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Abstract—This work presents an evaluation of six prominent
commercial endpoint malware detectors, a network-based mal-
ware detector, and an file-conviction algorithm from a popular cy-
ber technology vendor using 100,000 (50/50% benign/malicious)
file samples with a realistic distribution of filetypes. Approxi-
mately 1,000 zero-day program executables are included (98%
of malware were public). This experimen was administered as
the first prize challenge in the Artificial Intelligence Applications
to Autonomous Cybersecurity (AI ATAC) series. We present a
novel evaluation process of delivering a file to a fresh virtual
machine (VM) donning the detection technology, waiting ∼90s
to allow static detection, then executing the file and waiting
another period for dynamic detection. In order to execute
all 800K trials (100K files × 8 tools) a software framework
is presented that choreographed the whole experiment into a
completely automated, time-synced, and reproducible workflow
with substantial parallelization. Detection results, time, and
host resource requirements are observed. A cost-benefit analysis
was tailored for this competition to integrate the tools’ recall,
precision, time to detection, and resource requirements into
a single comparable quantity that simulates real-world use.
Summarized results are as follows: endpoint detectors achieve
∼50% recall; ML-based tools far outperform signature-based
tools on the zero-day files, but otherwise signature-based tools
are competitive if not better; dynamic detection increases recall
substantially; detection abilities on all tools are relatively strong
for program executable (PE) filetypes; detection abilities on other
filetypes vary widely across technologies, with some technologies
categorically failing on any non-PE filetype.

Index Terms—malware detection, endpoint detection, network
detection, evaluation, test, intrusion detection, cost benefit anal-
ysis, static analysis, dynamic analysis, machine learning

I. INTRODUCTION

Malicious software or malware refers to any file that seeks
to disrupt operations, corrupt data, allow unauthorized access
to data or systems, or otherwise cause unwanted consequences
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to users. Given the repeated reports of widespread use of mal-
ware, e.g. [1], antivirus (AV) software, or endpoint malware
detection technologies—which reside on each host and provide
detection and quarantine capabilities against malware—are one
of the most common and critical security defenses for personal
computing devices to large enterprise networks.

Research of the efficacy of commercial malware detectors
is fairly nascent in the, with the largest study to date of
Bridges et al. [2] testing two endpoint and two network-
level malware detectors on ∼3,500 files. Recent evaluations
by industry e.g. exist but are either small in terms of test
samples use, e.g,. [3], or lack enough difficulty in the testing
samples to differentiate tools e.g., [4, 5]. See the Related
Works section of Bridges et al. [2] for details. Notably,
the evaluation of Bridges et al. [2], revealed: near perfect
precision in all four tested tools; detection rates of ∼35-
55%, as compared to near perfect recall (> 99%) in industry
evaluations, with these rates dropping for filetypes other than
program executables (PEs); and that machine-learning-based
(ML-based) tools achieve similar detection rates (∼40%) on
zero-day (never-before-seen) files while signature-based tools
fail to detect nearly all zero-days (∼4% detection rate). These
recent results are alarming and illuminate a glimpse at the state
of our defenses; hence, experimentation to further evaluate
commercial malware detectors is warranted to understand both
our defense capabilities and areas for future research.

Contributions of the AI ATAC 1 Endpoint Malware Experiment

This paper documents the largest research evaluation (in
terms of numbers of files) of commercially available malware
detectors, using 100,000 files to test eight detectors—six end-
point detectors, one network detector, and a malware detection
algorithm provided by a security vendor. This evaluation was
administered as the first prize challenge in the Artificial Intelli-
gence Applications to Autonomous Cybersecurity (AI ATAC)
series called the Endpoint Malware Detection Challenge [6],
with the goal of enticing technology creators to submit end-
point malware detection capabilities that use machine learning
(ML) to accurately identify malicious files on a host. As an
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agreement of the challenge, we cannot disclose the names of
the technologies submitted nor the vendors, but all were from
prominent vendors in the cyber technology market space.

Descriptions of the design and configuration of the re-
search range (data center) built to accommodate this an
other experiments is previous work [7]. This experiment and
analysis builds directly on previous work, Bridges et al. [2],
but contains novel contributions discussed in the following
subsubsections.

Fig. 1: Trial workflow depicted. Experiment Orchestrator passes file
and resource information to Trial class, which, after instantiating
a VM with the detection tool under test, executes stages of the
trial: (1) downloads file and waits for static detection (2) executes
file and waits for dynamic detection. The Experiment Orchestrator
records decision by tool, time of decision, and resource utilization.
In practice, the Experiment Orchestrator ran ∼2,000 trials in parallel.

1) Experimental Design: The design of the experiment
provides a higher fidelity evaluation for two reasons (besides
the increase in file quantity). We define a trial as a sub-
experiment testing a single tool’s ability to test a single file.
Each trial progressed through stages: first the file was delivered
to a fresh virtual machine (VM) instantiated with the detection
technology; then after a period of ∼90s the file was executed;
finally after a period of time the VM is closed. (See Figure
1.) These stages allowed for the tool under test to detect the
file if not statically (before execution), dynamically (during or
after execution). At the cost of much greater computational
expense, this provides higher fidelity in the experiment with
respect to how a detector will react when presented with a file
on a host (e.g., our Baseline 2 tool seemingly only attempts
to analyze a file once it is executed), and therefore allows
more accurate time-to-detection, resource usage, and accuracy
observations. Secondly, resource utilization of the tool under
test was recorded and taken into account in this study. Thirdly,
in our corpus we took care to try to match the percent of
files of each type to the distribution reported by VirusTotal
(www.virustotal.com) to gain realism. Fourthly, with the help
of a security operation center, we use real statistics on the
number of files encountered per year by a endpoint detector
to inform the cost-benefit analysis of the results.

