

1 **Laser Ablation-Capillary Absorption Spectroscopy: A novel approach for high throughput and increased
2 spatial resolution measurements of $\delta^{13}\text{C}$ in plant-soil systems**

3 Daniel M. Cleary^{1,2,3}, Timothy J. Linley⁴, Jason M. Kriesel⁵, Andrew Fahrland⁵, James F. Kelly⁵, James J. Moran^{1,6*}

4 ¹ Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA, U.S.A.

5 ² Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea, 46241

6 ³ Department of Atmospheric Sciences, Pusan National University, Busan, Republic of Korea, 46241

7 ⁴ Pacific Northwest National Laboratory, Earth and Environment Directorate, Richland, WA, U.S.A.

8 ⁵ Opto-Knowledge Systems, Inc., Torrance, CA, U.S.A.

9 ⁶ Current: Michigan State University, Departments of Integrative Biology and Plant, Soil, and Microbial Sciences,
10 East Lansing, MI, U.S.A.

11 *Correspondence: moranja7@msu.edu

12

13 **Abstract:**

14 Spatial and temporal heterogeneity of nutrient exchange within the rhizosphere is a topic of increasing interest,
15 although challenging to study due to limits in existing analytical capabilities. Here, we developed and demonstrated
16 a new approach applying laser ablation sample introduction to capillary absorption spectroscopy (LA-CAS) to
17 characterize carbon isotopic distribution within plant tissues, rhizosphere, and soil. We exposed switchgrass plants
18 to $^{13}\text{CO}_2$ to allow tracing of ^{13}C -labelled photosynthates within plant biomass and into the associated soil. The LA-
19 CAS methods we describe leverage continuous measurements of a sample stream derived from laser ablation line
20 scans (10-25 μm in width) over a sample surface which enables the user to produce an isotope map with a) higher
21 data density or b) over larger spatial areas versus previously existing techniques. This versatility of LA-CAS is
22 assessed through testing of a range of laser parameters (spot size, scan rates) on various materials (soil, plant
23 biomass/tissues, and rhizosphere). We demonstrate the ability of LA-CAS to provide near instantaneous $\delta^{13}\text{C}$
24 measurements over isotopically distinct surfaces to enable high spatially resolved mapping of ^{13}C -labelled material
25 within the rhizosphere. Applying LA-CAS analysis to plant biomass, we observed higher $\delta^{13}\text{C}$ values concentrated
26 within phloem structures, consistent with localized photosynthate transport. When mapping across the rhizosphere,
27 ^{13}C -enriched soil was typically present within a 5-10 μm of root boundaries with a steep spatial increase in $\delta^{13}\text{C}$

28 when the scan approached the middle of the root. As with all LA approaches, care needs to be taken to ensure
29 accurate results as phenomena linked to matrix-dependent shifts in ablation behavior/efficiency, variability created
30 by surface topography in the sample, and dependence on complete combustion of the ablated particulates can all
31 impact ultimate usefulness of the data. Still, taken as a whole, our demonstrations highlight the increased sample
32 throughput and resulting data density of using LA-CAS versus other LA techniques (i.e., when coupled to isotope
33 ratio mass spectrometry) for performing spatially specific $\delta^{13}\text{C}$ measurements within plant and rhizosphere systems,
34 the resulting improvements in mapping of carbon introduced into these dynamic systems, and emphasize the role
35 this method can play in future plant and rhizosphere related studies.

36

37 **Keywords:** stable isotope analysis, rhizosphere, root exudate, switchgrass, isotope mapping

38

39

40 **1. Introduction**

41 Measurement and analysis of stable isotopes offers a reliable approach for characterizing biogeochemical processes
42 at the soil and plant levels (Bird et al. 2011; Holz et al. 2018). Such studies have the potential to better define the
43 biogeochemical fluxes between plant roots and soil systems. Of particular interest is the flux of plant-derived
44 organic carbon provided to soil through the rhizosphere (Lambers et al. 2009). Soil microbial communities are
45 reliant on this source of carbon and can, in turn, improve microbially mediated nutrient exchange with plants (Bais
46 et al. 2006; Hinsinger et al. 2005). However, the location where carbon-containing exudates are concentrated within
47 the rhizosphere and surrounding soil is often spatially and temporally variable. For example, plants will
48 preferentially direct root growth towards nutrient rich soil, creating a localized increase in biogeochemical activity
49 (Hodge 2004; Kuzyakov and Blagodatskaya 2015). This spatial heterogeneity can be further accentuated as the
50 result of root differentiation and the lifespan of specialized sections of a root system (Hinsinger et al. 2009;
51 Hinsinger et al. 2005; Marschner et al. 2011). Understanding the complexities of this system is crucial for
52 optimizing conditions for biomass productivity, avoiding nutrient depletion, and reducing the agricultural
53 dependency on synthetic fertilizers (de Vrieze 2015; Hinsinger et al. 2009). While there is substantial interest in
54 rhizosphere related research, the small spatial dimension (processes and gradients at the μm – to mm ranges) of
55 rhizosphere presents challenges for conventional analytical techniques (Moran and McGrath 2021).

56

57 Rhizodeposition represents one of the primary modes of delivering photosynthates to the soil (Pausch and Kuzyakov
58 2018). A practical approach to defining spatial heterogeneity of rhizodeposition is through carbon isotope ($\delta^{13}\text{C}$)
59 analysis using a $^{13}\text{CO}_2$ tracer (Kuzyakov and Domanski 2000). When coupled to a suitable analysis technique, the
60 resulting plant derived ^{13}C -labeled nutrients can be tracked into and their distribution mapped through the
61 rhizosphere (Denis et al. 2019). However, these efforts can be constrained by the spatial resolution and time required
62 for analysis associated with the instrumentation. Laser ablation-isotope ratio mass spectrometry (LA-IRMS) is a
63 technique able to provide precise $\delta^{13}\text{C}$ measurements and allow mapping at sub-mm scales (Bruneau et al. 2002).
64 Due to limited sensitivity of IRMS (Li et al. 2018; nmol to μmol C required per measurement), however, the
65 minimum spot size for ablation is roughly 10-25 μm and the needed cryofocusing of sample-derived CO_2 is a time
66 consuming / low throughput step that can limit the number of spatially resolved data points (Denis et al. 2019;
67 Grieve et al. 2006; Rodionov et al. 2019). Other methods such as nanoscale secondary ion mass spectrometry
68 (NanoSIMS) can allow for isotope imaging at \sim 100 nm scale (Clode et al. 2009) but require extensive time for
69 sample preparation and analysis, are restricted to relatively small sample areas of analysis, and are a comparatively
70 expensive analytical platform with restricted availability for many investigations.

71

72 Although new relative to other methods, capillary absorption spectroscopy (CAS) is an effective technique for
73 analysis of carbon stable isotopes (Kelly et al. 2012). Considering the lower sample size requirements for isotope
74 measurements (as little as 1 picomole of CO_2 ; Kelly et al. 2012), CAS may be a suitable alternative for isotope
75 mapping at more sensitive spot sizes (versus LA-IRMS) over mm length scales (Kriesel et al. 2020). The sensitivity
76 of CAS results from the interaction between light generated by a continuous wave tunable laser and analyte within a
77 low volume hollow waveguide fiber maintained at low pressure. Additionally, isotopic analysis within a CAS
78 system is inherently non-destructive which can allow for recirculation of an analyte gas back into an experimental
79 system to enable, for example, measurements such as continuous tracking of respiration CO_2 in soil systems (Cleary et
80 al. 2021). A similar setup, but without sample recirculation, could enable continuous flow $\delta^{13}\text{C}$ measurements of
81 CO_2 in an analyte stream. Recent work demonstrated the feasibility of coupling LA to CAS, however, this was
82 performed using batch isotope analysis by CAS whereby each sample was cryogenically trapped then introduced

83 into the CAS system for analysis; a time consuming step which limits sample throughput and the data density in the
84 resulting maps of sample $\delta^{13}\text{C}$ (Moran et al. 2022).

