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1 Introduction 
 

The objective of this research is to improve the economic competitiveness of advanced reactors 

through the optimization of cost and plant performance, which can be achieved by coupling 

intelligent online monitoring with asset management decision-making. As advanced reactors are 

early in the development life-cycle, online monitoring systems and associated sensor networks can 

be incorporated directly into the design without constraints related to retrofitting and system 

upgrades.  

 

1.1 Motivation 
 

Economic competitiveness is the greatest barrier facing the U.S. nuclear power sector. The U.S. 

operating light water reactor (LWR) fleet is struggling to remain profitable in a challenging market 

environment, leading the federal and state governments to provide incentives to ensure that the U.S. 

retains its largest source of carbon-free electricity. While these efforts aid in addressing the issue 

in the short-term, sustainable changes are needed to improve the long-term economic outlook.  

 

Nuclear power plant operating costs are constrained by many factors, such as security requirements 

or fuel costs. However, improvements in asset-management and operational strategies offer one 

avenue for cost reduction that is within the control of utilities. For advanced reactor designs, this 

includes maintenance activities associated with systems and components, along with potential 

changes in operational modes, such as power reductions. The difficulty is optimizing asset-

management and operational decision-making in a complex and interconnected environment. There 

are numerous factors that can influence the course of action, including the current status of plant 

components, projected revenue, regulatory compliance, etc. A comprehensive assessment of these 

factors must be conducted for a truly optimized solution to be found.   
 

1.2 Project Overview  
 

The current research is focused on the optimization of advanced reactor operation and asset 

management using online monitoring and diagnostics and intelligent decision-making. To achieve 

this goal, the project developed the high-level analysis methodology outlined in Figure 1-1, which 

is briefly discussed here.  

 

First, during the reactor design phase, it is necessary to develop a sensor network that can properly 

monitor and diagnose important component faults and degradation throughout the lifetime of the 

plant. This is a difficult task as there are many unknowns regarding long-term operational reliability 

and the associated costs of additional sensors and system penetrations can be prohibitive. Therefore, 

development of the sensor network must be optimized based on these criteria while ensuring 

necessary system diagnostic capabilities. For the current project, the Ohio State University (OSU) 

Integrated System Failure Analysis (ISFA) method it utilized for this assessment.  

 

Once reactor operation begins, the sensor network is utilized by an online monitoring and 

diagnostic tool (such as the Argonne PRO-AID tool [1]), which provides a real-time picture of 

component and system performance. Specifically, both slow degradation phenomena (wear and 

tear of components and sensors) and abrupt events (leakages, valves failures, etc.) are diagnosed. 

Based on the analysis performed by the diagnostic tool, the plant risk profile must be updated to 
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accordingly to represent the real-time condition of the plant. For an operating plant, the plant risk 

profile includes not only safety considerations, which are evaluated through the probabilistic risk 

assessment (PRA), but also productivity concerns, which are gauged through the use of a generation 

risk assessment (GRA).  

 

Utilizing the real-time plant risk profile, a risk-informed decision-making process then attempts to 

optimize plant operations and asset management plans. The challenges of this task include cost-

benefit decision-making in multivariate space while ensuring the plant does not approach risk or 

safety limits. Markov Decision Processes (MDPs) are utilized to perform this task in an efficient 

and intelligent manner.  

 

 
Figure 1-1: Overall Project Methodology and Structure  
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1.3 Project Objectives 
 

The project has two main objectives, as detailed below: 
 

• Sensor Network Design:  

o Further development of the OSU ISFA methodology capabilities to permit 

additional optimization criteria and refine the optimization analysis approach. 

 

• Asset-Management Decision-Making Optimization:  

o Creation and development of an approach for asset-management and operational 

strategy optimization that comprehensively and seamless incorporates all available 

data stream into the optimization analysis, including online plant monitoring, 

component models, and the plant risk profile.  

 

In addition to the methodology tasks outlined above, the project seeks to perform a preliminary 

demonstration of the approaches as part of the effort to commercialize the developed technologies.  

 

1.4 Report Structure 
 

The following report provides an overview of the research and its findings and is structured based 

on the major project initiatives, as outlined in Figure 1-2. The Introduction section gives a brief 

overview of the project and its structure. The section is followed by sections on Sensor Network 

Optimization, Intelligent Asset-Management Decision-Making, and a Time-to-Market (T2M) 

Analysis for the developed technology. The last section provides concluding remarks on the project, 

along with the list of accomplishments and the possible next steps towards further enhancing the 

proposed methodology.    

