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ABSTRACT

There is significant interest among researchers in find-
ing economically sustainable alternatives to fossil-
derived drop-in fuels and fuel additives. Fast py-
rolysis, a method for converting biomass into fuels
and fuel additives, is a promising technology with the
potential to be two to three times less expensive at
scale when compared to alternative approaches such
as gasification and fermentation. Selective pyrolysis,
via micro-mixing manipulation and chemical catal-
ysis, allows resulting bioblendstocks to be tuned to
perform optimally in diesel engines; however, many
bio-oils derived from fast pyrolysis have a high oxygen
content and high acidity, indicating poor performance
in diesel engines when used as fuels or fuel additives.
The variance in performance for derived compounds
introduces a feedback loop in researching acceptable
fuels and fuel additives, as various combustion prop-
erties for these compounds must be determined after
pyrolysis and catalytic upgrading occurs. The present
work aims to reduce this feedback loop by utilizing ar-
tificial neural networks to preemptively screen com-
pounds that will be produced from fast pyrolysis and
catalytic upgrading. Specifically, the cetane number
and sooting propensity of derived compounds is pre-
dicted, and the viability of these compounds as fuels
and fuel additives is analyzed.

1 INTRODUCTION
The emphasis on finding renewable and cleaner
sources of energy has become prevalent throughout
the greater scientific community due to concerns re-
garding global climate change and decreasing reserves
of traditional petroleum-based fuels. Consequently,
researchers have focused their efforts on discovering
novel fuels derived from renewable sources such as
biofuels derived from plant matter. One method for
converting biomass into bio-oil is fast pyrolysis, how-
ever not all compounds derived from fast pyrolysis
perform optimally in existing engines and/or produce
high amounts of negative byproducts. This highlights
the need to screen compounds that will be produced
from fast pyrolysis before the procedure occurs. To
reduce the inherent feedback loop associated with al-
ternative fuel research, machine learning (specifically
artificial neural networks, ANN’s) can be employed
to predict key properties of the products of fast py-
rolysis.

1.1 Cetane Number

Cetane number (CN) measures a fuel’s ignition qual-
ity in a diesel engine and is derived from the ignition
delay after the fuel is injected. Diesel fuel typically
has a CN of 40-50. Two common techniques for mea-
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suring CN are with an Ignition Quality Tester (IQT)
and a Cooperative Fuel Research (CFR) engine. An
IQT ascertains the ignition delay of a given fuel in a
constant volume combustion chamber by measuring
the time between injection and combustion [1]. Al-
ternatively, a CFR utilizes two reference compounds,
n-hexadecane and isocetane (with CN’s of 15 and 100,
respectively) – igniting a given fuel in an equivalent
blend of these compounds results in a volume fraction
of these compounds linear related to the fuel’s CN [2].
A CFR is preferred over the IQT, as the CFR reflects
typical engine behavior; however, the IQT requires
less test fuel (around 100 mL). While methods like
the IQT utilize a small volume of fuel for determin-
ing CN, the number of tests required for determining
CN’s of a suite of potential alternative fuels results in
a considerable time and monetary investment.

Using computational techniques to predict CN has
a pervasive history and includes a variety of methods.
Such methods include consensus modeling, where lin-
ear and non-linear models are employed in parallel to
obtain an averaged predicted CN value – these mod-
els can predict CN for a variety of molecular classes
with a blind prediction root-mean-squared error of 6.5
[3], however multiple linear models are surpassed by
the accuracy of ANN’s when fatty acid methyl esters
are used to predict CN [4]. Many methods rely on
quantitative structure-property relationship (QSPR)
values, which are numerical measurements of an as-
sortment of physical and chemical properties relating
to molecules, and have proven to be successful when
applied to predicting the CN of pure hydrocarbons
[5] and branched paraffins [6].

In accordance with these findings, this paper uti-
lizes feed-forward ANN’s constructed using the back-
propagation algorithm and trained with QSPR val-
ues. ANN’s provide a non-linear model architecture,
allowing a multidimensional input vector containing
a suite of individual QSPR values to be correlated
to an experimental property value. QSPR values are
utilized due to the wide range of physical and chem-
ical property representations available, subsequently
distinguishing one molecule from another [7]. Ad-
ditionally, it has recently been shown that ANN’s
can extend their predictive capabilities to a variety
of molecular classes, including predicting the CN of
biomass-derived furanic compounds [8].

