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EXECUTIVE SUMMARY

The theoretical and experimental investigation of the mechanism of SO2 and H2S

removal by CaCO3-based sorbents (limestones and dolomites) in pressurized 
uidized-bed

coal combustors (PFBC) and high pressure gasi�ers, respectively, is the main objective

of this study. It is planned to carry out reactivity evolution experiments under simulated

high pressure conditions or in high pressure thermogravimetric and, if needed, 
uidized-

bed reactor (high pressure) arrangements. The pore structure of fresh, heat-treated, and

half-calcined solids (dolomites) will be analyzed using a variety of methods. Our work will

focus on limestones and dolomites whose reaction with SO2 or H2S under atmospheric

conditions has been studied by us or other research groups in past studies. Several theoret-

ical tools will be employed to analyze the obtained experimental data including a variable

di�usivity shrinking-core model and models for di�usion, reaction, and structure evolution

in chemically reacting porous solids.

During the six months of this reporting period, work was primarily done on the study

of the behavior of the sul�dation of limestones under sequential calcination conditions in

the presence of small amounts of oxygen and the development of a stochastic simulation

code for determining the extent of pore volume trapping (formation of inaccessible pore

space) in gas-solid reactions accompanied by pore volume reduction such as the sulfation

and sul�dation of calcined limestones and dolomites.

The incentive for carrying out sul�dation experiments in the presence of oxygen was

provided by the observation that some sul�dation experiments that were conducted as

oxygen was accidentally leaking into the feed mixture of the reactor showed completely

di�erent behavior from that obtained in the absence of oxygen. Experiments were carried

out in the thermogravimetric analysis system that we developed for studying gas-solid

reactions at atmospheric or subambient pressures. The two CaCO3 solids (Greer limestone

and Iceland spar) that we employed in our previous experiments were used in the sul�dation
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and calcination experiments, and the concentration of oxygen that was introduced in the

H2S-containing stream that was fed to the reactor ranged from 0.2 to 2.5%. The obtained

results showed that the behavior of the sul�dation of limestone depended strongly, in

both a qualitative and a quantitative sense, on the level of the oxygen concentration in

the feed. For small oxygen concentrations, the weight gained by the calcined sample

during sul�dation in a N2-H2S atmosphere went through a maximum, whereas for oxygen

concentrations above 0.5-0.6%, it increased continuously. A constant weight value was

reached at large reaction times in both cases. The value of the weight gain at the maximum

increased with increasing concentration of oxygen in the feed, and the same behavior was

manifested by the constant value reached at large times. When a maximum was present

in the weight gain vs. time curve, the constant value was lower than that expected for

complete sul�dation of the solid. On the other hand, for oxygen concentration around

2-3%, the particles reached weight gains that corresponded to complete conversion of CaO

to CaSO4 even though the maximum allowable conversion for complete pore plugging by

CaSO4 is about 50%.

The simulation scheme for studying inaccessible pore volume formation combines a

gradual increase of the size of the grain that represent the porous structure with a random

walk scheme, the latter used to determine whether a randomly chosen point in the unit cell

of the two-phase structure lies in the particle phase or in the connected or isolated part of

the matrix phase. The use of the algorithm was demonstrated by performing computations

on structures of freely overlapping, unidirectional cylinders, and results were obtained both

for the volume fractions and the speci�c surface areas of the accessible and inaccessible

parts of the pore phase.
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1. BACKGROUND INFORMATION

In a 
uidized-bed combustor, a bed of combustible (coal) and noncombustible material

is 
uidized using air blown upward. Using dolomite or limestone as the noncombustible

material, it is possible to have fuel combustion and 
ue gas desulfurization taking place

simultaneously in the combustion vessel. If operation occurs under atmospheric pressure,

the average partial pressure of carbon dioxide in the combustor (typically, 10-15% of the

total pressure) is considerably lower than the equilibrium CO2 pressure for decomposition

of limestone (CaCO3) or dolomite (CaCO3 �MgCO3) at the temperatures usually encoun-

tered in FBC units (800-950 oC). In the high temperature environment of the AFBC unit,

the limestone or dolomite particles undergo calcination, yielding a highly porous product

(CaO or MgO), which reacts with the sulfur dioxide produced during coal combustion

forming, mainly, calcium or magnesium sulfate. The sulfates occupy more space than

the oxides they replace, and as a result, the pores of the calcine are completely plugged

with solid product before complete conversion takes place. (The conversion for complete

pore plugging is about 50% for the calcine of a stone consisting of CaCO3 only.) Pores

of di�erent size are plugged at di�erent conversion levels, and it is thus possible to have

formation of inaccessible pore space in the interior of the particles when the small feeder

pores of clusters of large pore are �lled with solid product (Zarkanitis and Sotirchos, 1989).

Moreover, under conditions of strong internal di�usional limitations, complete pore closure

may �rst take place at the external surface of the particles while there is still open pore

space left in the interior. For these reasons, ultimate conversions much lower than those

predicted by the stoichiometry of the reaction for complete plugging of the internal pore

space (less than 30-40%) are seen in AFBC units.

The reaction of calcined limestones (primarily) and dolomites with SO2 has been the

subject of extensive investigation. In accordance with the above remarks, the experimental

evidence in most of the studies of the literature indicates strong e�ects of the pore size

distribution on the overall reactivity of the calcined solids (Borgwardt and Harvey, 1972;
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Wen and Ishida, 1973; Hartman and Coughlin, 1974, 1976; Ulerich et al., 1977; Vogel et

al., 1977; Hasler et al., 1984; Simons and Garman, 1986; Yu, 1987; Gullett and Bruce,

1987; Zarkanitis and Sotirchos, 1989; Zarkanitis, 1991; Sotirchos and Zarkanitis, 1982).

Unfortunately, the immense volume of information that has been accumulated over the

years on the reaction of calcined limestones and dolomites with SO2 is not applicable to

SO2 emissions control by limestones and dolomites under PFBC conditions. PFBC units

normally operate under a pressure of 16 atmospheres, and for an average CO2 content of

15%, this implies that the partial pressure of CO2 in the reactor is 2.4 atm. Thermody-

namic calculations show that the temperature for CaCO3 calcination in the presence of

2.4 atm of CO2 must be larger than 980o C, that is, well above the temperature range

(750-950o C) encountered in a PFBC unit. Nevertheless, even though formation of a highly

porous material with a high speci�c surface area cannot take place under PFBC condi-

tions, favorable desulfurization is known to occur in PFBC units (Bulewicz and Kandejer,

1986; Murthy et al., 1979). For dolomites, the situation is somewhat di�erent since half-

calcination (formation of an MgO-CaCO3 product) is possible under 2.4 atm of CO2.

Even in this case, however, if the absorption of SO2 occurred only in the pore space of

the half-calcined solid, the utilization of the calcium content of dolomites should be much

smaller than what is seen in practice under PFBC conditions.

The reaction of CaCO3 with SO2 may involve various reaction steps (Van Houte et

al., 1981):

CaCO3 + SO2 ! CaSO3 + CO2 (1)

CaSO3 +
1

2
O2 ! CaSO4 (2)

CaSO3 +
1

2
SO2 ! CaSO4 +

1

2
S (3)

CaSO3 decomposes at temperatures higher than 650 oC, and therefore, under typical

operating conditions in a PFBC unit, the overall reaction may be written as:

CaCO3 + SO2 +
1

2
O2 ! CaSO4 + CO2 (4)
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For dolomites, one should also address the question of the reaction of MgO with SO2.

If the partial pressure of CO2 within the bed varies, calcination of CaCO3 may take

place in regions where CO2 pressures lower than the equilibrium pressure are prevailing.

