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EXECUTIVE SUMMARY

The theoretical and experimental investigation of the mechanism of SOy and HyS
removal by CaCOs-based sorbents (limestones and dolomites) in pressurized fluidized-bed
coal combustors (PFBC) and high pressure gasifiers, respectively, is the main objective
of this study. It is planned to carry out reactivity evolution experiments under simulated
high pressure conditions or in high pressure thermogravimetric and, if needed, fluidized-
bed reactor (high pressure) arrangements. The pore structure of fresh, heat-treated, and
half-calcined solids (dolomites) will be analyzed using a variety of methods. Our work will
focus on limestones and dolomites whose reaction with SOs or H>S under atmospheric
conditions has been studied by us or other research groups in past studies. Several theoret-
ical tools will be employed to analyze the obtained experimental data including a variable
diffusivity shrinking-core model and models for diffusion, reaction, and structure evolution
in chemically reacting porous solids.

During the six months of this reporting period, work was primarily done on the study
of the behavior of the sulfidation of limestones under sequential calcination conditions in
the presence of small amounts of oxygen and the development of a stochastic simulation
code for determining the extent of pore volume trapping (formation of inaccessible pore
space) in gas-solid reactions accompanied by pore volume reduction such as the sulfation
and sulfidation of calcined limestones and dolomites.

The incentive for carrying out sulfidation experiments in the presence of oxygen was
provided by the observation that some sulfidation experiments that were conducted as
oxygen was accidentally leaking into the feed mixture of the reactor showed completely
different behavior from that obtained in the absence of oxygen. Experiments were carried
out in the thermogravimetric analysis system that we developed for studying gas-solid
reactions at atmospheric or subambient pressures. The two CaCOg3 solids (Greer limestone

and Iceland spar) that we employed in our previous experiments were used in the sulfidation
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and calcination experiments, and the concentration of oxygen that was introduced in the
H,S-containing stream that was fed to the reactor ranged from 0.2 to 2.5%. The obtained
results showed that the behavior of the sulfidation of limestone depended strongly, in
both a qualitative and a quantitative sense, on the level of the oxygen concentration in
the feed. For small oxygen concentrations, the weight gained by the calcined sample
during sulfidation in a No-H5S atmosphere went through a maximum, whereas for oxygen
concentrations above 0.5-0.6%, it increased continuously. A constant weight value was
reached at large reaction times in both cases. The value of the weight gain at the maximum
increased with increasing concentration of oxygen in the feed, and the same behavior was
manifested by the constant value reached at large times. When a maximum was present
in the weight gain vs. time curve, the constant value was lower than that expected for
complete sulfidation of the solid. On the other hand, for oxygen concentration around
2-3%, the particles reached weight gains that corresponded to complete conversion of CaO
to CaSOy4 even though the maximum allowable conversion for complete pore plugging by
CaS0y is about 50%.

The simulation scheme for studying inaccessible pore volume formation combines a
gradual increase of the size of the grain that represent the porous structure with a random
walk scheme, the latter used to determine whether a randomly chosen point in the unit cell
of the two-phase structure lies in the particle phase or in the connected or isolated part of
the matrix phase. The use of the algorithm was demonstrated by performing computations
on structures of freely overlapping, unidirectional cylinders, and results were obtained both
for the volume fractions and the specific surface areas of the accessible and inaccessible

parts of the pore phase.
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1. BACKGROUND INFORMATION

In a fluidized-bed combustor, a bed of combustible (coal) and noncombustible material
is fluidized using air blown upward. Using dolomite or limestone as the noncombustible
material, it is possible to have fuel combustion and flue gas desulfurization taking place
simultaneously in the combustion vessel. If operation occurs under atmospheric pressure,
the average partial pressure of carbon dioxide in the combustor (typically, 10-15% of the
total pressure) is considerably lower than the equilibrium C'O5 pressure for decomposition
of limestone (CaCO3) or dolomite (CaCO3- M gCQOs3) at the temperatures usually encoun-
tered in FBC units (800-950 °C). In the high temperature environment of the AFBC unit,
the limestone or dolomite particles undergo calcination, yielding a highly porous product
(CaO or MgO), which reacts with the sulfur dioxide produced during coal combustion
forming, mainly, calcium or magnesium sulfate. The sulfates occupy more space than
the oxides they replace, and as a result, the pores of the calcine are completely plugged
with solid product before complete conversion takes place. (The conversion for complete
pore plugging is about 50% for the calcine of a stone consisting of CaCOj3 only.) Pores
of different size are plugged at different conversion levels, and it is thus possible to have
formation of inaccessible pore space in the interior of the particles when the small feeder
pores of clusters of large pore are filled with solid product (Zarkanitis and Sotirchos, 1989).
Moreover, under conditions of strong internal diffusional limitations, complete pore closure
may first take place at the external surface of the particles while there is still open pore
space left in the interior. For these reasons, ultimate conversions much lower than those
predicted by the stoichiometry of the reaction for complete plugging of the internal pore

space (less than 30-40%) are seen in AFBC units.

The reaction of calcined limestones (primarily) and dolomites with SO2 has been the
subject of extensive investigation. In accordance with the above remarks, the experimental
evidence in most of the studies of the literature indicates strong effects of the pore size

distribution on the overall reactivity of the calcined solids (Borgwardt and Harvey, 1972;
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Wen and Ishida, 1973; Hartman and Coughlin, 1974, 1976; Ulerich et al., 1977; Vogel et
al., 1977; Hasler et al., 1984; Simons and Garman, 1986; Yu, 1987; Gullett and Bruce,
1987; Zarkanitis and Sotirchos, 1989; Zarkanitis, 1991; Sotirchos and Zarkanitis, 1982).
Unfortunately, the immense volume of information that has been accumulated over the
years on the reaction of calcined limestones and dolomites with SOs is not applicable to
S04 emissions control by limestones and dolomites under PFBC conditions. PFBC units
normally operate under a pressure of 16 atmospheres, and for an average COs content of
15%, this implies that the partial pressure of C'O in the reactor is 2.4 atm. Thermody-
namic calculations show that the temperature for CaCOj3 calcination in the presence of
2.4 atm of COy must be larger than 980° C, that is, well above the temperature range
(750-950° C) encountered in a PFBC unit. Nevertheless, even though formation of a highly
porous material with a high specific surface area cannot take place under PFBC condi-
tions, favorable desulfurization is known to occur in PFBC units (Bulewicz and Kandejer,
1986; Murthy et al., 1979). For dolomites, the situation is somewhat different since half-
calcination (formation of an MgO-CaCOs3 product) is possible under 2.4 atm of COs.
Even in this case, however, if the absorption of SOy occurred only in the pore space of
the half-calcined solid, the utilization of the calcium content of dolomites should be much

smaller than what is seen in practice under PFBC conditions.

The reaction of CaCO3 with SOy may involve various reaction steps (Van Houte et

al., 1981):
CaCOs + SO5 — CaSOs + CO; (1)
1
CaS0O3 + 502 — CaS0Oy (2)
CaSO3 + %SOZ — CaSO0y4 + %S (3)

CaS0O3 decomposes at temperatures higher than 650 °C, and therefore, under typical

operating conditions in a PFBC unit, the overall reaction may be written as:

1
CaCOs3 + SOy + 502 — CaS04+ CO» (4)
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For dolomites, one should also address the question of the reaction of MgO with SO,.