2) Experiment Implementation Framework: As a second
contribution, we discuss a novel software framework for
repeatably implementing the experimental workflow, allowing
thousands of parallelized trials. Given the experiment required
800K trials (8 tools × 100,000 files), a simple serial imple-

mentation, taking an estimated ∼4.5 years, was completed in
∼15 hours per tool or ∼5 days in total.

3) Cost-Benefit Analysis: While the scale (100K files with
static and dynamic execution) of this detection experiment
allowed for more fine-grained results (recall, precision, time
to detection, resource metrics), a scoring framework that
translates the many experimental observations to a real-world
context was needed to reason about the tools’ abilities, and
for the sake of the competition, to make the multi-dimensional
measurements comparable. A general cost-benefit analysis [8]
designed for this scenario was adapted to this experiment.
There are a two benefits of this cost model simulation: (1)
the model integrate the many experimental measurements into
a single, comparable, quantifiable cost by simulating of how
the tool would perform in a security operation; (2) it provides a
framework for reasoning about the varied results, e.g., it allows
scaling the detection results to costs for a year of use while
respecting a real-world percentage of malware/benignware,
e.g., it allows varying the attack costs of zero-day files to
weigh the benefits of ML-based vs. signature-based detectors.

The cost model in this work builds on the implementation
of Bridges et al. [2] with three main additions. First it ac-
commodates the higher-fidelity experiment used in this paper,
with added mechanisms for accruing lower costs for pre-
file-execution detection than post-execution; second, this cost
model instantiation accommodates the observed host resources
of the detector; third, we consult data observations from a SOC
to understand the quantity of file decisions a host makes in its
first year. We illuminate some inherent drawbacks to the cost
model that can help steer future research.

4) Commercial Malware Detectors Summarized Findings:
Our main contribution is our summarized findings on the
commercial endpoint detectors from this experiment.
• All tools provide near perfect precision and except for the

lone dynamic, network-based malware detector, achieve
recall of ∼50% (on corpora of 98% public files).

• Host, signature-based detectors are competitive if not
better in recall and time to detection than host, ML-based
detectors on public malware.

• Signature-based detectors fail almost categorically on
zero-day malware (∼4% recall), while ML-based tools
provide about 10× the recall on never-before-seen files.

• Our cost model analysis confirms the previous two bullets
with a signature-based tool prevailing when costs per
malware are constant, but ML-based tools will prevail
if one assumes zero-day files accrue much greater costs.

• The lone dynamic detector has much higher recall than
the other tools.

• Many tools only detect PE files, while other tools provide
competitive recall across all filetypes tested. There is large
variance in abilities on non-PE filetypes.

• Time from file delivery until detection is only a matter of
seconds (in median) for most tools, with one tool taking
median ∼1m, and one tool waiting until file execution to
begin analysis, then taking median 9s. Overall, modern
detectors are fast.
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Our takeaways reaffirm those of Bridges et al. [2] now with
more tools and much more data.

II. RELATED WORKS

In order to investigate what an adversary can learn about
a blackbox malware detector, Christodorescu & Jha (c. 2004)
[9] evaluated three commercial malware detectors using on
only eight malicous samples. Findings included dismay at the
“dismal” state of malware detectors.

Pandey & Mehtre [10] (c. 2014) compute accuracy, recall,
specificity, and a poorly described “efficiency” quantity for 17
different file analysis or online services using 29 malicious
samples.

Aslan et al. (c. 2018) [11] use 200 samples, 100 benign,
100 malicious, to evaluate many static, dynamic, and online
file analysis tools. Detection rates vary from 62-77% with
dynamic analysis tools outperforming static analysis tools, and
combinations of tools outperforming providing better coverage
than a single member of the ensemble.

Fleshman et al. (c. 2018) [12] perturb known malware to
create obfuscate variants from public malware samples. Using
1,000 malware samples, commercial malware detectors and
non commercial supervised learning algorithms are tested.
The two ML algorithms are found to be more robust to
perturbations than commercial detectors.

Abdelsalam et al. (c. 2019) [13] leverage the expected
behavioral similarity between auto-scaled VMs in the cloud
to train shallow CNNs to be used as anomaly detectors. The
intuition behind their approaches are that auto-scaled VMs
(identical VMs which are spawned/destroyed in response to
application load) should have similar behavioral characteristics
at any given point in time. They introduce two novel ap-
proaches: Mulitple VMs Single Samples (MVSS) and Multiple
VMs Paired Samples (MVPS). MVSS trains on the behavior
of auto-scaled VMs running at the same time. Since the
training process uses the behavior of VMs running in parallel,
it captures VM interactions. During inference, the behavior of
each individual VM for a slice of time is classified as benign
or malicious. MVPS classifies whether the behavior of any two
VM pairs for a given slice of time is similar. If the behavior
is different, it is treated as a malicious classification. To test
their approaches, they execute an experiment on a test-bed
which utilizes VM auto-scaling, testing 113 malware samples
randomly selected from VirusTotal. They claim accuracies of
90% and 97% for MVSS and MVPS respectively, but only
used a test set of 23 samples.