The calcination of CaCO3 will yield a partially calcined product, the extent of calcination

depending on the residence time of the solid in the low CO2 concentration region. CaO

formed in the solid will react with the SO2 present in the bed in the same fashion as in

the case of AFBC units:

CaCO3 ! CaO + CO2 (5)

CaO + SO2 +
1

2
O2 ! CaSO4 (6)

If the partially calcined solid moves into regions rich in CO2, where reaction (5) is favored

to proceed from right to left, carbonation, i.e., recovery of CaCO3, will take place, with

reaction (4) competing with reaction (5) for CaO. Decomposition of CaCO3 may also take

place even if there is no variation of the CO2 pressure in the reactor. Large variations in the

temperature pro�le (100-140o C) within the combustor unit have been reported by Smith

et al. (1982). Therefore, if the solid particles move into regions where the temperature

of the reactor is above the temperature at which CaCO3 is stable, at the average partial

pressure of CO2 in the reactor, decomposition of CaCO3 will occur. However, only small

amounts of CaO have been found in the reactor by Ljungstrom and Lindqvist (1982),

suggesting that direct sulfation of limestones (eq. (4)) is the main reaction occurring

in the combustor. Similarly, PFBC data from Exxon (Hoke et al., 1977) with uncalcined

Grove limestone showed that most of the unreacted Ca in the bed for CO2 partial pressures

above the equilibrium value existed in the form of CaCO3.

Studies of SO2 removal at high pressures have been carried out both with carbonates

and precalcined solids (Newby et al., 1980; Ulerich et al., 1982; Dennis and Hayhurst,

1984, 1987; Bulewicz et al., 1986). However, because of the aforementioned complexities,

with the exception of the general conclusion that favorable desulfurization is possible under

PFBC conditions, there is not much agreement in the literature on the e�ects of the various
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parameters on the process. Dennis and Hayhurst (1984, 1987), for example, found that the

reaction rate of precalcined limestones in a 
uidized-bed reactor decreases with an increase

in the operating pressure, both in the absence and presence of CO2. Working with a

laboratory-size PFBC, Bulewicz et al. (1986) observed an increase in the sorption capacity

of Ca-based sorbents (chalk, limestone, and dolomite) with an increase in pressure up to

2 atm, but further increase in pressure caused a reduction in the sorption capacity of all

samples. Similar observations were made by Jansson et al. (1982). PFBC studies at Exxon

(Hoke et al., 1977) showed better sulfur retention for precalcined limestones, but Stantan

et al. (1982) observed no improvement in sorbent utilization by precalcination. Stantan et

al. also reported that under weakly noncalcining conditions, a feed of uncalcined limestone

gave better sulfur retention than what kinetic studies performed in a thermogravimetric

apparatus predicted.

A situation similar to that prevailing in PFBC units is encountered in desulfurization

in gasi�er at high pressures. Fixed-bed and 
uidized-bed gasi�ers typically operate around

850 oC with a temperature at the exit of around 500-800 oC. The pressure of operation

is in most cases in the 200-300 psi range, and at an average pressure of 250 psi, it turns

out that the CO2 partial pressure in the reactor is about 1.8 and 4.3 atm for air blown

and oxygen blown gasi�ers, respectively (based on a typical CO2 content (mole/mole)

of 11% and 26%, respectively (Grindley et al., 1985). Almost all observations made for

SO2 removal in PFBC reactors apply to H2S removal in high pressure gasi�ers but with

reactions (7) and (8) taking place (primarily) in a gasi�er instead of (4) and (6):

CaCO3 +H2S *) CaS + CO2 +H2O (7)

CaO +H2S *) CaS +H2O (8)

Like in the case of sulfation, the main di�erence between the direct and indirect reactions is

that a highly porous solid is involved in the indirect process while that participating in the

direct reaction is essentially nonporous. In view of this di�erence, the information that is
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presently available on the sul�dation of limestone-derived calcines (e.g., see Borgwardt et

al. (1984) and Efthimiadis and Sotirchos (1992)) and sul�dation of half-calcined dolomites

(e.g., see Ruth et al. (1972) and Yen et al. (1981)) from studies in thermogravimetric

analysis (TGA) systems and other types of reactors is inapplicable to the direct reaction

of limestones with H2S. Few fundamental studies have been presented in the literature on

the direct reaction of limestones with H2S, and most of those have been carried out under

low pressures (Borgwardt and Roache, 1984) or under conditions where both sul�dation

reactions ((7) and (8)) could take place (Attar and Dupuis, 1979).

The direct sulfation or sul�dation of calcium carbonate-containing sorbents can be

studied under atmospheric pressure provided that there is enough CO2 in the reactor to

prevent decomposition of the carbonate (simulated PFBC or high pressure gasi�cation

conditions). Tullin and Ljungstrom (1989) performed sulfation experiments in a thermo-

gravimetric analyzer (TGA) under conditions inhibiting calcination of CaCO3 and found

that the sulfation rate of uncalcined CaCO3 was comparable with the sulfation rate of cal-

cined material; they thus concluded that desulfurization in PFBC's is achieved by direct

sulfation of limestones. Large amounts of sample and small particles (around 150 mg and

10-90 �m) were used by those authors in their experiments, and thus extracting any quan-

titative information is practically impossible (because of strong interparticle di�usional

limitations). A similar procedure was employed by Snow et al. (1988) and Hajaligol et

al. (1988), who also observed that the direct sulfation of CaCO3 can reach for some pre-

cursors higher conversions than the sulfation of the calcines (CaO). High concentrations

of CO2 (70% CO2 by volume) were also used by Borgwardt and Roache (1984) to study

the direct reaction of limestone particles with H2S at atmospheric pressure in a di�eren-

tial reactor. They employed a limestone precursor (Fredonia limestone) of relatively high

porosity (about 8%), and thus, they were able to explain the behavior of the conversion-

time trajectories for large particles (diameter greater than 15 �m) along the lines of the

overall mechanism for the sul�dation of limestone-derived calcines (reaction (8)).
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A detailed investigation of the direct sulfation of limestones with SO2 and H2S un-

der simulated high pressure conditions was carried out by my research group (Krishnan

and Sotirchos, 1993a,b,1994) using three limestone specimens of high CaCO3 content. In

accordance with the observations of Tullin and Ljungstrom (1989), Snow et al. (1988),

and Hajaligol et al. (1988), our sulfation results (Krishnan and Sotirchos, 1993a,1994)

showed that the direct reaction of calcium carbonate with SO2, believed to be the domi-

nant reaction in a PFBC, is qualitatively di�erent from the reaction of limestone calcines.

A similar conclusion was reached for the limestone-H2S reaction (Krishnan and Sotirchos,

1994). These results reinforced our early conclusion that the accumulated knowledge in

the literature from the extensive study of the reaction of calcined limestones and dolomites

with SO2 or H2S cannot be used to derive any reliable conclusions for 
ue or coal gas

desulfurization under high pressure conditions. Nevertheless, with the exception of the

studies conducted under simulated high pressure conditions on a few limestones, no fun-

damental studies have been carried out in the literature on the reaction of limestones and

dolomites with SO2 or H2S under true high pressure conditions (i.e., at high pressures

and in the presence of CO2). Moreover, even though the experimental data under sim-

ulated high pressure conditions have been extremely helpful in elucidating some of the

phenomena encountered in the direct sulfation or sul�dation of limestones, it is question-

able whether these results are directly applicable to reaction under true PFBC or high

pressure gasi�cation conditions, especially for solids with signi�cant dolomitic content.

Based on the above observations, a research program has been proposed for the inves-

tigation of the mechanism of SO2 and H2S removal by limestones and dolomites at high

pressures. Reactivity evolution experiments will be carried out using thermogravimetric

and, if needed, �xed-bed and 
uidized-bed reactor (high pressure) arrangements. Ther-

mogravimetric experiments will be carried out under simulated high pressure conditions

at atmospheric pressure using a unit currently available in our lab and at high pressures

using a high pressure TGA proposed to be set up under this project. The pore structure
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of fresh, heat treated, and half-calcined solids (dolomites) will be analyzed using a variety

of methods. Our work will focus on limestones and dolomites whose reaction with SO2

or H2S under atmospheric conditions has been in detail investigated by either us or other

research groups. The obtained experimental data will be analyzed using various theoretical

tools developed by my research group for studying gas-solid reactions, and will be used as

basis for the development of predictive single particle models for use in design models of

combustors or gasi�ers.