If the partial pressure of COy within the bed varies, calcination of CaC' O3 may take
place in regions where C'O5 pressures lower than the equilibrium pressure are prevailing.
The calcination of CaCO3 will yield a partially calcined product, the extent of calcination
depending on the residence time of the solid in the low C' Oy concentration region. CaO
formed in the solid will react with the SOs present in the bed in the same fashion as in
the case of AFBC units:

CaCO3 — CaO + COq (5)

CaO + S0, + %02 — CaSO, (6)

If the partially calcined solid moves into regions rich in C'O,, where reaction (5) is favored
to proceed from right to left, carbonation, i.e., recovery of C'aCO3, will take place, with
reaction (4) competing with reaction (5) for CaO. Decomposition of CaCO3 may also take
place even if there is no variation of the CO4 pressure in the reactor. Large variations in the
temperature profile (100-140° C) within the combustor unit have been reported by Smith
et al. (1982). Therefore, if the solid particles move into regions where the temperature
of the reactor is above the temperature at which CaCO3 is stable, at the average partial
pressure of C'Os in the reactor, decomposition of CaCQO3 will occur. However, only small
amounts of CaO have been found in the reactor by Ljungstrom and Lindqvist (1982),
suggesting that direct sulfation of limestones (eq. (4)) is the main reaction occurring
in the combustor. Similarly, PFBC data from Exxon (Hoke et al., 1977) with uncalcined
Grove limestone showed that most of the unreacted C'a in the bed for CO5 partial pressures

above the equilibrium value existed in the form of CaCOs3.

Studies of SO removal at high pressures have been carried out both with carbonates
and precalcined solids (Newby et al., 1980; Ulerich et al., 1982; Dennis and Hayhurst,
1984, 1987; Bulewicz et al., 1986). However, because of the aforementioned complexities,
with the exception of the general conclusion that favorable desulfurization is possible under

PFBC conditions, there is not much agreement in the literature on the effects of the various
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parameters on the process. Dennis and Hayhurst (1984, 1987), for example, found that the
reaction rate of precalcined limestones in a fluidized-bed reactor decreases with an increase
in the operating pressure, both in the absence and presence of COy. Working with a
laboratory-size PFBC, Bulewicz et al. (1986) observed an increase in the sorption capacity
of Ca-based sorbents (chalk, limestone, and dolomite) with an increase in pressure up to
2 atm, but further increase in pressure caused a reduction in the sorption capacity of all
samples. Similar observations were made by Jansson et al. (1982). PFBC studies at Exxon
(Hoke et al., 1977) showed better sulfur retention for precalcined limestones, but Stantan
et al. (1982) observed no improvement in sorbent utilization by precalcination. Stantan et
al. also reported that under weakly noncalcining conditions, a feed of uncalcined limestone
gave better sulfur retention than what kinetic studies performed in a thermogravimetric

apparatus predicted.

A situation similar to that prevailing in PFBC units is encountered in desulfurization
in gasifier at high pressures. Fixed-bed and fluidized-bed gasifiers typically operate around
850 °C with a temperature at the exit of around 500-800 °C. The pressure of operation
is in most cases in the 200-300 psi range, and at an average pressure of 250 psi, it turns
out that the C O, partial pressure in the reactor is about 1.8 and 4.3 atm for air blown
and oxygen blown gasifiers, respectively (based on a typical COs content (mole/mole)
of 11% and 26%, respectively (Grindley et al., 1985). Almost all observations made for
S0O5 removal in PFBC reactors apply to H2S removal in high pressure gasifiers but with

reactions (7) and (8) taking place (primarily) in a gasifier instead of (4) and (6):

CaCOs5 + HyS = CaS + COy + Hy0 (7)

CaO + HyS = CaS + Hy0 (8)

Like in the case of sulfation, the main difference between the direct and indirect reactions is
that a highly porous solid is involved in the indirect process while that participating in the

direct reaction is essentially nonporous. In view of this difference, the information that is
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presently available on the sulfidation of limestone-derived calcines (e.g., see Borgwardt et
al. (1984) and Efthimiadis and Sotirchos (1992)) and sulfidation of half-calcined dolomites
(e.g., see Ruth et al. (1972) and Yen et al. (1981)) from studies in thermogravimetric
analysis (TGA) systems and other types of reactors is inapplicable to the direct reaction
of limestones with HS. Few fundamental studies have been presented in the literature on
the direct reaction of limestones with H5S, and most of those have been carried out under
low pressures (Borgwardt and Roache, 1984) or under conditions where both sulfidation

reactions ((7) and (8)) could take place (Attar and Dupuis, 1979).

The direct sulfation or sulfidation of calcium carbonate-containing sorbents can be
studied under atmospheric pressure provided that there is enough C'Os in the reactor to
prevent decomposition of the carbonate (simulated PFBC or high pressure gasification
conditions). Tullin and Ljungstrom (1989) performed sulfation experiments in a thermo-
gravimetric analyzer (TGA) under conditions inhibiting calcination of CaCOj3 and found
that the sulfation rate of uncalcined C'aC'O3 was comparable with the sulfation rate of cal-
cined material; they thus concluded that desulfurization in PFBC’s is achieved by direct
sulfation of limestones. Large amounts of sample and small particles (around 150 mg and
10-90 pm) were used by those authors in their experiments, and thus extracting any quan-
titative information is practically impossible (because of strong interparticle diffusional
limitations). A similar procedure was employed by Snow et al. (1988) and Hajaligol et
al. (1988), who also observed that the direct sulfation of CaCOs3 can reach for some pre-
cursors higher conversions than the sulfation of the calcines (CaO). High concentrations
of CO2 (70% CO2 by volume) were also used by Borgwardt and Roache (1984) to study
the direct reaction of limestone particles with HsS at atmospheric pressure in a differen-
tial reactor. They employed a limestone precursor (Fredonia limestone) of relatively high
porosity (about 8%), and thus, they were able to explain the behavior of the conversion-
time trajectories for large particles (diameter greater than 15 pm) along the lines of the

overall mechanism for the sulfidation of limestone-derived calcines (reaction (8)).
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A detailed investigation of the direct sulfation of limestones with SOs and H3S un-
der simulated high pressure conditions was carried out by my research group (Krishnan
and Sotirchos, 1993a,b,1994) using three limestone specimens of high CaCO3 content. In
accordance with the observations of Tullin and Ljungstrom (1989), Snow et al. (1988),
and Hajaligol et al. (1988), our sulfation results (Krishnan and Sotirchos, 1993a,1994)
showed that the direct reaction of calcium carbonate with SOs, believed to be the domi-
nant reaction in a PFBC, is qualitatively different from the reaction of limestone calcines.
A similar conclusion was reached for the limestone-H»S reaction (Krishnan and Sotirchos,
1994). These results reinforced our early conclusion that the accumulated knowledge in
the literature from the extensive study of the reaction of calcined limestones and dolomites
with SOy or H»2S cannot be used to derive any reliable conclusions for flue or coal gas
desulfurization under high pressure conditions. Nevertheless, with the exception of the
studies conducted under simulated high pressure conditions on a few limestones, no fun-
damental studies have been carried out in the literature on the reaction of limestones and
dolomites with SOy or H3S under true high pressure conditions (i.e., at high pressures
and in the presence of CO3). Moreover, even though the experimental data under sim-
ulated high pressure conditions have been extremely helpful in elucidating some of the
phenomena encountered in the direct sulfation or sulfidation of limestones, it is question-
able whether these results are directly applicable to reaction under true PFBC or high

pressure gasification conditions, especially for solids with significant dolomitic content.

Based on the above observations, a research program has been proposed for the inves-
tigation of the mechanism of SOy and HsS removal by limestones and dolomites at high
pressures. Reactivity evolution experiments will be carried out using thermogravimetric
and, if needed, fixed-bed and fluidized-bed reactor (high pressure) arrangements. Ther-
mogravimetric experiments will be carried out under simulated high pressure conditions
at atmospheric pressure using a unit currently available in our lab and at high pressures

using a high pressure TGA proposed to be set up under this project. The pore structure
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of fresh, heat treated, and half-calcined solids (dolomites) will be analyzed using a variety
of methods. Our work will focus on limestones and dolomites whose reaction with SO,
or HsS under atmospheric conditions has been in detail investigated by either us or other
research groups. The obtained experimental data will be analyzed using various theoretical
tools developed by my research group for studying gas-solid reactions, and will be used as
basis for the development of predictive single particle models for use in design models of

combustors or gasifiers.