Zhu et al. (c. 2020) [14] investigate the benign/malicious
convictions of ∼70 commercial malware detection engines
on over 14,000 files for over a year via VirusTotal (www.
virustotal.com), an online threat intelligence website. Zhu et
al. show that using a threshold voting hueristic (i.e., if more
than n of 70 vendors detect, return malicious) is quite accurate
and robust to each detectors day-to-day decisions, which are
volatile. Further analysis using 60 obfuscations of two known
ransomware (120 zero-day malware) and 256 benign samples
finds wide variation in recall and precision that is much lower

than our study finds; notably, Zhu et al. continue to compare
results of 36 endpoint counterparts to the VirusTotal detection
engines and exhibit greater recall but worse precision in the
online analogue.

By far the closest work to, and indeed the building block
for this work, is Bridges et al. [2], which investigated
two popular commercial host-based malware detectors—one
signature-based and one ML-based—and two popular com-
mercial network-level detectors—both ML-based, one using
static analysis, and one using dynamic analysis—with a test
corpus of ∼3,500 files. Bridges et al. focus on comparing
ML-based detectors to signature-based detectors using zero-
days (as does this work), and are the first work to use tailor
the general cost-benefit framework introduced by Iannacone &
Bridges [8] for a file conviction experiment. Results showed
detection rates in the 34-55% range, with any pair of network
and host detectors achieving ∼60% recall. As in this work, the
signature-based detector is superior if all malware, i.e., zero-
days and public malware, accrue cost identically, yet, ML-
based tools win if the maximum zero-day attack costs (an input
parameter) far outweigh the maximum public malware costs.
Bridges et al. go on to reconfigure the cost model to simulate
savings of adding a network detector to a given host-based
detector concluding that (under the experiment’s assumptions)
adding a network malware detector will save money after the
first year. Notable differences between this previous work and
our current work is that Bridges et al. used only ∼3,500 files,
delivered over multiple protocols in a test network to enable
the network-level detectors, and did not execute files to enable
dynamic detection.

III. AI ATAC 1 ENDPOINT MALWARE DETECTION
COMPETITION

AI ATAC 1 focused on evaluating endpoint malware de-
tectors, and required use of machine learning for the file
conviction [6]. Notably, signatures can be used alongside or
in a pipeline with machine learning. By “endpoint malware
detector” we mean the technology should reside on a host,
automatically identify the presence of a file on the host, and
provide malware classification for the file.

A. Tools under test

Four commercial vendors submitted ML-based, endpoint
malware detection engines to the competition, and two
signature-based tools were used as baselines for compari-
son. For comparison, we also test two other detectors: (1)
a popular commercial network-level malware detector that
claims to use dynamic analysis in virtual environments to
build feature vectors before applying supervised learning; (2)
a pre-trained supervised learning malware detection algorithm
provided by a popular cyber tech company in the form of
a software development kit, using the same 100K file test
corpus. Because these two tools are not host endpoint detection
tools, the cost model, as configured for endpoints cannot be
directly compared. Similarly, timing results per file are not
comparable. On the other hand, the statistical detection results
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are comparable as and are provided to gain awareness of the
state of the art in practice and provide context for the endpoint
detectors’ abilities.

All tools were installed and configured according to and
with vendor support. All ML-based tools were pretrained
before submission.

B. Experimental Workflow

The experiment was designed to test the detectors’ abilities
when instantiated on an endpoint that receives a new file. To
implement a trial—testing a particular detector in the presence
of a particular files—a virtual machine (VM) was instantiated
with a fresh Windows OS and the detection technology and
configured to forward any alert to an out-of-band experiment
orchestration node. The experiment orchestration node would
progress through the following stages: (1) deliver the test file
to the VM, wait an average of 90s, then (2) execute the
file, wait another 90s, and (3) close the VM. Timestamps
for these three events were recorded and could be compared
to the timestamps of the alert logs to identify the time
to detection and if the file was executed before detection
happened. Further, the experiment orchestration node collected
statistics on resource needs of the malware detector under test;
specifically, CPU (percentage), RAM (bytes), and disk I/O
(bytes read, bytes written) were programmatically collected.
Network bandwidth was desired, but our experimental design
was unable to isolate only the network resources used by
the detector. Independent of any file, for each tool, the same
resource measurements (CPU, RAM, disk I/O) are recorded
for five minutes of the detection process sitting idle. This is
needed as a baseline.

C. Parallelized Experimental Framework

Altogether, this experiment involved running this test work-
flow for 800K trials (100K files for all eight tools) with an
average of 180s per trial. Implementing a repeatable experi-
ment of this scale required orchestration software engineered
to run many simultaneous, identical tests. To prevent malware
infections from affecting results, per-file instantiations of vir-
tual machines, detection tools (under test), and the resource
and accuracy monitoring capabilities were needed. In order to
execute all 800K trials in a serial implementation, about 4.5
years would be needed; hence a large focus of our research
was on designing and implementing a software framework that
choreographed the whole experiment into a completely auto-
mated, time-synced, and reproducible workflow with substan-
tial parallelization. Here we describe this software engineering
feat. With our hardware (see previous work of Nichols et al. [7]
for details), the described framework running on one machine
could orchestrate ∼2,000 trials in parallel on a remote cluster
through a web API and reduced the experimental time to 15
hours per tool. Importantly, this allowed experimental results
that fit the timeline of the competition.

1) Design (with Do’s and Don’ts): Our initial effort for
a parallelized framework used one process to manage one
VM (trial). Timing experiments were run to gain data on the

performance of simply creating n such consecutive process,
for n = 1, ..., 1, 000. Notably, the growth was non-linear,
seemingly quadratics, and simple regression, which yielded
an extrapolated estimate of 12 hours to simply create 10,000
processes. Further experiments on the overhead latency en-
countered when using one-to-one relationship between pro-
cesses and trials steered us to a many-trials-to-one-process
design. We found using one process to orchestrate all 2,000
simultaneous trials was not appropriate either, since it took on
the order tens of seconds to check the status of every trial due
to compounding network latency. This led to a non-negligible
amount of VMs sitting idle or powered-off at any given point
in time, waiting for the orchestrator to kick off the next stage of
its trial. Ultimately, we settled on a balanced approach, where
100 orchestrator processes handled ∼20 trials each, mitigating
the drawbacks of either extreme.