 

 
Figure 1-2: Report Outline  

Section 2: Sensor Network Optimization

• 2.1: Methodology

• 2.2: Demonstration

Section 3: Intelligent Asset-Management Decision-Making

• 3.1: Methodology

• 3.2: Demonstration

Section 4: Time-to-Market Analysis

• 4.1: Findings

Section 5: Conclusions

• 5.1: Accomplishments

• 5.2: Next Steps
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2 Sensor Network Optimization 
 

The first focus of the project was the further refinement of the OSU ISFA methodology [2-4] for 

the development of an optimized sensor network design. This section briefly introduces the 

methodology and the experiments designed to verify the effectiveness and performance of the 

sensor selection method developed to generate optimal sensor deployment configurations for 

online monitoring (OLM) systems for advanced nuclear reactors. In the experiments, several 

important capabilities of the OLM system, such as the capability of observing various states of the 

target system, the capability of fault detection and discrimination, the capability of fault 

prognostics, and various other characteristics that sensor systems should fulfill such as 

functionality, integrability, reliability, and cost, are taken into account when generating optimal 

sensor deployment configurations. A reactor cavity cooling system (RCCS) of the General 

Atomics (GA) Modular High-Temperature Gas Reactor (MHTGR) is selected as the case study 

system in these experiments. This section proposes a multiple-objective optimization algorithm 

which outputs a series of sensor deployment solutions, including the numbers, types, and positions 

for deploying the sensors required by the OLM system.  

 

2.1 Methodology 
 

When a safety-critical system is still in the development phase, it is difficult to select a sensor 

deployment strategy for designing the OLM system related to such a system due to the shortage 

of operational data. This section introduces a model-based method that can determine the best 

candidate sensors to be used by an OLM system by utilizing the inferred signal features of the 

system in the development phase. These signal features and the corresponding sensor selection 

criteria can be derived from the outcomes of a qualitative model-based fault analysis method, the 

ISFA method, which infers the impacts of system faults and their evolutions. Six sensor selection 

criteria were identified. Table 2-1 displays the sensor selection criteria used by the proposed 

methodology. 

 

Table 2-1: Sensor selection criteria used by the proposed methodology 

Criteria Description 

1. Fault Detection and 

Discrimination (FDD) 

Evaluate the capability of the OLM system in detecting and 

identifying various types of faults in the target system. 

2. Fault Prognostics Evaluate the capability of the OLM system in forecasting 

component failures during system operations. 

3. Observability Evaluate the capability of the OLM system in observing system 

signals and states. 

4. Functionality Evaluate whether the functions of a sensor satisfy the requirement 

of the OLM system 

5. Integrability  Evaluate the difficulty in installing a sensor into the monitored 

system. 

6. Cost Evaluate the expenses for adding a sensor to the OLM system. 

 

Applying the methodology to a safety-critical system includes several steps, which are introduced 

below: 

 

1. Create qualitative ISFA models for the target system (i.e., the RCCS in this report). This step 

identifies the system components, their functions, and the flows transmitted by these 
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components (e.g., the airflow delivered by the inlet 

pipes) since sensors will be deployed to measure the 

physical variables related to these flows (e.g., the 

flow rate and the pressure of the airflow).  

2. Run ISFA simulations and generate signal features 

under various failure scenarios. The simulations 

utilize the qualitative models of the identified 

components, flows, and functions to infer the trends 

in the physical variables under various failure 

scenarios and generate signal features based on the 

trends. 

3. Apply the sensor selection criteria to evaluate the 

effectiveness of the OLM system. These criteria can 

be used to rank and evaluate the important aspects 

(e.g., the ability to diagnose faults, etc.) of the OLM 

system. 

4. Use a Multiple Objective Optimization Algorithm to 

select the optimal sensor deployment configuration. 

The optimization algorithms leverage the selection criteria as objective functions for evaluating 

various sensor selection solutions. 

 

Due to a recent invention disclosure and potential patent submission, a detailed discussion of the 

methodology is deferred to future publications. 

 

2.2 Demonstration 
 

2.2.1 Case Study System 
 

An MHTGR RCCS [5] was selected as the case study system for the proposed methodology. The 

RCCS removes heat from the reactor cavity in a passive manner by the natural convection of 

outside air through cooling panels located in the reactor cavity. The cavity cooling panels form a 

cylindrical wall completely external to the primary coolant pressure boundary and surround the 

uninsulated reactor vessel. The cooling panels and ducting collect the heat transferred from the 

vessel by radiation and natural convection, transporting the heated air to the environs. They protect 

the cavity walls from overheating during normal operations and provide an alternate means of 

decay heat removal when the reactor is shut-down. The structure of the RCCS is displayed in 

Figure 2-1. In the figure, the RCCS includes the inlet pipes, the outlet pipes, the cooling panels, 

etc. It is worth noting that the RCCS has four sets of inlet and outlet pipes, but the sketch at the 

bottom of Figure 2.1 only displays one of them. The detailed list of components considered in the 

case study is displayed in Table 2-2. Four sets of pipelines in the RCCS are numbered as inlet/outlet 

pipes 1, 2, 3, and 4, respectively. The labels defined for each component will be reused in the 

experiment result sections. 