2. WORK DONE AND DISCUSSION

During the six months of this reporting period, work was primarily done on the study
of the behavior of the sulfidation of limestones under sequential calcination conditions in
the presence of small amounts of oxygen and the development of a stochastic simulation
code for determining the extent of pore volume trapping (formation of inaccessible pore
space) in gas-solid reactions accompanied by pore volume reduction such as the sulfation
and sulfidation of calcined limestones and dolomites. More information on the work done

is provided below.
2.1. Sulfidation of Calcined Limestones in the Presence of Oxygen

Some sulfidation experiments, under sequential or simultaneous conditions, were car-
ried out in the presence of accidental leaks of small amounts of oxygen into the feed
mixture of the reactor. These experiments showed completely different behavior from that
obtained in the absence of oxygen. Specifically, after an initial weight gain, precalcined
samples experienced weight loss that led to final weights that were below the values that
were expected for complete sulfidation. On the other hand, samples that were subjected
to simultaneous sulfidation and calcination showed continuous decrease of weight reaching
final weights that were only slightly higher than those expected for complete calcination
without further reaction. These results suggested that in the presence of small amounts

of oxygen — as it is the case in a gasifier — the behavior of the limestone particles could
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be much different from that inferred from successive or sequential calcination and sulfi-
dation experiments. It was thus decided to investigate the phenomenon by carrying out
sulfidation experiments on precalcined limestones in the presence of small concentrations

of oxygen in the feed of known value.

Experiments were carried out in the thermogravimetric analysis that we have set up
in our laboratory under this project for gas-solid reactions at subambient or atmospheric
pressure. As in the previous studies, samples obtained from limestones of high calcium
carbonate content (; 95%) were employed in the experiments. In order to avoid having
significant interparticle diffusional limitations, a small amount of solid (1.5-4 mg) was used
for reactivity experiments. Gas flow rates of 200 ml/min under standard conditions were
used in all of the experiments. The samples were brought to the reaction temperature
under CO4 to prevent their decomposition, and calcination was carried out by replacing
the COy stream with air. For sulfidation we employed a steam of 7,000 ppm HsS in Ns,

in which we added small amounts of O,.

Some of the obtained results for 53-62 pm Greer limestone particles are shown in
Figures 1-3. The reactivity vs. time data are presented as the ratio of the weight of the
sample at time ¢, Wy, to the initial weight, Wy, vs. time. To make the graphs directly
comparable with those presented in previous reports, the results for sulfation are presented
as the weight gain added to the initial weight of the limestone before calcination. It follows
from the results of Figures 1-3 that the behavior of the sulfidation of limestone depends
strongly, in both a qualitative and a quantitative sense, on the level of the oxygen concen-
tration in the feed. For small concentration of oxygen (Figure 1), the weight gained by
the calcined sample during sulfidation in a No-H5S atmosphere goes through a maximum,
whereas for concentrations above 0.5-0.6% (Figures 2 and 3), it increases continuously.
The weight change appears to level off at large reaction times in both cases. The value of
the weight gain at the maximum increases with increasing concentration of oxygen in the

feed, and the same behavior is exhibited by the constant value reached at large times.
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The weight change of the sample at large reaction times in Figure 1 (that is, when
a maximum is present in the weight gain vs. time curve) is lower that the value that is
expected for complete sulfidation of the solid — which is what happens when the reaction is
carried in the absence of oxygen. This suggests that part of the sulfide is converted back to
oxide, most probably through the reaction of C'aS with C'aSO4 formed from the oxidation
of CaS. This reaction has been studied by several investigators, mainly in the context of
stabilization, by oxidation to C'aSQOy, of CaS formed during H>S removal in coal gasifiers
using limestones or dolomites (e.g., Abbasian et al. (1991), Davies et al. (1994), Van
der Ham et al. (1996), and Yrjas et al. (1996)). Since the solid sample is continuously
exposed to Hy S, the leveling off of the weight gain to values at which C'aO must be present
indicates that the CaO that is formed from the solid-solid reaction of C'aS and CaSO4
exhibits very low reactivity with HS. It is planned to test this conclusion by sulfiding
completely precalcined limestones samples, oxidizing part of the sulfide to C'aSOy, forcing
the solid-solid reaction to occur by raising the temperature, and, after completion of the

solid-solid reaction takes place, exposing the samples to a mixture of HyS-Ns.

For oxygen concentrations above 0.5-0.6% (Figures 2 and 3), the rate of CaSQO;, for-
mation from the oxidation of C'aS is apparently much higher than that of C'aO formation
from the solid-solid reaction of C'aS and CaSOy4, and as a result, the weight of the sample
increases continuously in the course of the reaction. For oxygen concentration around 2.3%
in Figure 2, the weight gain reached by the sample corresponds to complete conversion of
CaO to CaS0Oy4. This is a surprising result, since if the particle size does not change, the
maximum conversion that can be reached for complete pore filling with CaSO4 is about
50%. We are thus led to conclude that when calcined limestone particles react with HyS
in the presence of oxygen, their size changes (increases) in the course of the reaction. As
the temperature is changed from 750 to 850 °C (see Figure 3), the weight gain of the
particles for 2.3% O in the feed decreases at all reaction times. A possible reason for this

behavior could be the stronger intraparticle diffusional limitations at the higher reaction
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temperature.

The results of Figures 1-3 are of great importance for the in situ removal of HsS in
gasifiers through limestone injection since they show that even small amounts of oxygen
can lead to completely different behavior of the limestone particles from that revealed
by simultaneous or sequential calcination and sulfidation experiments. We intend to do
more work on limestone sulfidation in the presence of oxygen in the next six-month period.
Since in the presence of oxygen, H»S reacts in the gas phase to form other sulfur-containing
species, we will perform thermodynamic equilibrium computations on the mixture fed to
the chemical reactor to see what species are in existence at equilibrium in the gas phase
at the reaction temperature. These results are expected to be of great help in explaining
the behavior of the limestone sulfidation process in the presence of small concentrations of

oxygen.

2.2. Development of a Simulation Scheme for Studying Volume Trapping in

Reacting Grain Structures

A stochastic simulation scheme was formulated for studying matrix volume trapping
in structures of growing particles, where growth can occur only on surfaces that serve
as boundaries of infinite (accessible) subsets of the matrix phase. This is the case that
is encountered in the sulfidation or the sulfation of calcined limestones. The following
steps are involved in the method: i) a unit cell is constructed for the starting (mother)
structure, and the mother structure is used as basis for the construction of a number of
derivative (daughter) structures of uniformly grown particles; ii) a number of points is
selected randomly within the unit cell, and these points are used as starting points of
random walkers that travel in the matrix space (outside the particles) by suffering diffuse
reflections (according to the cosine law) on the particle surfaces; iii) such computations
are carried out both for the initial and the derivative structures, and the information that

is extracted from these computations is employed to determine, for each uniformly grown
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structure, which of the randomly selected points in the two-phase medium lie in the particle
phase, the accessible part of the matrix, or its inaccessible part; iv) the same determination
is made for the real particle structures (that is, with matrix volume trapping accounted
for) using a method developed in this study, and this information is further employed to
estimate matrix volume fractions, mean intercept lengths, surface areas, and volume and
surface area distributions of matrix phase fragments. In addition, we develop a formula
that allows us to determine the variation of the inaccessible matrix volume of the real
structures with the extent of particle growth from the variation of the surface areas and
volume fractions of the inaccessible and accessible parts of the uniformly grown structures.
The obtained results for the real structures are approximate, converging to the exact results

as the steps between successive structures approach zero.

The method was applied to structures of randomly overlapping (fully penetrable),
unidirectional cylinders. The comparison of the results for real and uniformly grown struc-
tures showed that the inaccessible and total matrix volume fractions increase by relatively
small amounts when formation of trapped matrix (pore) space is taken into account. Since
the inaccessible matrix fragments tend to have much larger surface area per unit volume
than the accessible matrix space (by about a factor of 4 at the onset of formation of in-
accessible matrix space starts), the total surface area of real structures is slightly larger
than that of uniformly grown structures of the same particle size. It is believed that the
reason for the existence of small differences between real (with volume trapping accounted
for) and uniformly grown structures is that formation of inaccessible matrix space occurs
at a significant rate only close to the percolation threshold. In past studies, this was also
observed to be the case for structures of multidirectional, randomly overlapping fibers or
unidirectional, partially overlapping fibers. It is thus expected that real and uniformly
grown structures will exhibit small differences for these cases as well. This is a very im-
portant result for since it implies that the information that is available in the literature

on the percolation behavior of the above fibrous media for uniform fiber growth can also
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be employed, without leading to significant errors for practical purposes, for the physically
meaningful case where the fibers grow only on their accessible surfaces. This may also be
the case for the grain or pore structures that are used to simulate the structure of calcined

limestones (Yu, 1987; Sotirchos and Zarkanitis, 1992).

