. For this reason, a synchrotron operating in the soft x-ray region still emits quite a lot

of light in the visible and near-UV.

s-
- F
0L
(18
a-
[« ]9
1 [ 1
10°% 191 1090 o1
y
Figure 2-31

The Function Gj(y) Gives the Spectral Profile of Bending Magnet and Wiggler Radiation,
According to Ref. [73]

A wiggler or undulator consists of a region of sinusoidal magnetic field sin 21 s/Lw, where s is
the coordinate along the beam and L, is the wiggler period. This causes the electron beam to
follow an osciilating trajectory. Interference among wiggler periods causes destruction of most of
the spectrum except for odd harmonics of the wavelength corresponding to the relativistically
shortened wiggler period Lw/2y2. This spectral narrowing may or may not be smeared out by the
angular divergence of the beam, according to the value of the dimensionless parameter

K = eBLw/2nmqc = 0.934B[T]Ly[cm] (2-92)
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If K < 1 (weak magnetic field), the beam angular divergence caused by the wiggling is smaller

than that of the emission itself, while if K > 1 (strong field), the reverse is true. A multiperiod
sinusoidal magnetic field is called a wiggler if K > 1; wiggler radiation has the broadband bending
magnet spectrum. If K <1, the device is called an undulator and the spectrum consists of odd

haronics of the undulator wavelength Lyy/2y2.

2.5.1.2 ical Hardware for in Synchrotron Radiation

The applications of synchrotron radiation described above generally employ wavelengths
sufficiently short that satisfactory materials are not available to fabricate usual transmissive optical
elements (lenses and fibers). For this reason, beamlines typically admit synchrotron radiation

directly into an experiment without focusing; if focusing is needed, curved mirrors are used.

If

spectral filtering is needed, ruled gratings may be used in the UV region, while X-ray
monochromators may be made using Bragg reflections from a crystal surface, which thus acts as a

grating. Apertures, of course, may be used.

2.5.1.3 iometric Pr ies of tron Radiation

This section is concerned with the possibility of finding a function giving the brightness [1.

2]

which, for a cross-spectral density function appropriate for synchrotron radiation, transforms in
the normal radiometric manner. This is an important issue in the design of beamlines of

synchrotron facilities.

The issue has been treated in two works by Kim (24811, He considered the case of paraxial
propagation and showed that in this case, the brightness defined by Walther's first definition of the
generalized radiance function (grf) [1] does in fact transform radiometrically. We retrace Kim's

reasoning below, filling in the steps.

The following is based on Ref. [24]. We start with Kim's Eq. (14), defining brightness as in [1]

B(x,9) = const. | d%E {a* (q) +§) e((p - %)} e~ ikxg

_ cc;r;st. [ d? u{E* (x+ % ) E(x—%)} oikbu (2-93)
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where X is the coordinate transverse to the optical axis and ¢ is the angle from the axis, E, € are the
electric field and its Fourier transform, and {...}ens denotes the ensemble average. (Because of the
strong linear polarization, the electric field is treated as a scalar.) We first consider the propagation
through free-space using the Fresnel kernel:

ikl(1-¢7/2)

e(d;z+1) = g(¢;z)e (2-94)

where use has been made of the paraxial approximation ¢2 << 1. Substituting this into
Eq. (2-93), we obtain

. 2 2
B(x,$;z+1) = const. | d2& {e‘ (¢+§ ; z) e-M(l—(¢+§/2) /2) e(«b—%;z) eikl(l-(q:-g/z) r )} s €55

= const. IdZE, {e‘ (¢+-§—; z) € (q:—% ; z) eﬂd(q’e)} ens et
[

~

= const. [d%& {e‘ (¢+%; z) €
= B(x—1¢, ¢; 2) - (2-95)

which is the desired radiometric transform. In similar fashion, the thin-lens transformation
Bafier (X, ) = Bpefore (%, ¢ + x/f) is obtained, where f is the focal length of the lens. This
result should be compared with the result which is based on Walther's second definition of
generalized radiance [2]. However, a direct comparison of the R2T method with the Fresnel
diffraction model, presented in Section 2.1.6.2 demonstrates that the approach based on Walther's
second definition is correct.

For non-paraxial propagation, it is not in gcricral clear that Walther's first grf rigorously obeys
radiometric transformations. It is worthwhile to ask whether synchrotron radiation may be
considered as a quasi-homogeneous source in the sense of Carter and Wolf [7]. The condition for
this is that the cross-spectral density W(rj, 12) be given by

W(r1, r2) = [I(r1, 121172 p(ry, 12) (2-96)

where I is approximately constant over a distance corresponding to the range of nonzero y, so that
the square root may be replaced by I(f; +%,/2). It also follows from this that the source must be

large compared to the wavelength.
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For bending magnet and wiggler radiation, the source may or may not be considered quasi-
homogeneous. To begin with, the source size (~1 mm) is considerably larger than the wavelength
(200 nm or shorter). The cross-spectral density function is zero for values of Irj - rol much larger
than the transverse coherence length. As seen above, this coherence length is given by the single-
electron source size o; = M(4ncr ), where o is the angular divergence of the electron radiation,
given approximately by [73]

i 65 —0.425
(V/ Vc)

oy [mrad] = 22 (2-97)

At electron energy 1 GeV, y=2000 and at the critical wavelength, the angular divergence is
about 0.25 mrad. If the critical wavelength is 100 A, the transverse coherence length at A is
3 um, or roughly 1/100 of the source size. On the other hand, at 10,000 A with other parameters
the same, the transverse coherence length is about 50 um, or about 1/10 of the source size. Thus
the source at 100 A satisfies the requirements for quasi-homogeneity, whereas at 10,000 4, it
does not.

In the above, the single-electron radiance was used to determine the coherence. This is appropriate
because the electrons at the source are statistically independent: in synchrotron radiation, the
emission is spontaneous, while the position of each electron in the storage ring is almost
completely uncorrelated with those of other electrons. (This expresses the insignificance of the
electron-electron interaction in comparison with the electron beam energy.)

Undulator radiation is less often quasi-homogeneous. This is explained using the analysis of
Ref. [24], giving

op=+A/L; o =(I/4n)ViL (2-98)

where L is the undulator length (typically less than ten meters for ‘ordinary' undulators, and
several tens of meters for high-gain undulators [see below]). For L =10 m and A = 100 A,
Or= 10 pm, and for A = 10,000 um, o; = 100 pm.

In all the above analysis, it was assumed that radiation was spontaneous. As the number of

undulator periods increases, the fraction of stimulated emission increases exponentially until it
dominates. In that case, the positions of radiating electrons are no longer independent and the
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radiation becomes highly transversely coherent. The opposite extreme of the partial coherence
theory may then be used [12.27],

Professor Kwang-Je Kim of the Center for X-Ray Optics, Lawrence Berkeley Laboratory,
University of California, Berkeley, California, has investigated the radiance function propagation
through free-space for synchrotron radiation [241 , using Walther's first definition of radiance {1],
based on Wigner distribution. Based on Bastiaan's earlier results [40], he has demonstrated that
Wigner's distribution is invariant for free-space paraxial optics [24]. These results are discussed
in Section 2.1.6. He also analyzed the global spatial coherence of synchrotron radiation.

2.5.1.5 Phase-Space Treatment of Linear Electron Accelerator LINAC Radiation at the
Central Institute of Physics in Bucharest, Rumania

Using the phase-space throughput approach [43], Dr. George Nemez of the Central Institute of
Physics at Bucharest, Rumania (presently visiting Professor at Ginzton Laboratory, Stanford
University) has designed optimum radiation throughput for radiation from charged particle beams
for the first Romanian linear electron accelerator LINAC 101 43, Some of the results adapted by
him for this program were discussed in Sections 2.2.3 and 2.24.

2.5.2 Schell-Model Beams

In the case of Schell-model beams, the cross-spectral density has the form:
W(i.%) =1E){1E) kE-5) 2-99)

i.e., the model of quasi-homogeneous sources (see Section 2.1.2) is more restricted than the Schell
beam model (Ref. [27] and Appendix C). It should be noted that both models cover almost all the
sources of interest. Specifically, the quasi-homogeneous sources cover all classical Lambertian
heat sources, partially coherent non-Lambertian sources (such as tungsten lamps, deuterium lamps,
hollow cathodes, laser induced plasma), multi-mode laser sources (Nd:YAG, laser diodes, etc.)
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and synchrotron radiation. On the other hand, the Schell model beams cover fully-coherent single-
mode laser sources, described as Gaussian distributions.

Simon and Wolf [27) have investigated Gaussian-Schell model beams. Specifically, in
Appendix C, they study the propagation of a Gaussian-Schell model beam through a lossless lens
system in the form of Eq. (2-100) and Eq. (2-101). (Compare this with Eq. (2-61).)