2. WORK DONE AND DISCUSSION

During the six months of this reporting period, work was primarily done on the study

of the behavior of the sul�dation of limestones under sequential calcination conditions in

the presence of small amounts of oxygen and the development of a stochastic simulation

code for determining the extent of pore volume trapping (formation of inaccessible pore

space) in gas-solid reactions accompanied by pore volume reduction such as the sulfation

and sul�dation of calcined limestones and dolomites. More information on the work done

is provided below.

2.1. Sul�dation of Calcined Limestones in the Presence of Oxygen

Some sul�dation experiments, under sequential or simultaneous conditions, were car-

ried out in the presence of accidental leaks of small amounts of oxygen into the feed

mixture of the reactor. These experiments showed completely di�erent behavior from that

obtained in the absence of oxygen. Speci�cally, after an initial weight gain, precalcined

samples experienced weight loss that led to �nal weights that were below the values that

were expected for complete sul�dation. On the other hand, samples that were subjected

to simultaneous sul�dation and calcination showed continuous decrease of weight reaching

�nal weights that were only slightly higher than those expected for complete calcination

without further reaction. These results suggested that in the presence of small amounts

of oxygen { as it is the case in a gasi�er { the behavior of the limestone particles could
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be much di�erent from that inferred from successive or sequential calcination and sul�-

dation experiments. It was thus decided to investigate the phenomenon by carrying out

sul�dation experiments on precalcined limestones in the presence of small concentrations

of oxygen in the feed of known value.

Experiments were carried out in the thermogravimetric analysis that we have set up

in our laboratory under this project for gas-solid reactions at subambient or atmospheric

pressure. As in the previous studies, samples obtained from limestones of high calcium

carbonate content (> 95%) were employed in the experiments. In order to avoid having

signi�cant interparticle di�usional limitations, a small amount of solid (1.5-4 mg) was used

for reactivity experiments. Gas 
ow rates of 200 ml/min under standard conditions were

used in all of the experiments. The samples were brought to the reaction temperature

under CO2 to prevent their decomposition, and calcination was carried out by replacing

the CO2 stream with air. For sul�dation we employed a steam of 7,000 ppm H2S in N2,

in which we added small amounts of O2.

Some of the obtained results for 53-62 �m Greer limestone particles are shown in

Figures 1-3. The reactivity vs. time data are presented as the ratio of the weight of the

sample at time t, Wt, to the initial weight, W0, vs. time. To make the graphs directly

comparable with those presented in previous reports, the results for sulfation are presented

as the weight gain added to the initial weight of the limestone before calcination. It follows

from the results of Figures 1-3 that the behavior of the sul�dation of limestone depends

strongly, in both a qualitative and a quantitative sense, on the level of the oxygen concen-

tration in the feed. For small concentration of oxygen (Figure 1), the weight gained by

the calcined sample during sul�dation in a N2-H2S atmosphere goes through a maximum,

whereas for concentrations above 0.5-0.6% (Figures 2 and 3), it increases continuously.

The weight change appears to level o� at large reaction times in both cases. The value of

the weight gain at the maximum increases with increasing concentration of oxygen in the

feed, and the same behavior is exhibited by the constant value reached at large times.
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The weight change of the sample at large reaction times in Figure 1 (that is, when

a maximum is present in the weight gain vs. time curve) is lower that the value that is

expected for complete sul�dation of the solid { which is what happens when the reaction is

carried in the absence of oxygen. This suggests that part of the sul�de is converted back to

oxide, most probably through the reaction of CaS with CaSO4 formed from the oxidation

of CaS. This reaction has been studied by several investigators, mainly in the context of

stabilization, by oxidation to CaSO4, of CaS formed during H2S removal in coal gasi�ers

using limestones or dolomites (e.g., Abbasian et al. (1991), Davies et al. (1994), Van

der Ham et al. (1996), and Yrjas et al. (1996)). Since the solid sample is continuously

exposed to H2S, the leveling o� of the weight gain to values at which CaO must be present

indicates that the CaO that is formed from the solid-solid reaction of CaS and CaSO4

exhibits very low reactivity with H2S. It is planned to test this conclusion by sul�ding

completely precalcined limestones samples, oxidizing part of the sul�de to CaSO4, forcing

the solid-solid reaction to occur by raising the temperature, and, after completion of the

solid-solid reaction takes place, exposing the samples to a mixture of H2S-N2.

For oxygen concentrations above 0.5-0.6% (Figures 2 and 3), the rate of CaSO4 for-

mation from the oxidation of CaS is apparently much higher than that of CaO formation

from the solid-solid reaction of CaS and CaSO4, and as a result, the weight of the sample

increases continuously in the course of the reaction. For oxygen concentration around 2.3%

in Figure 2, the weight gain reached by the sample corresponds to complete conversion of

CaO to CaSO4. This is a surprising result, since if the particle size does not change, the

maximum conversion that can be reached for complete pore �lling with CaSO4 is about

50%. We are thus led to conclude that when calcined limestone particles react with H2S

in the presence of oxygen, their size changes (increases) in the course of the reaction. As

the temperature is changed from 750 to 850 oC (see Figure 3), the weight gain of the

particles for 2.3% O2 in the feed decreases at all reaction times. A possible reason for this

behavior could be the stronger intraparticle di�usional limitations at the higher reaction
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temperature.

The results of Figures 1-3 are of great importance for the in situ removal of H2S in

gasi�ers through limestone injection since they show that even small amounts of oxygen

can lead to completely di�erent behavior of the limestone particles from that revealed

by simultaneous or sequential calcination and sul�dation experiments. We intend to do

more work on limestone sul�dation in the presence of oxygen in the next six-month period.

Since in the presence of oxygen, H2S reacts in the gas phase to form other sulfur-containing

species, we will perform thermodynamic equilibrium computations on the mixture fed to

the chemical reactor to see what species are in existence at equilibrium in the gas phase

at the reaction temperature. These results are expected to be of great help in explaining

the behavior of the limestone sul�dation process in the presence of small concentrations of

oxygen.

2.2. Development of a Simulation Scheme for Studying Volume Trapping in

Reacting Grain Structures

A stochastic simulation scheme was formulated for studying matrix volume trapping

in structures of growing particles, where growth can occur only on surfaces that serve

as boundaries of in�nite (accessible) subsets of the matrix phase. This is the case that

is encountered in the sul�dation or the sulfation of calcined limestones. The following

steps are involved in the method: i) a unit cell is constructed for the starting (mother)

structure, and the mother structure is used as basis for the construction of a number of

derivative (daughter) structures of uniformly grown particles; ii) a number of points is

selected randomly within the unit cell, and these points are used as starting points of

random walkers that travel in the matrix space (outside the particles) by su�ering di�use

re
ections (according to the cosine law) on the particle surfaces; iii) such computations

are carried out both for the initial and the derivative structures, and the information that

is extracted from these computations is employed to determine, for each uniformly grown
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structure, which of the randomly selected points in the two-phase medium lie in the particle

phase, the accessible part of the matrix, or its inaccessible part; iv) the same determination

is made for the real particle structures (that is, with matrix volume trapping accounted

for) using a method developed in this study, and this information is further employed to

estimate matrix volume fractions, mean intercept lengths, surface areas, and volume and

surface area distributions of matrix phase fragments. In addition, we develop a formula

that allows us to determine the variation of the inaccessible matrix volume of the real

structures with the extent of particle growth from the variation of the surface areas and

volume fractions of the inaccessible and accessible parts of the uniformly grown structures.

The obtained results for the real structures are approximate, converging to the exact results

as the steps between successive structures approach zero.