More information on this work can be found in the paper that is attached as an

appendix to this report.

3. SUMMARY AND CONCLUSIONS

During the six months of this reporting period, work was primarily done on the study
of the behavior of the sulfidation of precalcined limestones in the presence of small amounts
of oxygen and the development of a stochastic simulation code for determining the extent
of pore volume trapping (formation of inaccessible pore space) in gas-solid reactions ac-
companied by pore volume reduction, such as the sulfation and sulfidation of calcined

limestones and dolomites.

Sulfidation experiments in the presence of oxygen were carried out because we had
observed that leaks of oxygen into the feed mixture led to completely different results from
those obtained in the absence of oxygen. The obtained results showed that the behavior
of the sulfidation of limestone depended strongly, in both a qualitative and a quantitative
sense, on the level of the oxygen concentration in the feed. For small concentration of
oxygen, the weight gained by the calcined sample during sulfidation in a N2-H»S atmo-
sphere presented a maximum, whereas for concentrations above 0.5-0.6% , it increased

continuously, reaching in some cases values that corresponded to complete conversion of

CaO to CaS0Oy.

The simulation scheme for studying inaccessible pore volume formation combines a
gradual increase of the size of the grains that represent the porous structure with a random

walk scheme, the latter used to determine whether a randomly chosen point in the unit cell
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of the two-phase structure lies in the particle phase or in the connected or isolated part of
the matrix phase. The use of the algorithm was demonstrated by performing computations
on structures of freely overlapping, unidirectional cylinders, and results were obtained both
for the volume fractions and the specific surface areas of the accessible and inaccessible

parts of the pore phase.

For the next reporting period we plan to do some more work on the process of limestone
sulfidation in the presence of small quantities of oxygen. Some of the difficulties that we
have been experiencing with the microfurnace arrangement of the high pressure TGA
system have been resolved, and thus, experiments will be carried out both at atmospheric
and high pressures. High pressure experiments will also be done on limestone sulfation
and limestone sulfidation in the absence of oxygen. Finally, we plan to complete the
analysis of the experimental data that we have obtained using the mathematical model for

simultaneous decomposition and solid product formation reactions we have developed.
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ABSTRACT

A stochastic computational scheme is developed for investigating formation of
trapped (isolated) pore volume in a structure of growing particles, with particle growth
occurring only on surface elements exposed to the connected (accessible) part of the pore
space. The simulation procedure combines a gradual increase of the particle size with a
random walk scheme, the latter used to determine whether a randomly chosen point in the
unit cell of the two-phase structure lies in the particle phase or in the connected or isolated
part of the matrix phase. The formulated algorithm is applied to structures of freely over-
lapping, unidirectional cylinders, and results are obtained both for the volume fractions
and the specific surface areas of the accessible and inaccessible parts of the pore phase.
The trapped volume results are compared with those obtained for ordinary continuum

percolation, that is, for uniformly growing particles.



I. INTRODUCTION

Physical models that represent the solid phase of porous media as populations of solid
objects are often used as a basis for transport or transport and reaction studies in porous
media. By varying the size, orientation, and position distributions of these objects (grains
or particles) a variety of physical models for porous media can be obtained. For many
man-made porous materials, the representation of their solid phase by a 3-dimensional
assemblage of solid objects offers a realistic representation of their structure. Examples of
such porous media are materials prepared by compacting powders and the various fibrous
materials that are employed as filtration media or reinforcing phase of composite materials.

There are many applications in which porous media participate in chemical reactions
that lead to deposition of solid material on their internal surface (gas-solid interface).
Deposition reactions almost always involve gaseous or liquid compounds transported to
the reaction (deposition) interface through the pore space, and therefore, deposition can
only take place on parts of the internal surface of the porous medium that can be accessed
from the exterior, that is, parts that are boundaries to infinite subsets of the pore space.
Typical examples of structure evolution driven by deposition reactions are offered by the
process of chemical vapor infiltration for ceramic composite fabrication!=3, where gaseous
precursors are used to deposit carbon or ceramic materials on the internal surface of a
porous medium (usually of fibrous structure) and the deactivation of catalysts through

45 Structure evolution phenomena similar to

carbon deposition within their structure
those seen in deposition reactions are encountered in gas-solid reactions that form solid
products that occupy more space than the solid reactants they replace. Such reactions are
exemplified by several gas-solid reactions used in pollution control applications, such as the
removal of hydrogen sulfide and sulfur dioxide from coal utilization gases using calcined
limestones (i.e., porous calcium oxide)®=8,

The evolution of the structure of a porous medium whose solid phase is represented
as population of grains or particles can be followed by keeping the positions of the particles
fixed and moving the points of their surface in the direction of the outward-pointing normal

vector with the same velocity. In accordance with the preceding discussion, growth of

particles can occur only on those parts of their surface that are boundaries to infinite regions
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of the pore space. Since particle growth leads to diminishing porosity and interstitial
distances in the pore space, areas of the pore space that are accessible at the outset of the
process may be cut off from the infinite regions and become inaccessible. When particle
growth reaches a critical level (the percolation threshold), the pore space ceases to percolate
— it exists only as finite regions — and further deposition and structure evolution become
impossible.

Uniform particle growth and formation of inaccessible pore space are schematically
illustrated in Figure 1 for the case of a physical model consisting of disks on a plane or uni-
directional cylinders in three dimensions. To point out the difference between the process
characterized by uniform particle growth (ordinary percolation) and the growth process
that requires transport of fluid precursors to the fluid-solid interface, particle growth is
represented using two distinct layers. The layer that is indicated by the lighter gray color
corresponds to particle growth that has occurred after the formation of the inaccessible
region I, and therefore, its part that lies within I cannot be formed through a deposition
or gas-solid reaction process under physically realizable conditions. For obvious reasons, it
is much easier to study the ordinary percolation process in which the particles are assumed
to grow on all points of their surface, including those that bound inaccessible (trapped)
regions of the pore space. Since the accessibility characteristics of the structure are not af-
fected by whether the inaccessible (finite) regions of the pore space are allowed to shrink or
not, the information that is extracted from the study of the ordinary percolation problem
on the dependence of the accessible pore volume fraction and of its properties on particle
growth is also applicable when pore volume trapping is taken into account. The variation
of the accessible and inaccessible pore volume fraction and internal surface area during
ordinary percolation can be employed — as it will be shown later — to determine the true
inaccessible volume fraction, but a direct simulation scheme of the trapping process is re-
quired to determine other characteristics of the inaccessible areas, such as specific surface
area and size distribution.

The formation of inaccessible (trapped) pore volume in porous media undergoing
reactions that lead to diminishing porosity has been investigated only in the context of

using a pore network or an abstract bond-site lattice to represent the porous medium.
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A simulation scheme was employed to determine the connectivity characteristics of the
accessible pore structure by Sahimi and Tsotsis®, whereas Yortsos and Sharma®, Yu and
Sotirchos!?, and Sotirchos and Zarkanitis” determined them analytically from information
for ordinary percolation by utilizing the observation that the evolution of the accessible
pore, bond, or site clusters remains the same if entities are removed randomly not only
from the accessible but from the inaccessible clusters as well. n equivalent observation
for the problem we examine in the present study is — as we have already indicated in
the previous paragraph — that the evolution of the accessible pore or matrix space with
a variable describing the change of the size of the constitutive elements (grains) of the
structure is the same as in the percolation process in which the grains are allowed to
grow uniformly. Thus, it is not appropriate to describe the above processes as correlated
processes, a term usually reserved for processes in which there are spatial correlations
among the bonds of the lattice for discrete percolation problems or the particles (grains)
for continuum correlation problems'!=3. Another point that must be made is that the
process of pore (bond) isolation or pore (matrix) volume trapping that characterizes these
processes can also be encountered in correlated percolation problems. We therefore choose
to describe the process we study as percolation with trapping, a term used by Dias and
Wilkinson'* to describe a similar situation that arises in an invasion percolation process
involving two immiscible fluids on a lattice, where only the infinite clusters of the defender
fluid are modified as the occupying fraction of the invader is increased.