Our framework uses several Experiment Orchestrator
objects, which run in parallel and are given a list of trials
to execute with their parameters and together, run the whole
experiment. The Experiment Orchestrators:
• share a Resource Warden object which is passed the

list of resources and holds a dictionary of semaphores
(each representing a resource) used to implement load
balancing;

• each instantiate a Resource Container object which
tracks, fields requests for, and releases resources;

• instantiates, in parallel, many Trial objects and passes the
Trial objects their respective parameters along with the
Resource Container, which allows the Trials to acquire
or release resources if necessary;

• receives and handles Trial Results object upon comple-
tion of each trial;

• resets the finished Trial objects and passes them the next
set of trial parameters, until the list of trial parameters is
exhausted and results are obtained;

• collects performance metrics and logs them to Kafka to
monitor experiment runs. A separate process consumes
these logs and displays aggregate performance statistics.

Trial objects are responsible for running every stage of a
trial and returning results. The Trial objects:
• contain a list of references to each Stage object (in order);
• run, in serial, each Stage object;
• check and store the current stage status, data, and results;
• pass a Trial Results object to the Experiment Orchestrator

upon finishing the trial.
Stage objects contain methods for starting and checking on

the status of individual steps in a Trial, and are not intended
to store any data. The first stage to testing an individual file
is to restore a VM to a live snapshot. The next step uploads a
script to the VM and executes it. The script that is uploaded
is executed and passed a URL to an internal webserver to
download the sample of malware to be tested. The script then
waits one minute to give the tool time to detect the malware
statically. After one minute the sample is executed to give the
tool to detect the sample dynamically. The script then waits
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Fig. 2: Distribution of file types in the test corpus versus VirusTotal. A corpus of 100K test files (50/50% malware/benignware) was compiled
for the AI ATAC 1 Endpoint Malware Detection Competition. This bar chart shows the VirusTotal distribution of file types, considered in
this work to be the “real-world” distribution of file types, against the distribution of malware and benignware used in the competition.

another minute before finishing. Note that latency in execution
resulted in ∼90s, a 30s delay. In addition, the script collects
all resource usage from each of the malware detection tool’s
processes and logs it to be downloaded later. In addition, exit
codes, standard output and standard error from the executed
malware are logged. Finally, the last Stage downloads the
results files from the VM containing all the results and powers
it off to save host resources until it is needed again. If it
was possible, detection results were pulled from local logs
and reported in the results immediately. Otherwise, they were
downloaded from a management interface and merged with
other results after the full experiment was run.

After scaling, this setup created some issues due to the
workload being generated on the VMWare cluster. We discov-
ered VMWare is not designed for this use case and does very
minimal load balancing on its own, e.g., restoring a VM from
snapshot consumes a large amount of disk I/O. Consequently,
trying to restore over 2,000 VMs to a snapshot at one time gen-
erated induced stability issues and very significant degradation
in performance. This is the motivation for the load balancing—
the Resource Warden and Resource Container objects.

Load balancing greatly improved throughput and stability
by limiting the amount of concurrent disk-heavy VM opera-
tions, but a small amount of unexpected VMWare errors still
occurred. To handle the remaining errors, we created function
decorators and custom Exception classes to catch exceptions

and apply selected generic remediations. Generic responses to
exceptions include:

• ignoring the exception and continuing;
• restarting the current stage;
• skipping the current stage;
• restarting the current trial;
• aborting the current trial without collecting results;
• restarting the Experiment Orchestrator object;
• aborting the experiment.

To select responses, the Experiment Orchestrator is configured
by providing a list of responses to apply to exceptions, in
order, at the Stage, Trial, and Exception level. For example,
Stages can be configured to retry the current stage twice at
the stage level. If that doesn’t resolve the issue, the Trial can
be configured to be restart at the Trial level. Stage and Trial
exception responses reset after the successful completion of
that Stage or Trial. Our configuration ignores exceptions three
times before trying to reset the stage between zero and two
times depending on the stage. If none of the stage responses
work, Trials are configured to reset three times before aborting
the Trial and throwing out results.

After adding load balancing and generic error handling, we
were able to complete the testing of 100,000 files in roughly
15 hours without the loss of any results due to VMWare API
Exceptions. Due to time constraints, we were unable to fully
tune performance related parameters, so greater throughput
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may have been achieved.

D. Samples Used
Our file corpus if driven by the previous research work

of Bridges et al. [2] who tested four malware detectors
using ∼3,500 files. Notably many different file types are
used, which led to discovery of wide variability in detection
capabilities across filetypes of the four commercial detectors
under test. Bridges et al. [2] also used zero-days to quantify
the generalization capabilities of machine learning. Our corpus
has three notable differences: (1) we scaled the experiment
to 100K files; (2) we provided balanced classes (50K/50K
malware/benignware); (3) we matched the filetype distribution
in our test corpus to the “real-world” distribution, i.e., the
distribution of filetypes found in VirusTotal.