 

 

 

Figure 2-1: Structure of the Reactor 

Cavity Cooling System [5] 
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Table 2-2: The important components and their labels 

Labels Components Labels Components Labels Components Labels Components 

FI1 The filter at 

inlet pipe 1 

FI2 The filter at 

inlet pipe 2 

FI3 The filter at 

inlet pipe 3 

FI4 The filter at inlet 

pipe 4 

FO1 The filter at 

outlet pipe 1 

FO2 The filter at 

outlet pipe 2 

FO3 The filter at 

outlet pipe 3 

FO4 The filter at 

outlet pipe 4 

PI1V The vertical 

part of inlet 

pipe 1 

PI2V The vertical 

part of inlet 

pipe 2 

PI3V The vertical 

part of inlet 

pipe 3 

PI4V The vertical part 

of inlet pipe 4 

PI1H The horizontal 

part of inlet 

pipe 1 

PI2H The horizontal 

part of inlet 

pipe 2 

PI3H The horizontal 

part of inlet 

pipe 3 

PI4H The horizontal 

part of inlet pipe 

4 

PO1V The vertical 

part of outlet 

pipe 1 

PO2V The vertical 

part of outlet 

pipe 2 

PO3V The vertical 

part of outlet 

pipe 3 

PO4V The vertical part 

of outlet pipe 4 

PO1H The horizontal 

part of outlet 

pipe 1 

PO2H The horizontal 

part of outlet 

pipe 2 

PO3H The horizontal 

part of outlet 

pipe 3 

PO4H The horizontal 

part of outlet 

pipe 4 

CP1 The cooling 

panel connected 

to pipe set 1 

CP2 The cooling 

panel connected 

to pipe set 2 

CP3 The cooling 

panel connected 

to pipe set 3 

CP4 The cooling 

panel connected 

to pipe set 4 

CP The cooling 

panel of the 

reactor wall 

      

 

2.2.2 Candidate Sensors 
 

The physical variables of the RCCS taken into account include the temperature, the flow rate, the 

pressure, the particle density, and the radiation density of the airflow transferred through the 

RCCS. According to these types of signals, ten candidate sensors were selected for the OLM 

system. The sensors are listed in Table 2-3. The labels shown in the table will be reused in the 

result section. 

 

Table 2-3: Specification of the candidate sensors 

Labels Measures Range Cost ($) MTTF(h) 

TS1 Temperature -200 ~ 1100C 1,500 1e6 

TS2 Temperature -50 ~ 500C 1,000 1e7 

FS1 Flow rate, Temperature 

(Multifunctional) 

0 ~ 200L/min, 0 ~ 

500C 

4,500 1e5 

FS2 Flow rate 0 ~ 250L/min 2,500 1e6 

PS1 Pressure 0 ~ 10 MPa 3,200 1e6 

PS2 Pressure 0 ~ 1 MPa 1,000 1e7 

DS1 Particle Density 0 ~ 0.02 kg/m3 5,000 1e6 

DS2 Particle Density 0 ~ 0.2 kg/m3 1,500 1e6 

RS1 Radiation  0.1u ~ 100mSv/h 7,000 1e6 

RS2 Radiation  0.1u ~ 10mSv/h 5,000 1e5 

 

2.2.3 Considered Failure Modes 
 

An essential function of the OLM system is to detect and distinguish faults during system 

operations. Table 2-4 introduces the failure modes of the system components considered in this 
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report. It is worth noting that this report considers single fault scenarios only (i.e., in each fault 

scenario used to generate signal features, only one fault was injected). But the proposed method 

can be applied to multiple fault scenarios as well. 

 

Table 2-4: Failure modes of components considered 

Component Failure Modes Description 

Inlet Filters Inner Leakage Some of the dirty air passes the filter since there are 

small holes in the filter. 

Clog The air cannot pass the filter smoothly since too much 

dust is accumulated on the filters. 

Inlet Pipes Leak to the 

environment 

Small leakage at the shell of the pipes. 

Collapse Large leakage at the shell of the pipes. 

Cooling Panels Degradation due to 

rust/scaling 

 

Outlet Pipes (inside 

the inlet pipe) 

The leakage from the 

inlet pipe  

Some of the air leaks from the inlet pipe into the 

outlet pipe. 

Outlet Pipes (outside 

the inlet pipe) 

Leak to the 

environment 

Small leakage at the shell of the pipes 

Collapse Large leakage at the shell of the pipes. 

Outlet Filters Inner Leak Some of the dirty air passes the filter since there are 

small holes in the filter. 

Clog The air cannot pass the filter smoothly since too much 

dust is accumulated on the filters. 

Sensors Bias There are discrepancies between measured and true 

values. 

Drift The output of the sensor keeps increasing or 

decreasing linearly from the normal state. 

Spike Spikes are fast, short-duration electrical transients in 

voltage (voltage spikes), current (current spike), or 

transferred energy (energy spikes) in an electrical 

circuit of sensors. 

Stuck The output of a sensor signal becomes constant. 

