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INACCURACIES IN SNEDDON'S SOLUTION FOR ELASTIC
INDENTATION BY A RIGID CONE AND THEIR IMPLICATIONS
FOR NANOINDENTATION DATA ANALYSIS
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ABSTRACT

Methods currently used for analyzing nanoindentation load-displacement data to determine
a material's hardness and elastic modulus are based on Sneddon's solution for the indentation of
an elastic half-space by a rigid axisymmetric indenter. Although this solution is widely used, no
attempts have been made to determine how well it works for conditions of finite deformation, as
is the case in most nanoindentation experiments with sharp indenters. Analytical and finite
element results are presented which show that corrections to Sneddon's solution are needed if it
is to be accurately applied to the case of deformation by a rigid cone. Failure to make the
corrections results in an underestimation of the load and contact stiffness and an overestimation
of the elastic modulus, with the magnitude of the errors depending on the angle of the indenter
and Poisson's ratio of the half-space. For a rigid conical indenter with a half-included tip angle of
70.3°, i.e., the angle giving the same area-to-depth ratio as the Berkovich indenter used
commonly in nanoindentation experiments, the underestimation of the load and contact stiffness
and overestimation of the elastic modulus may be as large as 13%. It is shown that a simple first
order correction can be achieved by redefining the effective angle of the indenter in terms of the
elastic constants. Implications for the interpretation of nanoindentation data are discussed. -

INTRODUCTION

This paper deals with Sneddon's solution for the indentation of an elastic half-space by a
rigid axisymmetric indenter [1,2]. Sneddon's solution is the cornerstone for determining elastic
moduli from nanoindentation load-displacement data {3,4], and as such, the accuracy with which
the elastic moduli can be measured depends on how well Sneddon's solution describes real
material behavior.

The primary result of Sneddon's work of importance in this paper is the relation [3]:
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Here, E g is the effective elastic modulus defined in terms of Young's modulus E and Poisson's
ratio v, S is the contact stiffness, and A is the projected contact area. The equation applies to any
rigid axisymmetric indenter, including singular indenters such as cones [3]. Since all of the
quantities on the right hand side can be either measured or estimated from indentation load-
displacement data, Eqn.1 forms the basis of elastic modulus measurement by load and
displacement sensing indentation methods [3-5].

One potential problem in using Sneddon’s solution is that it is derived for conditions of
small deformation. These conditions are often well-satisfied for shallow indentations made by
blunt indenters such as a sphere, but for sharp indenters like the Berkovich triangular pyramid
used commonly in nanoindentation work, the small-deformation formulation may be inaccurate.
An indication that there may be a problem for sharp indenters was recently encountered in finite
element simulations of elastic/plastic deformation by a rigid cone using a finite element code
which accounts for finite strain and rotation {6]. No matter how carefully the mesh size and
shape were controlled, the elastic modulus derived from the simulated indentation load-
displacement curves using Eqn.1 was always 10-20% larger than that used as input in the
simulation. A similar result has been reported by Ritter et al [7]. Larsen and Simo [8], on the
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other hand, found relatively good agreement between the input and derived elastic modulus in
their finite element simulations, but in carefully re-assessing their results, we have found that the
procedure they used to measure the contact stiffness significantly underestimated its actual value.
When corrected, the discrepancy between the input and derived elastic modulus in their finite
element studies is even greater than in ours.

The discrepancies in the finite element results just described led us to undertake a careful
study of the problems which can occur in applying Sneddon's equations to sharp indenters.
Here, we report some observations for elastic indentation by a rigid cone and discuss their
implications for the measurement of elastic modulus by nanoindentation methods. A more
complete report, including implications for elastic/plastic deformation and the measurement of
contact area and hardness, will be presented in a subsequent report {9].