1.2 Yield Sooting Index
Various sooting indices are used to measure soot for-
mation and how much particulate matter is emitted
by a fuel during combustion. The Threshold Sooting
Index (TSI) was developed to standardize the mea-

surement of soot through smoke point and ranks fuels
on a 0-100 scale using reference molecules [9]. Mea-
suring smoke point involves measuring the maximum
flame height attainable by a fuel combusting in a test
lamp without smoking and has been shown to be a
dependable indicator of sooting propensity of aviation
fuels in turbines [10] as well as emissions from SI en-
gines [11]. To account for reduced stoichiometric air
required by oxygenated fuels, the oxygen extended
sooting index (OESI) was defined as an extension
to TSI [12]. While these smaller, bench-scale meth-
ods of measuring sooting propensity through smoke
point are convenient, they suffer from a few disad-
vantages; operator bias in estimating an appropriate
flame shape may occur, as well as the requirement of
up to 20 mL of the fuel in order to measure [10].

Due in part to these disadvantages the yield soot-
ing index (YSI) was developed, whose measurement
is not based on smoke point, rather the maximum
soot volume fraction measured in a flame ignited by
a fuel doped with the molecule of interest [12]. YSI
is measured on a 0-100 scale, using reference fuels
n-hexane and benzene with YSI values of 0 and 100
respectively. Diesel fuel typically has a YSI of 235-
250. This method of measurement requires a signif-
icantly smaller volume of the sample, and correlates
adequately with TSI [13] [14] [15] [16]. A “high soot-
ing” YSI scale was also developed to emphasize mass-
fraction-based fuel doping, and recent research has
provided a unified YSI scale, standardizing measure-
ments from a variety of compounds and compound
groups [17].

Recently, ANN’s have been applied to predicting
YSI using QSPR values and obtained 95% confi-
dence in blind prediction accuracy [18]. Due to these
promising results, this paper applies the same model
architecture it utilizes for CN predictions to predict
YSI (feed-forward ANN’s constructed with backprop-
agation in conjunction with QSPR values). The uni-
fied YSI scale is used, as the models constructed aim
to predict YSI for a variety of compounds and com-
pound groups.

1.3 Fast Pyrolysis
Fast pyrolysis converts biomass into bio-oils by
rapidly heating (>1000 °C/sec) the biomass at tem-
peratures ranging from 400-600 °C for between 1-5
seconds and may yield up to 70 wt% of liquid phase
products (bio-oils) [19]. It has been shown in recent
techno-economic analyses that the cost to produce
bio-oils via fast pyrolysis is comparable to the cost
of producing bio-oils via alternative methods such as
gasification, indicating fast pyrolysis is viable at scale
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[20]. The products of fast pyrolysis can range from al-
cohols and ethers to furanic and phenolic compounds
depending on the feedstock utilized in the [21]. Some
products that form as a result of using lignocellu-
losic biomass as the primary feedstock in fast pyrol-
ysis have been identified as potential replacements
for fossil-derived fuel additives and drop-in fuels [22],
however many of these compounds have a high oxy-
gen content (indicating poor performance as a drop-
in fuel additive). The CN and YSI of these phenolic
bio-oils are evaluated in the present work.

1.4 Catalytic Upgrading

Catalytic upgrading is significant because it increases
the hydrogen-to-carbon ratio, reduces oxygen content
and increases molecular weights for oxygenated com-
pounds derived from fast pyrolysis through a process
called hydrodeoxygenation [23]. Many hydrocarbon
products were observed as a result of hydrotreat-
ing oxygen-rich compounds using Pd/C catalysts at
310-375 degrees Celsius and then subjecting them to
hydrocracking at 400 degrees Celsius and 2000 psig
[24]. Hydrogenolysis of phenolic compounds using
Ru/TiO2 catalysts results in aromatic ring hydro-
genation occurring on the Ru/Ti nanoparticle sur-
face, in turn forming compounds with fewer oxygen
atoms and that are aromatic in nature (both impor-
tant qualities for drop-in fuel additives) [25] [26]. The
present work focusses on evaluating the CN and YSI
of compounds resulting from performing hydrogenol-
ysis on phenolic bio-oil using Ru/TiO2 catalysts.

2 MATERIALS AND METHODS

2.1 Experimental Data

Experimental CN data was obtained from the NREL
Compendium of Experimental Cetane Number data
[27] and other sources [3] [28] [29] totaling in 445
unique compounds. Methods for obtaining exper-
imental CN values include derivations from blend
measurements, the use of an IQT/CFR and other,
unknown ignition delay methods. Most experimen-
tal values were obtained using an IQT/CFR, as
these methods are more accurate than blending/other
methods. Experimental YSI data was obtained from
a variety of sources [13] [14] [15] [16], was mea-
sured using laser-induced incandescence and other
gas-phase steady-state measurement techniques, and
totaled in 421 compounds.