I(T)=1,exp (—rz/ 2052)

. (2-100)
p(R.5)= cxp[:(%;l}l} exp {[(-ik/2R) (fz2 -1 )]} (2-101)

where I, is the spectral density at the axial point T = 0 and Os, Op R are the effective beam width,
the transverse coherence length and the radius of curvature, respectively. R is positive or negative
as the beam diverges or converges.

Using Walther's first definition of radiance (Ref. [1]; see, also Section 2.1.6), it was shown [24]

that in the paraxial optics approximation, the radiance function satisfies the simple transport
law [27];

B(%,p) = B, (DT-Bp,—Ci+A7) 2-102)

equivalent to the physical analog of the bri ghtness theorem that states that the phase-space density,
or generalized radiance function transfer according to the ABCD matrix law (see Section 2.1).

As an example, the simple lens geometry, illustrated in Figure 2-32, has been analyzed. As a

result of this analysis, the angular distribution of the generalized radiance function changes as are
illustrated in Figure 2-33.
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Figure 2-32
Hustration of the Notation for Beam Propagation Through a Thin Lens
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Example Which lilustrates the Changes in the Angutar Distribution of the Generalized Radiance of
a Gaussian-Schell Model Beam on Propagation Through a Thin Lens. Iy, 14, IT2, and I13 have
the same meaning as in Figure 2-33 with I, coinciding with the plane containing the waist of the

incident field. The plane Iy is the plane containing the waist of the beam after it has passed
through the thin lens. For a more detailed description, see Appendix B.

2.5.3 Analogue of the Van Cittert Zernike Theorem for Statistically
Homogeneous Wave Fields

In this section, we discuss the subject that will put the R2T formalism into a broader perspective.
The basic objective of the R2T model is to provide simple propagation relations for radiometric
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In particular, using Eq. (2-106), we can cbtain the propagation of the coherence area through free-
space, generated by some stimulated emission region, using the conventional Fresnel diffraction
integral in the form

n  expikz
m(r)=——

7! ik ' [ 2 t ' 2 t t
uo (% )exp{z[(x-xo) +(y'-o) ]}dxo dyo' (2107
where 15 and y are the input and output spatial distributions of complex degree of coherence.

The other interesting example is the statistically homogeneous wave field with limited spatial power
spectrum: -

Px? + py? = p2 <sin20, ) (2-108)

In such a case, the behavior of the modules ,u(ﬁ')l is illustrated in Figure 2-34.

Figure 2-34

Bethavior of the Modulus lu(ﬁ')l of the Degree of Spatial Coherence of the Statistically

Homogeneous Wave Field Whose Spatial Power Spectrum is Given by Eq. (2-108) with
a << 2. The axes represent the quantities v = kz* sin2q and v = kp' sinc, where z'and p' are

the components of the vector R' = ﬁz—ﬁl along the z direction and perpendicular to it. The

dashed lines represent generators, making angles a (shown exaggerated here) with the z axis, of
the cone of directions forming the solid angle Q,. The numbers on the contours are the values of

Iu (T', 0)[2. [Adapted from E. H. Linfoot and E. Wolf, Proc. Phys. Soc. London B
69, 823 (19586).
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This formalism can be useful in laser physics and in plasma physics where the understanding of
propagation of spatial coherence is of fundamental importance.

2.5.4 Holographic. Optical Systems

Recently, a number of optical system solutions, including holographic optical elements (HOE:),
have been applied in DOE-related programs, including x-ray optics and plasma physics. The
HOEs can be treated as a generalization of diffraction gratings. That is, they integrate grating
dispersion and optical imaging properties. From a radiometric ray tracing perspective, their
behavior is fully defined by two equations: the first is a local grating equation:

k(p-Po) =mK (2-109)

where k =2n/A, P and Po are horizontal components of diffraction and incident propagation unit
vectors, K" is the horizontal component (i.e., parallel to the grating surface) of the grating vector,
and m =0, *1, 22, determines diffraction orders.

In the Bragg diffraction case, only one diffraction order (m = +1/-1) is accepted, and the second
equation is

k(s;=s;0) =K, (2-110)

where § = (p,s, ), and K is the vertical component of the grating vector K. Both equations can
be treated locally in the vicinity of a given point of the HOE. While Eq. (2-109) fully defines
geometrical ray tracing, Eq. (2-110) defines the angular/wavelength characteristics of hologram
diffraction efficiency.

Since the behavior of Eq. (2-109) is well known, in this program we concentrated on the analysis
of Eq. (2-110). In particular, for Lippmann holographic gratings, K;; = 0 and K = K | ; thus,

= (2-111a)
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and
A=A®R) _ (2-111b)

is a slowly varying grating constant for the generally nonuniform Lippmann mirror illustrated in
Figure 2-35. )

(
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Figure 2-35
lliustration of Nonuniform Lippmann Holographic Mirror with Thickness, T, and Slowly-Varying
Distribution of Grating Constant, A(z).

2.5.85 Radiation Transfer and Heat Transfer

The case described by Eq. (2-110) was analyzed for the first time in Ref. [29] for the application of
HOE:s to this program, providing a complete tool for analyzing optical systems, including HOEs,
by radiometric tracing. .

In the conventional radiometry, the radiative energy transfer is based on the differential equation of
the propagation of radiance, encompassing absorption, emission and scattering (86.87.901;

§V B, (7,5) = -0, (%,5)B, (7.5) +

IB,(%,5,5)B,(,5)dQ'+D, (7,5) (2-112)

where By is the radiance function, ay is the emissivity, T is the position vector, § is the unit
direction vector, d€Q is the solid angle element, v determines frequency. Since the first two terms
define the Liouville theorem (see Appendix A), we can adopt the R2T method for radiative energy
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transfer problems. The analogous approach can also be used for structural information
transfer (88,89],

3.0 AUXILIARY RESULTS

3.1 Yolume Holographic Diffusers

Physical Optics Corporation (POC) has developed a new method of light-beam shaping that utilizes
volume holography to scatter collimated light into a controlled pattern with smooth brightness
variation. This method of controlled diffusion can achieve structureless illumination patterns much
more easily than conventional lenses and mirrors, and at lower manui‘acturing costs. Aside from
small-area illumination by spotlights and searchlights, most illumination tasks involve spreading of
light into a moderate angle, such as 20 to 80 degrees. POC's holographic diffusers can diffusely
scatter light into such a pattern, while conventional diffusers, such as ordinary frosted glass, totally
scatter light into a hemispherical pattern. Holographic diffusers are useful whenever it is desired
that the light source appear to be of uniform brightness, with no "hot spots" to discomfort the eye.
While this kind of glare-free appearance is as desirable in lights of moderate spread as it is for
floodlighting, conventional reflector or lens designs usually appear to have highly non-uniform
brightmess. POC has developed and demonstrated holographic diffusers with both controlled
directionality of transmittance and low visual glare. Using proprictary holographic materials and
exposure methods, POC can make a wide variety of diffusers that produce smooth but confined
illumination patterns and give the source a glare-free appearance. For example, a holographic
diffuser on a round flashlight can produce an elliptical illumination pattern, which normally
requires an elliptical reflector. Moreover, any flashlight would benefit from the smooth
illumination pattern which holographic diffusers produce, unlike the distracting structured patterns
of conventional flashlights.

3.1.1 Controlled Scattering of Light

The scattering of light consists of a loss of the directionality of a beam as its rays are randomly
turned into a wider set of directions. It is distinct from the redirection done at the surface of a
mirror or lens by reflection or refraction, which do not increase the entropy, or disorder, of a light
beam. In nature there can be many degrees of scattering, such as we see with sunlight as it varies
from the dazzle of a clear day, with only some blue-light scattering that colors the sky, to an
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overcast day with a uniformly gray sky. Intermediate degrees admit of a fuzzy glare in the general
direction of the sun. This is volume scattering, the cumulative effect of passage through an
extended gradually scattering medium, in this case the earth's atmosphere. Some of the
atmosphere's volume scattering processes send light into all directions uniforrﬁly, while some have
concentrations in the forward or backward directions, depending upon the nature of the scattering
centers, whether molecular or particulate. In nature, scattering along any angle from the original
direction of the light is uniform around a conical pattern centered on that original direction: there
are N0 azimuthal variations in the scattering (see Figure 3-1). We shall see that holographic
diffusers are not subject to this limitation.