A computational algorithm is formulated in the present study for studying pore
volume trapping in a system of growing particles whose structure is modified through
deposition on the surface of the particles involving species transported through the pore
space to the reaction sites. It is based on a Monte Carlo simulation scheme that combines
discrete (gradual) increase of the particle size with random walk computations. Points
are placed randomly in a cubic unit cell of the particle structure and used as starting
positions of random walkers that move through the matrix phase by suffering successive
diffuse reflections on the surface of the particles. By employing a method first proposed
by Burganos and Sotirchos'®, the trajectories of the random walkers are used to determine

which of the randomly chosen points lie in the particle phase and in the connected and
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isolated parts of the pore space at each step of particle growth. Further analysis of the
trajectory data makes possible to determine the evolution of accessible, inaccessible, and
total matrix volume fraction, average pore size, and surface area, with the particle size. It
is also possible to find the Knudsen diffusion coefficient of gases in the pore space by using
the information on the variation with time of the mean square displacement of the random
walkers that travel in the accessible regions of the pore space. Results are presented on
the application of the method to a random array of fully penetrable (freely overlapping)
unidirectional cylinders. The computed trapped pore volume fraction at the percolation

threshold is compared to that obtained from uniform particle growth computations.

II. DESCRIPTION OF THE METHOD

We describe in this section the general aspects of the computational scheme that we
have developed for studying correlated percolation in a system of growing particles. We
also describe the derivation of an equation that may be used to follow the evolution of the
accessible pore volume fraction during percolation with volume trapping using the results
from the percolation process for uniform particle growth. Since the analysis we present
applies to any two-phase composite medium in which one of the phases exists in the form of
an assemblage of particles, the term matrix phase or matrix is employed when reference is
made to the phase that surrounds the particle assemblage (i.e., the pore space in a porous

medium).

I1.1. Determination of Matrix Connectivity from Random Walk Results

In the method formulated by Burganos and Sotirchos!®, random points are intro-
duced in a representative unit cell of the two-phase medium and those that fall in the
matrix phase are used as starting positions of random walkers. The trajectories of the ran-
dom walkers are then employed to determine whether a starting point lies in the accessible
(connected) or isolated part of the matrix. Each walker is assumed to move through the
matrix phase of the two-phase medium by undergoing diffuse reflections (according to the
cosine law) at the interface. Thus, its trajectory consists of straight segments that begin
and end at the matrix-particle interface.

Walkers that remain confined in regions smaller than a threshold value as the time of
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travel increases are assumed to travel in isolated (inaccessible) parts of the matrix phase.
When all interfaces are oriented parallel to some direction — as it is the case with structures
in which one of the phases consists of a population of unidirectional cylinders — accessibility
is defined on planes perpendicular to that direction. Let N be the total number of points
chosen within the unit cell, N¥ the number of points that fall in the particle phase, N4
the number of points that serve as starting points of trajectories that cover regions of space
larger than the chosen threshold limit, and N’ the number of points that yield trajectories
confined within region smaller than that value. Since the points are selected randomly
over the whole unit cell, the following relationships can be used to determine the volume
fraction of the matrix phase, €, and its accessible and inaccessible parts, €4 and €!:

Np 4 N4 , NI

=1- L, —; € =
€ N,E N,G N

(la,b,c)
The specific surface area (per unit of total volume) of the interface that bounds one of
the components of the structure (matrix phase, particle phase, inaccessible matrix phase,

or accessible matrix phase) can be determined using the equation!6:17,

5= 2)

where ¢ is the volume fraction and d the mean chord length of the component we are
interested in. Since the cosine law is used to determine the direction of the path that a
random walker follows after a collision with the particle-matrix interface, each path lies on
a line of random orientation in space. As a result, the mean chord length of a certain region
(connected or disconnected) is equal to the mean path of all random walkers that have
travelled in the same region, each accomplishing the same travel distance. This quantity
can be obtained directly from the results of the trajectory computations. For the total,
accessible, and inaccessible specific surface areas of the matrix phase, S, S4, and ST, the
general relationship of equation (2) yields the equations:

4T

4 4e4
§=—i 8= 8T = — (3a.b,c)

It should be noted that equations analogous to (1) and (3) also apply to each indi-
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vidual fragment of the isolated (inaccessible) part of the matrix phase. Therefore, if one
can identify all molecules that travel in the same fragment, those equations can be used to
determine the volumes and surface areas of individual fragments and in this way construct
fragment size and surface area distributions. Burganos and Sotirchos based the identi-
fication of fragments on the extremal coordinates of the trajectory of a random walker
(Zmins Tmaxs Ymins Ymax, Zmins Zmax)- Specifically, two or more walkers were considered to
travel in the same fragment if the same extremal coordinates of their trajectories for large
travel times did not differ by more than a small number that was of the order of the pore

size used in the construction of the pore network.

I1.2. Algorithm for Following Matrix Volume Trapping

The application of the method begins with the construction of a unit cell of the two
phase medium, usually of cubic shape. In the case of a structure of randomly overlapping
particles, this is accomplished by simply introducing at random locations and according to
the chosen size and shape distributions the particles that may wholly or partly lie in the
cubic unit cell. By applying periodic boundary conditions in the construction of the unit
cell — if the application of such conditions is possible — and arranging identical unit cells
side by side, an infinitely large structure that spans the whole space and is statistically
representative of the two-phase medium is obtained. If construction of periodic unit cells is
not possible — as is the case with structures of infinitely long cylinders oriented randomly
in two or three directions — an infinitely large structure can be obtained by filling the
space with unit cells derived from the constructed unit cell so that all neighboring cells are
mirror images of each other relative to their common face.

Once the construction of the unit cell is completed, the method proceeds with the
generation of a sequence of derivative structures (daughter structures) of decreasing matrix
volume fraction by enlarging uniformly all particles that make up the unit cell of the
original structure. A schematic flow diagram of the procedure is given in Fig. 2. We
use index 0 to represent the initial (mother) structure, Uy, and indices i = 1,2,... to
represent the resulting daughter structures of uniformly grown particles, U;, in the order

of decreasing matrix volume fraction. We introduce Ny test molecules in the unit cell of
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the mother structure and determine using the criteria described in the preceding section,
the number of test molecules that fall in the particles Py, in the connected part of the
matrix phase Ay, and in the isolated part of the matrix phase, I. The points that are
found to lie in the connected part of the matrix phase of the mother structure are then
used as starting points of molecular trajectories in the first daughter structure, and the
information extracted from these trajectories is used to determine the number of the A
points that fall in the connected part of the first daughter structure, A;, the number of
points that fall in its particle phase, P;, and the number of points that fall in the isolated
matrix phase, I;. We continue with the A; points from the first daughter structure and
use trajectory information from the second structure to partition their number into As,
P5, and I, parts. This process continues until we encounter a daughter structure, say Uy,
that does not show any connected matrix.