Simple molecular-input line-entry system
(SMILES) strings were obtained for all com-

pounds comprising the CN and YSI databases using
MarvinSketch [30] and validated using compound
entries on PubChem [31]. SMILES strings were
then converted to MDL Molfiles using Open Babel
to generate three-dimensional geometry for the
compound [32], and the Molfiles were fed into
PaDEL-Descriptor to generate 1444 1D/2D and 431
3D QSPR descriptors for each compound [33]. QSPR
values and experimental property values comprise
input and target data respectively during ANN
training.

Table 1 displays a list of compounds that are
expected be produced by performing fast pyrolysis
on lignocellulosic biomass, and includes phenolic
compounds, furanic compounds and benzenes.
Table 2 illustrates the expected products when hy-
drogenolysis using Ru/TiO2 catalysts is performed
on each compound in Table 1 with the inclusion of
phenol in the catalysis process. For each compound
listed in Tables 1 and 2, QSPR descriptors were
generated using the previously mentioned techniques.

Table 1. Products of fast pyrolysis using lignocellu-
losic feed stock

Compound ID Compound Name

1 phenol
2 methanol
3 acetol
4 2-furanmethanol
5 5-hydroxy methyl furfural
6 2-hydroxy-cyclopent-2-en-1one
7 2-methoxy phenol
8 2-methyl phenol
9 4-methyl phenol
10 2-methoxy-4-methyl phenol
11 3,5-dimethyl phenol
12 3-ethyl phenol
13 4-ethyl-2-methoxy phenol
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Table 2. Products of catalytic upgrading of Table 1
molecules with phenol

Table 1 ID Upgrade with Phenol

1 Diphenyl Ether
2 Methoxybenzene
3 1-phenoxy-2-propanone
4 2-phenoxymethylfuran
5 5-phenoxymethylfurfural
6 2-phenoxy-2-cyclopentene-1-one
7 1-methoxy-2-phenoxybenzene
8 1-methyl-2-phenoxybenzene
9 1-methyl-4-phenoxybenzene
10 2-methoxy-4-methyl-1-

phenoxybenzene
11 1,3-dimethyl-5-phenoxybenzene
12 1-ethyl-3-phenoxybenzene
13 1-ethyl-4-phenoxybenzene

2.2 QSPR Descriptor Selection

Random forest regression using Scikit-learn was em-
ployed to determine QSPR descriptor “importance”,
a numerical measurement indicating correlation be-
tween descriptor values and experimental property
values for CN and YSI – the higher the importance
of a descriptor, the more it contributes to a correla-
tion to a given property [34]. The sum of all descrip-
tor importances is equal to one. Figure 1 illustrates
ANN performance (RMSE of CN) versus the num-
ber of important descriptors added as inputs to the
ANN. Performance degrades significantly past 500 de-
scriptor additions, and it was found that 15-25 de-
scriptors balances computation time and predictive
accuracy. Degrading performance can be attributed
to the number of constant-value descriptors, and are
pernicious to the ANN in that the ANN is unable to
determine any relationship between them an a given
experimental value. For example, “Nn”, or the num-
ber of nitrogen atoms present in the compound, plays
no significant role during training as all training data
is comprised of hydrocarbons. Tables 3 and 4 show
the selected QSPR descriptors for CN and YSI re-
spectively.

Figure 1. ANN performance versus number of
important descriptors added to the ANN’s input

Table 3. Descriptors and importances for CN

Name Imp. Description

RotBFrac 0.5747 Fraction of rotatable bonds, ex-
cluding terminal bonds

AVP-5 0.052 Average valence path, order 5
GATS2e 0.0159 Geary autocorrelation - lag 2

/ weighted by Sanderson elec-
tronegativities

GATS2m 0.0137 Geary autocorrelation - lag 2 /
weighted by mass

GATS2c 0.0121 Geary autocorrelation - lag 2 /
weighted by charges

ATSC2c 0.0083 Centered Broto-Moreau auto-
correlation - lag 2 / weighted by
charges

AVP-6 0.0081 Average valence path, order 6
AlogP 0.0074 Ghose-Crippen LogKow

SssCH2 0.0066 Sum of atom-type E-State: -
CH2-

ALogp2 0.0063 Square of ALogP
ATSC2m 0.0059 Centered Broto-Moreau auto-

correlation - lag 2 / weighted by
mass

ATSC1e 0.0051 Centered Broto-Moreau auto-
correlation - lag 1 / weighted by
Sanderson electronegativities

RDF140v 0.0044 Radial distribution function -
140 / weighted by relative van
der Waals volumes
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TDB3u 0.0041 3D topological distance based
autocorrelation - lag 3 / un-
weighted