Hardover The output of the sensor increases above the 

maximum threshold 

 

2.2.4 Other Constraints 
 

The following constraints/assumptions are introduced when performing sensor selection: 

 

• One sensor can measure physical variables at one location only, i.e., the case in which a 

sensor can simultaneously sample data at different locations is not considered 

• No more than three sensors can be deployed at one location. This constraint is introduced 

because of the limited space available for sensor installation. 

 

2.2.5 Experiment Results 
 

The Non-dominated Sorting Genetic Algorithm (NSGA-II) [6, 7] is selected to implement the 

sensor selection methodology discussed in this study to design the OLM system. NSGA-II handles 

each objective function separately. After crossover and mutation, the NSGA-II algorithm creates 

a Non-dominated Pareto Front for all the solutions and the best result is chosen from the Non-
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dominated Pareto Front. The number of optimal solutions obtained in this study are 100 and the 

values of each objective function for 5 optimal solutions are presented in Table 2-5.  

 

Table 2-5: Values of objective functions for 5 optimal solutions 

Number of 

solution 

Cost Observability Fault 

diagnostics  

Fault 

prognostics 

Integrability 

1 24700 293682.3 30795.25 270523.2 12.2 

2 213000 1209887 121322.9 1100068 22.4 

3 30400 325039 33887.72 300701.9 12.2 

4 26200 309106.2 30795.25 285103.6 12.4 

5 169200 1071693 110270.5 970182.2 22.2 

 

The flowchart describing the application of the NSGA-II algorithm for obtaining the optimal 

solutions for the sensor placement optimization problem is shown in Figure 2-2. It can be observed 

from Figure 2-2 that, the objective functions and the constraints for sensor selections are defined 

for the NSGA-II algorithm based on the sensor selection criteria. Sensors are sampled at each 

location and crossover and mutation are applied to sensors to re-evaluate the objective functions 

and select the optimal solutions until the predefined maximum number of generations is reached.  
 

Start

Define the objective functions based 

on the sensors selection criteria

Define constraints for sensor 

selection at different locations to 

measure different variables

Apply NSGA-II algorithm to obtain 

the Non-dominated Pareto front up to 

a predetermined maximum 

generation number

Apply crossover according to 

NSGA-II with a predetermined 

crossover rate

Apply mutation according to 

NSGA-II with a predetermined 

mutation rate

Evaluate the objective functionSelect the optimal solution

Sample sensors at each locations to 

measure different variables

Reached to the maximum number of 

generations?

No

Yes

Output the optimal solutions and 

Non-dominated Pareto Front

 
Figure 2-2: Flowchart of the implementation of the Non-dominated Sorting Genetic 

Algorithm (NSGA-II) for the sensor placement optimization problem 
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The Non-dominated Pareto Front found for different sensor selection criteria is presented in Figure 

2-3, where each figure provides values for 4 sensor selection criteria. It can be observed that, both 

Figure 2-3(a) and Figure 2-3(b) depict a Non-dominate Pareto Front where each of the points of 

the Non-dominate Pareto Front corresponds to an optimal solution for sensor placement.  

 

  

(a) (b) 

Figure 2-3: Non-dominated Pareto fronts for sensors placement optimization for 
different sensors selection criteria 

 

The number of sensors selected at different locations after optimization is shown in Figure 2-4. It 

can be observed from Figure 2-4(a) and Figure 2-4(b) that the flowrate sensor (FS1) is selected at 

only a few locations compared to the flowrate sensor (FS2). Therefore, it is concluded that, the 

flowrate sensor (FS1) is more location sensitive, and should be used at those few locations to 

measure the corresponding variables, while the flowrate sensor (FS2) is more location agnostic. 

According to Figure 2-4, a similar behavior can be observed for other sensors too. Some sensors 

are very location sensitive and can be used at only a few locations while other sensors are location 

agnostic. 

 

  
(a) Flowrate sensor (FS1) (b) Flowrate sensor (FS2) 
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(c) Temperature sensor (TS1) (d) Temperature sensor (TS2) 

  
(e) Pressure sensor (PS1) (f) Pressure sensor (PS2) 

  
(g) Radiation density sensor (RS1) (h) Radiation density sensor (RS2) 

  
(i) Particle density sensor (DS1) (j) Particle density sensor (DS2) 

Figure 2-4: Number of different sensors selected at different locations for 100 
solutions 
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The total number of sensors selected for 100 solutions at 38 different locations is presented in 

Figure 2-5(a) for different types of sensors. It can be observed that, Temperature sensor (TS2) is 

selected the most and Radiation density sensor (RS1), Particle density sensor (DS1) are selected 

the least. In Figure 2-5(b), the total number of sensors selected at different locations is presented.  

 

  
(a)  (b)  

Figure 2-5: Total number of sensors selected (a) for different sensor types and (b) at 
different locations
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3 Intelligent Asset-Management Decision-Making 
 

The second focus of the project was the creation and development of an approach for asset-

management and operational strategy decision-making that comprehensively and seamlessly 

incorporates all avenues of available data, including online plant monitoring, component models, 

and the plant risk profile. An overview of the developed approach and preliminary demonstration 

analysis are provided here. 