The method was applied to structures of randomly overlapping (fully penetrable),

unidirectional cylinders. The comparison of the results for real and uniformly grown struc-

tures showed that the inaccessible and total matrix volume fractions increase by relatively

small amounts when formation of trapped matrix (pore) space is taken into account. Since

the inaccessible matrix fragments tend to have much larger surface area per unit volume

than the accessible matrix space (by about a factor of 4 at the onset of formation of in-

accessible matrix space starts), the total surface area of real structures is slightly larger

than that of uniformly grown structures of the same particle size. It is believed that the

reason for the existence of small di�erences between real (with volume trapping accounted

for) and uniformly grown structures is that formation of inaccessible matrix space occurs

at a signi�cant rate only close to the percolation threshold. In past studies, this was also

observed to be the case for structures of multidirectional, randomly overlapping �bers or

unidirectional, partially overlapping �bers. It is thus expected that real and uniformly

grown structures will exhibit small di�erences for these cases as well. This is a very im-

portant result for since it implies that the information that is available in the literature

on the percolation behavior of the above �brous media for uniform �ber growth can also
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be employed, without leading to signi�cant errors for practical purposes, for the physically

meaningful case where the �bers grow only on their accessible surfaces. This may also be

the case for the grain or pore structures that are used to simulate the structure of calcined

limestones (Yu, 1987; Sotirchos and Zarkanitis, 1992).

More information on this work can be found in the paper that is attached as an

appendix to this report.

3. SUMMARY AND CONCLUSIONS

During the six months of this reporting period, work was primarily done on the study

of the behavior of the sul�dation of precalcined limestones in the presence of small amounts

of oxygen and the development of a stochastic simulation code for determining the extent

of pore volume trapping (formation of inaccessible pore space) in gas-solid reactions ac-

companied by pore volume reduction, such as the sulfation and sul�dation of calcined

limestones and dolomites.

Sul�dation experiments in the presence of oxygen were carried out because we had

observed that leaks of oxygen into the feed mixture led to completely di�erent results from

those obtained in the absence of oxygen. The obtained results showed that the behavior

of the sul�dation of limestone depended strongly, in both a qualitative and a quantitative

sense, on the level of the oxygen concentration in the feed. For small concentration of

oxygen, the weight gained by the calcined sample during sul�dation in a N2-H2S atmo-

sphere presented a maximum, whereas for concentrations above 0.5-0.6% , it increased

continuously, reaching in some cases values that corresponded to complete conversion of

CaO to CaSO4.

The simulation scheme for studying inaccessible pore volume formation combines a

gradual increase of the size of the grains that represent the porous structure with a random

walk scheme, the latter used to determine whether a randomly chosen point in the unit cell
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of the two-phase structure lies in the particle phase or in the connected or isolated part of

the matrix phase. The use of the algorithm was demonstrated by performing computations

on structures of freely overlapping, unidirectional cylinders, and results were obtained both

for the volume fractions and the speci�c surface areas of the accessible and inaccessible

parts of the pore phase.

For the next reporting period we plan to do some more work on the process of limestone

sul�dation in the presence of small quantities of oxygen. Some of the di�culties that we

have been experiencing with the microfurnace arrangement of the high pressure TGA

system have been resolved, and thus, experiments will be carried out both at atmospheric

and high pressures. High pressure experiments will also be done on limestone sulfation

and limestone sul�dation in the absence of oxygen. Finally, we plan to complete the

analysis of the experimental data that we have obtained using the mathematical model for

simultaneous decomposition and solid product formation reactions we have developed.
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ABSTRACT

A stochastic computational scheme is developed for investigating formation of

trapped (isolated) pore volume in a structure of growing particles, with particle growth

occurring only on surface elements exposed to the connected (accessible) part of the pore

space. The simulation procedure combines a gradual increase of the particle size with a

random walk scheme, the latter used to determine whether a randomly chosen point in the

unit cell of the two-phase structure lies in the particle phase or in the connected or isolated

part of the matrix phase. The formulated algorithm is applied to structures of freely over-

lapping, unidirectional cylinders, and results are obtained both for the volume fractions

and the speci�c surface areas of the accessible and inaccessible parts of the pore phase.

The trapped volume results are compared with those obtained for ordinary continuum

percolation, that is, for uniformly growing particles.
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I. INTRODUCTION

Physical models that represent the solid phase of porous media as populations of solid

objects are often used as a basis for transport or transport and reaction studies in porous

media. By varying the size, orientation, and position distributions of these objects (grains

or particles) a variety of physical models for porous media can be obtained. For many

man-made porous materials, the representation of their solid phase by a 3-dimensional

assemblage of solid objects o�ers a realistic representation of their structure. Examples of

such porous media are materials prepared by compacting powders and the various �brous

materials that are employed as �ltration media or reinforcing phase of composite materials.

There are many applications in which porous media participate in chemical reactions

that lead to deposition of solid material on their internal surface (gas-solid interface).

Deposition reactions almost always involve gaseous or liquid compounds transported to

the reaction (deposition) interface through the pore space, and therefore, deposition can

only take place on parts of the internal surface of the porous medium that can be accessed

from the exterior, that is, parts that are boundaries to in�nite subsets of the pore space.

Typical examples of structure evolution driven by deposition reactions are o�ered by the

process of chemical vapor in�ltration for ceramic composite fabrication1�3, where gaseous

precursors are used to deposit carbon or ceramic materials on the internal surface of a

porous medium (usually of �brous structure) and the deactivation of catalysts through

carbon deposition within their structure4;5. Structure evolution phenomena similar to

those seen in deposition reactions are encountered in gas-solid reactions that form solid

products that occupy more space than the solid reactants they replace. Such reactions are

exempli�ed by several gas-solid reactions used in pollution control applications, such as the

removal of hydrogen sul�de and sulfur dioxide from coal utilization gases using calcined

limestones (i.e., porous calcium oxide)6�8.

The evolution of the structure of a porous medium whose solid phase is represented

as population of grains or particles can be followed by keeping the positions of the particles

�xed and moving the points of their surface in the direction of the outward-pointing normal

vector with the same velocity. In accordance with the preceding discussion, growth of

particles can occur only on those parts of their surface that are boundaries to in�nite regions
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of the pore space. Since particle growth leads to diminishing porosity and interstitial

distances in the pore space, areas of the pore space that are accessible at the outset of the

process may be cut o� from the in�nite regions and become inaccessible. When particle

growth reaches a critical level (the percolation threshold), the pore space ceases to percolate

{ it exists only as �nite regions { and further deposition and structure evolution become

impossible.

Uniform particle growth and formation of inaccessible pore space are schematically

illustrated in Figure 1 for the case of a physical model consisting of disks on a plane or uni-

directional cylinders in three dimensions. To point out the di�erence between the process

characterized by uniform particle growth (ordinary percolation) and the growth process

that requires transport of 
uid precursors to the 
uid-solid interface, particle growth is

represented using two distinct layers. The layer that is indicated by the lighter gray color

corresponds to particle growth that has occurred after the formation of the inaccessible

region I, and therefore, its part that lies within I cannot be formed through a deposition

or gas-solid reaction process under physically realizable conditions. For obvious reasons, it

is much easier to study the ordinary percolation process in which the particles are assumed

to grow on all points of their surface, including those that bound inaccessible (trapped)

regions of the pore space. Since the accessibility characteristics of the structure are not af-

fected by whether the inaccessible (�nite) regions of the pore space are allowed to shrink or

not, the information that is extracted from the study of the ordinary percolation problem

on the dependence of the accessible pore volume fraction and of its properties on particle

growth is also applicable when pore volume trapping is taken into account. The variation

of the accessible and inaccessible pore volume fraction and internal surface area during

ordinary percolation can be employed { as it will be shown later { to determine the true

inaccessible volume fraction, but a direct simulation scheme of the trapping process is re-

quired to determine other characteristics of the inaccessible areas, such as speci�c surface

area and size distribution.