85

86 In this study, we assess and demonstrate the potential for combining the sensitivity and flow-through nature of CAS
87 with laser ablation sampling to enable continuous flow measurements of $\delta^{13}\text{C}$ for the purposes of performing high
88 spatial resolution mapping of rhizosphere and plant tissue samples. We chose a specific soil and plant type to test
89 LA-CAS because 1) this pairing has been previously demonstrated to produce partial, spatially differentiated ^{13}C
90 enrichment in plant tissue and rhizosphere samples used in LA-IRMS (Denis et al. 2019) and LA-CAS (Moran et al.
91 2022) studies, 2) the soil and plant are well characterized, originate from a long term ecological research station, and
92 have been used in a wide range of previous studies, and 3) methods demonstrated on this plant and soil pair should
93 be broadly applicable to a wide range of other varieties. While we will effectively consider the suitability of this
94 material, the methodology should be applicable when considering ^{13}C distribution in other solid-state materials. We
95 employ a continuous line scan and quantify the flow rates from ablation to measurement to determine any potential
96 mixing of sample derived from different laser ablation pulses (which would limit spatial resolution). As additional
97 verification, $\delta^{13}\text{C}$ was compared between 25 μm spot size ablations made in proximity to a line scan. Subsequently,
98 a series of single continuous line scans were made over isotopically distinct materials. Each of these experiments
99 allowed for the determination of how accurately and efficiently CAS can capture gradual and abrupt spatial changes
100 in a sample's $\delta^{13}\text{C}$. To ensure the resulting $\delta^{13}\text{C}$ profile for a scan is reproducible, a segmented line ablation was
101 performed with the beam turning and continuing in the reverse direction parallel to the initial path. The utility of this
102 continuous measurement was then leveraged to produce a high spatial resolution $\delta^{13}\text{C}$ map of the internal structure
103 of a ^{13}C -labelled root. Lastly, we expanded this approach to carbon isotope mapping of a ^{13}C -tracer within a
104 rhizosphere-soil sample over a 2-3 mm sampling window to demonstrate the ability to map relatively large surfaces
105 of a sample.

106

107 **2. Materials and methods**

108 *2.1 LA-CAS system*

109 For sample introduction, the CAS instrument was interfaced with a CETAC LSX-500 (Teledyne CETAC, Omaha,
110 NE) laser ablation system (266 nm Nd:YAG laser; **Fig. 1**). Ablated particulates were entrained in a helium carrier

111 gas and passed through ~30 cm of stainless steel tubing (1 mm ID) from the LSX-500 (**Fig.1A**) to a micro-
112 combustion reactor (**Fig.1B**) for conversion to CO₂. This sample-derived CO₂ subsequently traveled through a
113 second section of stainless steel tubing (22 cm), a 20 cm length (0.52 mm ID) fused silica capillary (used for strain
114 relief), and then entered the CAS system.

115

116 As it passed into and through the CAS fiber, the sample-derived CO₂ was analyzed using a tunable distributed
117 feedback interband cascade laser with an output wavelength centered at 4355.4 (2296 cm⁻¹) and measured
118 absorbance by the analyte using a mercury cadmium telluride (MCT) detector (PVI-5-1x1-TO39-NW-36 by Vigo
119 Photonics, Ożarów Mazowiecki, Poland). This targeted wavelength region is in the mid-infrared range and has
120 separate absorption features for ¹³C¹⁶O₂ and ¹²C¹⁶O₂ that are measured for determination of $\delta^{13}\text{C}$ as described in
121 (Cleary et al. 2021). After a sample is measured for $\delta^{13}\text{C}$ using CAS, the CO₂ is removed from the fiber and
122 evacuated to lab atmosphere via pumping with a small diaphragm vacuum (**Fig. 1D**).

123

124 *2.2 Calibrating travel time of analyte*

125 A 10 μm spot size line ablation pass was completed on a piece of commercially purchased Lexan material ($\delta^{13}\text{C} = -$
126 $14.2 \pm 3.5\text{‰}$) at 5 $\mu\text{m sec}^{-1}$ horizontal scanning speed. Our previous work with this and similar materials suggested
127 the Lexan would have consistent isotopic content within the acquired sheet and could thus serve as a reference
128 material for comparing between different sample analyses. Data acquisition proceeded at one measurement every
129 0.82 seconds over the ~500 μm path (**Fig. 2**). The time (T) since first contact of the laser beam with surface (T₁) was
130 monitored manually and logged for events; T₂) first appearance of analyte reaching the CAS, T₃) stabilization
131 around the mean raw $\delta^{13}\text{C}$ of the material, T₄) end of ablation, T₅) last measurement of sample and T₆) return to pre-
132 ablation baseline. Seven analytical replicates of this analysis were completed.

133

134 *2.3 Determining CAS response when ablating over isotopically distinct surfaces*

135 To consider the applicability of this approach, a sectioned switchgrass (*Panicum virgatum* variety Cave-in-rock)
136 stem was placed within a trench cut in the middle of a Lexan cube (same material as used in 2.2). During growth, the
137 switchgrass was exposed to a ¹³CO₂ label for two diurnal photosynthetic cycles. We observed elevated $\delta^{13}\text{C}$ values
138 of rhizosphere samples indicated release of photosynthetically derived organic material suggestive of labeling plant

139 biomass and metabolites. A continuous 25 μm spot size line ablation was completed on the stem (bracketed by
140 Lexan on both sides) at a linear rate of 5 $\mu\text{m sec}^{-1}$. The analysis occurred over 4.5 mm with data acquisition at one
141 measurement every 0.82 seconds. The scan was repeated in the reverse direction on a nearby location of the same
142 stem to gauge repeatability of spatial shifts in measured $\delta^{13}\text{C}$ (results presented in Section 3.2 and **Fig. 3**).
143

144 Using a second example, the same procedure and laser parameters were applied to a puck with ^{13}C labeled soil and
145 root in addition to a section of fishing line used for calibration. The fishing line used (Premium Plus 7
146 monofilament, 15# test nylon line; Danielson, Auburn, WA, USA) was previously described and calibrated ($\delta^{13}\text{C} = -$
147 27.7‰; Moran et al., 2011) and used here as an isotope standard for data calibration. During the experiment,
148 ablation progressed from 1) soil, to 2) fishing line, to 3) soil, to 4) root and to 5) soil. Ten spot ablations were
149 performed in proximity to the continuous line ablation transect. For each spot ablation, analyte was trapped
150 internally within the CAS and analyzed for 90 seconds (110 measurements). Trapping was achieved by automated
151 valve closure at both inlet and outlet ends of the CAS, allowing recirculation of analyte. Initialization of trapping
152 was set to begin once a desired concentration was reached in the detector. The resulting spot assessment of $\delta^{13}\text{C}$ was
153 compared to the corresponding coeval isotopic data recorded along the continuous line transect (**Fig. 4**). We also
154 performed a series of scans alternating between different spot sizes and scan rates capturing soil, rhizosphere, and
155 roots. We completed multiple scans over the same root with a 25 μm spot size and 10 $\mu\text{m sec}^{-1}$ rate for soil and 10
156 $\mu\text{m}/5 \mu\text{m sec}^{-1}$ for root to assess if a set of parameters was more ideal for each material (**Fig. 5**).
157

158 *2.4 Continuous flow ablation in two directions*

159 We demonstrated the ability of the continuous flow LA-CAS method to be applied to larger spatial areas by
160 performing a continuous line ablation along a transect including ^{13}C labeled soil and root and a piece of fishing line
161 for calibration. We performed a transect in two directions to test the reproducibility of data stream and assess any
162 potential memory effects that may occur as the beam passes through isotopically distinct surfaces. The samples
163 ablated in the first pass occurred in the order described in 2.3. We continued the beam/ablation path and
164 subsequently produced an ablation transect parallel to the first (using a reverse order of material being sampled). A
165 25 μm spot size was used during line ablation moving at a rate of 5 $\mu\text{m sec}^{-1}$. The resulting data are presented in
166 section 3.3 and **Fig. 6**.

167

168 *2.5 High resolution isotopic mapping*

169 A root was sectioned from a switchgrass plant exposed to a $^{13}\text{CO}_2$ label. The source plant was grown in a rhizobox
170 partially filled with sandy loam Alfisol soil (43% sand, 40% silt, 17% clay; Robertson et al. 1997) acquired from the
171 W. K. Kellogg Biological Station (KBS; Hickory Corners, Michigan USA) that was mixed with an organic
172 phosphorous treatment to promote growth. Rhizoboxes (12.5 cm \times 19 cm \times 1.9 cm) were constructed with sheets of
173 high-density polyethylene (Denis et al. 2019) designed to facilitate root access (Huck and Taylor 1982). Seeds were
174 germinated hydroponically and then transplanted into the rhizoboxes (at roughly 5 days old) and grown in a
175 Conviron GR48 walk-in growth chamber for 12 weeks. For application of the $^{13}\text{CO}_2$ tracer, rhizoboxes were placed
176 in a sealed chamber (51 x 64 x 90 cm) containing a single septum port and placed into the growth chamber. An
177 initial 300 mL (at STP) of $^{13}\text{CO}_2$ (99 atom % $^{13}\text{CO}_2$, Sigma Aldrich, St. Louis, Missouri, USA) was injected into the
178 chamber followed by a secondary injection (150 mL) after 24 hours to compensate for CO_2 loss through
179 photosynthesis. After 48 hours, rhizoboxes were removed from the chamber. This labeling duration (48 hours) was
180 shown in previous experiments to provide significant ^{13}C accumulation in portions of the resulting plant tissues and
181 in the more recent (\leq 48 hours old) root exudates. The juxtaposition of carbon derived from recent photosynthate
182 (with an elevated $\delta^{13}\text{C}$) with pre-existing carbon (with natural abundance $\delta^{13}\text{C}$, from before the initiation of $^{13}\text{CO}_2$
183 exposure) offered spatial $\delta^{13}\text{C}$ gradients within the sample which were ideal for demonstrating the LA-CAS
184 capability. The above-soil plant biomass was cut at the base of the stem, placed in paper autoclave bags, dried at
185 room temperature for 10 days and then transferred to an oven (70 °C) to ensure dryness. Rhizoboxes were stored in
186 a freezer (-20 °C) until sample preparation for LA-CAS analysis.