 

3.1 Methodology 
 

A central aspect of the research project is the utilization of an intelligent decision-making approach 

to optimize asset-management strategies. The system of interest (the nuclear power plant) can be 

in any of a finite number of states, and the transition between system states follows a Markov 

process. At discrete time steps, the decision-maker can take actions to influence system state 

transition. So, the transitions between system states depend not only on “nature,” i.e., the inherent 

randomness in system state transition, but also on decision-maker actions. At each time step, 

different decision-maker actions and different system state transitions lead to varying rewards for 

the decision-maker. The decision-maker’s objective is to maximize the sum of the rewards that will 

be received from the current time step into the future. 

 

As shown in Figure 3-1, the approach for asset-management decision-making during plant 

operation requires multiple steps and tools but fundamentally relies on a Markov decision 

processes/partially observable Markov decision processes (MDP/POMDP) optimization 

assessment. The steps before the MDP are necessary to supply the MPD calculation with the 

information required to form a real-time assessment of plant status. 

 

First, sensor information from the operating plant is provided to the online monitoring and 

diagnostic tool (PRO-AID [1] for the approach discussed here), which assesses component status 

based on the sensor data and physical system models. To inform this calculation, Markov 

component models provide additional insights regarding component behavior (such as estimated 

component failure probability). Both PRO-AID and the Markov component models work in tandem 

to assess the condition of components within the system.  

 

The output of PRO-AID are real-time probabilities regarding component status (healthy, degraded, 

failed, etc.). The output from PRO-AID and the Markov component models are utilized to develop 

a real-time plant risk profile, which consists of a PRA and a GRA. The PRA analyzes plant risk 

from a safety perspective, while the GRA assesses economic risk.  

 

Lastly, the output from PRO-AID and the real-time plant risk profile are fed to the MDP analysis. 

The MDP analyzes different operational strategies to determine the optimal asset-management 

strategy to maximize revenue.  

 

Due to a pending patent regarding the developed approach, a detailed discussion of the 

methodology is deferred to future publications.  
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Figure 3-1: Intelligent Asset-Management Decision-Making Approach  

 

3.2 Demonstration 
 

As the focus of the project was the applicability of the developed approaches to advanced nuclear 

reactor designs, a non-light water reactor was selected for the demonstration analysis. The 

following sections describe the selected reactor design and system analyzed, in addition to the 

process utilized to make the selection. 

 

3.2.1 Reactor Overview 
 

The advanced reactor design selected for the demonstration analysis was the MHTGR, which was 

selected for several reasons. First, the general reactor design is similar to the Framatome SC-HTGR 

design but there is significant design information available in the public domain (described below), 

which alleviated concerns regarding university students who are part of the current project and 

unable to access controlled information. Second, as highlighted above, was the availability of 

detailed design and licensing documentation, which expedited the development of the 
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demonstration problem. This included System and Subsystem Design Description (SDD and 

SSDD) documents and a PRA. The MHTGR licensing approach also utilized a risk-informed 

performance-based method, similar to that of LMP [8]. Lastly, the multi-module design of the 

MHTGR plant, described below, also permits additional operating modes.  

 

Significant work was completed on the MHTGR design and licensing case as part of a DOE-

sponsored effort in the 1980s and early 1990s led by GA Technologies, Combustion Engineering, 

Bechtel National, Inc., and Stone and Webster. Although the project was cancelled before 

construction began, there was regulatory interaction through submittal and review of the 

Preliminary Safety Information Document (PSID) [5] and the NRC’s published draft Preapplication 

Safety Evaluation Report (PSER) [9].  

 

The documentation developed as part of the MHTGR project was initially considered under the 

Applied Technology (AT) DOE designation. Given the elimination of the AT category by DOE, 

the project worked with the DOE Office of Scientific and Technical Information (OSTI) to get the 

MHTGR documents listed in Table 3-1 properly cleared for public release. This information was 

then utilized for the demonstration analysis and is also now openly available on OSTI.gov for use 

as part of other research efforts.  

 

Table 3-1: Cleared MHTGR Documents 
Report Number Title 

HTGR-86-024* Preliminary Safety Information Document for the Standard MHTGR 

NUREG-1338* Preapplication Safety Evaluation Report for the Modular High-Temperature Gas-Cooled 

Reactor (MHTGR) 