The derivative structures employed in the above described sequence of trajectory
computations are obtained by letting all particles grow uniformly. As a result, they are not
representative of the real structures, R;, that would be obtained if particle growth occurred
by deposition of solid material transported into the structure from the outside, since in this
case only the connected phase would be growing. The following three observations may be
used to employ the A;, P;, and I; results to determine matrix phase and inaccessible volume
information for the true derivative structures: i) Any point that lies in the accessible phase
of the ¢th uniformly grown daughter structure, ;, would also lie in the accessible phase of
the ¢th real daughter structure, R; — since the accessible parts of grown and real daughter
structures of the same generation uniformly are identical. ii) If a point lies in the solid
phase of the mother structure, it will also belong to the solid phase of any real daughter
structure — since the solid phase of the mother structure is a subset of that of the daughter
structure. This also holds for any daughter structure and the derivative structures that
result from it. iii) If a point lies in the isolated phase of R; it will also lie in the isolated
phase of any real structure with index greater than ¢ — since in real structures isolated
regions do not change after they are formed.

Let NP, NA

A and N} be the number of molecules from the initial number Ny in-

troduced in the unit cell of the mother structure that would have fallen in the particle
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phase, accessible matrix phase, and inaccessible matrix phase, respectively, of the ith real
daughter structure, R;. It follows from the above observations that Nf', N2, and N/ can

be obtained from the following relationships

NA=A; NP =P NI =>"1; (4a,b,c)
Jj=0 Jj=0

For the mother structure, we obviously have

N = Ag; NP = Py; NI =1 (5a, b, c)

Since A;_1 = A; + P; + I;, it follows that NiA + NZ-P + NiI = Np — as it should be the case.
With NA, NP and N} known, equations (1) and (3) can be used to determine all
structural properties of the ith real daughter structure. For the porosities, we have from

equations (1)

A NA i N} :NO—Nf

_NE N
TN TN No

(6a,b,c)

The mean path of the N# walkers for the ith set of trajectory computations is equal to
the mean random chord of the accessible space, Jf‘, and it can thus be used to determine
the accessible surface area per unit volume. Similarly, the mean chord length of the
inaccessible space is equal to the mean path of the N molecules. It can be estimated
using Iy trajectories from the mother structure and I; (j = 1,...,4) for the daughter

structures. From equations (3), we have

; 4e4 4T
Si:d;; SA = ;{;;Sg:% (7a,b,c)

The above computation scheme yields discrete approximations to the e vs. ¢ or ef

vs. € curves that would be observed during densification of the porous medium through
solid deposition on its accessible surface. The difference between the discrete approxi-
mation and the exact result can be reduced by decreasing the growth distance between
successive structures or, equivalently, by increasing the number of daughter structures

between the mother structure and the structure at the percolation threshold.
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I1.3. Computation of Quantities for Uniform Particle Growth

With minimal additional effort, the results from the above computations can also be
used to compute properties for the uniform particle structures. Let I ]” be the number of the
I; isolated walkers found in the jth uniform structure that fall in the gas phase in the ith
uniform structure j < 7. These walkers can easily be identified by comparing their initial
locations with the space occupied by the particles in the ith uniform structure. We do not
have to examine the locations of all of the I; walkers in each of the subsequent structures
since those isolated walkers that fall in the solid phase of the ¢th structure will also fall in
the solid phase of all subsequent structures. The total number of walkers that fall in the
inaccessible space in the 7th uniform daughter structure is given by (IH—EE_I I;), the total
number of walkers that fall in the inaccessible space is A;, the same as in the real structure,
and the total number of walkers that fall in the solid phase is (Zf) P; + Zf)_l(l i —17)).
Let superscript v denote quantities referring to the structures of uniformly grown particles
or, equivalently, the percolation problem that is commonly considered. On the basis of the

above observations, we have:

Ai
=N = (8a)
I + z’i—l [Z
ul 4 0 J I
67; N() 67; ( )
Nog— (S0P Y 8
0

The internal surface areas of the uniform particle structures can be computed us-
ing equations analogous to those (equations (7)) for the real structures. The accessible
surface area per unit volume of the uniform particle structures is the same as that of the

real structures. To compute d?¥ and d¥f

#*, we need information on the trajectories of the

( (i]_l I ]”) walkers that travel in the inaccessible space of ith structure, and which have
become isolated in earlier daughter structures. Since we know that these molecules are
isolated, we only have to let them travel for as much time (or distance) as needed to obtain

a representative sample of random chords.
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I1.4. Prediction of Trapped Volume Fraction from Uniform Growth Results
The uniform particle structure results can be used to predict the relationship between
e and € and — since ¥4 and €4 are equal — between ¢4 and . When the particles are
assumed to grow uniformly, the inaccessible regions decrease in size, and this makes the
difference between ¢ and " progressively larger. As the particle growth variable changes
from ¢ to q + dq, the change in the porosity of the inaccessible regions of the uniform
structures is equal to S*/dg. Since the difference in € and € is only due to the change in

the size of the inaccessible regions, we must have

d(e — ") = S dq (9)

Integrating this equation between 0 and ¢ using that e|,—o = €%|4=0 = €0 gives

q
e=¢e"+ / S“Idq' (10)
0

This equation is a rigorous result and can be used to find ¢ as a function of €%, and vice
versa, for any particle structure provided that the variation of S*! with ¢ is known. Since
the accessible pore space is the same in uniform and real structures, e4(¢) can be found

as “4(%(¢)). Equation (10) could also be derived by using the relationships
de = —(S"T 4 5*4)dgq
de = —S"4dg = —S4dq
or equivalently,
¥ =¢gog — /q(S“I + S“Yydg'
0

q
£=-¢€p— / S“Adg'
0

The properties of the uniform particle structures can be computed using the gen-
eral method of Section II.1 or in conjunction with the percolation with volume trapping

computations, as described in Section I1.3. Suppose that there are n — 1 uniform particle
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structures between the starting (mother) structure and the percolation threshold. Using
the trapezoidal rule to evaluate the integral in equation (10), we get
SuI + SuI )
i =€ +Z (g5 — qj-1) (11)
For the percolation threshold, i.e., the porosity of the nth daughter structure, this equation
gives
SuI SuI )
=¢c, + Z (¢; — qj-1) (12)
The advantage of using equation (11) to find the total, accessible, and inaccessible porosi-
ties of the volume trapping percolation problem is that only information for the uniformly
grown grain structures is needed, that is, the volume trapping algorithm does not have
to be employed. Since an integral formula is employed, relatively accurate results can be
obtained with only a few daughter structures. However, the volume trapping algorithm
has the advantage that it can provide information for all properties of the volume trapping
percolation problem and not only for the porosities (volume fractions).

Let « be the ratio of the mean random chord of the total pore space, d¥, to the mean

random chord of the inaccessible space, d*/. Using equation (3), we can write for S

ul gu,A

sul — aS“i—u —aS*(1- ) (13)

8111
Introducing this equation in (9) and using de® = S“dq to change the variable of integration

from q to €, we get

€0 guA
e=¢" +/ a(l — —-)de’' (14)

u €
where ¢¢ is the common value of € and € for growth zero. For a being approximately
constant, equation (14) can be used to derive an approximate expression for £(¢*) that
involves only £"4(¢*). For example, if the mean random chord lengths of the total pore
(matrix) space and of the inaccessible pore space of the uniform structures are assumed to

be approximately equal to each other, i.e., @ = 1, we get
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€0 ~uA (!
8260—/ £ (g)ds’ (15)

u e’

In their study of percolation during uniform growth of structures of randomly overlapping
unidirectional cylinders, Burganos and Sotirchos found that that d“! /d* was significantly

larger than 1. Therefore, equation (15) is expected to underestimate ¢ for such structures.

III. APPLICATION

We applied the formulated algorithm to a porous medium whose structure can be
represented by a population of randomly overlapping, unidirectional cylinders. A unit cell
for this structure was constructed by positioning randomly the traces of the axes of the
cylinders on one of the faces of a cube. In order to obtain a periodic unit cell spanning
the whole space, periodic boundary conditions were employed!®. In an infinitely large

structure, the porosity (matrix volume fraction) is given by!9-20

g% = exp(—mlr?) (16)
where / is the cylinder density, i.e., the total length of cylinder axes per unit volume or
the number of traces of axes on the cubic face, and r is the radius of the cylinders. We
have used superscript u on & because the structure it refers to is composed of perfect
cylinders, i.e., uniformly grown particles. For finite realizations (samples) of the porous
medium, equation (16) gives the mean value of porosity for a large number of realizations.
The porosity of the finite samples we constructed for computations was determined by
introducing 107 points randomly in the cubic cell and computing the fraction that fell in
the matrix phase.