To collect benignware, we leveraged websites such as
Softpedia (https://www.softpedia.com), FileHippo (https://
filehippo.com/), and the Maven (https://maven.apache.org/
[15]) repository of JARs. We automated the scraping of these
websites to collect what we deemed benignware. We used
these sites because their popularity, along with the popu-
larity of the downloads they host, lends them to trustwor-
thiness. For example, kommandotech (https://kommandotech.
com/statistics/chrome-usage-statistics/) puts global Google
Chrome users at 2.94 billion, with the software being updated
roughly every six months. After eliminating duplicates, we
have 1,049,981 benign samples. These samples consist mostly
of PE, text, HTML, PDF, and compressed files. We then
took a sub-sample of these files to reduce our selection to
50,000 benign files that match the VirusTotal distribution as
closely as possible. Most malicious files were obtained through
VirusShare1, and a collection of about 1,000 zero-days were
provided from Bridges et al. [2]; see Bridges et al. [2] for
descriptions of the zero-days. After gathering our samples,
we used VirusTotal (https://www.virustotal.com/) to get data
on how often specific file types show up as malware. Figure 2
shows the distribution of file types from VirusTotal, our benign
data set, and our malware set.

E. Scoring Framework for AI ATAC 1
In all we have four documents of raw data to be used for

the cost model scoring:
• File information: A table of 100K files used for test-

ing with filename, filetype, and label (malicious/benign)
metadata;

• Measurements from the tests: A table providing for each
tool and file, the experiment produced timestamps for file
download and execution, the resource observations (CPU,
RAM, HDD) for that file-tool test

• Alert outputs of the tool: A table curated from each tool’s
alert logs providing the file name of the alert, and the
time-synced timestamp.

• Ambient resource observations: A table providing for
each tool the ambient CPU (percentage), RAM (bytes),
and HDD (bytes) used.

1https://virusshare.com/

For each tool, we will estimate a cost incurred for 1 host
for first year of use.

Initial Costs - Each tool’s subscription fees, setup, and/or
hardware needed was estimated. Based on our setup expe-
rience, if a tool requires more than eight labor hours, we
added that time into initial costs at a rate of $70/hour, the
SOC operators fully burdened cost used in previous work
[2]. Tools that require an on-premises appliance, database,
etc. have a cost added to account for the added hardware,
subscription, electricity, and labor during setup. We assume a
10K IP network and divide the estimated total appliance costs
by 10K as we are estimating costs for 1 host.

Ongoing Resource Costs - We leverage rates provided by
cloud services providers for CPU, RAM, and HDD costs. In
particular, we based our rates on recent publication of Dreher
et al. [16]. The resources on the host are charged cloud costs
divided by 3 (to remove profits made by cloud costs), namely:
$0.02444 / 3 per hour for full CPU; $.00328 / 3 per hour for
1GB RAM ; $0.05 / 3 for 1GB HDD / month × 1 month /
30.5 days × 1 day / 24 hours. As we could not measure labor
for tuning tool and reconfiguring tools over time, this on-going
real-world cost is not taken into account in this model. From
the 5 min of ambient resource observations we compute the
average ambient resource cost for a minute.

For each tool we compute the average resource cost per
benign file and per malware, which are reported in the top of
Table I, and will extend these linearly to an estimated cost for
the year. To this end, we accrue the resource costs for every
tool and for every file used in the experiment according to the
costs in the preceding paragraph. We cannot use the resource
measurements from the time of file execution until the VM is
closed because these measurements include both the detector’s
and the file’s resource needs. Hence, we use the resource
costs from the delivery of the file until the execution, then we
linearly scale the ambient resource costs for that detector to
account for the resources used from the time of execution until
detection. If there is a file for which the resource observations
were not present in the data (small minority), we use the
average ambient resource costs to impute the resource cost.

Detection Costs - As with the resource costs, we compute
the detection cost from each of the 100K test files, then we
scale the average files costs (reported in the bottom half of
Table I) for each tool to the estimate the cost expected in the
first year of use.

Detection costs account for:
• Triage (alerts both false positives true positives) - for

every alert a triage cost is $35.05 = 0.5 hours at $70/hour
(fully burdened labor cost) + $0.05 SIEM indexing fee
(based on Splunk pricing);

• Incident Response (IR) (only for true positive alerts) - for
IR we charge $140 = 2 hours @ 70/hour (fully burdened
cost)

• Attack Costs (accounts for true positive and false negative
alerts and for the time to detection) - Attack cost is an
increasing function of time that seeks to estimate the cost
to the organization from the malware running.
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TABLE I: Average Resource Costs (Top) and Average Detection Costs (bottom) Per Malware & Benignware

Tool 1 Tool 2 Tool 3 Tool 4 Baseline 1 Baseline 2

Ave Benignware Resource Cost $ 0.002596 $ 0.002594 $ 0.013464 $ 0.013959 $ 0.002279 $ 0.003078
Ave Malware Resource Cost $ 0.002987 $ 0.002632 $ 0.012398 $ 0.015949 $ 0.002543 $ 0.003276

Ave Benignware Detect Cost $ 0.136695 $ 0.032947 $ 0.023133 $ 0.012618 $ 0.003505 $ 0.007711
Ave Malware Detect Cost $ 559.932 $ 533.515 $ 494.544 $ 566.961 $ 614.967 $ 353.252

TABLE II: Cost Model Results with Subtotals (top) and Detection Statistics (bottom)

Tool 1 Tool 2 Tool 3 Tool 4 Baseline 1 Baseline 2 Network Algorithm

Initial Cost $ 39 $ 10 $ 12 $ 8 $ - $ - n/a n/a

Annual Malware Resource Cost $ 2 $ 2 $ 7 $ 9 $ 1 $ 2 n/a n/a
Annual Benignware Resource Cost $ 128 $ 128 $ 665 $ 690 $ 113 $ 152 n/a n/a
Annual Ambient Endpoint Resource Cost $ 814 $ 439 $ 2,618 $ 2,337 $ 453 $ 842 n/a n/a
Annual Appliance Resource Cost $ - $ 10 $ 2 $ - $ - $ - n/a n/a
Annual Resource Cost $ 944 $ 569 $ 3,291 $ 3,036 $ 567 $ 996 n/a n/a

