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ABSTRACT

Methods currently used for analyzing nanoindentation load-displacement data give good
predictions of the contact area in the case of hard materials, but can underestimate the
contact area by as much as 40% for soft materials which do not work harden. This under-
estimation results from the pile-up which forms around the hardness impression and leads
to potentially significant errors in the measurement of hardness and elastic modulus. Finite
element simulations of conical indentation for a wide range of elastic-plastic materials are
presented which define the conditions under which pile-up is significant and determine the
magnitude of the errors in hardness and modulus which may occur if pile-up is ignored. It is
shown that the materials in which pile-up is not an important factor can be experimentally
identified from the ratio of the final depth after unloading to the depth of the indentation
at peak load, a parameter which also correlates with the hardness-to-modulus ratio.

INTRODUCTION

This paper deals with effects of pile-up on the measurements of contact area, hardness
and effective modulus from nanoindentation load-displacement data using the Oliver-Pharr
method [1]. The effects are investigated using finite element simulation of the indentation
of an elastic-plastic half-space by a rigid conical indenter with a semi-vertical angle of
70.3°, which gives the same area to depth ratio as the Berkovich pyramidal indenter used
frequently in nanoindentation experiments. The Oliver-Pharr method may be applied to the
simulated indentation load-displacement data in the following manner. First, the unloading
curve is fit to the power-law relation:

P=B(h—hy)" (1)

where P is the load, h is the displacement, h; is the final displacement after complete
unloading, and B and m are power law fitting parameters. Next, the unloading stiffness, 5,
is found as the derivative of Eqn.1 at the maximum depth of indentation, A = A4, using:

S = dP/dh(h = hmaz) = Bm(hmas — hy)™ (2)

The projected contact area, A, hardness, H and effective modulus of the material, Eesy,
(assuming that the indenter is rigid), are then determined using:

A = 7(hmaz — 0.75 P4z /S)? tan?(¢) (3)
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where E and v are the Young’s modulus and Poisson’s ratio of the material and ¢ is the
semi-vertical angle of the cone [1].

The attractiveness of this approach is that no direct measurements of contact areas
are needed, thus facilitating the measurement of mechanical properties from very small
indentations. Clearly, however, the accuracy of the method depends on how well Eqns.3-5
describe the deformation behavior of the material. In this regard, it is important to note
that Eqns.3-5 were obtained from a purely elastic contact solution developed by Sneddon
[2], and thus may not work well for elastic/plastic indentation. One reason for this is
that in Sneddon’s elastic solution, the material around the indenter always sinks in, while
for elastic/plastic indentation, there may be either sink-in or pile-up. Therefore, it is not
surprising that method has been found to work well for hard materials, as shown in [1],
but one may expect errors in the application of the method to softer materials (see (3], for
example).

Here, we investigate by finite element methods the influences that pile-up has on the
accuracy with which hardness and modulus can be measured by nanoindentation methods.
The key parameter in the investigation is the contact area, which may be determined either
from application of Eqn.3 to the simulated indentation load-displacement data (the QOliver-
Pharr method), or by direct examination of the contact profiles in the finite element mesh.
The two areas obtained from the finite element calculations can be substituted into Eqns.4-5
to obtain two separate estimations of the hardness and elastic modulus. If the Oliver-Pharr
method outlined in Eqns.1-5 works well, then one should expect good agreement between
the area and hardness obtained by the method and by finite element analysis. Also, the
estimation of effective modulus obtained by Eqn.5 should match well with the value for
effective modulus that was used as input in the finite element program. What will be
shown is that the measurement of H and E using Eqns.3-5 works well when there is little
pile-up, but when the pile-up is large, significant errors can result.

FINITE ELEMENT PROCEDURES

Elastic/plastic indentation was simulated using the axisymmetric capabilities of the
ABAQUS finite element code. The indenter was modeled as a rigid cone with a semi-
vertical angle of 70.3°. All simulations were performed to the same depth, A, = 500 nm,
using a finite element mesh similar to one used previously [3].