Past studies':!'821 showed that the percolation threshold of a structure of randomly
overlapping, unidirectional cylinders, ¢, is equal to about 0.325. Like the porosity given
by equation (16), this value gives the percolation threshold of an infinite structure or the
mean value of the percolation threshold of a large number of finite realizations. The results
we present and discuss here were obtained using sample structures having percolation
15,18 ¢

thresholds very close to the mean value. We used a cluster identification scheme

determine the percolation thresholds of the unit cells we constructed, and only structures
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that had percolation thresholds for uniform cylinder growth between 0.315 and 0.335 were
employed for random walk computations. To identify such samples we started from dense
cylinder structures having porosity (matrix volume fraction) much lower than the mean
percolation threshold. This was done because as the cylinder size is increased, cylinders
that initially lie wholly within the cell boundaries start to intersect the boundaries, and
it thus becomes necessary to introduce more cylinders to maintain the periodicity of the
unit cell.

The cluster identification scheme proceeds as follows: A sequence of derivative struc-
tures is constructed by reducing the cylinder radius by a certain amount Ar, and for each
of them, a search is made for clusters of cylinders spanning the unit cell. When a structure
with permeable matrix (that is, a structure for which no spanning clusters can be found)
is encountered, the percolation threshold radius of the structure is approximated as the
mean of the values that yield successive impermeable and permeable structures. To obtain
a more accurate estimate of the percolation radius, we repeat the above procedure start-
ing from the last impermeable structure with an order of magnitude smaller step, and we
can continue doing this until the desired accuracy is obtained. The percolation threshold
porosity is then determined as the probability to find a random point in the pore space.
It should be noted that in order to guarantee that a cell-spanning cluster would extend
to infinity, a cluster is considered to span the unit cell only when it includes at least one
boundary cylinder and its periodic image on the opposite phase of the cylinder.

To apply the algorithm of Section I1.2 to study correlated percolation in the unidi-
rectional random cylinder structure, the radius of the cylinders is reduced until a structure
possessing no inaccessible pore space is obtained. A significant amount of inaccessible pore

space exists in that structure only close to the percolation threshold!®18

, and for porosities
(¢*) above 0.4 it turns out that almost all pore space is accessible. Using equation (16), it
is found that about 10% reduction in the cylinder radius is required to bring the porosity
from its percolation threshold value (0.325) to 0.4. A random walker is assumed to travel
in an inaccessible fragment of the pore space if the maximal x or y coordinates of its tra-

jectory, within the allotted travel time, do not exceed the corresponding minimal values

by more than the side of the unit cell. In the z direction (i.e. parallel to the cylinders),
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the structure is connected at all porosities. Burganos and Sotirchos considered in their
study that molecules travelled in inaccessible fragments if they did not visit, again within
the allotted time, cells that did not border the cell from which they started their travel.
Computations using this last criterion were also carried out, but no significant differences
from the results computed using the first criterion were obtained.

For insufficiently long travel times, or equivalently distances, the results are strongly
depended on travel time or distance. If the time of travel is not large enough, molecules
travelling in connected areas with small necks may wrongly be classified as travelling in
inaccessible fragments. Figure 3 presents the variation of the fraction of random walkers
that are found to travel in the accessible void space with the travel distance for an array of
fully penetrable unidirectional cylinders with r/r, = 0.97. The fraction is taken relative to
the number of walkers that were determined to travel in the accessible void (matrix) space
of the structure with r/r, = 0.96. The results of Figure 3 indicate that about 3% of the
walkers travel in finite size subsets of the matrix phase; therefore, about 3% of the matrix
phase of the daughter structure with r/r, = 0.97 that is contained in the accessible matrix
phase of the structure with r/r, = 0.96 is inaccessible. However, travel distances greater
than about 5-10° cylinder radii had to be employed to obtain this result. Random walkers
that were found to travel in the accessible pore space accomplished an average distance of
107,000 radii by the time they attained net displacement equal to one cell side.

The expression for the first passage probability of molecules diffusing in the accessible
void space of the molecules through molecule-wall collisions may be employed to understand
better the results of Figure 3. The first passage probability of a diffusion process gives
the probability that a random walker reaches a given distance from the origin for the
first time within the time interval (¢,t + dt). Since a molecule is considered to travel in
the accessible part of the pore space if the difference between the minimal and maximal
coordinates of its trajectory in the x or y direction (that is, on the plane normal to the
direction of the cylinders) is greater than one unit cell side, it may be argued that in the
absence of inaccessible pore space, the ordinate in Figure 3 approximately corresponds to
the probability that a random walker is displaced from the origin by a distance greater

than half of the unit cell side on the (z,y) plane for travel distance smaller than the value
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of the abscissa. In other words, the ordinate in Figure 3 approximately represents the
first passage probability for time less than that corresponding to the travel distance of the
abscissa through a cylindrical boundary placed parallel to the cylinders and located at a
distance equal to half of the unit cell side. For isotropic transport in two dimensions — as
it is the case on the plane normal to the cylinders — it can be shown that the first passage

probability for displacement distance b is given by?2:23

> 2 " )
Pt)=1-Y — = ¢ diDet/b 17
b0 ;]iJI(Ji) ()

where J; is the first order Bessel function of the first kind, j; is the ith zero of the zero
order Bessel function of the first kind (Jp), and D, is the effective diffusion coefficient
through the accessible void (matrix space) on the (z,y) plane. The time that appears in
equation (17) is for travel on the (z,y) plane only. It is proportional to the travel distance
of Figure 3, and therefore, equation (17) also applies in transport in three dimensions for
first passage through a cylindrical enclosure.

Equation (17) states that the travel time required for a certain fraction of the ran-
dom walkers that travel in the accessible part of the matrix space to reach a boundary
located at a given distance from the origin of their travel is inversely proportional to their
effective diffusivity. The effective diffusivity in the accessible matrix phase decreases as
grain growth occurs and the porosity is decreased, becoming exactly zero at the percola-
tion threshold. For this reason, the minimum travel distance that is needed to obtain an
accurate count of the molecules that travel in inaccessible fragments of the matrix space
becomes progressively larger as the radius of the cylinders is increased, diverging to in-
finity at the percolation threshold. By comparing the transmitted fraction of molecules
through the cylindrical enclosure that is obtained from the simulations with that predicted
by equation (17), it is possible to obtain estimates both of the effective diffusivity in the
accessible part of the matrix phase and of the number of random walkers that travel in
the inaccessible part of the matrix. The effective diffusivity estimate can subsequently be
employed in equation (17) to determine the minimum travel time that is needed to obtain

an accurate count of the random walkers that travel in the accessible part of the matrix.
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Figure 4 shows how the error in the computation of the percolation threshold of the
real structures (with volume trapping accounted for) with the number of steps from the
mother structure (r/r, = 0.7325 or € ~ 0.55) to the structure at the percolation threshold
for two different realizations. For one step only, the predicted percolation threshold is equal
to that found for uniformly grown structures. Since the percolation threshold of the real
structures is close to that of the uniformly evolved structures, relatively good accuracy in
its estimation is obtained even with a few structures. About 99% accuracy can be achieved
using 10-15 discretization steps, but almost 100 steps are needed for an accuracy of 99.5%.
The two realizations that were used to obtain the results of Figure 4 were among those that
gave the largest difference between the percolation threshold for uniform grain (cylinder)
growth and that with volume trapping taken into account.