HTGR-86-011* Probabilistic Risk Assessment for the Modular HTGR Plant 

HTGR-87-086 Modular High Temperature Gas-Cooled Reactor plant capital and busbar generation cost 

estimates 

HTGR-86-020 Heat transport system design description 

HTGR-86-101 Shutdown Cooling Circulator SDD  

HTGR-87-039 Circulating Water SSDD 

HTGR-87-027 Feedwater and condensate SDD 

HTGR-86-069 Forced Outage Assessment 

HTGR-86-051 NSSS Control SSDD 

HTGR-86-076 Plant control, data, and instrumentation SDD 

HTGR-86-052 NSSS Analytical Instrumentation SSDD 

HTGR-86-047 Plant protection and instrumentation SDD 

HTGR-86-049 Investment protection SSDD 

HTGR-86-048 Safety protection SSDD 

HTGR-87-028 Steam and water dump SDD 

HTGR-87-033 Heater drains and condensate returns SSDD 

HTGR-87-034 Condensate polishing SSDD 

HTGR-87-035 Steam vents and drains SSDD 

HTGR-86-129 Steam generator SDD 

HTGR-86-028 Shutdown Cooling SDD 

HTGR-87-068 RCCS SDD 

* Previously cleared for public release 

 

Within the Vessel System, helium coolant flows to the reactor vessel in the outer annular region of 

the crossduct, flows down through the core, returns through the center region of the crossduct, down 
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through the steam-generator bundle, then back up the annular region around the steam-generator 

back to the inlet of the single helium circulator. On the secondary coolant side, feedwater enters 

the separate steam generator vessel at the bottom and flows through a helical coil tube bundle, 

exiting as superheated steam at the side of the vessel (see Figure 3-2).  

When the reactor is shut down for maintenance or refueling, decay heat can be removed from the 

core by the normal Heat Transport System (HTS), or alternatively by an independent Shutdown 

Cooling System (SCS). The SCS consists of a motor-driven circulator coupled with a water-cooled 

heat exchanger mounted beneath the reactor core within the reactor vessel. The SCS is provided 

for investment protection and flexibility of operation. The SCS and HTS are not "safety-related".  

As a third means of providing decay heat removal, a "safety-related" RCS is provided within each 

reactor cavity. The RCCS cooling is provided by natural circulation of outside air within enclosed 

panels along the reactor cavity walls. The panels are designed such that outside air does not 

communicate with air within the cavity. The RCCS is capable of removing from the reactor vessel, 

decay heat conducted and radiated from the core. The RCCS is always functioning in its natural 

circulation mode to provide cooling of the reactor cavity concrete during normal operation and is 

therefore always available to remove decay heat under accident conditions without reliance on 

active components, power supplies, or operator action. [5] 

 
Figure 3-2: MHTGR Plant Overview (Single Reactor) [5] 

 

Table 3-2 summarizes some of the key design features and parameters associated with the Standard 

MHTGR. 
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Table 3-2: Features of the Standard MHTGR [5] 

Fuel UCO + ThO2 Microparticles 

Coating Ceramic (PvC/SiC/PyC) 

Moderator Graphite 

Coolant Helium 

Coolant Boundary Steel Pressure Vessel 

Power per Module 140 MWe/ 350 MWt 

Power Density 5.9 W/cc 

Fuel Temperature (Max/Ave) 1060/677 C (1940/1250 F) 

Coolant Temperature 259/687 C (497/1268 F) 

Coolant Pressure 6.4 MPa (925 psig) 

Steam Temperature 541 C (1005 F) 

Steam Pressure 2500 psig 

 

3.2.2 Demonstration System Selection 
 

As developing a component and system monitoring and decision-making framework for the entirety 

of the multi-reactor MHTGR design was beyond the scope of the current project. A subsystem of 

the MHTGR design was selected for analysis. It is important to note that while the component 

monitoring aspect of the demonstration analysis focused on a single subsystem, the decision-

making framework accounts for the impact of the operation and availability of the entire plant. To 

select the subsystem for that would be the focus of the demonstration analysis, MHTGR subsystems 

were compared on the following criteria: 

 

• Relevance to the generation capacity of the plant and interest from the asset-management 

perspective 

• Availability of detailed piping and instrumentation (P&ID) information 

• Complexity of the subsystem network 

• Complexity of the boundary conditions to be imposed 

• Type of PRA analysis used to assess the network (fault tree versus simulation-based) 

• Necessity of online component monitoring 

• Complexity of surrogate system model 

• Availability of PRO-AID models for the system components 

 

The following five MHTGR subsystems were considered as part of this process: 

 

• Shutdown Cooling System (SCS) 

• Reactor Cavity Cooling System (RCCS) 

• Main Circulator Subsystem (MCS) 

• Feedwater and Condensate System (FW) 

• Reactor Plant Cooling Water Subsystem (RPCWS) 

 

The results of the selection analysis are summarized in Table 3-3. Based on this analysis, the FW 

system was selected for the following reasons. First, the FW system is central to the generation 

capacity of the plant and has multiple components are key to asset-management decisions. Next, a 

detailed P&ID was available from the MHTGR Feedwater and Condensate SDD [10]. While 

complexity of the system and its boundary conditions are high, that is a positive aspect, as it 
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reinforces the need for intelligent decision-making processes given the complexity of the associated 

analysis. In addition, the components within the system can be assessed utilizing traditional PRA 

fault tree analysis, with preliminary models already developed as part of the MHTGR PRA. The 

system requires online monitoring since it is in continuous operation and a key factor in the 

generation capacity of the plant and also because the included components, such as feedwater 

heaters, can experience degradation. While the complexity of the corresponding surrogate model is 

high, the components within the system are fairly standard and also mostly available within the 

existing PRO-AID database.   