Annual Malware Detect Cost $ 324,760 $ 309,439 $ 286,835 $ 328,837 $ 356,681 $ 204,886 n/a n/a
Annual Benignware Detect Cost $ 6,755 $ 1,628 $ 1,143 $ 624 $ 173 $ 381 n/a n/a
Annual Detect Cost $ 331,516 $ 311,067 $ 287,978 $ 329,461 $ 356,854 $ 205,267 n/a n/a

Total Cost $ 332,499 $ 311,636 $ 291,279 $ 332,505 $ 357,422 $ 206,263 n/a n/a

Recall 0.44816 0.46750 0.50628 0.45818 0.48660 0.64852 0.79060 0.59954
Precision 0.99137 0.99799 0.99870 0.99980 0.99966 0.99922 0.99352 0.98875
F1 Score 0.61728 0.63673 0.67193 0.62827 0.65460 0.78669 0.88052 0.74646
Median Time to Detect (s) 33 0 1 55 991 4 n/a n/a
1 This detector seemingly never began to analyze a file until the files was executed. Given the execution time was on average 90s after the

file was introduced (and given linearity of expectation), this detector used on average 9s to analyze and make a decision on a file, once
the file was executed. Bold figures indicates the best of the six head-to-head tested tools in Total Cost, Recall, Precision, F1, whereas
underlined figures indicate the network-level detector (Network) or supervised learning algorithm (Algorithm) outperformed all others.
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Fig. 3: Attack Cost S Curve

We model the per-malware attack cost using an S curve (as
in previous works [2, 8]), but using a different formulation
tailored for our needs. Let t0 be the malware download
time and te the execution time of the malware (both mea-
sured/recorded in our experiment). Our goal is to identify an
S curve f(t; t0, te), that has value 0 for t < t0, is positive
beginning at t = t0 but remains small, starts increasing quickly
at execution time, t = te, hits its inflection at one minute
post execution, t = te + 60, and approaches a maximum cost

of $1,000 (horizontal asymptote M =$1000). To find this
curve, note that all CDF (cumulative distribution functions)
with sample space [0,∞) are S shaped increasing functions
that begin at (0, 0) and approach horizontal asymptote y = 1.
Given our desires above, we select the CDF of the Γ dis-
tribution f(t) so f ′(t) = c tα−1 exp (−βt), and shift by t0
(replace f(t) with f(t − t0)). Then we solve for α and β
with three constraints: (1) te is the first root of f ′′′, forcing
the curve to be small and only begin to grow at execution
time; (2) f ′′(te + 60) = 0 forcing the curve to be accruing
cost most rapidly a minute after execution. The solution gives
α = (1+60/te)

2 +1, β = (α−1)2/60. Finally, multiplying f
by 1000 ensures limt↗∞ f = 1000, forcing $1, 000 to be the
max accrued cost. See Figure 3 for an example. This curve
is fit to each malware file experiment as the execution time,
te does vary per experiment. Although we held $1,000 max
cost constant, as suggested in Bridges et al. [2], one could
also change the max cost ($1,000) per malware to simulate
different scenarios.

If a malware sample is detected before execution, i.e., in
time t ∈ [t0, te) attack cost is simply f(t; t0, te) (near 0) and
no triage or IR costs are incurred, as we assume the endpoint
client quarantine’s the file. Else, if the malware is detected in
time t ∈ [te, te + 60] (from execution to a minute after) the
attack cost is f(t; t0, te) + Triage + IR. If the VM closed and
the detection technology did not yet alert we charge the max
cost, 1000 = limt→∞ f(t; t0, te). Note that in some cases alert
logs were received after the VM closed, as technologies that
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leverage a central appliance could may have been processing
info from the file. In this case we charge C + Triage + IR
where C = ave(f(te+60; t0, te), 1000 - Triage - IR)). Note
this is higher than a detection cost at f(te), but less than the
max cost 1, 000 as the detector, given more time may have
eventually alerted. This is designed so that the overall cost
(attack + IR + triage costs) for detection after the VM closes
the experiment is strictly more than during the VM and strictly
less than never detecting. For each tool, after computing the
per-malware cost incurred, the average cost per malware is
computed.

If a benignware is detected (false positive) we charge a
Triage cost; else (true negative) no cost is incurred. For each
tool, after computing the per-benignware cost, the average cost
per benignware is computed.

Total Cost: The total cost is the sum the initial cost, ongoing
resource cost, and detection cost estimates for the first year of
use. The average resource and detection costs per malware
and benignware, as reported in Table I, are each linearly
scaled to 50,000 files—our estimate for the number of files
a host detector sees in its first year—with 1.16% malware,
98.84% benignware. This overall number of files (50,000)
was informed by SOC operators who pulled endpoint detector
logs from ∼30 IPs for a full calendar year. The 1.16/98.84%
malware/benignware ratio follows the previous cost model
scaling ratio of Bridges et al. [2] and is based on real-world
findings in the empirical research of Li et al. [17]. These
annual estimates are lines “Annual Malware Resource Cost”,
“Annual Benignware Resource Costs”, “Annual Malware De-
tect Costs”, and “Annual Benignware Detect Costs”.