187

188 The root cross section was positioned upright within a trench cut into a piece of plastic allowing for a top-down
189 view. Pre-analysis photos were taken using a high magnification stereo microscope (Olympus SZH10) and
190 integrated camera (Olympus Highlight 3000 reflected light source). Gridded X and Y coordinates were assigned to
191 the 1x1 mm area of the root as μm units of distance from using a chosen point (X:Y, 0 μm :0 μm). The start and end
192 coordinates for each continuous line ablation pass (25 μm spot size at 5 μm sec $^{-1}$) were logged and used to assign
193 coordinates to each individual $\delta^{13}\text{C}$ measurement. Line ablations were bracketed with sampling of fishing line to
194 allow for calibration of root $\delta^{13}\text{C}$. A total of 60, line ablations were completed throughout the vascular tissue within

195 the inner boundary of the cortex. Each calibrated $\delta^{13}\text{C}$ measurement (Z) and their associated coordinates (X,Y) were
196 plotted as a heat map using Origin 2021b graphing software (see section 3.4 and **Fig. 7**).

197
198 We then expanded this approach by mapping a larger area (3.3x2.4 mm) of a puck with ^{13}C labeled soil and roots of
199 varying thickness. As with the previous tests, we use fishing line for calibration. Procedure follows the same as
200 described in the previous paragraph with results presented in **Fig. 8**.

201
202 *2.4 Statistical handling of results*
203 As this is a novel application of a relatively new instrument, it is challenging to fully consider the results of this
204 study in terms of conventional statistical analysis. However, we would not expect a homogenous distribution of
205 carbon isotopes in biological material with or without isotopic pulse labeling which makes comparison of replicate
206 sample analyses infeasible. Thus, it is improbable that application of conventional statistical tests would
207 appropriately characterize the significance of the data. Although we partially represent and interpret the results
208 qualitatively, the observed degree of replication is sufficient evidence to support further deployment of LA-CAS and
209 improvements to data validation.

210
211 **3. Results**
212 *3.1 Quantification of analyte flow rate through LA-CAS*
213 The first appearance of analyte in the CAS occurred 6.2 ± 0.3 seconds (mean \pm standard deviation; 7 analytical
214 replicates) after initial contact of the laser ablation beam with the Lexan surface; indicating a 6.2 second sample lag
215 time linked to movement of particulates and resulting CO_2 through the system. A plateau in ^{13}C concentration (ppm)
216 occurred at a mean value of 85.9 ± 1.9 ppm beginning at 9.9 ± 0.6 seconds (**Fig. 2**). The last sample reaching the
217 detector occurred 4.1 ± 0.4 seconds after ablation ceased. A return to baseline (attributed to the constant contribution
218 of low levels of CO_2 in the He-carrier gas), pre-ablation ^{13}C concentration values was achieved 9.8 ± 0.8 seconds
219 following the end of ablation.

220
221 *3.2 Continuous line ablation over isotopically distinct surfaces*

222 When performing a continuous laser ablation scan, the first 788 μm of the path (associated with just the Lexan) had
223 a mean calibrated $\delta^{13}\text{C}$ value of $14.2 \pm 3.5\text{‰}$ (**Fig. 3**). There was a delay of 6.6 seconds from the first contact of the
224 beam with the Lexan-stem boundaries to when the ablated sample reached the detector. The measured $\delta^{13}\text{C}$ for stem
225 material between 1184-2011 μm (from the starting position of the scan) had a range of 118.6-216.2‰. Analysis of
226 the subsequent 1675 μm (from 2011 to 3686 μm) of stem featured a notable increase in $\delta^{13}\text{C}$ with peak values of
227 415-512‰. Notably, peaks in $\delta^{13}\text{C}$ seen in **Fig. 3** occur between the grooves of the stem with the number of peaks
228 matching the number of ridges (11). The measured $\delta^{13}\text{C}$ near both plastic-stem boundaries was noticeably lower
229 relative to the analyte originating from the stem interior. A second pass in the reverse direction was made parallel to
230 the ablation path in **Fig. 3** and these features, including the trend in stem $\delta^{13}\text{C}$, were replicated.

231

232 Calibrated $\delta^{13}\text{C}$ of analyte sourced from spot ablation with trapping was compared to data acquired from continuous
233 flow line ablation. The trend in $\delta^{13}\text{C}$ from soil to fishing line was consistent with $\delta^{13}\text{C}$ measured through spot
234 ablation (**Fig. 4**). The average $\delta^{13}\text{C}$ of soil during continuous flow measurements in proximity to the first (-25.0‰)
235 and third (-28.7‰) spot ablations were within the error of the corresponding spot ablation ($-28.2 \pm 3.5\text{‰}$ and $-29.7 \pm$
236 4.2‰). Similarly, peaks in $\delta^{13}\text{C}$ for analyzed soil during continuous flow closely corresponded to the values for spot
237 ablations 1 through 6, but appeared to differ from spot ablations 7-10, possibly indicating more heterogenous
238 material. Although the line ablation data also had an observed increase in $\delta^{13}\text{C}$ as the beam approached the root, the
239 results contrasted with the spot ablation data. These differences are discussed further in section 4.1. In subsequent
240 data collections over the soil-rhizosphere-root continuum we adjusted the scan rate and spot size when approaching
241 thin roots. This enabled LA-CAS to better capture (and at improved spatial resolution) the increase in $\delta^{13}\text{C}$ as the
242 scan approaches the root in addition to the increasing $\delta^{13}\text{C}$ from the outer to inner sections of the root (**Fig. 5**).
243

244 *3.3 Continuous flow segmented line ablation in forward and reverse directions*

245 A near instantaneous response was observed in $\delta^{13}\text{C}$ associated with the material as the scan proceeded in both
246 directions. The $\delta^{13}\text{C}$ profile for both directions are similar in terms of trends in $\delta^{13}\text{C}$ as well as average values for
247 specific associated locations (**Fig. 6**). Measurements taken on the internal section of the root had a mean $\delta^{13}\text{C}$ value
248 of $-18.5 \pm 1.3\text{‰}$, comparable with the same location during the second pass ($-19.9 \pm 1.2\text{‰}$). Soil $\delta^{13}\text{C}$ values were
249 more variable ranging from -30 to -40‰. While the trends between the forward and reverse transects corroborate

250 each other, it is unclear why some measured $\delta^{13}\text{C}$ values for soil reach such ^{13}C depleted values. Future efforts
251 should focus on developing suitable matrix-matched stable isotope standards (presumably of soil or similar material)
252 to address this potential issue.

253

254 *3.4 High spatial resolution isotope mapping of plant biomass*

255 The 60 line scans ($10\ \mu\text{m}$ spot size at $5\ \mu\text{m sec}^{-1}$) represent a total of 2954 individual CAS measurements that, along
256 with data processing and assigning gridded locations, was completed in ~ 7 total hours of instrument time. Over the
257 entire root profile, calibrated $\delta^{13}\text{C}$ values range from -20-260‰. The most ^{13}C depleted (-20 to 15‰) regions
258 occurred where the ablation passes were near and intersected with the cortex (Fig. 7). The $\delta^{13}\text{C}$ measurements taken
259 on the pith (central section of root) were also low (30 to 40‰) relative to the surrounding area. The highest $\delta^{13}\text{C}$
260 values (200 to 260‰) generally occurred between each respective xylem with a few exceptions. A ^{13}C -hotspot (in
261 the inter-xylem space) such as these was absent in the lower left section of the root (Fig. 7; X,Y: 300,700 μm).
262 Ablation scans directly over and in proximity to the xylem featured the most variable $\delta^{13}\text{C}$ values ranging from 100
263 to 140‰. A similar scan was performed over a sample section containing a large and small root with the
264 surrounding rhizosphere and soil (Fig. 8). Damage caused by the laser ablation process ejected a section of a
265 targeted root. The data do, however, enable mapping of the $\delta^{13}\text{C}$ on the sample surface and demonstrate regions of
266 higher ^{13}C in the smaller versus larger root captured in the image.