RDF140p 0.0041 Radial distribution function -
140 / weighted by relative po-
larizabilities

Table 4. Descriptors and importances for YSI

Name Imp. Description

piPC5 0.2602 Conventional bond order ID
number of order 5

piPC4 0.1248 Conventional bond order ID
number of order 4

piPC3 0.1099 Conventional bond order ID
number of order 3

TpiPC 0.0975 Total conventional bond or-
der (up to order 10)

piPC6 0.0853 Conventional bond order ID
number of order 6

SpMax1 Bhm 0.0575 Largest absolute eigenvalue
of Burden modified matrix
- n 1 / weighted by relative
mass

SpMax1 Bhv 0.0291 Largest absolute eigenvalue
of Burden modified matrix
- n 1 / weighted by relative
van der Waals volumes

R TpiPCTPC 0.0201 Ratio of total conventional
bond order (up to order 10)
with total path count (up to
order 10)

SpMax1 Bhp 0.0195 Largest absolute eigenvalue
of Burden modified matrix
- n 1 / weighted by relative
polarizabilities

ETA Eta F 0.0181 Functionality index EtaF
piPC8 0.0133 Conventional bond order ID

number of order 8
piPC7 0.0128 Conventional bond order ID

number of order 7
SpMin1 Bhi 0.0126 Smallest absolute eigenvalue

of Burden modified matrix -
n 1 / weighted by relative
first ionization potential

MLFER E 0.0121 Excessive molar refraction
ETA Beta 0.0100 A measure of electronic fea-

tures of the molecule

2.3 ANN Hyperparameter Tuning
ANN’s were trained using the Adam optimization
function, which possesses five hyperparameters that
affect the quality of the ANN’s training [35]:

� β1: exponential decay rate 1 for moment esti-
mates

� β2: exponential decay rate 2 for moment esti-
mates

� ε: number to prevent division by zero in the
algorithm implementation

� α: learning rate (i.e. step size)

� learning rate decay: degradation of learning rate
after each learning epoch

In addition to these five training variables, the
optimal number of neurons in the ANN’s hidden
layer(s) must be determined. Given the number
of hyperparameters that must be manually tuned
under normal circumstances, an artificial bee colony
(ABC) was utilized to algorithmically determine the
optimal sets of hyperparameters for both CN and
YSI models. ABC’s mimic the foraging behavior
of honeybees to search a multidimensional search
space of tunable variables and have been shown to
out-perform genetic algorithms and other particle
swarm optimization algorithms in tuning various
hyperparameters in ANN’s [36]. The ABC was sup-
plied with a fitness function to determine the ability
of ANN’s to predict values for unseen values, where
a lower RMSE for a given set of hyperparameters
was deemed better performing. The ABC was run
for 20 search cycles with 50 employer bees for both
CN and YSI datasets. Tables 5 and 6 show the
tuned hyperparameters given the use of the Adam
optimization function and two hidden layers.

Table 5. Tuned hyperparameters for CN model

Hyperparameter Value

β1 0.0482
β2 0.8011
ε 0.2752
α 1.0
Decay 0.2710
Neurons in 1st hidden layer 35
Neurons in 2nd hidden layer 31
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Table 6. Tuned hyperparameters for YSI model

Hyperparameter Value

β1 0.3241
β2 0.6434
ε 0.9485
α 0.2622
Decay 0.0145
Neurons in 1st hidden layer 39
Neurons in 2nd hidden layer 10

2.4 Candidate ANN Training/Selection
ANN training was performed with ECNet, an open
source machine learning toolkit created to predict fuel
properties of potential next-generation fuels [37]. A
model is considered a collection of ANN’s whose pre-
dictions are averaged to obtain a final prediction, pro-
ducing a more accurate prediction in a similar fash-
ion to classifier ensembles [38]. Each ANN was chosen
from a pool of ANN candidates, where the pool’s goal
was to optimally predict either CN or YSI. The ANN
that was chosen from each pool achieved the lowest
RMSE in predicting unseen data across all the pool’s
candidates. 5 pools, each with 75 candidate ANN’s
were trained for both CN and YSI.

Each candidate ANN was supplied with a random
learning set and a random validation set, 70% and
20% of the total data respectively, while the remain-
ing 10% of data remained constant for all candidates
to measure their performance in predicting unseen
data. The ANN’s were trained using the backpropa-
gation algorithm and the learning set, while the vali-
dation set measured the progress of the ANN’s learn-
ing. Once performance stopped improving on the
validation set, learning was terminated – this was
done to prevent any overfitting on the learning set.
Shuffling learning/validation sets allowed each ANN
to learn from a different representation of data, and
each ANN’s predictions are unique (often predicting
slightly higher or slightly lower than the known ex-
perimental value). Consequently, the final prediction
of the model tends to be more accurate. Model per-
formance was measured by determining RMSE and
the r-squared correlation coefficient when predicting
unseen data (the constant test set).