The material examined in the simulation had a Young’s modulus £=70 GPa and Pois-
son’s ratio of ¥ = 0.25. The von Mises yield criterion with isotropic hardening was used to
model the material behavior, and no friction was assumed between the punch and material.
The yield stress input in the code was varied between o, = 114.25 MPa and o, = 26.62 GPa
to simulate different materials. Two separate cases of strain hardening were considered, one
with no strain hardening, that is, a work hardening rate n = do/de = 0, (i.e., the material
was assumed to be elastic-perfectly plastic) and the other with a work hardening rate of
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Fig.1. The dependence of H/E on hs/hmaz
for the two different types of materials under
consideration.
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n = 100y. These yield strengths and work hardening rates cover a wide range of metals,
ceramics and polymers.

Note that in the finite element analysis, the value of the Poisson’s ratio was kept constant
at v = 0.25. The influence of the Poisson’s ratio on conical indentations in elastic-plastic
materials will be reported at a later date (see [6]).

In the course of our finite element study, we found a convenient. experimentally mea-
surable parameter which can be used to identify the expected indentation behavior of a
given material. This parameter is the ratio of final depth, Ay, (i.e. depth of the indentation
impression after unloading) to the depth of the indentation at peak load, A,... Note that
this parameter, As/hmqz, can be easily extracted from the unloading curve in a nanoinden-
tation experiment. Furthermore, because the conical indenter has a self-similar geometry,
h¢/hmar does not depend on the depth of indentation in a given material. The natural lim-
its for this parameter are 0 < hs/hynq; < 1. The lower limit corresponds to the fully elastic
case, whereas hg/hpm.. = 1 corresponds to the case of no elastic recovery after unloading.
In the next section, a parametric study of the dependencies of different measured material
properties on A s/ ., will be presented which reveals the importance of this parameter for

nanoindentation experiments.
FINITE ELEMENT RESULTS AND DISCUSSION

We start the discussion with Fig.l, which shows the dependence of the hardness to
Young’s modulus ratio, H/E, on hf/hna.. In computing the data used for the plot, ks and
hmar were taken directly from the load-displacement curves generated in the finite element
simulations, H was computed as the indentation load divided by the actual projected
contact area at peak load determined by examination of the finite element mesh, and the
value of F was that used as input for the finite element calculations. The H/FE ratio is
thus that of the simulated material rather than the value that would be derived from an
analysis of the load-displacement data by the Oliver-Pharr method.

An examination of the curves in Fig.1 reveals that:

1irfr}hma{1_(113 =0 (6)
l}lgr}hmalj_{E = 0.207 (7)
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ues of As/hmar for elastic-perfectly plas- ues of Ag/hmqs for elastic-work harden-

tic materials (y = 0). ing plastic materials (n = 10 o).

The first limit represents the case of rigid/plastic deformation, for which there is no elastic
recovery during unloading and hs = hna,. The second limit (at hy/hm.z = 0) represents
purely elastic behavior. The limiting value H/E = 0.207 is a little surprising, since Sned-
don’s analysis for elastic indentation by a rigid cone gives H/FE = 0.191. (Note that in
deriving this result, it is assumed that the hardness is the indentation load divided by
the projected contact area at peak load rather than the projected area of the residual
hardness impression.) However, in a separate study [3], we have recently shown that the
difference between Sneddon’s solution and the finite element result is due to the fact that
Sneddon’s analysis applies to small deformations while the finite element code accounts for
finite deformations. When the effects of finite deformations are included, the finite element
calculations give the right limits at both ends of the curves.

Note that if for a given material the ratio As/hm,, is known, then one can make pre-
dictions about the value of H/F based on the curves shown in Fig.l. Furthermore if it
is assumed that two curves represent extreme cases and that data for most real materi-
als lie between them, then a mid-line can be drawn between the two curves which can be
used to estimate the H/FE ratio from a known value of Af/h,..;. An error analysis showed
that the use of such a curve for H/E determination will have less than a 15% error for
0.8 < hf/hmar < 1 and less than a 7% error for 0.0 < Af/Amas < 0.8.