Note that the the “Annual Malware and Benignware Re-
source Costs” account only for the resource costs of the de-
tector when a file is present. To account for the whole year, we
simply use scale the ambient resource cost estimate observed
for this tool to the the remaining time in the year. This is
line “Annual Ambient Endpoint Resource Cost”. Resource
Appliance costs are also included

Because precision is so close to perfect for these tools (as
we shall see), the overall costs scale approximately according
to an affine function (mx + b, here x is the number of files
seen or equivalently time in this model) with the slope m
an increasing function of the observed recall, the detection
latency, and the max attack cost. Over a long enough time
(or after encountering enough files) those tools with the best
recall and time to detect will prevail.

IV. AI ATAC 1 RESULTS & DISCUSSION

This section provides the results of the endpoint malware
experiment. We present the summarized and itemized take-
aways on the findings in the introduction, Section I-4.

First note that the initial and resource costs pale in compar-
ison to the detection costs, indicating that this cost model dif-
ferentiates tools based on their detection statistics—precision,
recall, and detection time. Precision is near perfect for all tools,
which is reflected in the low detection costs incurred from
benignware, especially considering that our simulated ratio of

files is 98.84% of the files in the simulation. Consequently,
recall and time to detect are the two measurements that
differentiate these detectors.

As seen in the bottom of Table II, Tools 1-4 (all four ML-
based endpoint detection tools), and Baseline 1 (signature-
based endpoint detection tool) achieve recall ∼45%, whereas
Baseline 2 (the second signature-based endpoint detector) has
recall near 65%. This combined with the face that Baseline
2 has relatively fast detection time (4s) drives the best results
in the cost model, and it can been seen beginning in Table I,
where Baseline 2 has the lowest Average Malware Detection
Cost ($353/malware) leading to the lowest Annual Malware
cost ($204K = $ 353 × 50, 000 files/y × 1.16 malware /100
files). Second place in this cost simulation is Tool 3, which
leveraged an on-premises appliance in coordination with the
endpoint clients. While this increases the resource costs, it
pays off in this cost model as the recall of ∼50% and low
detection time led to a good cost score.

Median detection time seems to be a differentiator of these
tools, as times vary over two orders of magnitude. This has
an imprint in the Annual Resource Cost, save noting that the
anomalously high resource costs of Tool 3 is due to its use of
an on-premises appliance.

Next, considering the Network dynamic, ML-based detector,
we see an enormous increase in recall to ∼79% with no sac-
rifice to precision. This shows the enormous gain in detection
abilities provided by this tool. This network tool was evaluated
in previous work [2] for detection latency, where authors found
“While seeing data rates of up to 7 GB/s, the [tool] achieved
median detection [time] from file delivery until alert of ... 258
s = 4.3 m.” Hence, the increase in detection abilities comes
at the cost of both latency, and various drawbacks associated
with network-level detection, in particular, need for decrypted
traffic and files, the inability to immediately quarantine files on
hosts, and varying detection abilities depending on protocol.

The “Algorithm” column, representing results of a super-
vised ML algorithm submitted by a cyber technology vendor,
also recall of ∼60%, and also near perfect precision. We
can report that latency between submission of a file to the
algorithm and receiving the detection results had median 1s,
but we note that this is not a direct comparison to any other
tools, as our experiment required Tools 1-4 and Baselines 1,2
to automatically identify the file in a running VM, then analyze
it.

1) ML versus Signature-Based Detection: Our dataset in-
cludes ∼1000 zero-day (i.e., never before seen) malware,
all program executables and ∼26,000 Public Malware PEs.
Approximately 23% of these zero-days were not detected by
any tool in this experiment, whereas only 2% of the public
PEs were not detected by any tool. Table III provides many
statistics comparing the six ML-based detectors to the two
signature-based detectors on only the zero-day and separately
the public PE files. As indicated by the recall on zero-day
files, signature-based tools identified ∼4%, whereas the ML
tools’ recall was in the 28-60% range! Our results also confirm
that detection latency is not affected by zero-day files. Finally,
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TABLE III: Machine Learning Versus Signature-Based Detection Statistics

ML-Based Signature-Based
Statistic Samples Tool 1 Tool 2 Tool 3 Tool 4 Network Algorithm Baseline 1 Baseline 2

Recall (% Malware Detected) Zero-day 45.5% 40.1% 38.1% 27.8% 59.4% 59.7% 3.8% 4.4%
Recall (% Malware Detected) Public P.E. 80.7% 87.9% 59.8% 71.0% 90.8% 93.6% 68.2% 76.6%
Time to Detect Median (s) Zero-day 36 0 0 47 - - 97 5
Time to Detect Median (s) Public P.E. 33 0 1 50 - - 99 5
Malware no other tool detected (#) Zero-day 1 0 35 0 86 61 0 0
Malware no other tool detected (#) Public P.E. 24 16 9 8 54 468 2 11

TABLE IV: Recall for each Filetype

Filetype (# malware) Tool 1 Tool 2 Tool 3 Tool 4 Baseline 1 Baseline 2 Network Algorithm

Compressed (3,252) 31.55% 0.37% 31.98% 2.31% 5.32% 44.59% 51.66% 33.06%
HTML (4,575) 0.00% 0.00% 44.85% 8.07% 0.00% 64.90% 73.11% 0.00%
Image (986) 0.00% 0.00% 42.29% 7.00% 66.53% 5.58% 68.76% 0.00%
JAR (127) 0.00% 0.00% 5.51% 0.00% 0.00% 0.00% 40.16% 0.00%
MS-Office (299) 0.00% 49.16% 51.51% 47.83% 54.85% 81.94% 71.57% 79.26%
PDF (3,977) 0.00% 0.00% 59.67% 33.77% 0.00% 92.33% 96.18% 95.35%
PE (26,930) 79.40% 86.15% 58.98% 69.38% 66.97% 73.90% 89.66% 92.36%
Source-code (905) 0.00% 0.00% 31.38% 12.93% 48.07% 49.94% 54.14% 0.00%
Text (8,738) 0.00% 0.00% 34.25% 23.85% 59.21% 40.59% 56.50% 0.00%
XML (211) 0.00% 7.11% 53.08% 11.85% 0.00% 63.51% 78.20% 0.00%

we report an interesting statistic for each tool, the number
of malware no other tool detected, showing that Tool 3, the
Network, and the Algorithm columns have good ability to
complement other detectors. Our main takeaway from Table
III is that ML-based tools are much better for detecting never-
before-seen malware.