INACCURRACIES IN SNEDDON'S SOLUTION FOR A RIGID CONE

The problem in applying Sneddon's solution to deformation by sharp indenters can be
illustrated by considering his analysis of the indentation of an elastic half-space by a rigid cone.
For a cylindrical coordinate system with a free surface initially at z=0, the boundary conditions
used by Sneddon are:

0,l,,=0, r>a 2)
O,l,,=0, 120 (3)
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Here, a is the contact radius, D is the depth of penetration, ¢ is the half-included angle of the
cone, w is the vertical displacement of the surface, and the G;; are the components of the stress
tensor. The first two boundary conditions specify the tractions on the z=0 surface (no friction is
assumed), and the third condition forces the vertical displacements of the surface inside the circle
of contact to be consistent with the geometry of the cone. Posed in this manner, the problem can
be solved by the method of Hankel transforms {1,2]. The primary result of importance in this
discussion is the expression for the radial displacements, u, of points inside the circle of contact,
which is given by:
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Close examination of this equation shows that the surface radial displacements vanish only when
Poisson's ratio v is 0.5, i.e, the material is incompressible, or when $=90°. Thus, during
indentation by a sharp cone, the surface radial displacements for most materials of practical
interest are finite. An important consequence is that when the radial displacements are taken into
account, the deformed surface inside the area of contact is not conical but rather described by (see
[9] for details):
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Based on the predictions of Eqn. 6, the shapes of surfaces deformed by a 70.3° cone for
materials with various values of Poisson's ratio are shown in Figure 1. Note that only in the case
of v=0.5 is the deformed surface consistent with the 70.3° conical geometry; that is, for all other
Poisson's ratios, the surface is displaced inward from the 70.3° cone and is slightly curved.
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What this means is that in most cases of practical interest, Sneddon's solution applies not to a
perfect cone, but to a cusped shaped indenter which approximates to a cone. As we will show in
the next sections, this small deviation has important consequences for the measurement of elastic
moduli by nanoindentation methods.

MODIFICATIONS TO THE SOLUTION

A solution which more accurately describes the indentation of an elastic material by a rigid
cone rather than a cusp-shaped indenter can be achieved by modifying the boundary condition in
Eqn. 4 to account for the finite radial displacements of points along the surface of contact. Under
these circumstances, a more appropriate statement of the boundary condition is:

wl _,=D-cot@®)[r+u(r), r<a . @)

This boundary condition assures that the geometry of the deformed surface will be conical with a
half-included angle ¢ which matches that of the indenter.

Two different approaches may be used to solve this problem - one exact and one
approximate. The exact solution makes use of an indenter which deviates from the conical
geometry, chosen so that the deformed surface will be a perfect cone of angle ¢ when the radial
displacements are taken into account. The solution is obtained by treating the function u(r) in
Eqn. 7 as an unknown and deriving an expression for u(r) using relations developed by Sneddon
for the radial displacements of a general axisymmetric indenter [2]. Normalizing all length
dimensions with respect to the contact radius, a, the approach leads to non-dimensional radial
displacements given by:
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where p = r/a and u(p) = u(r)/a. Numerical techniques can be used to solve for u(r), which can
be used in combination with other results derived by Sneddon to provide an exact solution {2].
However, because the solution requires numerical evaluation, it is somewhat cumbersome and
awkward. As a result, we limit the discussion here to the second solution technique which has
the distinct advantage of having a very simple, closed form. The solution is only approximate,




but may prove to be more practical in nanoindentation data analysis. The accuracy of the solution
will be checked by comparison to finite element simulations.

In the approximate solution, the alternative indenter is constructed by taking the perfect
conical geometry with half-included angle ¢ and increasing the radius at each point along its
surface by an amount equal to the magnitude of the radial displacements in Eqn. 5. The shape of
the indenter constructed in this manner for the case of v=0 is shown in Figure 1. The rationale is
that since the radial displacements of the surface in Sneddon's solution are negative, increasing
the radius of the perfect cone by an amount equal to the expected radial displacements should, to
a first approximation, produce a deformed surface having a geometry close to the intended
conical shape. A second assumption made in the analysis is that the curvature of the surface of
the modified indenter is small enough to be ignored. In this case, the modified indenter can be
modelled as a cone with an effective included angle, ., slightly greater than that of the ideal
cone (see Figure 1). Linear regression of the shape of the modified indenter yields:
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Eqn. 9 shows that the effective indenter angle, ¢.¢, depends on the cone angle, ¢, and the
Poisson's ratio of the material. In the limit of incompressible deformation (v=0.5), d.¢ is exactly
equal to ¢, but when v is small, the two angles can be significantly different. For v=0 and
$=70.3°, i.e., for a cone with the same area-to-depth ratio as the Berkovich indenter, the
effective cone angle is Oggr= 72.4°. The attractiveness of this approach is that all of the relations
derived by Sneddon for the indentation of an elastic half-space by a rigid cone still apply
provided the indenter angle ¢ is replaced by ¢.¢r. Thus, the load-displacement relation is:
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The extent to which the modified relations deviate from Sneddon's original formulation
depends on the magnitude of the parameter §, which in turn depends on both Poisson's ratio and
the cone angle. Limiting the discussion here to $=70.3°, the largest deviations from Sneddon's
original solutions occur when v=0, for which B=1.13. Thus, for materials with small Poisson's
ratios, Sneddon's solution can underestimate the load and overestimate the elastic modulus by as
much as 13%. As previously discussed, an overestimation of the modulus is exactly what has
been observed in finite element simulations. For a more typical value of v like 0.25, B=1.09, so
a 9% overestimation is expected in the modulus. When v=0.5, B=1.00, and Sneddon's original
equations are accurate.