 

Table 3-3: Demonstration Problem Selection Process Results 

Evaluation Criteria SCS RCCS MCS FW RPCWS 

Relevance to generation capacity 

and asset-management perspective 
High Low High High High 

Availability of a detailed P&ID Yes 
No P&ID 

needed 

No P&ID 

needed 
Yes Yes 

Complexity of the subsystem 

network 
Medium No Network No Network High High 

Complexity of the boundary 

conditions 
Low Low Low High High 

Pathway for PRA analysis 
Yes - 

Traditional 

Yes – 

Simulation-

Based 

Yes – 

Traditional 

Yes – 

Traditional 

Yes – 

Traditional 

Necessity of online monitoring 
No (standby 

system) 
Yes Yes Yes Yes 

Complexity of the corresponding 

surrogate model  
High Low High High High 

Availability of the PRO-AID 

models for the system components 
Most No No Most Most 

 

 

3.2.3 Analysis Development 
 

Several preparation steps were necessary for the demonstration analysis, as outlined below. The 

following subsections provide a brief overview of each aspect: 

 

• FW System Surrogate: Given the lack of an operational facility, a surrogate for the FW 

system was developed in Dymola, which required a detailed decomposition of the system. 

• Markov Component Models: A Markov model of each component of the FW system was 

developed as part of the analysis framework 

• Online Monitoring: PRO-AID was utilized to monitoring and diagnose faults for the 

surrogate FW system modeled by Dymola. 

• PRA Development: The existing MHTGR PRA was recreated and adapted to the needs of 

the demonstration analysis. 

• GRA Development: A simplified GRA was developed for the analysis based on available 

documentation regarding MHTGR performance.  
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3.2.3.1 Feedwater System Decomposition 
 

While the MHTGR documentation provided extensive detail regarding the design and operation of 

the FW system, the final design was still in development when the project was ultimately canceled. 

Therefore, a fully complete system design was not finalized, and certain documentation contains 

conflicting information, as the design was evolving. Since the demonstration analysis requires a 

plant surrogate to test the framework’s capabilities, it was necessary to further refine the FW system 

to permit the development of a system surrogate in Dymola (see Figure 3-3). 

 

 
Figure 3-3: Developed FW System Dymola Model 

 

To complete this task, the available FW system information from the MHTGR documentation was 

reviewed and utilized as a starting point. When conflicting information was found, the project 

selected the values that were most conducive to the demonstration analysis (while ensuring 

consistent system design). If information was not available, the missing values were calculated or 

estimated based on existing design information. The output of this approach was developed FW 

P&ID shown in Figure 3-4, which formed the basis of the Dymola model of the system. The 

assumed sensor set for the system is also noted. 
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Figure 3-4: Developed FW System P&ID 
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3.2.3.2 Markov Component Model Development 
 

For the analysis performed, Markov component models were developed for each element of the 

FW system to aid in the prediction of future system status (which are updated by the online 

monitoring and diagnostic tool using the system sensor network). Figure 3-5 shows a generic 

Markov Model created and used in this analysis, along with a generalized form of the analytical 

solution derived. 

 

 
Figure 3-5: Generalized form of Analytical Solution for Markov Component Models 
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3.2.3.3 On-line Monitoring 
 

As was mentioned in Section 1.2, PRO-AID [1] is the tool to be used for online monitoring and 

diagnosis of component faults during plant operations. For the demonstration analysis, PRO-AID 

was linked to the Dymola model of the FW system and the Markov component models. PRO-AID 

and the Markov component models work in tandem to provide real-time probabilities of system 

status. 

 

3.2.3.4 PRA Model 
 

Incorporation of the PRA into the intelligent asset-management decision-making approach is a 

necessary step to ensure that plant operations remain within acceptable safety bounds. The insights 

from the PRA provide critical insights into the acceptability of proposed asset-management 

strategies, including whether such actions would preserve plant operating status within the limits 

of the plant license. To accomplish this task, the real-time PRA developed based on the project 

approach is utilized in conjunction with the risk-informed performance-based licensing approach 

of the Licensing Modernization Project (LMP). [11] 

 

As was mentioned in Section 3.2.1, a preliminary MHTGR PRA model is publicly available [12, 

13]. For this analysis, the original MHTGR PRA model of the Feedwater and Condensate System 

was used with some modifications (see Table 3-4 for the list of modifications).  

  

Table 3-4: Summary of MHTGR PRA Modifications 

Fault Tree Modifications to the MHTGR version 

FW Subsystem Fails 1. Removed condensate portion 

Loss of Pumping 

1. Removed condensate portion 

2. Added two simultaneous independent failures 

3. Added CCF Failure 

4. Incorporated two 80% capacity varying speed 

pumps, thus replacing the 1-out-of-2 100% 

capacity pumps logic.  