Artificial diffusers have become common in this century of electric illumination, with frosted and
textured glass as examples. Like their natural counterparts, however, these surface scatterers
exhibit highly diffuse scattering. While not all light may be scattered, asin a slight frosting of the
surface of a piece of glass, that part of the light which is scattered goes into a wide, almost
hemispheric, range of angles away from the original direction of light. Such hemispheric
scattering is termed "Lambertian” in the parlance of photometry, after one of its founders. These
diffusers commonly rely on surface roughness, a microscale irregularity that consists of multiple
random refractors that spread light out, away from its original incoming direction. The statistical
characteristics of the irregularity are difficult to control, so that a designer has litle ability to specify
a particular scattering pattern. If he could do so, such scattering specificity would be a third
method of directional control, in addition to reflection and refraction.

POC discovered and empirically confirmed a new method of producing controlled scattering with
holographic diffusers, which consist of a thin (< 1 mm) volume of spatially fluctuating refractive
index. Using coherent light in a proprietary exposure configuration, the statistics of the
fluctuations in the volume hologram can be tailored so that the resulting scattering pattem can take a
variety of shapes. In the diffusers produced so far, there are two constraints upon the controlled
scattering:

(1) Light is scattered relative to its incoming direction, NOT relative to the surface of
the diffuser. This means that for maximum pattern control a diffuser should use
collimated light (i.e., all of the same direction, as from a searchlight). Deviatiops
from this ideal input would blur the output pattern accordingly. Non-collimated
light will have a spread that is the superposition (technically, the convolution) of the
input light and the controlled scattering.
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Figure 3-1
Natural Scattering of Light. At all scattering angles, there is circular symmetry.

(2)  The scattering pattern is not arbitrarily specifiable, but has the form of an
autocorrelation function, as will be explained below. This means that the maximum
brightness of the scattering pattern is in the same direction as that of the input light
ray, and that the brightness of the scattered light will fall off smoothly to zero with
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" increased scattering angle away from the original direction of the incoming light,
with no discontinuities in the illumination pattern. Unlike conventional diffuse
scattering, the pattern need not be rotationally symmetric, so that elliptical patterns
are easily generated from round apertures. .

The overall illumination pattern from a light with a holographic diffuser will be the resultant of the
diffuser's scattering pattern and the total number of direction’s encompassed by the light striking
the diffuser.

There are a wide variety of lighting tasks for which such controlled diffusion will be useful, and
for which lens and mirror designs would be somewhat bulky. Collimated light would be changed
by a uniform diffuser into a particular scattering pattern, and the diffuser would appear umformly
bright to someone within its illumination pattern.

3.1.2 Autocorrelation Illumination Patterns

The correlation function was originally discovered by statisticians as a part of their search to
express regularities and correspondences in sequences of data. Scientific investigations often
express the probability of an occurrence of causality in terms of the correlation function between
two sequences of data, f and g, as the sum of the term-by-term products of the members of each n-
term sequence:

Crglk) = '§0 £(5) gi + K) (3-1)
i=

where k is a shift used to find the position of best congruence, as might happen in a case of
delayed causality. Autocorrelation is simply a function's correlation with itself, as a function of
shift. It is customary to normalize it by dividing by the square of the function:

Ce(k)= 3 £(i) fi+k)/ 3 £2() (3-2)
i=0 i=0

Hereafter this normalization will be understood to be present, although it will not appear in the
equations. For continuous functions, the summation becomes an integral, but the autocorrelation
function itself has the same character:

80




Final 0193,3066 DOE NIO (Menley
DE-FG03-89ER14092

Ce(u)=] f(x) f(x + u) dx (3-3)

For functions which are finite in extent, this is an overlap integral or functional of a shift u, with a
maximum value atu =0 (no shift) and zero for u bigger than the width of the funcnon If the input
function is real, the autocorrelation is symmetrical.

To illustrate how the autocorrelation function works, Figure 3-2 shows how a rectangular function
gives rise to a triangular autocorrelation function that is twice as wide. Other input functions are
plotted in Figure 3-3, for -1 < x < 1, from the highest to the lowest. In Figure 3-4, the
autocorrelations of these functions are shown in the same order. In spite of the very different input
shapes, the autocorrelations are similar.

Figure 3-2
Rectangular Function Has Triangular Autocorrelation
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Figure 3-4
Autocorrelation Functions for the Input Functions of Figure 3-3
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‘Actually, holographic diffusers will exhibit a scattering pattern that is a fwo-dimensional
autocorrelation:

Ce(u, v) = [ f(x +u, y + v) f(x, y) dx dy (3-4)

where f(x,y) is a grey-scale transmittance pattern that is the input to POC's proprietary holographic
exposure process. So far, we have produced diffusers using real (i.e., transmittance only) input
values, so that the diffusers’ output patterns are centro-symmetric. Figure 3-5 shows the elliptical
output pattern of our sample diffusers.

Figure 3-5
Elliptical Scattering Pattern

In general, a lighting device utilizing a holographic diffuser will have an illumination pattern that
depends upon the distribution of light striking the diffuser, as well as the scattering pattern of the
diffuser itself. The light leaving any point on the diffuser is its scattering pattern smeared by the
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distribution of incoming light. The combination of these two distributions gives considerable
latitude to an illumination engineer. As long as the diffuser's scattering pattern is wider than the
apparent diameter of the source as seen by someone in its illumination pattemn, its appearance will
be that of uniform brightmess, with no bright spots.

3.2 i-Hom r i ntroll i

It is important to realize that the moving diffuser can simulate a quasi-homogeneous source with
regulated spatial coherence degrees. This assumes that the diffuser speed is sufficiently high to
enable the process to be ergodic. In order to show this, it is necessary to prove the auxiliary
theorem that the spatial coherence radius, peoh, is proportional to the speckle r.m.s.

Pcoh ~ I.M.S. (3-5)

According to the 2-D van Cittert-Zernike theorem, it is possible to regulate the output speckle
r.m.s., by the input intensity distribution (or, input aperture). Therefore, it is indeed possible to .
design the laser source, with high temporal coherence, and low spatial coherence regulated through
Eqg. (3-5).

3.3 n-I in i

During this program realization, POC has expanded the capability of ray tracing software for
NIO's to include the following main features:

1. It is a full menu driven program. For a given three dimensional surface profile, the user
need not redefine the mathematical equation to compute the output phase space coordinates
whether the ray enters from Zp;n or Zyax (see Figure 3-6).

If an NIO coupler mode is chosen, the software will generate the mirror image of the other
half position of an NIO surface profile automatically to compute the output phase space

coordinates of the coupling effect. The flat entry and exit apertures can be of any shape.

2. The program can handle up to 2.1 billion rows of input data points which are more than
enough for statistical analysis. It is easily expanded to 4.2 billion rows if necessary.
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Figure 3-6
Representation of 3D NIO Surface Profile -

3. There are four sources of uniform random deviates which allow the user to compare the
results if monte carlo analysis is used.

4. . The user has a choice of outputting all the ray tracing's history of all input rays into a data
file which is useful information for optimization.

5. To add a new NIO surface profile, the user needs only to add a simple subroutine to the
program. )
6. The software is also designed to read a special input ray distribution which is stored in an

ASCII data file. The size of the file is only limited to the size of the storage media.

3.3.1 Non Imaging Optic (NIO) Surface Profile

Winston has generated a 2D Compound Parabolic Concentrator (CPC) (see Figure 3-7) which is
based on the "edge-ray principle”. The equation is given by

2
(\/r_z cosBpp,y + Z sin Gmax) + 2a;(1+5in8,,, )2 = —22) O8Oy (2 +5in 05, )Z

— af (1+5in By )(3+ 5N B g ) = 0 (3-6)
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Figure 3-7 ~
2-D CPC Based on the “Edge-Ray Principle”

where Omax is the acceptance angle, 2a is the width of the small (exit) aperture, and

2
2a= %n O max is the width of the large (entrance) aperture. The length of the CPC is given by

a+a'

OB = (3-7)

tan 6.,

The point Q is the focal point of a parabola whose axis makes an angle -gmax with OZ axis. A 3D
axial symmetric CPC can be generated by replacing r2 with 12 = x2 + y2. For an elliptic cross
section, we use r?= b% x2 + bz y2. In general, a 3D axial symmetric CPC is not as efficient as in
2D case at Omax. The 3D computation is based on dividing the entry aperture into a grid with
: 1 1 . . .
spacing equal to /‘Ix grid and /qy grid of the width of the aperture on x and y axis, respectively.