COMPARISON TO FINITE ELEMENT SIMULATIONS

To check on the applicability and accuracy of the approximate solution, finite element
simulations were conducted using the ABAQUS finite element code. The indenter was modeled
as a rigid cone with a half-included angle of 70.3° and the material as isotropic elastic with
Young's modulus E and Poisson's ratio v. All simulations were performed to the same
indentation depth, D=100 nm, using a finite element mesh similar to one used previously [6].
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The sigxulations were conducted for various V's and E's but with the effective modulus E ¢ =
E/(1-v*) held constant at E.¢ = 90.85 GPa. The reason for performing the simulations in this
way was to explore an important difference between the dependencies on Poisson's ratio of
Sneddon's original solution and the modified solution derived here. The difference may be seen
by comparing Eqgns. 1 and 12, which shows that E.¢ computed from Sneddon's solution should
be independent of Poisson's ratio, while E ¢ derived from the modified solution is not because B
is a function of v. The same is true of the indentation load at a fixed depth.

Figures 2 and 3 present a comparison of the finite element results with the two solutions.
Figure 2 shows the dependence of the predicted indentation loads on Poisson's ratio (the loads
are normalized with respect to those predicted by Sneddon's solution), while in Figure 3, the
variation of the elastic moduli predicted by Eqns. 1 and 12 are compared. In computing the
elastic moduli, the contact areas were determined directly by examination of the finite element
mesh rather than indirectly through an analysis of the load-displacement data, as would be done
in nanoindentation experiments.

The results in Figure 2 show that the indentation loads in the finite element simulations are
larger than those predicted in Sneddon's solution. For v=0, the error in Sneddon's solution
according to the finite element calculations is about 11%, but the error decreases essentially to
zero at v=0.5, consistent with the fact that the radial displacements of the surface vanish as v
approaches 0.5. On the other hand, the modified solution matches the finite element results
reasonably well, thereby providing justification for the assumptions made in deriving it, as well
as demonstrating its potential for application in nanoindentation analysis procedures. Figure 3
demonstrates the implications for Young's modulus measurement from nanoindentation load-
displacement data. It shows that if Sneddon's results are used (Eqn. 1), errors as large as 14%
may be obtained, but these errors can be largely avoided by using the modified solution (Eqn.
12). The results emphasize the need for modification of Eqn. 1 in the manner outlined here if
accurate elastic moduli are to be derived from analyses of nanoindentation data.

CONCLUSIONS AND IMPLICATIONS FOR NANOINDENTATION DATA ANALYSIS

The analyses and finite element simulations presented in this paper show that corrections to
Sneddon's solution for indentation of an elastic half-space by an axisymmetric indenter are




needed if accurate measurements of elastic modulus are to be obtained in nanoindentation
experiments with sharp indenters. Failure to make the corrections results in an underestimation of
the indentation load and contact stiffness and an overestimation of the elastic modulus by as
much as 13%. The amount of the correction depends on Poisson's ratio and can be estimated
- using procedures developed in the paper.

It is important to note that the contact area deduced from Sneddon's solution may also be
affected by the problems identified here. Corrections to the contact area, if required, would have
implications not only for the measurement of elastic modulus, but for the measurement of
hardness as well. It is also important to note that the analyses presented in this paper apply
strictly only to elastic deformation. For sharp contact involving both elastic and plastic
deformation, the situation is considerably more complex. We are currently studying the role that
these issues play in modifying the resuits [9].
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