267

268 **4. Discussion**

269

270 *4.1 Assessment of continuous flow LA-CAS*

271 The time related data detailing the flow rates of analyte from ablation to detector indicate a very consistent and
272 repeatable process. The lag between the start of laser ablation and first detection of sample (6.2 ± 0.3 seconds) with
273 CAS varied only slightly across multiple replicate analyses. Measured $\delta^{13}\text{C}$ stabilized around the mean value for the
274 plastic test material at ~ 3.5 seconds after first detection (Fig. 2), which suggests the approach can capture changes in
275 $\delta^{13}\text{C}$ that occur over short spatial distances. Additionally, the pronounced similarity between the time required to
276 reach the mean $\delta^{13}\text{C}$ value of the material (9.9 ± 0.6 seconds following initial ablation of the material) and for a
277 sample to be completely evacuated (9.8 ± 0.8 seconds after ceasing ablation of the material) suggested limited

278 mixing throughout each individual scan, and that pulses of material propagate through the system as a distinct front.
279 It should be noted that (to the best of our knowledge and experience) the Lexan material is isotopically homogenous
280 and has much higher total carbon abundance versus soil or rhizosphere samples.

281
282 The rates of flow through the CAS system did not change when mounting the dried switchgrass stem on the plastic
283 sample holder. Analysis of $\delta^{13}\text{C}$ for the ablation transect over plastic and switchgrass stem effectively captured the
284 boundary between the isotopically distinct surfaces (Fig. 3). Scans were completed for 25 μm spot sizes at speeds of
285 5 and 10 $\mu\text{m sec}^{-1}$ with near complete overlap between each respective $\delta^{13}\text{C}$ profile. The primary distinction is that a
286 speed of 5 $\mu\text{m sec}^{-1}$ provides a higher density of data points at the cost of analysis time (2x as long). The slight
287 variation in the measured $\delta^{13}\text{C}$ between the two scans likely reflects the spatial variability in the plant stem where
288 the periodic increase and decrease in the $\delta^{13}\text{C}$ trace most likely reflects the vasculature (and different $\delta^{13}\text{C}$) in the
289 stem sample itself. However, an alternative explanation could be that the curvature of the sample led to slight
290 defocusing of the laser and created sampling artifacts consistent with the contrasting values of $\delta^{13}\text{C}$ between the left
291 (1184-2011 μm) and right sides of the stem. While this appears unlikely (as one would expect similar curvature on
292 each side of the stem), more thorough examination of the impact of sample surface topography on measured $\delta^{13}\text{C}$
293 values should be explored in the future to gauge its potential impact on both LA-CAS and LA-IRMS approaches.

294
295 The ^{13}C -enriched ridges of the stem (Fig. 3) are associated with products of photosynthesized $^{13}\text{CO}_2$ captured in the
296 stem during the freezing of the plant-rhizobox. Within monocot plants, such as switchgrass (Mann et al. 2012),
297 photosynthates are transported through along vascular bundles scattered along the edge of the stem (Chase 2004).
298 The phloem within these tissues operate as a hydrostatic driven transport system that allows the flow of
299 photosynthates (carbohydrates and amino acids) from the leaves and upper region of the plant down to the roots
300 system in the subsurface (Baslam et al. 2020; Lambers et al. 2009). Presumably these observed morphological ridges
301 correspond with these vascular bundles that have become more pronounced following desiccation of the surrounding
302 tissue. Therefore, it is plausible the observed $\delta^{13}\text{C}$ peaks result from the continuous ablation path alternating between
303 ^{13}C -labelled photosynthates concentrated in vascular bundles (ridges) and cortex/epidermis tissues that feature a
304 contrasting low $\delta^{13}\text{C}$. This provides an example of the how the spatially explicit analysis afforded by continuous
305 flow LA-CAS can capture isotopically distinct features within a single continuous line scan ablation.

306

307 Similar to the Lexan-root analysis (**Fig. 3**), CAS effectively captured changes in $\delta^{13}\text{C}$ as the line scan transitioned
308 across soil, fishing line, and root boundaries (**Fig. 4**). Mean $\delta^{13}\text{C}$ values for spot ablations near the line scan paths
309 generally agree with soil and fishing line values prior to the root. However, a notable deviation occurs between spot
310 ablations 8 and 9 near the root (**Fig. 4**), with the spot ablation $\delta^{13}\text{C}$ value substantially lower than the $\delta^{13}\text{C}$ from
311 continuous flow. The reason for the discrepancy could be due to the size of the root and scan rate which did not
312 allow sufficient time to capture the true $\delta^{13}\text{C}$. As demonstrated (**Fig. 5**), if a sample has thin or brittle roots, the best
313 laser operating parameters are 10 μm spot size moving at 5 $\mu\text{m sec}^{-1}$. This would indicate alternating between
314 different spot sizes and scan rates for soil and roots may be preferred and possible if the user performs a higher
315 density of scans. Such an approach with LA-CAS would better capture high spatial resolution variation in $\delta^{13}\text{C}$ as
316 the scan approaches the inter-root material. However, this may not be necessary for samples with larger root
317 structures.

318

319 *4.2 Isotope mapping*

320 A previous limitation to $\delta^{13}\text{C}$ measurements by laser ablation sampling was the need for cryotrapping CO_2 generated
321 from the sample (Grieve et al. 2006; Denis et al. 2019; Rodionov et al. 2019; Moran et al. 2022). This necessitated
322 performing distinct measurements at individual, spatially resolved points along a sample which limited sample
323 throughput (and resulting spatial density of data) due to the time required for cryogenic focusing of an analyte prior
324 to isotopic measurement. In contrast to this limitation, the replication of $\delta^{13}\text{C}$ values in forward and reverse paths
325 during our continuous flow approach for analyzing the segmented line scan (**Fig. 6**) suggests that the improved
326 sensitivity of CAS permits scans to be run continuously with LA-CAS without sacrificing spatial resolution. In this
327 case, depth of focus did not change significantly between first scan and return scan, allowing for self-consistent $\delta^{13}\text{C}$
328 results. When applying this approach and performing a high-density analysis of a 1x1 mm root cross-section it is
329 possible to produce a highly spatially resolved isotope map of root features (**Fig. 7**). Unlike vascular tissues in the
330 monocot stems that are scattered throughout, these features are organized in a ring (**Fig. 7**; microscope image)
331 around the pith (Taiz and Zeiger 2002). Xylem vessels (**Fig. 7**) form a conduit that allow transport of water and
332 nutrients from the roots to the above ground biomass of the plant (Baslam et al. 2020). The ^{13}C -enriched areas of
333 this root occur between the visible xylem structures in a location consistent with the presence of phloem. The

334 observed increase in measured $\delta^{13}\text{C}$ in these areas is consistent with the transport of ^{13}C -labeled photosynthates from
335 the leaves down through the roots as previously demonstrated by various short-term ^{11}C -tracer studies which
336 likewise traced the transport of labelled assimilates to the phloem of different trees (De Schepper et al. 2013;
337 McQueen et al. 2005).

338

339 The success of LA-CAS in facilitating the tracing of the distribution of these photosynthates within a root suggests
340 the method could be applied to larger sampling areas of the rhizosphere. Line scans moving over an area of soil
341 intersected by a length of root revealed higher $\delta^{13}\text{C}$ values for measurements taken in proximity to the root. One of
342 the challenges of this method is weakening of root integrity with each additional continuous line scan over the
343 surface due to the impact of laser ablation sampling. This is increasingly an issue when the root is thinner (younger)
344 and/or brittle. In this example the root broke in a few instances, preventing the measurement of $\delta^{13}\text{C}$ for root in that
345 location. However, sufficient successful scans were made to characterize the sampling area in terms of $\delta^{13}\text{C}$. The
346 highest measured $\delta^{13}\text{C}$ was found to be directly on the root surface while soil analyzed within 50-100 μm of the root
347 had higher ^{13}C enrichment than more distal soil. In contrast, measured $\delta^{13}\text{C}$ for larger root material within the
348 sampling area (**Fig. 8**; left side of image) was lower relative to the thinner root which was potentially growing (i.e.,
349 accreting ^{13}C labeled photosynthetic at the time of sampling). The ^{13}C -enriched areas identify the spatial distribution
350 and location of root exudates within the sample. The difference in measured $\delta^{13}\text{C}$ between the two roots could be
351 related to the relationship between root exudation and root growth stage. Relative to older roots, younger root zones
352 have a higher capacity for nutrient uptake (Fang et al. 2007) and could thus deliver more exudates (Marschner et al.
353 2011), particularly within the time period considered between labelling-sampling (Denis et al. 2019). Interestingly
354 there are a few instances where a concentrated area of soil away from the root had anomalously high $\delta^{13}\text{C}$ (17-24‰)
355 when compared to the typically ^{13}C -depleted soil. Similar occurrences were found in switchgrass rhizosphere
356 samples by Denis et al. (2019) who attributed the hotspots to higher carbon delivery associated with increased
357 microbial activity in these areas (Gutiérrez Castorena et al. 2016; Kravchenko et al. 2017).