For a circular aperture, we set Ny grid = Ny grig = 100. For other apertures, we select %‘Ix grid
and %\I y grid Such that Nx grig x Ny grig = 104, The rays are traced at a chosen collecting angle 8

of each grid point (Figure 3-8 with x-axis normal to the Figure). The various entry cross sections
with the same area are shown in Figure 3-9. The proportion of these rays that are transmitted by
the 3-D NIO give the power transmission T(8,8max) which is defined by

number of output rays
number of input rays at the entry aperture

T(0,0,,,) = (3-8
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Entry Cross Sections at z = 19.16544
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Figure 3-10 shows that T(8, Omax) can be improved if the entry cross section is modified
according to the direction of incident ray. We use elliptic cross section and ellipsoid as an
illustration. The equation of an ellipsoid is given by

2 2 2
xt  y* (z-z.)
—_— - -
b2 b2 b2 o (3-9)

where by, by, b;, and z; are semi axes and center of the ellipsoid, respectively.

10

Average number of input rays =
CPC acceptance mngle = 10 degrees
Length of CPC = 19.16544 it

A= ~f entry cross sections A, B, snd C = x(2.87938)A2
Area of exit cross section = x(0.5/2

=== 3.D Winnion's CPC with circular cyoes section A
== 3-D Ellipzaid with circular cross section A
we=es=  3.D Ellipscid with ellitic croes section B
3-D Ellipsaid with elliptic cross section C

Power Transmission
(¥ output rays/# input rays)

0.2+
0.0 v I MR i vy T ik {
0 2 4 e 8 10 12 14 18 18
Incident angie about Z-azis (degree)
Figure 3-10
Power Transmission for Various Cross Sections
3.3.2 Basic Ray Tracing Algorithm

All vectors are relative 10 0, X, y, z frame of reference with 0 as the origin. @, d, and @, are unit

vectors along Ox, Oy and Oz, respectively (see Figure 3-11).
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Cladding with refractive index n_ &f’ffa”ugn v(x.Y,z)=0
Ap (X o1+ Yn-1s Zn—l)

X

point A(x,.Y,,2,) 7 -
a(x, 7 he
1} [ R U -
N ¢ (refractive index of NIO) Yout
Y., ,) where Z, = Z .0
- 5
1
incident >z
ay ny .
N3 z
refractive < 4 |
index n, 05

Figure 3-12
Representation of NIO Surface Profile and Notations for Ray Tracing

Definition of notations

V(X,Y,Z)=0, NIO surface equation
ng = refractive index outside Nld

ng = refractive index of NIO

n. = refractive index of cladding

T = incident unit vector at z = zp;,

Th+1 = transmitted unit vector at z =z,

B, B,...,T, are ray tracing unit vectors inside NIO from Ap.1to Apwherep=2,3,..,n.

5= ‘n}f-[no i+ {ng(f; « % — no(f; o ?1))}51] (3-10)
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1 =1 = 2(fp-1 *%y) Fp1, P=2,3,-,n-1 (3-11)
- 1 - I - s
In+1 = g["f In+ {no (fin * o) —ne(fp o Ty )}nn] ' (3-12)

where.the unit surface normal i, are given by
n; =3, at point Ay (3-13)

fi, =3, at point A, (3-14)

-~ _VV
np = I-VTI unit outward normal surface vector at Ap, p =2, 3,---,n-1

Snell Jaw at .
point Ay: ng sin8; = n¢ sin y; (3-15)
point An: ng sin Yy, = ng sin Yoy, (3-16)
point Ap: ng sin 6 = n for total internal reflection (3-17)

Lp = Ap.1 Ap = distance between Ap.1 and Ap on an NIO surface, p = 2,3,...n. The position vector
of Ap relative to origin 0 is given by

- -
OAp=OAp-1+Ly%,, p=23,,n (3-18)

where Ly, can be found by solving
_)
V(OAp) =0 . (3-19)

with the Newton-Raphson method
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3.3.3 Winston's Modified CPC Profile

Our curve depends on six parameters: tg, T, 73, d, ¢, a1, tg 20,7921, > 0;¢>0;d>0; aj is a
real number. The additional conditions on the domain of admissible parametérs are given by Egs.

(3-23b) and (3-37) shown below. This means that the point P is in the nght half plane and that we
choose the right branch of the parabola.

d, P,
B %
P
d,
G
Figure 3-12

From Pg to P1: The Piece of Parabola.
From Pg to P2: The Piece of Hyperbola.

Remark: It is possible to reduce the number of parameters to five, if the diameter of the upper fiber
d) is made to be equal to 1. Indeed passing to another scale, if necessary, one can suppose that
d1 =1 (see Eq.(3-36) below), it enables us to consider a; as an intermediate coefficient. The
following are formulas for intermediate coefficients.

= d-2c to ‘C% (3_20)
2cdty +13
‘ad
a=1g +——TO (3-21)
To
b=c 2 +ar,+-3 (3-22)
To
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- d—dt?
YT 2ct2 +2cad

2ty

2__1
a, =—Ctg ———
2 0 2cty

bl

—2ct1 -
u=1l+af
v=o-P

S=a+a;—pb

n=b+a,+fa

The coordinates of the points Pg = (xg, yo), P1 = (X1, Y1), P2 = (x2, y2) are

b
X1 =a1+
2

yy=ct?+ ! ia
1=CH Fotay

2
Xp = al-—tﬂ-+t0
0 2,
Yo=0
Xq =3, +a+'rl+9E+dB'c,-ﬂ—bB
T T
' ofid
y2 =a,+b+f7 +Ba—£——a‘tl——B—
! T
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Since d; =2x; =2a;+14 , if we put d; =1, we can consider a; as an intermediate coefficient
given by the formula

. 1 :
a; = 'i‘(l - tl) (3'36)

since p; is in the right half plane, x > 0 or

a1+a2+tl+i—B+aBtl—;ﬂ-bB>0 (3-37)
1 1

Equations for the Curve

Parabolic part (y; 2y 20, xg < x < x;)
(1+8)[(y ~22) = Blx~1)] = c[(x—a,) + Bly—2,)]" (539

Hyperbolic part (02y2y,,x; Sx<x)
[u(x=9)=v(y =1)] [v(x - §)+ u(y—n)] + d(u® +v?)" = 0 (3-39)

Example:letc=0.1,d=1,1,=1,t0=5,1,=0.5.21=0

then
a=0,a=4,b=3.51 =20,ay =-3.75,B = 0.25,
u=1,v=-0.25£=3125n=0.75
x; =10 xg =4.375 X9 = 4.125
n= 41.25 Yo = 0 y2 = -=1.125
Equations
1. Parabolic part
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10.625 [y +3.75-0.25x] - [x +0.25(y +3.75) = 0

2. Hyperbolic part

[(x~3.125)+0.25(y - 0.75)] [(y - 0.75) - 0.25(x —3.125)] - (1.0625)? =0

The ratio of diameters = x;:x, =10:4.123 = 2.5

3.4 Experimental Results

Holographic optical elements have a unique property in that they can both spatially and spectrally
transform a beam distribution. An example of this is a concentrator which focuses only on arange
of wavelengths, allowing all others to be transmitted unaltered. One type of structure which has
many applications is a volume grating. Figur= 2-13 shows a typical volume transmission grating.
POC has fabricated gratings with several types of index modulation, including sinusoidal,
rectangular and triangular; having an index modulation as high as 0.2. The highest diffraction
efficiency demonstrated is ~97.9% for s-polarization. The wavelength range is limited by the
dichromated gelatin material, from ~360 nm to 2.8 um.

Incident Beam

Dichromated Gelatin

Y e AR NN S

\ 1st Order Diffraction

Figure 3-13
lllustration of a Typical Volume Holographic Transmission Grating Structure
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A prototype beamsplitting and wavelength division multiplexing (WDM) grating hologram was
fabricated to separate a combined beam of red (632.8 nm) and green (543 nm) HeNe laser light (as
shown in Figure 3-14). When the combined beam was launched into the helogram, the green
beam was separated, with about 50% of the light being transmitted through the hologram and the
rest being distributed througﬁout the other gratings. There was no effect on the red bcém, which
was 100% transmitted through the hologram at the incident angle. By changing the angle of
incidence, it was possible to have the red beam separated out, and the green beam 100%
transmitted through the hologram. The efficiency of this exploratory prototype is low, however,
further improvement is possible.

Green + Red

AN 72N \ .
100% Ys0% Y 25% Y12.5%
(A=Red 632.8nm) | (3= Green 533 nm) | Green Green
Figure 3-14

Muttiple Holographic Grating for Use in Beamsplitting and
Wavelength Division Multiplexing Applications

Figure 3-15 illustrates the circular-to-circular beam distribution formation property of a non-
imaging optic (NIO). (Currently, POC has NIOs for transforming the highly divergent light from
100, 200 and 400 pum fibers into nearly collimated (within 3°) large diameter beams. These can be
incorporated with the grating beamsplitting/WDM holograms to create efficient and compact fiber
optic WDMs.)
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;ﬂm 012
) 3¢ T T T 7
(@
NIO
/ 012
\L d
(b)
Figure 3-15

Beam Distribution Formation Property of NIO: (a) Highly Divergent Output of a Solitary Fiber,
(b) Nearly Collimated Output of the Fiber-NIO Combination.