Table T gives average values of total porosity, both for real and uniformly grown
structures (e and e"), and accessible porosity computed for eight realizations of a structure
of unidirectional, randomly overlapping cylinders for a initial (mother) structure at r/r, =
0.7325 and 10 derivative (daughter) structures, including that at the percolation threshold
(r/rp = 1.0). The number of cylinders in the unit cell ranged from 220 to 250, and 2500
starting points of random walkers were employed. The results of Table I show that the
difference between the porosity of uniformly grown structures and that of real structures
is very small. The average values of porosity at the percolation threshold for the eight
structures of Table I was found to be 0.3275 for uniformly grown structures and 0.3347
for real structures. This result is in very good agreement with those obtained by Sahimi
and Tsotsis®, Yortsos and Sharma®, Yu and Sotirchos'?, and Sotirchos and Zarkanitis” for
the connectivity characteristics of pore networks in gas-solid reaction processes involving
diminishing pore size, where only pores that belong to accessible (infinite clusters) can be
plugged. For example, the computations of Sahimi and Tsotsis® for a showed that the
percolation threshold, expressed in terms of the number fraction of unplugged pores (open
bonds) of the network changes from 0.249 for the random percolation process to 0.255 for
the real process in which inaccessible pores cannot undergo size change.

The existence of a small difference between the percolation thresholds of uniformly

18,21,24

grown and real pore structures was postulated by us in past publications on the
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basis of the observation — as it is also seen from the results of Table I — that formation of
significant amount of inaccessible pore space occurs in a very narrow range of pore space in
the vicinity of the percolation threshold. The same observation led Ofori and Sotirchos?,
to assume when they modelled the process of chemical vapor infiltration for fabrication of
ceramic matrix composites in uni-, bi-, or tridirectional random fiber structures (i.e., with
fibers positioned in space parallel to a line (as in the application considered in the present
study), parallel to a plane, or without preferred orientation) that formation of inaccessible
pore space occurred right at the percolation threshold, which they set equal to that found
for uniformly grown structures by Burganos and Sotirchos!®.

Figure 5 presents the evolution of the computed values of mean intercept length of
the accessible, inaccessible, and total matrix phase with the cylinder radius, whereas the
values of surface area that are determined using these results and the porosity values in
equations (7) are shown in Figure 6. The theoretically predicted mean intercept length for
uniformly grown arrays of fully penetrable (freely overlapping), unidirectional cylinders is
also plotted in Figure 5. It is given by2? d* = 2/(wfr)). It is seen from the results of
Figure 5 that the dimensionless mean intercept length with volume trapping accounted for
is slightly larger than that for uniformly grown structures. Since the internal surface area
is for a given porosity, inversely proportional to the mean intercept length, the opposite
observation holds for the dimensionless internal surface area values in Figure 7. The mean
intercept length of the inaccessible matrix fragments is by a factor of about four smaller
than that of the accessible matrix space, which implies that the inaccessible regions have,
per unit of volume, surface areas larger by that factor than the accessible matrix. Both
the accessible and total matrix mean intercept lengths decrease as the cylinder diameter
increases, whereas that for the inaccessible (isolated) matrix increases. The surface areas
change in the same way as the mean intercepts lengths and not in the opposite way, as
expected from equations (7), because they are affected more by the change in the volume
fractions. The volume of the inaccessible matrix fractions is obviously larger when volume
trapping is accounted for, i.e., in the real structures, and this is the reason for which the
real structures have larger surface areas.

At the percolation threshold, r/r, = 1.0, all matrix space becomes inaccessible, and
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the mean intercept length and surface area of the isolated matrix space become equal
to the total matrix values. As we have already pointed out in the discussion of Table
I, formation of a significant amount of pore space takes place in an very narrow region
of values of cylinder radius or matrix volume fraction next to the percolation threshold.
As a result, the mean intercept length of the isolated matrix space remains much smaller
than that of the total matrix space even for values of dimensionless cylinder radius as high
as 0.99. An analogous observation was made in past studies of the percolation behavior,
for uniform fiber growth, of structures of multidirectional, randomly overlapping fibers
(placed in space parallel to a plane or without any preferred orientation) and unidirectional
(parallel), partially overlapping fibers!®2%. In view of the results of Table I and of Figure
5 and 6, it is expected that the total matrix fraction, and hence, the percolation threshold,
of these structures will not be affected significantly when volume trapping is taken into
account. We tested this hypothesis by assuming that d“ / d*! for these structures had
approximately the same average value as d/d! for parallel, unidirectional fibers (Figure
5) and using equation (14) to determine the total matrix volume fraction (porosity) with
volume trapping using the %4 vs. " from our previous studies. The obtained results
showed that the inaccessible and total matrix volume fraction increase only slightly when

occurrence of volume trapping is allowed for.

IV. SUMMARY AND CONCLUSIONS

A stochastic simulation scheme was formulated for studying matrix volume trapping
in structures of growing particles, where growth can occur only on surfaces that serve as
boundaries of infinite (accessible) subsets of the matrix phase. The following steps are in-
volved in the method: i) a unit cell is constructed for the starting (mother) structure, and
the mother structure is used as basis for the construction of a number of derivative (daugh-
ter) structures of uniformly grown particles; ii) a number of points is selected randomly
within the unit cell, and these points are used as starting points of random walkers that
travel in the matrix space (outside the particles) by suffering diffuse reflections (according
to the cosine law) on the particle surfaces; iii) such computations are carried out both

for the initial and the derivative structures, and the information that is extracted from
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these computations is employed to determine, for each uniformly grown structure, which
of the randomly selected points in the two-phase medium lie in the particle phase, the
accessible part of the matrix, or its inaccessible part; iv) the same determination is made
for the real particle structures (that is, with matrix volume trapping accounted for) using
a method developed in this study, and this information is further employed to estimate
matrix volume fractions, mean intercept lengths, surface areas, and volume and surface
area distributions of matrix phase fragments. In addition, we develop a formula that allows
us to determine the variation of the inaccessible matrix volume of the real structures with
the extent of particle growth from the variation of the surface areas and volume fractions
of the inaccessible and accessible parts of the uniformly grown structures. The obtained
results for the real structures are approximate, converging to the exact results as the steps
between successive structures approach zero.

The method was applied to structures of randomly overlapping (fully penetrable),
unidirectional cylinders. The comparison of the results for real and uniformly grown struc-
tures showed that the inaccessible and total matrix volume fractions increase by relatively
small amounts when formation of trapped matrix (pore) space is taken into account. Since
the inaccessible matrix fragments tend to have much larger surface area per unit volume
than the accessible matrix space (by about a factor of 4 at the onset of formation of in-
accessible matrix space starts), the total surface area of real structures is slightly larger
than that of uniformly grown structures of the same particle size. It is believed that the
reason for the existence of small differences between real (with volume trapping accounted
for) and uniformly grown structures is that formation of inaccessible matrix space occurs
at a significant rate only close to the percolation threshold. In past studies, this was also
observed to be the case for structures of multidirectional, randomly overlapping fibers or
unidirectional, partially overlapping fibers. It is thus expected that real and uniformly
grown structures will exhibit small differences for these cases as well. This is a very im-
portant result for since it implies that the information that is available in the literature
on the percolation behavior of the above fibrous media for uniform fiber growth can also
be employed, without leading to significant errors for practical purposes, for the physically

meaningful case where the fibers grow only on their accessible surfaces.
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Table I. Evolution of the porosity of uniformly grown structures, the porosity of real
structures, and the accessible porosity with the eylinder size.

rirp 3 e £
0.7325 | 0.5489 | 0.5489 | 0.5489]
0.75 |0.5350|0.5358 | 0.5342]
0.80 |0.1926 |0.4918 | 0.4809]
0.85 |0.4473 | 0.4459 [ 0.4440
0.90 |0.4035 | 0.4013 | 0.3980)
0.95 |0.3668 |0.3836 | 0.3521
0.96 |0.3607 | 0.3564 | 0.3450)
0.97 |0.3535 | 0.3483 | 0.3340)
098 |0.3465 | 0.3408 | 0.3220]
099 [0.3373|0.3311 |0.3124
1.00 |0.3348|0.3275| 0.




Figure 1. Schematic represeptution in two dimersions of particle growth under conditions
leading to matrix volume trapping.
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Figuee 2. Flow diagram of the successive classification of the starting proints of random
walkers as lving in the particles, the accessible part of the matrix, or the inaccesstbla part
of the matrix.
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