358

359 *4.3 LA-CAS analytical niche, cautions, and future directions*

360 Laser ablation sampling coupled to real-time analysis of the resulting particulate plume is a well-established
361 technique when coupled with inductively coupled mass spectrometry (ICP-MS) for elemental and stable isotope

362 analysis within a wide variety of geologic and biologic sample types (Jenner and Arevalo 2016; Becker et al., 2014).
363 However, LA-ICP-MS is unable to perform $\delta^{13}\text{C}$ analysis due to limitations associated with the plasma source used
364 on ICP instruments. Spatially resolved $\delta^{13}\text{C}$ measurements at the 10s μm scale have been developed using LA
365 sampling of a sample surface coupled to isotope evaluation using IRMS. Yet, existing LA-IRMS methods employ
366 cryofocusing to help overcome sample size requirements for IRMS analysis and, as a result of the time-dependence
367 of cryotrapping, sample throughput cannot come close to matching those of LA-ICP-MS. The LA-CAS approach we
368 present here leverages the sensitivity of CAS to circumvent the cryotrapping requirement inherent to LA-IRMS and
369 enables isotopic measurement in near real time with sample ablation. This “continuous flow” method drastically
370 improves sample throughput compared to LA-IRMS which enables increased data collection over a sample surface
371 where the resulting increase in data density can improve the ability for mapping the $\delta^{13}\text{C}$ of a sample surface. As
372 with any LA-based approach, care needs to be taken to ensure the accuracy of the resulting data. For example, if not
373 properly performed, LA sampling can be biased towards components within a sample having higher ablation
374 efficiency when heterogeneously dispersed over a sample’s surface. In other cases, the agnostic nature of LA can
375 introduce a background effect to a sample. For example, ablation of a carbonate-rich soil could produce an
376 undesirable C background and limit the sensitivity of LA-CAS to tracking organics (e.g., root exudates) in the
377 sample. For some cases, the ablation may need to be controlled to avoid unwanted drilling into the sample surface
378 which may reveal underlying sample complexity which was neither visible from the surface nor intended to be part
379 of a surface map. Further, matrix effects must be considered where, for example, ablation efficiency can be impacted
380 by the specific physical properties of the sample. Ideally, matrix matching of sample and standard materials would
381 be used to help control this artifact, but the broad diversity of soil matrix types can complicate these efforts. Future
382 efforts in spatial resolved $\delta^{13}\text{C}$ measurements (both LA-CAS and LA-IRMS) need to address the paucity of matrix-
383 matched standards available to the field. LA is also (by its very nature) a destructive technique where material is
384 removed from a sample. The high impacting energy of LA can damage a sample as observed in some of the
385 described measurements above (e.g., within **Fig. 8**). In these cases, one needs to critically evaluate whether the
386 benefits of improved sampling density (by the “continuous flow” method described here) outweigh the increased
387 amount of damage to a sample surface and resulting loss of material. Finally, effective analysis requires balancing
388 the amount of CO_2 produced from LA with the quantity that can be measured using the appropriate detector (e.g.,
389 CAS or IRMS). Spatial variability within samples can create large swings in the amount of CO_2 produced per

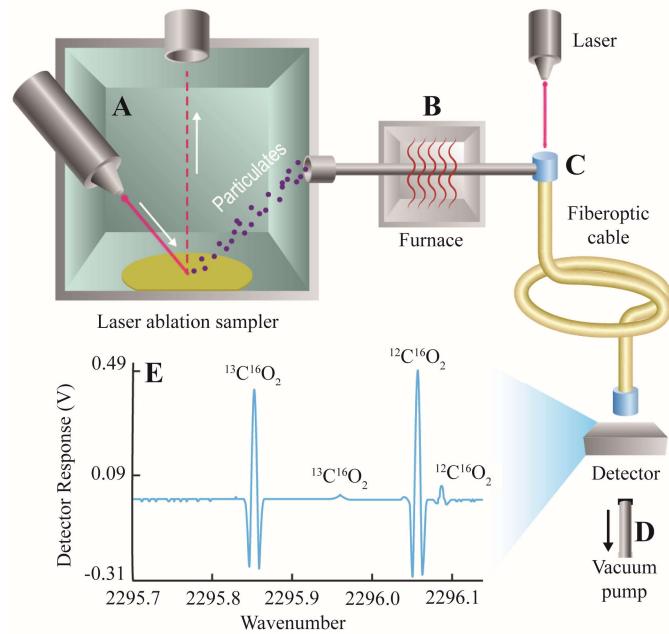
390 ablation where the linearity of the instrument response needs to be considered in assessing measurement accuracy.
391 While future work needs to address the above challenges, the demonstrations presented here show the ability of LA-
392 CAS to contribute to spatially resolved $\delta^{13}\text{C}$ measurements in plant and soil systems and highlight the benefits of
393 LA-CAS for mapping $\delta^{13}\text{C}$ distribution in these systems.

394

395 **5. Conclusions**

396 This work demonstrates the potential of continuous flow LA-CAS for tracing the distribution of ^{13}C -labeled
397 nutrients through the plant, root, rhizosphere, and soil. The high sampling rate and short instrument/data processing
398 time allow for high spatial resolution mapping of large sampling areas in a few hours. Such advantages relative to
399 other analytical techniques may prove LA-CAS to be an ideal alternative for tracking spatial variability in $\delta^{13}\text{C}$ at
400 μm resolution over $>4\text{ mm}^2$ areas.