As reported earlier, HOEs for NIO applications such as couplers and WDM's have been
demonstrated using DCG volume holograms recorded on separate films and multiplexed by
stacking them together. Demonstration HOEs for 3 to 4 wavelength WDMs have been fabricated
having efficiencies of up to 98% with approximately 10% cross-talk. Also, by using a similar
concept, 1 to 4 couplers for single wavelength (e.g., 633 nm) have been fabricated. However, due
to the additive nature of each layer, HOEs thus fabricated showed high background absorption and
noise. This noise will increase with the increase in the number of wavelengths or channels. One
way to avoid this drawback is to multiplex the holograms in one volume @i.e., in one film), thus
the background and noise will be just that of one holographic layer. Multiplexing, however
introduces a reduction in the efficiency by a factor of % where N is the number of holograms
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multiplexed together. This is unacceptatle if high efficiency - high number of channels are
required. Also, the designed architecture is not suitable for packaging ipto a compact unit due to
the diversity of angles associated with channels.

Due to these drawbacks, POC has studied the alternative HOE design approach for couplers and
WDM applications. The device is based on a set of coupled holograms fabricated on a single
substrate. By making slanted gratings and total internal reflection (TIR), the two holograms act
like a conjugate pair for a normally incident (collimated) input beam into several output beams also
emerging normal to the substrate. This device can be used for both one to many channel couplers
and for many wavelength WDMs. The operation of the device is shown in Figure 3-16(a) and (b).

Tnput (1) Cover
J Glass

TIR )e

/\ /Wé |

}é;(\ 1\ \}%&};\l N \/t\\XH:\] (B Cement.
TIR

Ou;put Ou[zpu[ Ou&put S“Gbsl;g‘e

B
)

(a) 1to N Coupler

INPUT
| KPR

1

1 72

An
(b) n-channel WDM
Figure 3-16

Integrated Coupled Holograms and TIR for (a) Power Splitting, and (b) Wavelength Splitting
(WDM) Applications
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As depicted in Figure 3-16, a single slanted TIR hologram recording geometry was used for both
devices. By recording holograms (or a single hologram) and laminating it with a glass cover plate,
(using optical cement of the same index as glass), a monolithic device is obtained for both a one to
many coupler and for WDM applications.

In the case of a 1 to N coupler, the hologram slant angle is designed for a Bragg reflection at the
desired wavelength A (e.g., 633 nm), and the efficiencies of the individual holograms are adjusted
by selective exposure to change both index modulation An and the average index fi of the recording
material. Several experiments have been completed to characterize the material response to
exposures so that peak wavelengths and efficiencies of holograms can be adjusted to the required
values. We have fabricated a demonstration model for a 1 to 4 coupler which has a power
uniformity of within 10% and a total device efficiency of ~80%. Further studies and effort would
increase this efficiency t0 95% and beyond.

For the WDM application, as described in Figure 3-16(b), only a single hologram needs to be
recorded. This hologram should have a bandwidth covering the range of wavelengths (A1,
A2,...An) at considerably high efficiencies (~90%).

Such holograms have been fabricated and demonstrated in POC's labs and have been used as a
Littrow grating in POC's WDM devices [29). For this approach, similar dispersion properties of
the grating are used, together with its "conjugate” pair (obtained by cutting out a strip of hologram
and laminating it with a cover glass plate), to produce a spatially separated but normal output beam
at different wavelengths.

Currently, material characterization and optimization of recording parameters are being continued to
achieve the required bandwidth, efficiency and high signal to noise ratio.

4.0 REFERENCES

1. A. Walther, "Radiometry and coherence,” J. Opt. Soc. Am., 58, 1256 (1968).
2. A. Walther, "Radiometry and coherence," J. Opt. Soc. Am., 63, 1622 (1973).

3. A. Walther, "Propagation of the generalized radiance through lenses,” J. Opt. Soc. Am.,
68, 1606-1611 (1978).

98




Final 0193,3066 DOE NIO (Manley)
DE-FG03-89ER14092

4.

10.

11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

E. W. Marchand and E. Wolf, "Radiometry with sources of any state of coherence," J.
Opt. Soc. Am., 64, 1219-1226 (1974).

E. W. Marchand and E. Wolf, "Walther's definition of generalized radiance,” J. Opt. Soc.
Am., 64, 1273-1274 (1974). .

W. H. Carter and E. Wolf, "Coherence properties of Lambertian and non-Lambertian
sources," J. Opt. Soc..Am., 65, 1067-1071 (1975).

‘W H. Carter and E. Wolf, "Coherence and radiometry with quasi-homogeneous planar

sources,” J. Opt. Soc. Am., 67, 785 (1977).

E. W. Marchand and E. Wolf, "Radiometry with sources of any state of coherence,"
J. Opt. Soc. Am., 64, 1219 (1974).

E. Wolf, "The radiant intensity from planar sources of any state of coherence," J. Opt.
Soc. Am., 68, 1597-1605 (1978).

A.T. Friberg, "On the existence of a radiance function for finite planar sources of arbitrary
states of coherence,” J. Opt. Soc. Am., §9, 192-199 (1979).

T. Jannson, "Radiance transfer function," J. Opt. Soc. Am., 70, 1544-1549 (1980).
E. Wolf, "Coherence and Radiometry," J. Opt. Soc. Am., 68, 6-17 (1978).

'(I‘.gJannson, "Self-imaging effect in physical radiometry," J. Opt. Soc. Am., 73, 402-409
1983).

E. W. Marchand and E. Wolf, "Generalized radiometry for radiation from partially
coherent sources," Opt. Comm., 6, 4 (1972).

P. DeSantis, F. Gori, G. Guattari, and C. Palma, "An example of a Collet-Wolf source,"
Opt. Comm., 29, 2, 256-260 (1979).

E. Collet, J. Foley, and E. Wolf, "On an investigation of Tatarskii into the relationship
between coherence theory and the theory of radiative transfer," J. Opt. Soc. Am., 67, 465-
467 (1977).

F. Gori and E. Wolf, "Sources with factorized cross-spectral densities,” Opt. Comm., 61,
6, 369-373 (1987).

E. Wolf and W. H. Carter, "A radiometric generalization of the Van Cittert Zernike theorem
for fields generated by sources of arbitrary state of coherence,"” Opt. Comm., 16, 3, 297-
302 (1976).

E. Wolf, "New theory of partial coherence in the space-frequency domain. Part I: spectra
and cross spectra of steady state sources," J. Opt. Soc. Am., 72, 2 (1982).

E. Wolf, "New theory of partial coherence in the space-frequency domain. Part IT; steady
state fields and higher order correlations," J. Opt. Soc. Am. A, 3, 1, 76-85 (1986).

E. Wolf, "Coherent-mode propagation in spatially band-limited wave fields," J. Opt. Soc.
Am. A, 3, 11, 1920-1924 (1986).

99




Final 0193.3066 DOE NI (Manley)
DE-FG03-89ER14092

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.
32.

33.
34.

35.

36.

37.

38.

39.

'W. H. Carter and E. Wolf, "Inverse problem with quasi-homogencous sources," J. Opt.
Soc. Am. A, 2, 11, 1994-2000 (1985).

G. S. Agarwal, J. T. Foley, and E. Wolf, "The radiance and phase-space representations
of the cross-spectral density operator,” Opt. Comm., 62, 2, 67-72 (1987).

K. J. Kim, "Brightness, coherence and propagation characteristics of synchrotron

radiation,” Nucl. Instr. and Methods, A246, 71 (1986). .

T. Jannson, L. Sadovnik, T. Aye, 1. Tengara, "Radiometric ray tracing," JOSA Dec.
1991, Proc. of the 1991 OSA Annual Meeting, San Jose, CA, Nov. 1991; MCC4.

T. Jannson, I. Tengara, and D. Erwin, "Semigeometrical phase-space trajectories in
physical radiometry," in preparation.

R. Simon, E. Wolf, "Transfer of radiance by Gaussian-Schell Model beams in paraxial
system," submitted to JOSA.

R9.6I§. Luneburg, Mathematical theory of optics (University of California, Berkeley,
1966).

T(.) Jannson, 1. Tengara, "Lippmann-Bragg broadband holographic mirrors,” JOSA A, 8,
201 (1991).

E. Wolf, J. Jannson, T. Jannson, "Analogue of the van Cittert Zernike theorem for
statistically homogeneous wave fields," Opt. Lett. 15, 1032 (1990).