The formation of inaccessible (trapped) pore volume in porous media undergoing

reactions that lead to diminishing porosity has been investigated only in the context of

using a pore network or an abstract bond-site lattice to represent the porous medium.
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A simulation scheme was employed to determine the connectivity characteristics of the

accessible pore structure by Sahimi and Tsotsis5, whereas Yortsos and Sharma9, Yu and

Sotirchos10, and Sotirchos and Zarkanitis7 determined them analytically from information

for ordinary percolation by utilizing the observation that the evolution of the accessible

pore, bond, or site clusters remains the same if entities are removed randomly not only

from the accessible but from the inaccessible clusters as well. n equivalent observation

for the problem we examine in the present study is { as we have already indicated in

the previous paragraph { that the evolution of the accessible pore or matrix space with

a variable describing the change of the size of the constitutive elements (grains) of the

structure is the same as in the percolation process in which the grains are allowed to

grow uniformly. Thus, it is not appropriate to describe the above processes as correlated

processes, a term usually reserved for processes in which there are spatial correlations

among the bonds of the lattice for discrete percolation problems or the particles (grains)

for continuum correlation problems11�13. Another point that must be made is that the

process of pore (bond) isolation or pore (matrix) volume trapping that characterizes these

processes can also be encountered in correlated percolation problems. We therefore choose

to describe the process we study as percolation with trapping, a term used by Dias and

Wilkinson14 to describe a similar situation that arises in an invasion percolation process

involving two immiscible 
uids on a lattice, where only the in�nite clusters of the defender


uid are modi�ed as the occupying fraction of the invader is increased.

A computational algorithm is formulated in the present study for studying pore

volume trapping in a system of growing particles whose structure is modi�ed through

deposition on the surface of the particles involving species transported through the pore

space to the reaction sites. It is based on a Monte Carlo simulation scheme that combines

discrete (gradual) increase of the particle size with random walk computations. Points

are placed randomly in a cubic unit cell of the particle structure and used as starting

positions of random walkers that move through the matrix phase by su�ering successive

di�use re
ections on the surface of the particles. By employing a method �rst proposed

by Burganos and Sotirchos15, the trajectories of the random walkers are used to determine

which of the randomly chosen points lie in the particle phase and in the connected and
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isolated parts of the pore space at each step of particle growth. Further analysis of the

trajectory data makes possible to determine the evolution of accessible, inaccessible, and

total matrix volume fraction, average pore size, and surface area, with the particle size. It

is also possible to �nd the Knudsen di�usion coe�cient of gases in the pore space by using

the information on the variation with time of the mean square displacement of the random

walkers that travel in the accessible regions of the pore space. Results are presented on

the application of the method to a random array of fully penetrable (freely overlapping)

unidirectional cylinders. The computed trapped pore volume fraction at the percolation

threshold is compared to that obtained from uniform particle growth computations.

II. DESCRIPTION OF THE METHOD

We describe in this section the general aspects of the computational scheme that we

have developed for studying correlated percolation in a system of growing particles. We

also describe the derivation of an equation that may be used to follow the evolution of the

accessible pore volume fraction during percolation with volume trapping using the results

from the percolation process for uniform particle growth. Since the analysis we present

applies to any two-phase composite medium in which one of the phases exists in the form of

an assemblage of particles, the term matrix phase or matrix is employed when reference is

made to the phase that surrounds the particle assemblage (i.e., the pore space in a porous

medium).

II.1. Determination of Matrix Connectivity from Random Walk Results

In the method formulated by Burganos and Sotirchos15, random points are intro-

duced in a representative unit cell of the two-phase medium and those that fall in the

matrix phase are used as starting positions of random walkers. The trajectories of the ran-

dom walkers are then employed to determine whether a starting point lies in the accessible

(connected) or isolated part of the matrix. Each walker is assumed to move through the

matrix phase of the two-phase medium by undergoing di�use re
ections (according to the

cosine law) at the interface. Thus, its trajectory consists of straight segments that begin

and end at the matrix-particle interface.

Walkers that remain con�ned in regions smaller than a threshold value as the time of
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travel increases are assumed to travel in isolated (inaccessible) parts of the matrix phase.

When all interfaces are oriented parallel to some direction { as it is the case with structures

in which one of the phases consists of a population of unidirectional cylinders { accessibility

is de�ned on planes perpendicular to that direction. Let N be the total number of points

chosen within the unit cell, NP the number of points that fall in the particle phase, NA

the number of points that serve as starting points of trajectories that cover regions of space

larger than the chosen threshold limit, and N I the number of points that yield trajectories

con�ned within region smaller than that value. Since the points are selected randomly

over the whole unit cell, the following relationships can be used to determine the volume

fraction of the matrix phase, �, and its accessible and inaccessible parts, �A and �I :

� = 1�
NP

N
; �A =

NA

N
; �I =

N I

N
(1a; b; c)

The speci�c surface area (per unit of total volume) of the interface that bounds one of

the components of the structure (matrix phase, particle phase, inaccessible matrix phase,

or accessible matrix phase) can be determined using the equation16;17,

S =
4�
�d

(2)

where � is the volume fraction and �d the mean chord length of the component we are

interested in. Since the cosine law is used to determine the direction of the path that a

random walker follows after a collision with the particle-matrix interface, each path lies on

a line of random orientation in space. As a result, the mean chord length of a certain region

(connected or disconnected) is equal to the mean path of all random walkers that have

travelled in the same region, each accomplishing the same travel distance. This quantity

can be obtained directly from the results of the trajectory computations. For the total,

accessible, and inaccessible speci�c surface areas of the matrix phase, S, SA, and SI , the

general relationship of equation (2) yields the equations:

S =
4�
�d
; SA =

4�A

�dA
; SI =

4�I

�dI
(3a; b; c)

It should be noted that equations analogous to (1) and (3) also apply to each indi-
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vidual fragment of the isolated (inaccessible) part of the matrix phase. Therefore, if one

can identify all molecules that travel in the same fragment, those equations can be used to

determine the volumes and surface areas of individual fragments and in this way construct

fragment size and surface area distributions. Burganos and Sotirchos based the identi-

�cation of fragments on the extremal coordinates of the trajectory of a random walker

(xmin; xmax; ymin; ymax; zmin; zmax). Speci�cally, two or more walkers were considered to

travel in the same fragment if the same extremal coordinates of their trajectories for large

travel times did not di�er by more than a small number that was of the order of the pore

size used in the construction of the pore network.

II.2. Algorithm for Following Matrix Volume Trapping

The application of the method begins with the construction of a unit cell of the two

phase medium, usually of cubic shape. In the case of a structure of randomly overlapping

particles, this is accomplished by simply introducing at random locations and according to

the chosen size and shape distributions the particles that may wholly or partly lie in the

cubic unit cell. By applying periodic boundary conditions in the construction of the unit

cell { if the application of such conditions is possible { and arranging identical unit cells

side by side, an in�nitely large structure that spans the whole space and is statistically

representative of the two-phase medium is obtained. If construction of periodic unit cells is

not possible { as is the case with structures of in�nitely long cylinders oriented randomly

in two or three directions { an in�nitely large structure can be obtained by �lling the

space with unit cells derived from the constructed unit cell so that all neighboring cells are

mirror images of each other relative to their common face.

Once the construction of the unit cell is completed, the method proceeds with the

generation of a sequence of derivative structures (daughter structures) of decreasing matrix

volume fraction by enlarging uniformly all particles that make up the unit cell of the

original structure. A schematic 
ow diagram of the procedure is given in Fig. 2. We

use index 0 to represent the initial (mother) structure, U0, and indices i = 1; 2; : : : to

represent the resulting daughter structures of uniformly grown particles, Ui, in the order

of decreasing matrix volume fraction. We introduce N0 test molecules in the unit cell of
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the mother structure and determine using the criteria described in the preceding section,

the number of test molecules that fall in the particles P0, in the connected part of the

matrix phase A0, and in the isolated part of the matrix phase, I0. The points that are

found to lie in the connected part of the matrix phase of the mother structure are then

used as starting points of molecular trajectories in the �rst daughter structure, and the

information extracted from these trajectories is used to determine the number of the A0

points that fall in the connected part of the �rst daughter structure, A1, the number of

points that fall in its particle phase, P1, and the number of points that fall in the isolated

matrix phase, I1. We continue with the A1 points from the �rst daughter structure and

use trajectory information from the second structure to partition their number into A2,

P2, and I2 parts. This process continues until we encounter a daughter structure, say UN ,

that does not show any connected matrix.