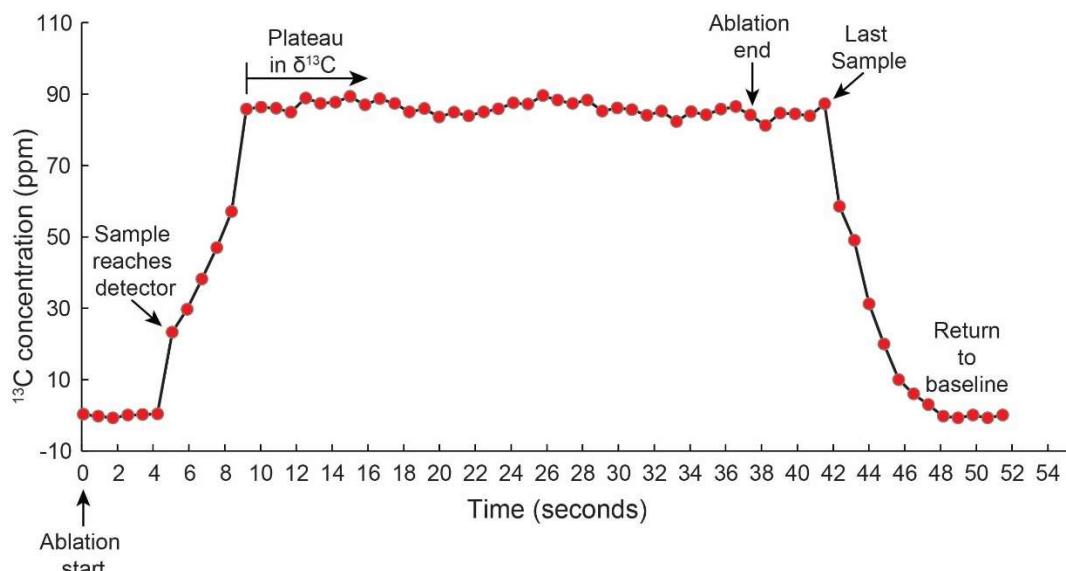
401


402 **6. Acknowledgements**

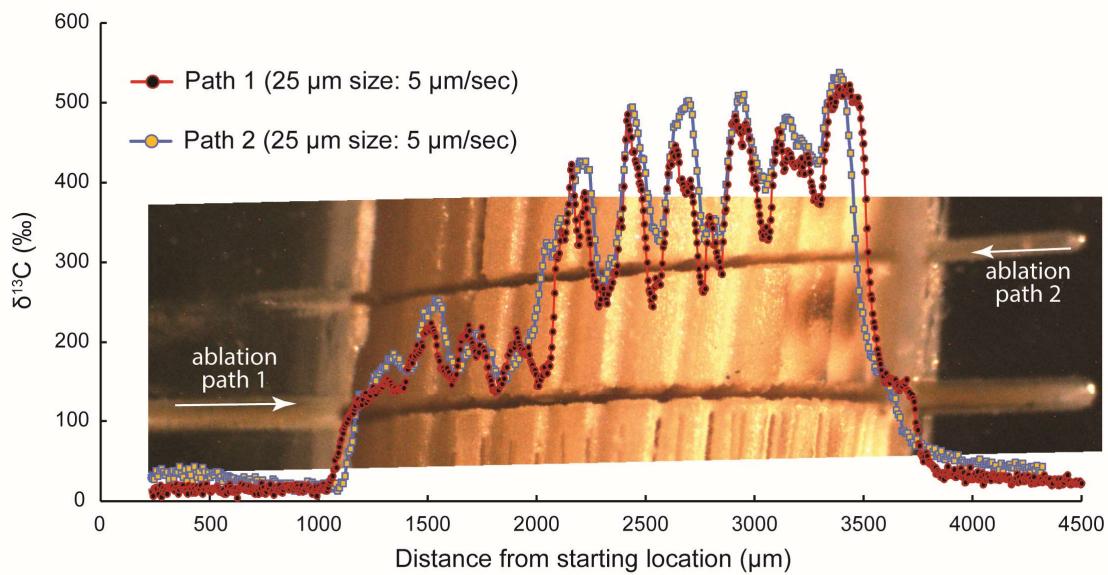
403 System development and testing of the approach was funded by the US Department of Energy (DOE) Office of
404 Biological and Environmental Research by both the Small Business Technology Transfer program, Grant DE-
405 SC0018488 (PI: J. Kriesel) and the Early Career Research Award program (PI: J. Moran). A portion of this research
406 was performed on a project award (51793) from the Environmental Molecular Sciences Laboratory, a DOE Office of
407 Science User Facility sponsored by the Biological and Environmental Research program under Contract No. DE-
408 AC05-76RL01830.

409

410 Figures

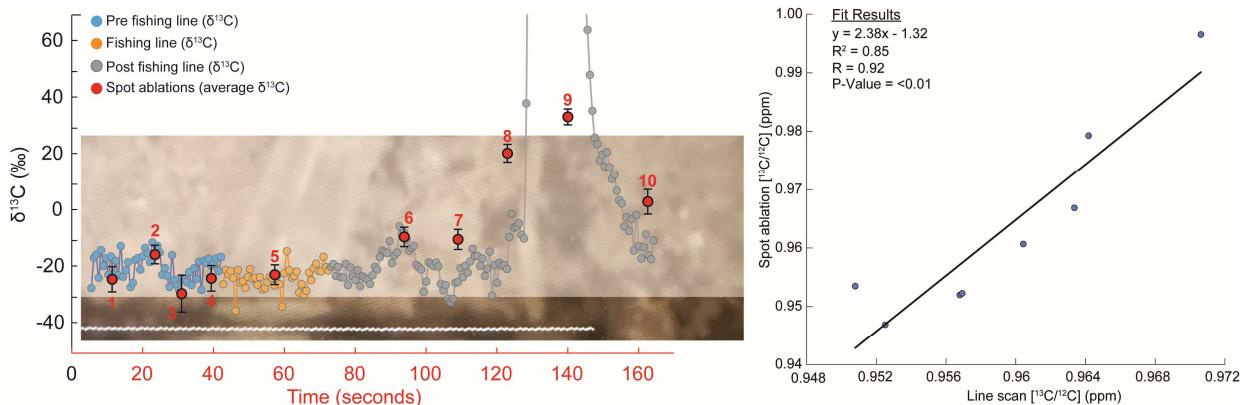

411

412

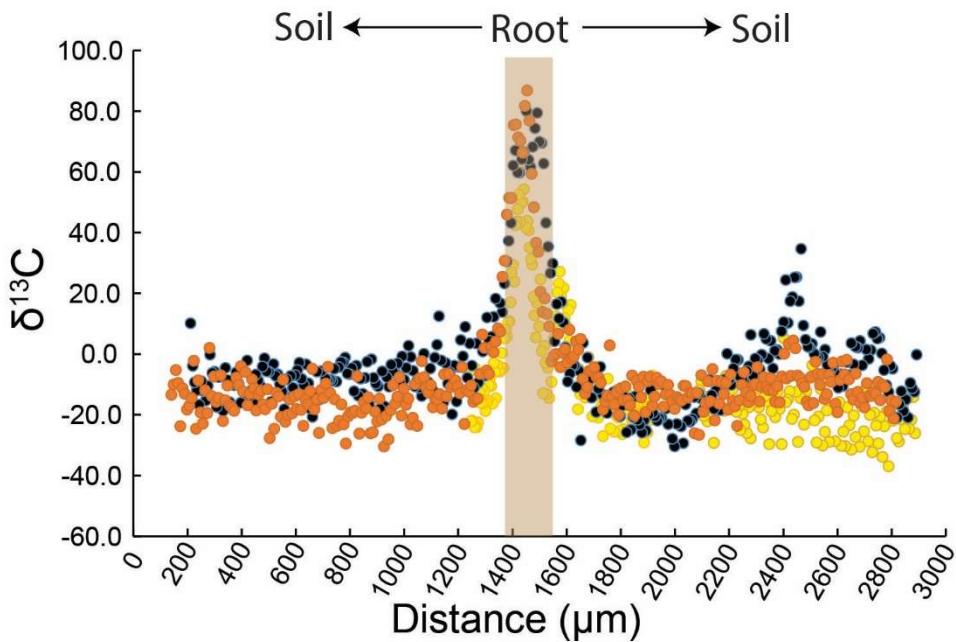

413 **Figure 1:** Schematic of LA-CAS configuration. A) ablation of sample within laser ablation instrument, B)
414 particulates combusted, C) entry of analyte into CAS fiber, D) sample removal via vacuum, and E) measurement
415 taken at detector.

416

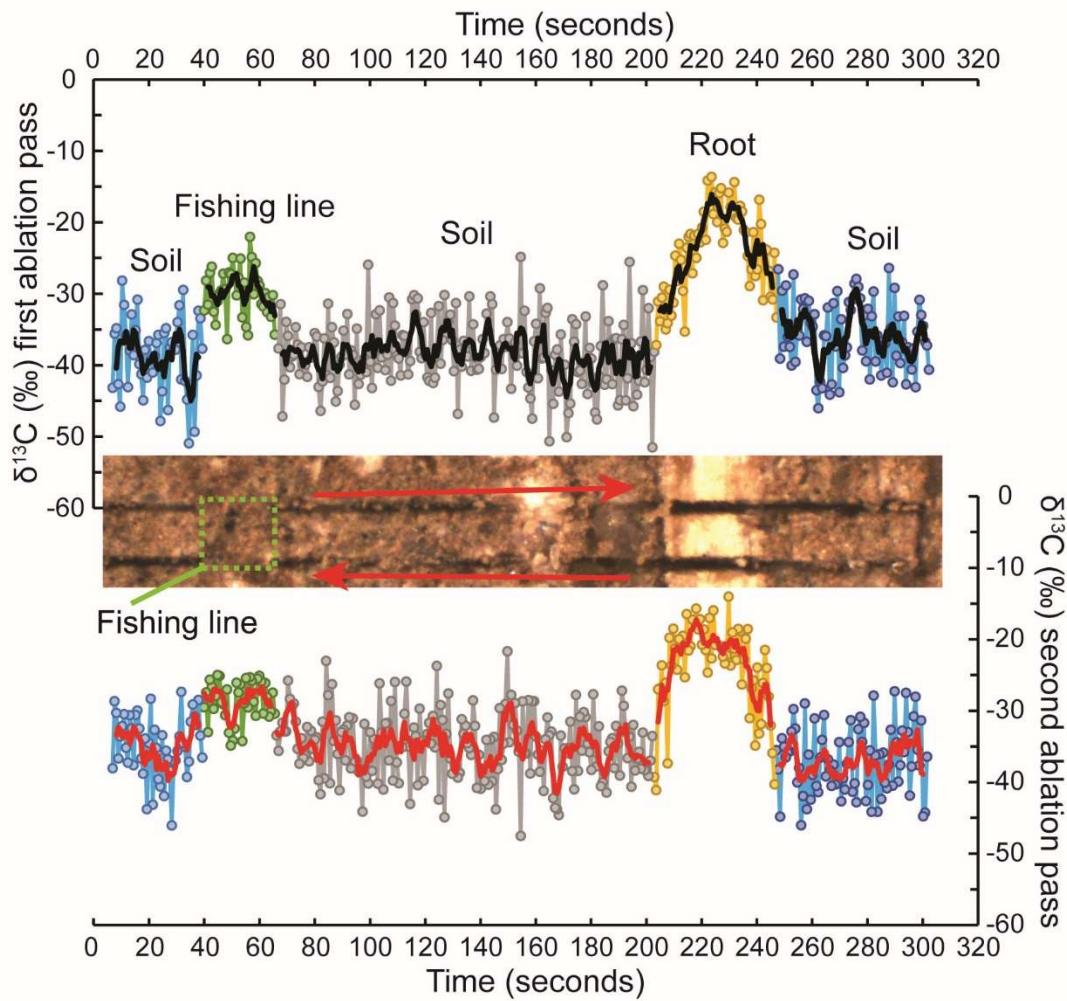
419 **Figure 2:** Representative chromatogram of the timing of events during continuous flow measurements completed
 420 with LA-CAS. T_1) beginning of ablation, T_2) sample arrives at detector, T_3) plateau in signal, T_4) end of ablation,
 421 T_5) last ablated sample at detector and T_6) return to baseline.