H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt., 3, 1550-1567 (1966).

See, for example, M. Born and E. Wolf, Principles of optics (Pergamon Press, Section
4.8, 1970). .

D. Marcuse, Light transmission optics (Academic Press, 1970).

T. Jannson and R. Winston, "Liouville theorem and concentrator optics," J. Opt. Soc. Am.
A, 3,7 (1986).

W. T. Welford and R. Winston, The optics of non-imaging concentrators (Academic
Press, 1978).

H. P. Baltes, J. Geist, and A. Walther, Radiomerry and coherence, in Topics in Current
Physics, 9, edited by H. P. Baltes (Springer, Berlin, 1978).

J. T. Foley and E. Wolf, "Radiance function of partially coherent fields,” J. Mod. Opt.,
38, 2053-2068 (1991).

A. T. Friberg, G. S. Agarwal, J. T. Foley, and E. Wolf, "Statistical wave-theoretic
derivation of the free-space transport equation of radiometry,” J. Opt. Soc. Am. B (in
press).

E. Wigner, "On the quantum correction for the thermodynamic equilibrium," Phys. Rev.,
40, 749-759 (1932).

100




Final 0193.3066 DOE NIO (Manley)
DE-FG03-89ER14092

40.

41.

42,
43,

44,
45.
46.

47.

48.

49.

50.

51,

52,

53.

54.
35.
56.
57.

58.

M. J. Baétiaan, "Wigner distribution function and its application to first-order optics," J.
Opt. Soc. Am., 69, 1710-1716 (1979).

S. Creagh and R. Littlejohn, "Semiclassical trace formulas in the presence of continuous
symmetries," Phys. Rev. A, 44, 836-850 (1991).

A. M. Kondratienko and A. N. Skrinsky, Opt. Spectrosc., 42, 189 (1977).

" G. Nemez, 1. E. Teoderescu, and M. Nemez, "Phase space treatment of optical beams,”

Proc. 3rd Int. School of Coherent Optics (Bucharest, Rumania, Aug. 30-Sept. 8, 1982).
J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 1968).
J. W. Goodman, Statistical optics (Wiley, 1985).

C.Kunz and K. Codling, Synchrotron Radiation, Techniques and Applications
(Springer, Berlin, 1979). )

E. Tegeler, German National Lab. (German equivalent to U.S. NIST), Private
Communication, February 1992.

G. Gloge and D. Marcuse, "Formal quantum theory of light rays," J. Opt. Soc. Am., 59,
1629-1631 (1969).

G. Eichmann, "Quasi-geometric optics of media with inhomogeneous index of refraction,”
J. Opt. Soc. Am., 61, 161-168 (1971).

T. Jannson and R. Janicki, "An eigenvalue formulation of inverse theory of scalar
diffraction,” Optik, 56, 429-441 (1980).

T. Jannson, "Information capacity of Bragg holograms in planar optics," J. Opt. Soc. Am,
711, 342 (1982).

T. Jannson, H. Stoll, and C. Karaguleff, "The interconnectability of neuro-optic
processors," SPIE Proc., 698, 157-169 (1986).

See, for example, J. R. Klauder and E. C. Sudharshan, Fundamentals of quantum optics
(Benjamin Inc. 1968). .

L. Brilbuin, Science and information theory (Academic Press, 1956).
A. J. Lichtenberg, Phase space dynamics of particles (Wiley, New York, 1969).
See also, M. Planck, The theory of heat radiation (Dover, New York, 1959).

L. Allen and J. H. Eberly, Optiéal Resonance and Two-Level Atoms (Wiley, New York,
1975).

H. A. Kramers, "Quantentheorie des elektrons und der strahlung in hand- und jahrbuch der
chemischen physik," Eucken-Wolf (Leipzig, 1938) (English translation, Quantum
Mechanics (Amsterdam, North Holland, 1957)).

101




Final 0193.3066 DOE NIO (Manley)
DE-FG03-89ER14092

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.
74.

75.

E. Wolf, "New theory of radiation energy transfer in free electromagnetic fields," Phys.
Rev. D, 13, 869 (1976).

E. C. G. Sudarshan, "Quantum electrodynamics and light rays," Physica A, 96, 315-320

(1981).

E. C. G. Sudarshan, "Quantum theory of radiative transfer," Phys. Rev. A, 23, 2803-
2809 (1981). . )

- L. V. Bourimborde, W. D. Furlan, and E. E. Sicre, "Off-axis analysis of the Strehl ratio

using the Wigner distribution function," J. Mod. Opt., 38, 1685-1689 (1991).

V. P. Maslov, Asimptoticheskije metody i teoria vozmushchenij (Nauka, Moskva, 1988 (in
Russian)).

V. Guillemin and S. Sternberg, "Geometric Asymptotics,” Mathematical Surveys, 14,
America Mathematical Society (Providence, RI, 1977).

H. E. Moses, R. J. Nagem, and G. V. H. Sandri, "The general solution of the three-
dimensional acoustic equation and of Maxwell equations in the infinite domain in terms of
the asymptotic solution in the wave zone," J. Math. Phys., 33, 86-101 (1992).

L. Bialynicki-Birula, Z. Bialynicka-Bi=la, and G. Alamone, "Spatial antibunching of
photons,” Phys. Rev. A, 43, 3696-3703 (1991).

L. S. Schulman, Techniques and applications of path integration (Wiley, New York,
1981). ‘

C. DeWitt, A. Mahcshwarf, and B. Nelson, "Path integration in non-relativistic quantum
mechanics,” Phys. Rep., 50, 255-372 (1979).

L. Allen, and J. H. Eberly, Optical resonance and two-level atoms (Wiley, New York,
1975).

F. T. Arecchi, "Order and chaos in quantum optics," in Coherence, Cooperation and
Fluctuations, Eds. F. Haake, L. M. Narducci, and D. F. Walls (Cambridge University
Press, Cambridge, 1986).

S. Winick and S. Doniach, Synchrotron Radiation Research (Plenum, New York,
1980). .

E.-E. Koch, Handbook of Synchrotron Radiation (North-Holland, Amsterdam, 1983).

G. Margaritondo, Introduction to Synchrotron Radiation (Oxford, New York, 1988).

J. Thomas, G. Jezequel, and I. Pollini, "Determination of the optical properties of
absorbing uniaxial crystals from multiangle reflections with polarized synchrotron
radiation,” J. Opt. Soc. Am. A, 6, 27 (1989).

P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, "Extended x-ray absorption

fine structure --- its strengths and limitations as a structural tool,” Rev. Mod. Phys., 33,
769 (1981).

102




Final 0183.3066 DOE NIO (Manley)
DE-FG03-85ER14092

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

M. O. Krause, "Photoionization of atoms and molecules using synch.otron radiation,"
IEEE Trans. Nuclear Sci., NS-28, 1215 (1_981).

B. K. Tanner and D. K. Bowen, Characterization of Crystal Growth Defects by X-Ray
Methods (Plenum, New York, 1981). ’ )

H. Takada, K. Furukawa, and T. Tomimasu, "Development of a compact synchrotrbn

_ radiation system for x-ray lithography," Opt. Eng., 27, 550 (1988).

E. Hughes, H. D. Zeman, L. E. Campbell, R. Hofstadter, U. Meyer-Berkhout, J. N.Otis,
J. Rolfe, J. P. Stone, S. Wilson, E. Rubinstein, D. C. Harrison, R. S. Kernoff,
A. C. Thompson, and G. S. Brown, "The application of synchrotron radiation to non-
invasive angiography,” Nucl. Instr. and Methods, 208, 665 (1983).

M. R. Howells, M. A. Tarocci, and J. Kirz, "Experiments in x-ray holographic microscopy
using synchrotron radiation," J. Opt. Soc. Am. A, 3, 2171 (1986).

K. J. Kim, "Brightness and coherence of synchrotron radiaﬁon. and high-gain free electron
lasers," Proc. VIIth National Conf. on Synchrotron Radiation (SR-86), Novosibirsk,
1986.

T. Jannson, G. Savant, and Y. Qiao, "Bragg holographic structures for XUV applications,
a new approach,"” Opt. Lett., 14, 344 (1989).

T. Jannson, G. Savant, and L. Wang, "Exwreme-ultraviolet Bragg holographic structures:
theory and experiments,” J. Opt. Soc. Am. A, 8, 1587 (1991).

T. Jannson, "Holographic technology for solar energy concentration,” Final Report #DE-
AC03-81ER10836 (July 1984).

Y. Kitugawa, et al., "Demonstration of collisionally enhanced degenerate four wave mixing
in a plasma,"” Phys. Rev. Lett., 62, 151 (1989).