The derivative structures employed in the above described sequence of trajectory

computations are obtained by letting all particles grow uniformly. As a result, they are not

representative of the real structures, Ri, that would be obtained if particle growth occurred

by deposition of solid material transported into the structure from the outside, since in this

case only the connected phase would be growing. The following three observations may be

used to employ the Ai, Pi, and Ii results to determine matrix phase and inaccessible volume

information for the true derivative structures: i) Any point that lies in the accessible phase

of the ith uniformly grown daughter structure, Ui, would also lie in the accessible phase of

the ith real daughter structure, Ri { since the accessible parts of grown and real daughter

structures of the same generation uniformly are identical. ii) If a point lies in the solid

phase of the mother structure, it will also belong to the solid phase of any real daughter

structure { since the solid phase of the mother structure is a subset of that of the daughter

structure. This also holds for any daughter structure and the derivative structures that

result from it. iii) If a point lies in the isolated phase of Ri it will also lie in the isolated

phase of any real structure with index greater than i { since in real structures isolated

regions do not change after they are formed.

Let NP
i , N

A
i , and N I

i be the number of molecules from the initial number N0 in-

troduced in the unit cell of the mother structure that would have fallen in the particle
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phase, accessible matrix phase, and inaccessible matrix phase, respectively, of the ith real

daughter structure, Ri. It follows from the above observations that NP
i , N

A
i , and N I

i can

be obtained from the following relationships

NA
i = Ai; N

P
i =

iX
j=0

Pj ; N
I
i =

iX
j=0

Ij (4a; b; c)

For the mother structure, we obviously have

NA
0
= A0; N

P
0
= P0; N

I
0
= I0 (5a; b; c)

Since Ai�1 = Ai +Pi+ Ii, it follows that N
A
i +NP

i +N I
i = N0 { as it should be the case.

With NA
i , N

P
i , and N I

i known, equations (1) and (3) can be used to determine all

structural properties of the ith real daughter structure. For the porosities, we have from

equations (1)

�Ai =
NA
i

N0

; �Ii =
N I
i

N0

; �i =
N0 �NP

i

N0

(6a; b; c)

The mean path of the NA
i walkers for the ith set of trajectory computations is equal to

the mean random chord of the accessible space, �dAi , and it can thus be used to determine

the accessible surface area per unit volume. Similarly, the mean chord length of the

inaccessible space is equal to the mean path of the N I
i molecules. It can be estimated

using I0 trajectories from the mother structure and Ij (j = 1; :::; i) for the daughter

structures. From equations (3), we have

Si =
4"i
�di
; SA

i =
4"Ai
�dAi

; SI
i =

4"Ii
�dIi

(7a; b; c)

The above computation scheme yields discrete approximations to the "A vs. " or "I

vs. " curves that would be observed during densi�cation of the porous medium through

solid deposition on its accessible surface. The di�erence between the discrete approxi-

mation and the exact result can be reduced by decreasing the growth distance between

successive structures or, equivalently, by increasing the number of daughter structures

between the mother structure and the structure at the percolation threshold.
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II.3. Computation of Quantities for Uniform Particle Growth

With minimal additional e�ort, the results from the above computations can also be

used to compute properties for the uniform particle structures. Let Iij be the number of the

Ij isolated walkers found in the jth uniform structure that fall in the gas phase in the ith

uniform structure j < i. These walkers can easily be identi�ed by comparing their initial

locations with the space occupied by the particles in the ith uniform structure. We do not

have to examine the locations of all of the Ij walkers in each of the subsequent structures

since those isolated walkers that fall in the solid phase of the ith structure will also fall in

the solid phase of all subsequent structures. The total number of walkers that fall in the

inaccessible space in the ith uniform daughter structure is given by (Ii+
Pi�1

0
Iij), the total

number of walkers that fall in the inaccessible space is Ai, the same as in the real structure,

and the total number of walkers that fall in the solid phase is (
Pi

0
Pj +

Pi�1
0

(Ij � Iij)).

Let superscript u denote quantities referring to the structures of uniformly grown particles

or, equivalently, the percolation problem that is commonly considered. On the basis of the

above observations, we have:

"uAi =
Ai

N0

= "Ai (8a)

"uIi =
Ii +
Pi�1

0
Iij

N0

< "Ii (8b)

"ui =
N0 � (

Pi
0
Pj +

Pi�1
0

(Ij � Iij))

N0

= "AI + "uIi < "i (8c)

The internal surface areas of the uniform particle structures can be computed us-

ing equations analogous to those (equations (7)) for the real structures. The accessible

surface area per unit volume of the uniform particle structures is the same as that of the

real structures. To compute �dui and �duIi , we need information on the trajectories of the

(
Pi�1

0
Iij) walkers that travel in the inaccessible space of ith structure, and which have

become isolated in earlier daughter structures. Since we know that these molecules are

isolated, we only have to let them travel for as much time (or distance) as needed to obtain

a representative sample of random chords.
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II.4. Prediction of Trapped Volume Fraction from Uniform Growth Results

The uniform particle structure results can be used to predict the relationship between

"u and " and { since "uA and "A are equal { between "A and ". When the particles are

assumed to grow uniformly, the inaccessible regions decrease in size, and this makes the

di�erence between " and "u progressively larger. As the particle growth variable changes

from q to q + dq, the change in the porosity of the inaccessible regions of the uniform

structures is equal to SuIdq. Since the di�erence in " and "u is only due to the change in

the size of the inaccessible regions, we must have

d("� "u) = SuIdq (9)

Integrating this equation between 0 and q using that "jq=0 = "ujq=0 = "0 gives

" = "u +

Z q

0

SuIdq0 (10)

This equation is a rigorous result and can be used to �nd " as a function of "u, and vice

versa, for any particle structure provided that the variation of SuI with q is known. Since

the accessible pore space is the same in uniform and real structures, "A(") can be found

as "uA("u(")). Equation (10) could also be derived by using the relationships

d"u = �(SuI + SuA)dq

d" = �SuAdq = �SAdq

or equivalently,

"u = "0 �

Z q

0

(SuI + SuA)dq0

" = "0 �

Z q

0

SuAdq0

The properties of the uniform particle structures can be computed using the gen-

eral method of Section II.1 or in conjunction with the percolation with volume trapping

computations, as described in Section II.3. Suppose that there are n� 1 uniform particle
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structures between the starting (mother) structure and the percolation threshold. Using

the trapezoidal rule to evaluate the integral in equation (10), we get

"i = "ui +
iX
1

(SuI
j + SuI

j�1)

2
(qj � qj�1) (11)

For the percolation threshold, i.e., the porosity of the nth daughter structure, this equation

gives

"p = "up +
nX
1

(SuI
j + SuI

j�1)

2
(qj � qj�1) (12)

The advantage of using equation (11) to �nd the total, accessible, and inaccessible porosi-

ties of the volume trapping percolation problem is that only information for the uniformly

grown grain structures is needed, that is, the volume trapping algorithm does not have

to be employed. Since an integral formula is employed, relatively accurate results can be

obtained with only a few daughter structures. However, the volume trapping algorithm

has the advantage that it can provide information for all properties of the volume trapping

percolation problem and not only for the porosities (volume fractions).

Let � be the ratio of the mean random chord of the total pore space, �du, to the mean

random chord of the inaccessible space, �duI . Using equation (3), we can write for SuI

SuI = �Su "
uI

"u
= �Su(1�

"uA

"u
) (13)

Introducing this equation in (9) and using d"u = Sudq to change the variable of integration

from q to "u, we get

" = "u +

Z "0

"u
�(1�

"uA

"0
)d"0 (14)

where "0 is the common value of " and "u for growth zero. For � being approximately

constant, equation (14) can be used to derive an approximate expression for "("u) that

involves only "uA("u). For example, if the mean random chord lengths of the total pore

(matrix) space and of the inaccessible pore space of the uniform structures are assumed to

be approximately equal to each other, i.e., � = 1, we get
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" = "0 �

Z "0

"u

"uA("0)

"0
d"0 (15)

In their study of percolation during uniform growth of structures of randomly overlapping

unidirectional cylinders, Burganos and Sotirchos found that that �duI= �du was signi�cantly

larger than 1. Therefore, equation (15) is expected to underestimate " for such structures.