424

425

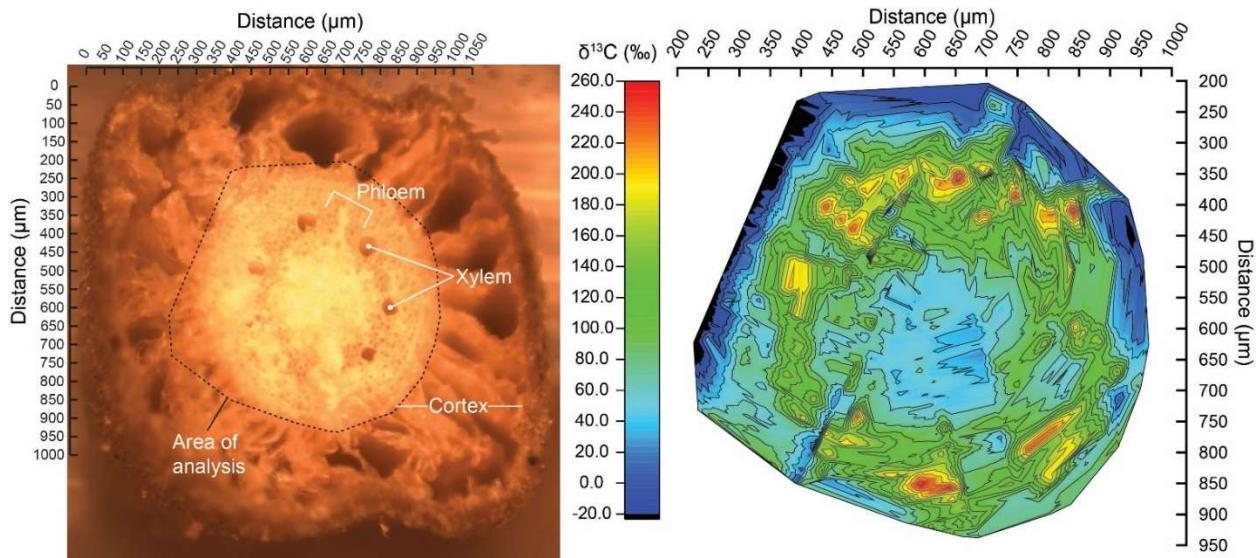

426 **Figure 3:** Continuous scan ablation over isotopically distinct materials demonstrates the ability of LA-CAS to
427 capture spatial variation in $\delta^{13}\text{C}$.

428


431 **Figure 4:** $\delta^{13}\text{C}$ of material from spot ablations is comparable to measured $\delta^{13}\text{C}$ from corresponding material ablated
 432 with continuous line scans. The scan passes over soil, fishing line (~40-70 seconds; used as an isotope calibration
 433 standard, soil, and root (~125-155 seconds) portions of the sample. Spot ablation points are numbered 1-10 (red)
 434 from left to right. Direct comparison of the spot scans with representative portion of the line scan demonstrate
 435 reasonable correlation ($R^2=0.85$) although it should be noted that the spot ablations were performed near (but not on
 436 top of) the line scan and spatial variability in the sample is expected to preclude identical measured values between
 437 the two data sets.

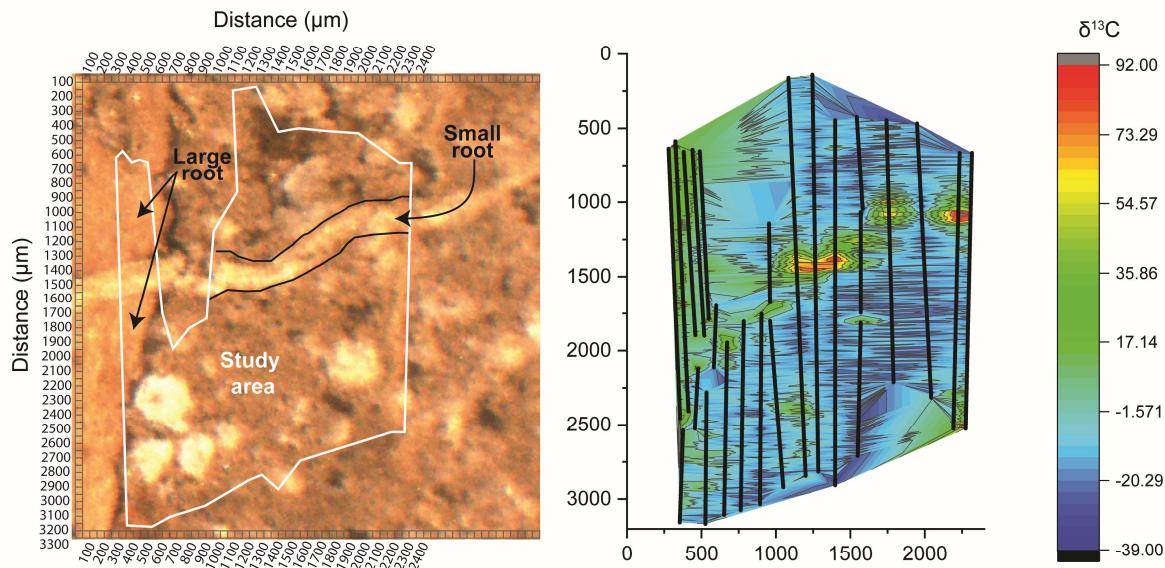
439

440


441 **Figure 5:** Repeated scans over root with different spot size and scan rates for root ($10 \mu\text{m}$ spot size / $5 \mu\text{m sec}^{-1}$) and
442 soil ($25 \mu\text{m}$ spot size / $10 \mu\text{m sec}^{-1}$). The colors in the points depict data collected on three transects made in nearby
443 locations of the sample.

444

445 **Figure 6:** Reversing path of laser scan and varying beam size yields the same measured $\delta^{13}\text{C}$ values. Smallest usable
 446 beam size depends on material being ablated. For ^{13}C labeled material, best results were 10 μm spot diameter for
 447 stem and root at scan rates of 5 $\mu\text{m/sec}$ and 25 $\mu\text{m/sec}$ respectively. Solid black and red lines represent a 2.7 sec
 448 moving average over individual data.


449

450

451 **Figure 7:** Contour map of $\delta^{13}\text{C}$ values across the top view of a ^{13}C -labeled switchgrass root. Xylem location
 452 indicated by white outline. Continuous scans made with a $10 \mu\text{m}$ beam size and moving at $5 \mu\text{m sec}^{-1}$.

453

456 **Figure 8:** Contour map of $\delta^{13}\text{C}$ values of ^{13}C -labeled switchgrass root and rhizosphere soil. Light microscope image
 457 (left) with area of analysis indicated (white border).

460 **References**

461 Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The Role of Root Exudates in Rhizosphere Interactions
 462 with Plants and Other Organisms. *Annual Review of Plant Biology* 57: 233-266. doi:
 463 10.1146/annurev.arplant.57.032905.105159.

464 Baslam M, Mitsui T, Sueyoshi K, Ohyama T (2020) Recent Advances in Carbon and Nitrogen Metabolism in C3
 465 Plants. *International Journal of Molecular Sciences* 22. doi: 10.3390/ijms22010318.

466 Becker JS, Matusch A, Wu B (2014) Bioimaging mass spectrometry of trace elements – recent advance and
 467 applications of LA-ICP-MS: A review. *Analytica Chimica Acta* 835: 1-18. doi:10.1016/j.aca.2014.04.048

468 Bird JA, Herman DJ, Firestone MK (2011) Rhizosphere priming of soil organic matter by bacterial groups in a
 469 grassland soil. *Soil Biology and Biochemistry* 43: 718-725. doi: 10.1016/j.soilbio.2010.08.010.