E. Wolf, “New theory of radiative energy transfer in free electromagnetic fields,” Phys
Rev., 13, 869 (1976).

V. I Tatarskii, "The effects of the turbulent atmosphere on wave propagation,” Israel
Program for Scientific Translation (Jerusalem, 1971).

J. Winthrop, "Propagation of structural information in optical wave fields,” J. Opt. Soc.
Am,, 61, 15 (1971).

b. Gabor, "Light and information," Progress in Optics, Vol. I ed. E. Wolf (North
Holland, 1960).

M.Z. Zubairy, and E. Wolf, "Exact equations for radiative transfer of energy and
momentum in free electromagnetic fields,” Opt. Comm., 20, 321 (1977).

103




Final 0193.3066 DOE NIO (Manley* (Appendix A)
DE-FG03-89ER14092

APPENDIX A

DENSITY MATRIX, GENERALIZED RADIANCE FUNCTION,
SPATIAL COHERENCE AND LIOUVILLE THEOREM




Final 0193.3066 DOE NIO ‘Manley) (Appendix A)
DE-FG03-89ER14082

A.l Introduction

The purpose of this appendix is to show mutual relations among the radiance function, the density
matrix and spatial coherence, based on a formal analogy between 3-D physical optics and 3-D
quantum mechanics. It has been shown that 3-D monochromatic Maxwell equations with the
z coordinate as a parameter (33.49 are fully equivalent to the spinor matrix equation that is
formally identical with the 3-D Dirac relativistic equation, if we apply the following formal
substitutions:

h— X, where X = A/2n (A-1a)
t— z (A-1b)
V—-n ) (A-1c)

m — ng

where V is scalar potential energy. It has also been shown [48] that the paraxial (diffusion)
approximation in physical optics is formally equivalent to the non-relativistic approximation in
quantum mechanics, and the first quantization of optics has been demonstrated.

Based on this analogy, we can introduce the optical ("relativistic") Hamiltonian, in the form

A 1/2
H=- (n2 —p2 - pyz) (A-2)
9 - .o O )
D, = —1x— = —171— 3
where Dy X’ Py 3y’ ana using
0
=ik— A-3)
i 5 (A-3)
we obtain the optical analog of the Klein-Gordon equation [481:
u_ P, (n)2
+ +|=] u=0 A4
ox%  9y? Bz X A4

which is the Helmholtz equation with X =A/2r = 1/k. In the paraxial ("non-relativistic")
approximation, the optical Hamiltonian is
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=1 (32 4 p2
H= 20, (px + py) -n (A-5)
_ A . oA& e ._dx . dy .
where n = no, and py = nx, Py =Ny, where % = E’ y= E Using Egs. (A-3), and (A-5), we
obtain the optical analog of the Schroedinger equation: »

fu =it or ‘ (A-62)
oz

o%u 9% 2ing du | 2n,n
— L0 = A-6b
W + R +- =2 u=0 (A-6b)

which is the paraxial monochromatic wave equation. The paraxial energy eigenvalue equation
is

Hu = Eu (A-T)

where the optical Hamiltonian is defined by Eq. (A-5). For the optical analog of a stationary state
in quantum mechanics, we have a 2-D index spatial distribution in the form:

n = n(x,y) (A-8)
and
u (x,y; 2) =y (x,y) expi (Ez/k) (A-9)
where
k;=ks, =E/A=kE (A-10a)
Thus,
E=s, (A-10b)

i.e., the optical analog of the energy is the z-component of the unit vector of propagation, 5. For
the discrete eigenstates, the Hamiltonian eigenequation is -

Ay, =E, vy, (A-11)
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Therefore, in the stationary case (A-8), the stationary Schroedinger equation (A-6b) is equivalent to
the Hamiltonian eigenequation (A-7) or (A-11).

A2 Stationary State

This stationary Schroedinger equation, either in the discrete or the continuous case, has many
applications in optics. Specifically, for the discrete case, we have the following interesting cases:

1. Parabolically Focusing Medium
In this case,
n=1-m (A-12)

where
n = %wzx2 (A-13)

and the eigenfunctions are well-known Gaussian modes of the harmonic oscillator [313,
2. Nonlinear Oscillator

In this case,

n1=%w2x2+[3x3+ (A-14)

or, in the 2-D general case,

N =g + MX +Ngy + N3X> + ngxy + nsy? (A-15)




Final 0193,3066 DOE NIO (Manley) (Appendix A)
DE-FG03-85ER14082

In general, this describes some aberration-related cases. By analogy to classical mechanics, it
would be interesting to identify some nonlinear oscillating cases with chaotic behavior.

3. Laser Kesongtor

In this case, we would obtain, for example, some characteristics modes of a curved mirror laser
oscillator 311,

4. Eabry-Perot Elon

In this case, we obtain sinusoidal eigenfunctions (49],

5. Cylindrical Optics

In the general cylindrical optics case, we have n = n(x,y). Using typical quantum mechanic

substitutions
I:I=-ﬁ—n=-—7f-v -n (A-16)
Ny 2n,
Eq. (A-6b) reduces to
9%y . 2%y . 2n,

52 T3y T2 By =0 (A-17)

Obviously, there is an infinity of cases that can be solved and experimentally realized, using
modern methods of integrated optics . The most interesting special cases are

a. Channel waveguide arrays
Planar optics
Fiber arrays
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A.3 Non-Stationary State

We can consider the case where refractive index varies slowly with z:

on
é-z- 0 - (A-18)

This situation would be an analog of the adiabatic case in quantum mechanics. The strong z-
dependence of n will be equivalent to the strongly relativistic case in quantum mechanics; then, the
Dirac equations will be necessary. In such a case, however, we can expect some Fresnel
reflections in the opposite z-direction, with no obvious analogy to the quantum mechanical case
("time" passing in two opposite directions).

A.4 i- ri
In quantum mechanics, the classical asymptotic approximation is realized by the relation

A= 0 (A-19)
By analogy, the asymptotic geometrical optics approximation is obtained by

-0 (A-20)
The interesting novelty here is that the limit (20) can be realized not only formally as in Eq. (A-19)
but also physically, by providing optical sources with shorter optical wavelengths. Polychromatic
optics does not have a quantum mechanical analogy, with the possible exception of Sudharsan's
approach [60:61],
A.5 i Density Matrix_an ial Coheren
So far, we have considered only "pure” quantum mechanical states. In physical (statistical) optics,
the "mixed"” states are described by an ensemble of complex amplitudes, {... Jens. Since they are

the statistical realization of the ensemble, those complex amplitudes are more or less spatially
correlated through the cross-spectral density function:

A-6
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Wi )= {o" (@) u(®)] (a-21)
defined by Wolf (121, where the complex degree of spatial coherence is

L el

and I(f) = W(¥, T) is optical intensity.

Following the quantum-mechanical analogy (see, for example, Ref. [53]), we introduce the density
operator p in the form:

p={m(uf} (A-23)

ens

where Dirac notation is used.

In the space domain, the density matrix is

3=(F |p|> (@I{Iu>< b8

RSB T

ot

Comparing Eq. (A-21) with Eq. (A-24), we obtain

pij = Wij (A-25)
i.e., density marrix in physical optics is identical 1o the cross-spectral density function
representing the spatial coherence of the monochromatic oprical field. Considering the inverse
analogy of 3-D quantum mechanics to 3-D physical optics, we can say that the quantum-
mechanical density matrix characterizes the spatial coherence of the quantum mechanical wave

functions.

It is easy to show that the density operator P is hermitian:

A-7

———— e ————— <
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p*=p (A-26)

and, introdu<ing the orthonormal (discrete) eigenbasis,

5ld’n>=7‘nl¢n) . (A-27)
where _

<<I>n|d>n-> =8y (A-282)
and A ’

3| ®n) (@] =1 (A-28b)

n
where 1 is unity operator. We obtain

<¢n‘ 'Isl (bn) =An Opn' (A-29)

where Oy is Kronecker delta.
’Using Eqgs. (A-28b), (A-24), and (A-29), we obtain

(alpln) = Zz(flld’ ){@nlfl@n) (@nf)
_zz(q]d) )7L Snn' (CD lrz)
-2<f1|¢) n (®nlR2) (A-30)

 This is the discrete analog of the Mercer theorem [50), In the operator form, we hav=

=2 [00) A (@] (A-31)

Using Eqgs. (A-28a) and (A-29) and the completeness relation,

%) (F]ld%r =1 (A-32)
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we obtain the following expression for the density matrix trace

Th = [[(F||7) d%r = [[S(F|®n) An (@) d%r
n
= XAy (®4]F) (Fl@,) ¢
- .
=Tk (@n| g )= 52, © (A-32b)

It is seen from Eq. (A-24) that

W(E.F) = (F|p|T) =1(7) (A-33)

i.e., the optical intensity is identical to the diagonal component of the density c.omponent,
and, in the paraxial (non-relativistic) approximation

F=[[1()d*r = Tp=[[(F|p|7) d’r (A-34)

i.e., paraxial radiation flux is identical with the density matrix trace.