We note that the cost model, as configured made no accom-
modation for zero-day vs. public malware, so this benefit to
ML-based tools is not reflected in the costs. As shown in pre-
vious work [2], increasing the maximum attack cost for only
the zero-day files penalizes false negatives and late detection
of zero-days over that of public files. For this experiment,
the percent of malware that is zero-day, or equivalently, the
number of zero-days expected in a given year is needed for
inclusion of an increased attack cost for zero-day files. As
a an example, if we suppose 1% of malware are zero-days
(giving 6 zero-day malware, 572 public malware, and 49,420
benignware per year) and increase the maximum attack cost
from $1,000 for public malware to ∼$35,500, then the ML-
based tools will begin to surpass both Baseline tools in the
cost simulation.

2) Results per Filetype: Bridges et al. [2] have provided
the first emperical study to show that commercial malware
detectors vary dramatically in detection abilities across file-
types [2], with a trend to excel in recall on PE files while
yielding relatively poor recall on other filetypes. We present
detection rates per filetype for all eight tools on our much
larger corpus in Table IV and our evidence supports previous
findings. Interestingly Tool 1 seems to only support PE and
compressed filetypes while Tool3 and the Network tool have
relatively good recall on nearly all filetypes. In short, this is a
large discriminator for modern malware detection technologies
as efficacy varies wildly.

A. Drawbacks and potential future research directions

Although we achieved a large and balanced test corpus,
conditioned on filetype the malware-benignware balance was
skewed. This is due to our inability to find enough benign files
of certain types.

It is unclear how well our eight tested technologies represent
the whole commercial market space of endpoint malware
detectors. Notably, there was diversity in the types of detectors
used, namely, two signature-based detectors, multiple that
claimed to only use supervised ML (as opposed to those that
leverage both a library of signatures and ML), one dynamic
(albeit network-level detector), and one that leveraged a central
server to assist decision making by the per-host clients.

No effort was made to ensure the malware would execute
correctly during the dynamic phase of our test.

Because no internet collection was allowed in this experi-
ment, promising and popular detectors that leverage a cloud
connection for processing difficult files were not tested with
their cloud connections. Lack of internet may also hurt the
rate at which malware samples execute correctly.

No effort was made to validate the labels on our samples
from expected malicious/benign sources. Therefore, due to the
size of the dataset, it’s possible on rare occasions that detectors
were penalized for correctly detecting mislabeled data. We
plan future analysis of our dataset to gain further insight into
its true composition.

While each input cost/rate to the model is believable, the
final numbers seem high. There are a number of reasons that
may cause inflation of the total cost. Most notably, attack cost
is hard to estimate. Many malware if undetected will cost
nothing (e.g., those that fail to execute or succeed in, say,
changing one’s homepage) while some tiny minority of files
may cause unbounded (and unestimatable) costs.

We vary the maximum attack cost parameter below to see
how it affects the final costs of the tools. Tools have roughly
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50% recall on average. The consequence is they incur max
attack cost ($1000) for about 250 (50,000 files/year× 1.16/100
malware) which costs $250K! In addition, the remaining half
of detected malware will accrue some smaller costs. This
cost estimate, while perhaps accurate for the first host in the
network affected by malware, likely would not scale to every
host in the whole network; rather, once-seen malware would
be automatically blocked using modern endpoint detection
configurations. This means the cost model as configured is a
worst case scenario in that it assumes novel malware per host,
which is unlikely. Perhaps the malware in this experiment is
harder to detect than in the real world, in particular, the percent
of zero-days is 1,000/50,000 = 2%, which may be higher than
in the wild. A large scale data-driven study to understand some
reasonable estimates of rates of zero-day attacks would be
useful.

In a real SOC, the cumulative IR and triage costs are limited
by logistics, namely the time available for triage and IR by
operators’; yet, our cost model does not take this into account.
While the IR and triage rates are (we believe) good estimates
for a single investigation, they may not be reasonable for
influxes, i.e., a flurry, of alerts; in this case, likely many
alerts would simply go unfilled without the operators needed
to investigate all of them. Further, it is possible that many
similar alerts would possibly be handled in bulk, leveraging
automation capabilities of modern endpoint tools (or SOAR
tools). In short, the cost model linearly adds a fixed amount
for each alert/TP, but this may not be realistic in that it
overestimates costs in some scenarios. Operations or perhaps
qualitative research of SOCs to understand and model non-
linearity of their processes is needed.

All together, these cost-model drawbacks are particular in-
stances of the overarching problems with cost-benefit analyses,
namely, untenable assumptions are needed to model real-world
processes for which we have little data. Nevertheless, they
provide a quantitative way to integrate and reason about many
different statistics. Further, by illustrating their benefits and
drawbacks we, hopefully, pave the way for refining the models
to gain accuracy.
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