III. APPLICATION

We applied the formulated algorithm to a porous medium whose structure can be

represented by a population of randomly overlapping, unidirectional cylinders. A unit cell

for this structure was constructed by positioning randomly the traces of the axes of the

cylinders on one of the faces of a cube. In order to obtain a periodic unit cell spanning

the whole space, periodic boundary conditions were employed18. In an in�nitely large

structure, the porosity (matrix volume fraction) is given by19;20

"u = exp(��`r2) (16)

where ` is the cylinder density, i.e., the total length of cylinder axes per unit volume or

the number of traces of axes on the cubic face, and r is the radius of the cylinders. We

have used superscript u on " because the structure it refers to is composed of perfect

cylinders, i.e., uniformly grown particles. For �nite realizations (samples) of the porous

medium, equation (16) gives the mean value of porosity for a large number of realizations.

The porosity of the �nite samples we constructed for computations was determined by

introducing 107 points randomly in the cubic cell and computing the fraction that fell in

the matrix phase.

Past studies15;18;21 showed that the percolation threshold of a structure of randomly

overlapping, unidirectional cylinders, "up , is equal to about 0.325. Like the porosity given

by equation (16), this value gives the percolation threshold of an in�nite structure or the

mean value of the percolation threshold of a large number of �nite realizations. The results

we present and discuss here were obtained using sample structures having percolation

thresholds very close to the mean value. We used a cluster identi�cation scheme15;18 to

determine the percolation thresholds of the unit cells we constructed, and only structures
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that had percolation thresholds for uniform cylinder growth between 0.315 and 0.335 were

employed for random walk computations. To identify such samples we started from dense

cylinder structures having porosity (matrix volume fraction) much lower than the mean

percolation threshold. This was done because as the cylinder size is increased, cylinders

that initially lie wholly within the cell boundaries start to intersect the boundaries, and

it thus becomes necessary to introduce more cylinders to maintain the periodicity of the

unit cell.

The cluster identi�cation scheme proceeds as follows: A sequence of derivative struc-

tures is constructed by reducing the cylinder radius by a certain amount �r, and for each

of them, a search is made for clusters of cylinders spanning the unit cell. When a structure

with permeable matrix (that is, a structure for which no spanning clusters can be found)

is encountered, the percolation threshold radius of the structure is approximated as the

mean of the values that yield successive impermeable and permeable structures. To obtain

a more accurate estimate of the percolation radius, we repeat the above procedure start-

ing from the last impermeable structure with an order of magnitude smaller step, and we

can continue doing this until the desired accuracy is obtained. The percolation threshold

porosity is then determined as the probability to �nd a random point in the pore space.

It should be noted that in order to guarantee that a cell-spanning cluster would extend

to in�nity, a cluster is considered to span the unit cell only when it includes at least one

boundary cylinder and its periodic image on the opposite phase of the cylinder.

To apply the algorithm of Section II.2 to study correlated percolation in the unidi-

rectional random cylinder structure, the radius of the cylinders is reduced until a structure

possessing no inaccessible pore space is obtained. A signi�cant amount of inaccessible pore

space exists in that structure only close to the percolation threshold15;18, and for porosities

("u) above 0.4 it turns out that almost all pore space is accessible. Using equation (16), it

is found that about 10% reduction in the cylinder radius is required to bring the porosity

from its percolation threshold value (0.325) to 0.4. A random walker is assumed to travel

in an inaccessible fragment of the pore space if the maximal x or y coordinates of its tra-

jectory, within the allotted travel time, do not exceed the corresponding minimal values

by more than the side of the unit cell. In the z direction (i.e. parallel to the cylinders),
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the structure is connected at all porosities. Burganos and Sotirchos considered in their

study that molecules travelled in inaccessible fragments if they did not visit, again within

the allotted time, cells that did not border the cell from which they started their travel.

Computations using this last criterion were also carried out, but no signi�cant di�erences

from the results computed using the �rst criterion were obtained.

For insu�ciently long travel times, or equivalently distances, the results are strongly

depended on travel time or distance. If the time of travel is not large enough, molecules

travelling in connected areas with small necks may wrongly be classi�ed as travelling in

inaccessible fragments. Figure 3 presents the variation of the fraction of random walkers

that are found to travel in the accessible void space with the travel distance for an array of

fully penetrable unidirectional cylinders with r=rp = 0:97. The fraction is taken relative to

the number of walkers that were determined to travel in the accessible void (matrix) space

of the structure with r=rp = 0:96. The results of Figure 3 indicate that about 3% of the

walkers travel in �nite size subsets of the matrix phase; therefore, about 3% of the matrix

phase of the daughter structure with r=rp = 0:97 that is contained in the accessible matrix

phase of the structure with r=rp = 0:96 is inaccessible. However, travel distances greater

than about 5 �105 cylinder radii had to be employed to obtain this result. Random walkers

that were found to travel in the accessible pore space accomplished an average distance of

107,000 radii by the time they attained net displacement equal to one cell side.

The expression for the �rst passage probability of molecules di�using in the accessible

void space of the molecules through molecule-wall collisions may be employed to understand

better the results of Figure 3. The �rst passage probability of a di�usion process gives

the probability that a random walker reaches a given distance from the origin for the

�rst time within the time interval (t,t + dt). Since a molecule is considered to travel in

the accessible part of the pore space if the di�erence between the minimal and maximal

coordinates of its trajectory in the x or y direction (that is, on the plane normal to the

direction of the cylinders) is greater than one unit cell side, it may be argued that in the

absence of inaccessible pore space, the ordinate in Figure 3 approximately corresponds to

the probability that a random walker is displaced from the origin by a distance greater

than half of the unit cell side on the (x; y) plane for travel distance smaller than the value
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of the abscissa. In other words, the ordinate in Figure 3 approximately represents the

�rst passage probability for time less than that corresponding to the travel distance of the

abscissa through a cylindrical boundary placed parallel to the cylinders and located at a

distance equal to half of the unit cell side. For isotropic transport in two dimensions { as

it is the case on the plane normal to the cylinders { it can be shown that the �rst passage

probability for displacement distance b is given by22;23

Pb(t) = 1�
1X
i=1

2

jiJ1(ji)
e�j

2

i
Det=b

2

(17)

where J1 is the �rst order Bessel function of the �rst kind, ji is the ith zero of the zero

order Bessel function of the �rst kind (J0), and De is the e�ective di�usion coe�cient

through the accessible void (matrix space) on the (x; y) plane. The time that appears in

equation (17) is for travel on the (x; y) plane only. It is proportional to the travel distance

of Figure 3, and therefore, equation (17) also applies in transport in three dimensions for

�rst passage through a cylindrical enclosure.

Equation (17) states that the travel time required for a certain fraction of the ran-

dom walkers that travel in the accessible part of the matrix space to reach a boundary

located at a given distance from the origin of their travel is inversely proportional to their

e�ective di�usivity. The e�ective di�usivity in the accessible matrix phase decreases as

grain growth occurs and the porosity is decreased, becoming exactly zero at the percola-

tion threshold. For this reason, the minimum travel distance that is needed to obtain an

accurate count of the molecules that travel in inaccessible fragments of the matrix space

becomes progressively larger as the radius of the cylinders is increased, diverging to in-

�nity at the percolation threshold. By comparing the transmitted fraction of molecules

through the cylindrical enclosure that is obtained from the simulations with that predicted

by equation (17), it is possible to obtain estimates both of the e�ective di�usivity in the

accessible part of the matrix phase and of the number of random walkers that travel in

the inaccessible part of the matrix. The e�ective di�usivity estimate can subsequently be

employed in equation (17) to determine the minimum travel time that is needed to obtain

an accurate count of the random walkers that travel in the accessible part of the matrix.
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Figure 4 shows how the error in the computation of the percolation threshold of the

real structures (with volume trapping accounted for) with the number of steps from the

mother structure (r=rp = 0:7325 or �u � 0:55) to the structure at the percolation threshold

for two di�erent realizations. For one step only, the predicted percolation threshold is equal

to that found for uniformly grown structures. Since the percolation threshold of the real

structures is close to that of the uniformly evolved structures, relatively good accuracy in

its estimation is obtained even with a few structures. About 99% accuracy can be achieved

using 10-15 discretization steps, but almost 100 steps are needed for an accuracy of 99.5%.