Consider the density matrix representation in eigenstate functions of some operator

(Wn Iﬁl‘l’n') = {(\l’nl u) (ul Wn’)} (A-35)

ens
or, in brief,
Prn = {2n @*1'}eps = Pon (@) (A-36)

where a, = u). Using the optical Hamiltonian in paraxial approximation:
n ={¥n P

22 2
. +
fa=P2xTP (A-37)
2n,
where
p=—ikV and p? =—%2A, (A-38)
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and using the Schroedinger equation

228 = iy | (A-30)
dz
we obfain
Wpn(z) |02, »  day ‘
0z {az ¥ 0z an ens (A-40)
where
1kaan = (mlﬁln>a (A41)
oz n

and the matrix representation of the optical Hamiltonian is

(m|f2]n) = [wml?) B (Flvn ) d (A-42)
Eq. (A-40) in operator form is
@ OD A aA fA .
= =1Hip - pi = (AL,p) (A-43)

where (...) is the quantum-mechanical Poisson bracket. Eq. (A-43) is well-known is non-
relativistic quantum mechanics (see e.g., Ref. [53]) and describes the time evaluation of the density
matrix. If the eigenvectors I\Vm are also the eigenvectors of the optical Hamiltonian, then Eq. (A-
42) becomes

(mlfiln) = j(\ymrr’) a (?[\;In)dzr
= I(Wml-r.) Am (ﬂ‘l’n)dzn =Am (‘l’ml\l’n>

m5nm =En Onm (A-44)

and Eq. (A-40) simplifies to

A-10
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m%:(ﬁw —Ep)Pan @) (4-45)

which can be easily integrated (see e.g., Ref. [53]). If forz=0, Pn'n(z) = Pn'n(0), then
. z )
Pr'n(z) = €XP [I(En - En-)g] (A-46)

Substituting Eq. (A-10b) into Eq. (A-46) and using paraxial approximation

2
E=s, = 1-p251-22- (A-47)

Eq. (A-46) becomes

Pnn(2) = exp [i (Sz0 = San) kz] = exp [ikz / 2(p§- - pﬁ)] (A-48)

i.e., in the stationary state described by Egs. (A-8) to (A-10), the evolution of the optical density
matrix is described by Eq. (A-48).

Using the Mercer theorem (30), we find that the density matrix factorizes only if a single eigenstate
exists; i.e., An = 8nm, and Eq. (A-30) reduces to the form

(8]8l%) = (GlOm) (Pn|) (A-49)

It was shown by Gamo and Wolf [19:20] that in such cases the radiation is fully spatially coherent;
ie., | ul =1.

A6 Relation B Density Matri | Radi Function in Paraxial
\ imati
Using the complex radiance (brightness) definition (11 and Dirac notation, we obtain in paraxial

approximation

A-11
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B®(7.5) = {(7]u) (ulB)},, (BIF) (A-50)

where

(F|u) = u(F) (ulp) *(B/A). and (p|T) = exp (-kB/A) .~ (A-5D)

Also, using Wolf's definition of Walthers' second definition of the complex radiance function
(equivalent to Eq. (A-50)), we have

B (7,5) o [| W (7',F) exp [ikp (7' — 7)] ' (A-52)

and using Eqs. (A-24) and (A-51), we obtain
B (7,5) e [I (7 8l7) (7| B) (BI7)d’' = (7| 8|p)(5I7) (A-53)

i.e., the complex radiance function can be interpreted as the density matrix in phase-space
representation (F,B), multiplied by the Fourier eigenfunction (B|F).

In the quasi-homogeneous case, B(+) =B/2, and the above property can be extended to the
radiance function B(7,5). In such a case, we obtain,

[IB(E.5) d%p = [[(F|p|B)(7)d%p = (F|p]F)=1(F) (A-54)

in accordance with the classical definition of the radiance function, considering the fact that in
paraxial approximation the emissivity is proportional to intensity, I. Analogously, we obtain the
classical relation between the radiation flux F, intensity I, and radiance function. Using
Eq. (A-34), we obtain

F = JJ1(7)d%r = (7| pF)d’r
= JJ1J(¥|p[5) (| 7)d?r a%p
= [[[| B(7.p)d’r d%p (A-55)

A-12
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A.7 Liouville Theorem
A.7.1 The Liouville Theorem as an Asymptotic Case for the Density Matrix

Motion Equation

Using the motion equation for the density matrix (see Eq. (A-43)):

we can provide the “classical" asymptotic approximation, X — 0, by replacing the commutating
relation (I:I,ﬁ) by classical Poisson brackets, in the form ’

n () (-2 2 )

dH dp oJp oH dp _. 9p
gop ot L -56
* dy dpy dy dpy and 0z = oz (A-56)
and, comparing Eq. (A-43) with Eq. (A-56), we obtain
9, (9poH oH dp | (9p oH _oH op =0 A-57
oz * (8x opx ox apx)+[3y dpy OJy dpy A-37)

where p is the classical phase-space density function [33]. Using Hamilton's equations [33]

dx oH dy oH
— T co— — T cmm— - A’58
dz Jpx dz Jpy ( &
dpx oH dpy JH
—_— —— —_— e e— -58b
dz ox dz ay (A-38b)
Eqg. (A-57) becomes
dp , (dp dx dpx op op dy , dpy op
| — — —_— =+ = =0, A-59
oz +(ax dz * dz dpx * dy dZ+ dz dpy (&9

A-13
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or, using the total derivative,

P _90 , dgiviov)= A-60
i +div(p¥)=0 : (A-60)

where V=(x,y),
i.e., in the paraxial approximation, we obtain the classical Liouville theorem, as a consequence of

the density matrix motion equation. If, on the basis of Eq. (A-55), we identffy the generalized
radiance function B(T,p) with phase-space density p(F,F), we also obtain the free space form of

the radiative transfer equation:
SVB=0 (A-61)
It should also be noted that the Liouville equation (A-60), or

—=0 (A-62)

is equivalent to the classical motion equation for the radiance function

B(f.p)=B, (F - (z/5,) .5) (A-63)

that can be interpreted as following. Consider the geometry of Eq. (A-63), illustrated in
Figure A-1.

A-14
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Figure A-1
Geometry of Eq. (A-63)
On the basis of Eq. (A-63),
%o =T-(z/s.)p (A-64)
or
T-%,=(z/s,)p=1 (A-65)
where L, illustrated in Figure A-1, is
L= (Z, zsz) (¢-9.Ls,) (/ B, L sz) (A-66)

since, according to Figure A-1, £ = z/s,. Therefore, indeed, Eq. (A-64) satisfies the geometry
illustrated in Figure A-1.

A.7.2 Liouville Theorem in Spherical Coordinates

Using the Lagrangian in spherical coordinates, we have

© A-15
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L = nq1+ 1202 + rZsin? 0p2 (A-67)

. ) oL oL :
where 8 = d0/dr, p = dp/dr; also, Pg = 360 P = -33' and the Liouville theorem is

9 +div(pv)=0or ' (A-68)
or
% _3_( ﬁ) i( EB)
ERR 71 G R Ly
a( dpe) ) ( dpp)
+ =0 A-69
3rg p a )" op, p T ) (A-69)

Here, the r coordinate is a parameter, not the z coordinate, and the phase volume elemcnt is always
Cartesian

dV =d6 dp dpg dpp (A-70)
Obviously, in the case of a non-uniform medium, w;a need to replace the P vector by the k vector
E = knp (A-T1)
As an example, we can consider the spectrum with cylindrical symmetry. In such a case,
kg? + ko2 < n2 sin2 o = K2 (A-72)
where o is the cone angle and the phase space volume is
V=4n12n K2 (A-73)

On the basis of the Liouville theorem in spherical coordinates, the phase space volume (A-73) is

invariant, i.e.,
rnsin o =inv. (A-74)
Using this equation for two concentric spherical surfaces with radii rj and rp, we have

A-16
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rin] sin 0y =ran2 sin o) (A-75)

and assuming nj = 1 (air), n2 = n and a2 = /2 and @] = a, we obtain the following formula for
the theoretical limit of concenu_ation

2 2 '
c=4m12=( n ) (A-76)
sma

where o defines the angular acceptance of the incident radiation. As a result, we obtain the ideal

3-D concentrator. W MM , 0{ |
ubr ﬂW /
) WS AIIMY wed,
A

A-17