Figures 2 and 3 show the surface profiles for the two different types of materials under
consideration. Examination of these figures reveals that the amount of pile-up or sink-
in depends on the amount of work hardening as well as on the value of hs/hny,,. More
specifically, the amount of pile-up is large only when As/hn., is close to one and the
amount of work hardening is small. It should also be noticed that for hs/h,.. < 0.7, very
little pile-up is found no matter what the work hardening behavior of the material is.

These observations are particularly important when one considers the results of the
contact area estimations shown in Fig.4. The contact area is normalized with respect to
the shape function (or area function) of the indenter, that is, the projected area when no
pile-up or sink-in occurs. From this figure one may see that since the Oliver-Pharr method
is based on an elastic analysis, it fails to predict the correct contact areas for materials in
which pile-up is important. Furthermore, when As/hm,, > 0.7, the accuracy of the Oliver-
Pharr method depends significantly on the amount of work hardening in the material. If
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and from finite element calculations.

the material is elastic-perfectly plastic. the Oliver-Pharr method underestimates the contact
area by more then 50% at A s/Amqz = 0.9735. On the other hand, contact areas for materials
with a large amount of work hardening are predicted very well by the method. Note that
from the experimental point of view, it is not possible to predict if a material work hardens
based solely on the load-displacement data. Therefore, in an indentation experiment, care
needs to be exercised when hs/hpm,; > 0.7, since use of the Oliver-Pharr method can
lead to large errors in the contact area. On the other hand, when the pile-up is small,
ie, hg/hmer < 0.7, then, according to Fig.4, the contact areas given by the Oliver-Pharr
method match very well with the contact areas obtained from the finite element analysis,
independent of the amount of work hardening. Since the hardness of the material is given
by H = P/A, where P is measured during the experiment, the inaccuracies in the contact
area will lead to similar inaccuracies in the hardness (in a reciprocal sence).

The same effects may be seen in effective modulus calculations as shown in Fig.5. The
effective modulus was calculated using Eqn.5 with two different estimations for the contact
area (the Oliver-Pharr method and the finite element mesh). These calculated effective
moduli are normalized with respect to the effective modulus used as input in the finite
element simulations (the expected E.sf). As in the case of the hardness, the effective
modulus will be overestimated when pile-up is significant.

Another noteworthy feature of I'ig.3 is that even when the amount of pile-up is negligible,
that is, materials with a high yield stresses and/or high work hardening (characterized by
htfhmar <0.7), the Oliver-Pharr method overestimates the effective modulus by 2 to 9%.
As shown in Fig.5, this overestimation is predicted even at values of ks/hq, close to 0. In
fact the value of effective modulus at h¢/h,.z = 0 is overestimated by 6 to 9%, depending
on the method used in calculation. This problem is addressed in [5], in which it is shown
that corrections to Sneddon’s solution are needed in order to account for finite deformations
and rotations that are automatically taken into account in the finite element calculations.
The magnitude of the correction depends on the Poisson’s ratio, v, and the cone angle,
é. According to [5], the correction will reduce the estimated effective modulus by 8.53%,
which is very close to what is needed to correct the moduli deduced from the finite element
load-displacement data to the expected value. Thus, for hs/hnm., < 0.7, there is a simple




explanation for the error in the modulus observed in the finite element results.

The same is not true, however, when A¢/hmq, > 0.7. In this range, the effective modulus
is overestimated by 10 to 16%, even if correct contact area is used in Eqn.5. This is due
to the fact that the plastic properties of the material effect the unloading curves in such a
way that the analysis can no longer be done by means of elastic solutions only.

CONCLUSIONS

The results of a finite element study have shown that pile-up can have important con-
sequences for the measurement of contact area, hardness and effective modulus by nanoin-
dentation methods. The parameter hs/hpq.,, which can be measured experimentally, can
be used as an indication of when pile-up may be an important factor. Pile-up is significant
only when hs/hme, > 0.7 and the material does not appreciably work harden. For such ma-
terials, failure to account for the pile-up can lead to an underestimation of the contact area
deduced from nanoindentation load-displacement data by as much as 50%. This, in turn,
results in an overestimation of the hardness and elastic modulus. When hf/h,., < 0.7, or
in all materials that strongly work harden, pile-up is not a significant issue, and currently
existing nanoindentation data analysis procedures can be expected to give accurate results.
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