470 Bruneau PMC, Ostle N, Davidson DA, Grieve IC, Fallick AE (2002) Determination of rhizosphere ^{13}C pulse signals
471 in soil thin sections by laser ablation isotope ratio mass spectrometry. *Rapid Communications in Mass*
472 *Spectrometry* 16: 2190-2194. doi: 10.1002/rcm.740.

473 Chase MW (2004) Monocot relationships: an overview. *American Journal of Botany* 91: 1645-1655. doi:
474 10.3732/ajb.91.10.1645.

475 Cleary DM, Linley T, Kriesel J, Fahrland A, Kelly JF, Moran JJ (2021) Capillary absorption spectroscopy for high
476 temporal resolution measurements of stable carbon isotopes in soil and plant-based systems. *Plant*
477 *Physiology and Biochemistry* 169: 1-8. doi: 10.1016/j.plaphy.2021.10.025.

478 Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB, Herrmann AM, Murphy DV (2009) In Situ Mapping of
479 Nutrient Uptake in the Rhizosphere Using Nanoscale Secondary Ion Mass Spectrometry. *Plant Physiology*
480 151: 1751-1757. doi: 10.1104/pp.109.141499.

481 De Schepper V, Bühler J, Thorpe M, Roeb G, Huber G, van Dusschoten D, Jahnke S, Steppe K (2013) ^{11}C -PET
482 imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. *Frontiers in Plant*
483 *Science* 4. doi: 10.3389/fpls.2013.00200.

484 de Vrieze J (2015) The Littlest Farmhands. *Science* 349: 680-683.

485 Denis EH, Ilhardt PD, Tucker AE, Huggett NL, Rosnow JJ, Moran JJ (2019) Spatially tracking carbon through the
486 root-rhizosphere-soil system using laser ablation-IRMS. *Journal of Plant Nutrition and Soil Science* 182:
487 401-410. doi: 10.1002/jpln.201800301.

488 Fang YY, Babourina O, Rengel Z, Yang XE, Pu PM (2007) Spatial distribution of ammonium and nitrate fluxes
489 along roots of wetland plants. *Plant Science* 173: 240-246. doi: 10.1016/j.plantsci.2007.05.006.

490 Grieve IC, Davidson DA, Ostle NJ, Bruneau PMC, Fallick AE (2006) Spatial heterogeneity in the relocation of
491 added ^{13}C within the structure of an upland grassland soil. *Soil Biology and Biochemistry* 38: 229-234. doi:
492 10.1016/j.soilbio.2005.04.035.

493 Gutiérrez Castorena EV, Gutiérrez-Castorena MdC, González Vargas T, Cajuste Bontemps L, Delgadillo Martínez
494 J, Suásteegui Méndez E, Ortiz Solorio CA (2016) Micromapping of microbial hotspots and biofilms from
495 different crops using digital image mosaics of soil thin sections. *Geoderma* 279: 11-21. doi:
496 10.1016/j.geoderma.2016.05.017.

497 Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and
498 ecological relevance. *Plant and Soil* 321: 117-152. doi: 10.1007/s11104-008-9885-9.

499 Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from
500 root-mediated physical and chemical processes. *New Phytologist* 168: 293-303. doi: 10.1111/j.1469-
501 8137.2005.01512.x.

502 Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. *New Phytologist* 162: 9-24.
503 doi: 10.1111/j.1469-8137.2004.01015.x.

504 Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A (2018) Root hairs increase rhizosphere extension
505 and carbon input to soil. *Annals of Botany* 121: 61-69. doi: 10.1093/aob/mcx127.

506 Huck MG, Taylor HM (1982) The Rhizotron as a Tool for Root Research. *Advances in Agronomy* Volume 35.

507 Jenner FE, Arevalo R.D. Jr. (2016) Major and trace element analysis of natural and experimental igneous systems
508 using LA-ICP-MS. *Elements* 12: 311-316. doi: 10.2113/gselements.12.5.311.

509 Kelly JF, Sams RL, Blake TA, Newburn M, Moran J, Alexander ML, Kreuzer H (2012) A capillary absorption
510 spectrometer for stable carbon isotope ratio ($^{13}\text{C}/^{12}\text{C}$) analysis in very small samples. *Review of Scientific
511 Instruments* 83. doi: 10.1063/1.3680593.

512 Kravchenko AN, Toosi ER, Guber AK, Ostrom NE, Yu J, Azeem K, Rivers ML, Robertson GP (2017) Hotspots of
513 soil N_2O emission enhanced through water absorption by plant residue. *Nature Geoscience* 10: 496-500.
514 doi: 10.1038/ngeo2963.

515 Kriesel JM, Makarem CN, Fahrland A, Moran JJ, Linley T, Kelly JF, Razeghi M, Lewis JS, Khodaparast GA,
516 Khalili P (2020) Hollow fiber mid-IR spectrometer with UV laser ablation sampling for fine spatial
517 resolution of isotope ratios in solids. *Quantum Sensing and Nano Electronics and Photonics XVII*.

518 Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: Concept & review. *Soil Biology
519 and Biochemistry* 83: 184-199. doi: 10.1016/j.soilbio.2015.01.025.

520 Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. *Journal of Plant Nutrition and Soil
521 Science* 163: 421-431. doi: 10.1002/1522-2624(200008)163:4<421::Aid-jpln421>3.0.co;2-r.

522 Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an
523 evolutionary perspective. *Plant and Soil* 321: 83-115. doi: 10.1007/s11104-009-0042-x.

524 Li J, Li R, Zhao B, Guo H, Zhang S, Cheng J, Wu X (2018) Quantitative measurement of carbon isotopic
525 composition in CO₂ gas reservoir by Micro-Laser Raman spectroscopy. *Spectrochimica Acta Part A:*
526 *Molecular and Biomolecular Spectroscopy* 195: 191-198. doi: 10.1016/j.saa.2018.01.082.

527 Mann DGJ, LaFayette PR, Abercrombie LL, King ZR, Mazarei M, Halter MC, Poovaiah CR, Baxter H, Shen H,
528 Dixon RA, Parrott WA, Neal Stewart Jr C (2012) Gateway-compatible vectors for high-throughput gene
529 functional analysis in switchgrass (*Panicum virgatum* L.) and other monocot species. *Plant Biotechnology*
530 *Journal* 10: 226-236. doi: 10.1111/j.1467-7652.2011.00658.x.

531 Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron
532 and phosphorus acquisition along the root axis – model and research methods. *Soil Biology and*
533 *Biochemistry* 43: 883-894. doi: 10.1016/j.soilbio.2011.01.005.

534 McQueen JC, Minchin PEH, Thorpe MR, Silvester WB (2005) Short-term storage of carbohydrate in stem tissue of
535 apple (*Malus domestica*), a woody perennial: evidence for involvement of the apoplast. *Functional Plant*
536 *Biology* 32. doi: 10.1071/fp05082.

537 Moran, JJ, Newburn MK, Alexander ML, Sams RL, Kelly JF, Kreuzer HW (2011) Laser ablation isotope ratio mass
538 spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis. *Rapid*
539 *Communications in Mass Spectrometry* 25, 1282-1290.

540 Moran J, McGrath C (2021) Comparison of methods for mapping rhizosphere processes in the context of their
541 surrounding root and soil environments. *BioTechniques* 71: 604-614. doi: 10.2144/btn-2021-0021.

542 Moran, J, Linley, TJ, Makarem, CN, Kelly, JF, Freeburg, EDW, Cleary, DM, Alexander, ML, Kriesel, JM (2022)
543 Spectroscopy-based isotopic ($\delta^{13}\text{C}$) analysis for high spatial resolution of carbon exchange in the
544 rhizosphere. *Rhizosphere* 23: 100564. doi: 10.1016/j.rhisph.2022.100564.

545 Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: Quantification of rhizodeposition from root to
546 ecosystem scale. *Global Change Biology* 24: 1-12. doi: 10.1111/gcb.13850.

547 Robertson GP, Klingensmith KM, Klug MJ, Paul EA, Crum JR, Ellis BG (1997) Soil Resources, Microbial Activity,
548 and Primary Production across an Agricultural Ecosystem. *Ecological Applications* 7: 158-170. doi:
549 10.1890/1051-0761(1997)007[0158:Srmaap]2.0.Co;2.

550 Rodionov A, Lehndorff, E, Stremlan, CC, Brand, WA, Königshoven, H-P, Amelung, W (2019) Spatial
551 microanalysis of natural $^{13}\text{C}/^{12}\text{C}$ abundance in environmental samples using laser ablation-isotope ratio
552 mass spectrometry. *Analytical Chemistry* 91: 6225-6232. doi: 10.1021/acs.analchem.9b00892.

553 Taiz L, Zeiger E (2002) Plant physiology. Sinauer associates.

554