3 RESULTS AND DISCUSSION
Figures 2 and 3 show parity plots between pre-
dicted values and experimental values for CN and
YSI respectively, illustrating the performance of
the training (learning and validation) set and the

blind test set. The center dashed lines illustrate
a 1:1 parity between predicted values and exper-
imental values, and the outer dashed lines show
bounds imposed by the test set’s RMSE. Test
set RMSE and r-squared are significantly better
for both CN and YSI, as candidate ANN’s were
selected based on their ability to predict unseen data.

Figure 2. CN parity plot illustrating predicted
values vs. experimental values

Figure 3. YSI parity plot illustrating predicted
values vs. experimental values

Table 7 displays CN and YSI predictions for
the products of fast pyrolysis outlined in Table
1, and Table 8 displays CN and YSI predictions
for the products of catalytic upgrading outlined in
Table 2. As seen by the disparity between pre- and
post-catalytic upgrading CN values (Table 7 and
Table 8), upgraded compounds such as diphenyl
ether (a result of phenol/phenol upgrading), 1-
methoxy-2-phenoxybenzene (a result of 2-methoxy
phenol/phenol upgrading) and 2-methoxy-4-methyl-
1-phenoxybenzene (a result of 2-methoxy-4-methyl
phenol/phenol upgrading) have significantly higher
CN’s. Furan/phenol-based upgrades also have higher
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CN’s. Ethyl/phenol-based upgrades did not improve
CN significantly. All upgraded compounds have
significantly higher YSI’s than their pre-upgraded
products except for diphenyl ether.

Table 7. Predicted CN/YSI for products of fast
pyrolysis

Name CN YSI

phenol 1.84 161.71
methanol 9.10 1.55
acetol 8.76 14.00
2-furanmethanol 7.16 81.89
5-hydroxy methyl furfural 7.02 215.34
2-hydroxy-cyclopent-2-en-1one 7.82 71.24
2-methoxy phenol 8.75 330.34
2-methyl phenol 2.44 237.00
4-methyl phenol 2.79 244.16
2-methoxy-4-methyl phenol 8.38 403.78
3,5-dimethyl phenol 1.42 357.99
3-ethyl phenol 5.60 315.51
4-ethyl-2-methoxy phenol 11.61 479.04

Table 8. Predicted CN/YSI for products of catalytic
upgrading

Name CN YSI

Diphenyl Ether 12.01 168.85
Methoxybenzene 9.71 649.02
1-phenoxy-2-propanone 11.11 342.27
2-phenoxymethylfuran 12.11 451.96
5-phenoxymethylfurfural 12.94 525.03
2-phenoxy-2-cyclopentene-1-
one

11.80 541.33

1-methoxy-2-phenoxybenzene 16.06 689.18
1-methyl-2-phenoxybenzene 6.77 684.55
1-methyl-4-phenoxybenzene 5.83 696.12
2-methoxy-4-methyl-1-
phenoxybenzene

17.06 746.00

1,3-dimethyl-5-
phenoxybenzene

5.75 747.66

1-ethyl-3-phenoxybenzene 8.90 714.75
1-ethyl-4-phenoxybenzene 8.51 718.21

4 CONCLUSION
From the predicted CN/YSI values displayed in Ta-
bles 7 and 8, it can be concluded that:

� Catalytically upgrading phenol, methoxy-
phenolic and furanic compounds using Ru/TiO2
catalysts and phenol during the catalysis process
yields compounds with higher CN values, likely
attributed to the lower oxygen content of the
products

� Catalytically upgrading ethyl-based compounds
using Ru/TiO2 catalysts and phenol during
the catalysis process yields compounds with no
significant improvement in CN values

� Catalytically upgrading products of fast pyroly-
sis using Ru/TiO2 catalysts and phenol during
the catalysis process yields compounds with
significantly higher sooting propensity, with the
exception of diphenyl ether

Based on these findings, further pursuit of catalyt-
ically upgrading phenolic/furanic compounds in an
experimental setting is recommended. Additionally,
different additives during the catalysis process besides
phenol should be assessed, such as furanic additives.

Additional investigations into why the selected
QSPR descriptors contribute to CN/YSI from a
chemical standpoint, and what role upgraded com-
pounds play in a mixture of traditional petroleum-
based fuel should be performed.
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