The two realizations that were used to obtain the results of Figure 4 were among those that

gave the largest di�erence between the percolation threshold for uniform grain (cylinder)

growth and that with volume trapping taken into account.

Table I gives average values of total porosity, both for real and uniformly grown

structures (" and eu), and accessible porosity computed for eight realizations of a structure

of unidirectional, randomly overlapping cylinders for a initial (mother) structure at r=rp =

0:7325 and 10 derivative (daughter) structures, including that at the percolation threshold

(r=rp = 1:0). The number of cylinders in the unit cell ranged from 220 to 250, and 2500

starting points of random walkers were employed. The results of Table I show that the

di�erence between the porosity of uniformly grown structures and that of real structures

is very small. The average values of porosity at the percolation threshold for the eight

structures of Table I was found to be 0.3275 for uniformly grown structures and 0.3347

for real structures. This result is in very good agreement with those obtained by Sahimi

and Tsotsis5, Yortsos and Sharma9, Yu and Sotirchos10, and Sotirchos and Zarkanitis7 for

the connectivity characteristics of pore networks in gas-solid reaction processes involving

diminishing pore size, where only pores that belong to accessible (in�nite clusters) can be

plugged. For example, the computations of Sahimi and Tsotsis5 for a showed that the

percolation threshold, expressed in terms of the number fraction of unplugged pores (open

bonds) of the network changes from 0.249 for the random percolation process to 0.255 for

the real process in which inaccessible pores cannot undergo size change.

The existence of a small di�erence between the percolation thresholds of uniformly

grown and real pore structures was postulated by us in past publications18;21;24 on the
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basis of the observation { as it is also seen from the results of Table I { that formation of

signi�cant amount of inaccessible pore space occurs in a very narrow range of pore space in

the vicinity of the percolation threshold. The same observation led Ofori and Sotirchos3,

to assume when they modelled the process of chemical vapor in�ltration for fabrication of

ceramic matrix composites in uni-, bi-, or tridirectional random �ber structures (i.e., with

�bers positioned in space parallel to a line (as in the application considered in the present

study), parallel to a plane, or without preferred orientation) that formation of inaccessible

pore space occurred right at the percolation threshold, which they set equal to that found

for uniformly grown structures by Burganos and Sotirchos15.

Figure 5 presents the evolution of the computed values of mean intercept length of

the accessible, inaccessible, and total matrix phase with the cylinder radius, whereas the

values of surface area that are determined using these results and the porosity values in

equations (7) are shown in Figure 6. The theoretically predicted mean intercept length for

uniformly grown arrays of fully penetrable (freely overlapping), unidirectional cylinders is

also plotted in Figure 5. It is given by20 �du = 2=(�`r)). It is seen from the results of

Figure 5 that the dimensionless mean intercept length with volume trapping accounted for

is slightly larger than that for uniformly grown structures. Since the internal surface area

is for a given porosity, inversely proportional to the mean intercept length, the opposite

observation holds for the dimensionless internal surface area values in Figure 7. The mean

intercept length of the inaccessible matrix fragments is by a factor of about four smaller

than that of the accessible matrix space, which implies that the inaccessible regions have,

per unit of volume, surface areas larger by that factor than the accessible matrix. Both

the accessible and total matrix mean intercept lengths decrease as the cylinder diameter

increases, whereas that for the inaccessible (isolated) matrix increases. The surface areas

change in the same way as the mean intercepts lengths and not in the opposite way, as

expected from equations (7), because they are a�ected more by the change in the volume

fractions. The volume of the inaccessible matrix fractions is obviously larger when volume

trapping is accounted for, i.e., in the real structures, and this is the reason for which the

real structures have larger surface areas.

At the percolation threshold, r=rp = 1:0, all matrix space becomes inaccessible, and
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the mean intercept length and surface area of the isolated matrix space become equal

to the total matrix values. As we have already pointed out in the discussion of Table

I, formation of a signi�cant amount of pore space takes place in an very narrow region

of values of cylinder radius or matrix volume fraction next to the percolation threshold.

As a result, the mean intercept length of the isolated matrix space remains much smaller

than that of the total matrix space even for values of dimensionless cylinder radius as high

as 0.99. An analogous observation was made in past studies of the percolation behavior,

for uniform �ber growth, of structures of multidirectional, randomly overlapping �bers

(placed in space parallel to a plane or without any preferred orientation) and unidirectional

(parallel), partially overlapping �bers18;24. In view of the results of Table I and of Figure

5 and 6, it is expected that the total matrix fraction, and hence, the percolation threshold,

of these structures will not be a�ected signi�cantly when volume trapping is taken into

account. We tested this hypothesis by assuming that �du= �duI for these structures had

approximately the same average value as �d= �dI for parallel, unidirectional �bers (Figure

5) and using equation (14) to determine the total matrix volume fraction (porosity) with

volume trapping using the "uA vs. "u from our previous studies. The obtained results

showed that the inaccessible and total matrix volume fraction increase only slightly when

occurrence of volume trapping is allowed for.

IV. SUMMARY AND CONCLUSIONS

A stochastic simulation scheme was formulated for studying matrix volume trapping

in structures of growing particles, where growth can occur only on surfaces that serve as

boundaries of in�nite (accessible) subsets of the matrix phase. The following steps are in-

volved in the method: i) a unit cell is constructed for the starting (mother) structure, and

the mother structure is used as basis for the construction of a number of derivative (daugh-

ter) structures of uniformly grown particles; ii) a number of points is selected randomly

within the unit cell, and these points are used as starting points of random walkers that

travel in the matrix space (outside the particles) by su�ering di�use re
ections (according

to the cosine law) on the particle surfaces; iii) such computations are carried out both

for the initial and the derivative structures, and the information that is extracted from
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these computations is employed to determine, for each uniformly grown structure, which

of the randomly selected points in the two-phase medium lie in the particle phase, the

accessible part of the matrix, or its inaccessible part; iv) the same determination is made

for the real particle structures (that is, with matrix volume trapping accounted for) using

a method developed in this study, and this information is further employed to estimate

matrix volume fractions, mean intercept lengths, surface areas, and volume and surface

area distributions of matrix phase fragments. In addition, we develop a formula that allows

us to determine the variation of the inaccessible matrix volume of the real structures with

the extent of particle growth from the variation of the surface areas and volume fractions

of the inaccessible and accessible parts of the uniformly grown structures. The obtained

results for the real structures are approximate, converging to the exact results as the steps

between successive structures approach zero.

The method was applied to structures of randomly overlapping (fully penetrable),

unidirectional cylinders. The comparison of the results for real and uniformly grown struc-

tures showed that the inaccessible and total matrix volume fractions increase by relatively

small amounts when formation of trapped matrix (pore) space is taken into account. Since

the inaccessible matrix fragments tend to have much larger surface area per unit volume

than the accessible matrix space (by about a factor of 4 at the onset of formation of in-

accessible matrix space starts), the total surface area of real structures is slightly larger

than that of uniformly grown structures of the same particle size. It is believed that the

reason for the existence of small di�erences between real (with volume trapping accounted

for) and uniformly grown structures is that formation of inaccessible matrix space occurs

at a signi�cant rate only close to the percolation threshold. In past studies, this was also

observed to be the case for structures of multidirectional, randomly overlapping �bers or

unidirectional, partially overlapping �bers. It is thus expected that real and uniformly

grown structures will exhibit small di�erences for these cases as well. This is a very im-

portant result for since it implies that the information that is available in the literature

on the percolation behavior of the above �brous media for uniform �ber growth can also

be employed, without leading to signi�cant errors for practical purposes, for the physically

meaningful case where the �bers grow only on their accessible surfaces.
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