 

LP FW Heater Failure 

1. Added basic event for heater fouling (for each 

FW heater) 

2. The BE for FW heater excessive leakage was 

replaced by a OR gate for heater leakage with 

two basic events under it, one for the tube-side 

leakage and the other for the shell-side 

leakage 
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The set of input data needed for the PRA model was taken from the MHTGR PRA [13]. The values 

were then updated using the current industry average performance for components and initiating 

events (IEs) at U.S [14].  

 
3.2.3.5 GRA Model 
 

A GRA is the process of predicting the risk of generation loss during future operation by estimating 

the probability and duration of plant trip or derate due to equipment degradation or failure. [15] 

GRA is a key activity in assuring productivity and profitability as plants worldwide face 

increasingly competitive power markets. Nuclear power plant operators require tools to assist 

management in making decisions involving the operation and maintenance of equipment whose 

failure can cause reactor trips or down-power events. A GRA model, whether rudimentary or 

detailed, is an important element of nuclear asset management risk-informed tools for analyzing 

effects of equipment reliability and availability on plant value and resource allocation decision- 

making. 

 

Central to the assessment of generation risk is the development of a trip model. A trip model is 

similar in function and construction to that used for PRA with the exception that the end-state of 

the trip model is the frequency of plant trip as opposed to the frequency of core damage or offsite 

dose consequence. The trip model is generally used to estimate the frequency of instantaneous trip 

and down-power at the plant based on actual plant configuration and condition. 

 

Another model important for a GRA analysis is a derate power model, a model where the end-state 

is the frequency of plant to operate at decreased (derated) power level. The two models, trip and 

derate power, when built, help to identify different plant states and the awards (generation) 

associated with them which are key input parameters for any asset management decision at the 

plant level. 

 

For the demonstration analysis, a simplified MHTGR GRA was developed that considered three 

plant states (100% power, 80% power, and 0% power (plant trip)) and two subsystems (the FW 

subsystem and Transformer subsystem). Only the FW system is directly considered in the resulting 

optimization analysis, but the Transformer subsystem was also provided to demonstrate how 

additional systems can be incorporated into the framework. 

 

3.2.4 Demonstration Analysis  
 

The demonstration analysis centered on the operation of the FW system described in Section 3.2.3. 

For the preliminary analysis presented here, the goal was to test the integrated analysis framework 

for a large, complex problem to ensure that the model produced useful results and that the 

calculation could be performed in a reasonable amount of computational time. Therefore, many of 

the values utilized in the analysis were either based on preliminary analysis or postulated.  

 

Before proceeding to the complete demonstration, a limited-scope FW system test analysis was 

performed. The test analysis permitted a trial run of the data communication pathways and 

formatting. In addition, and most importantly, the overall size and complexity of the test analysis 

was far less than the full demonstration analysis. Therefore, potential errors in the input preparation 

approaches, solution methodology, and output results could be more easily identified. For example, 
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the determination of optimal actions is fairly trivial given the size of the problem, so it would 

provide a validation of the analysis output result. The results of the test analyses were successful 

and matched the optimal actions selected by direct analysis. 

 

The full demonstration analysis focused on the online monitoring and diagnostics of six FW system 

components (two FW pumps and four FWHs). The online diagnostic information for these 

components was utilized to develop a real-time risk profile for the plant. Although only these six 

components are monitored in real-time for this analysis, the status and behavior of the complete 

plant is taken into account within the developed risk profile. The details of the demonstration 

analysis are omitted here, given that they include information regarding the approach that is current 

undergoing patent submittal preparation. 

 

In conclusion, the preliminary demonstration analysis calculations appeared successful for several 

reasons. First, the solution approach was able to perform an assessment of a system that was highly 

complex with over 2 billion possible transition pathways. In addition, the program was able to 

calculate the result in a reasonable period of time (less than 30 minutes when utilizing a desktop 

machine), which is a promising indicator for future cases with further complexity. In addition, the 

results for the initial analyses matched intuition for the simple cases assessed, providing a 

preliminary level of confidence in the solution scheme and overall framework. This is an important 

factor as the purpose of the integrated framework is to assess scenarios where the complexity is too 

great for simple calculations or intuition. In such scenarios, it may become difficult to gauge the 

accuracy of the suggested actions, without in-depth investigation.  
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4 Time-to-Market Analysis 
 

To aid in the further development and commercialization of the developed technology, a T2M 

report has been prepared, which identifies and examines remaining steps to deployment. The focus 

of the T2M assessment was the commercialization of the intelligent asset-management decision-

making approach utilizing MDPs, as it was a technology developed as part of the project and 

includes shared intellectual property amongst the project team. 

 

The purpose of the T2M report is to support the development, commercialization, and deployment 

of the technology through an assessment of the following factors: 

 

• Technology Motivation – Customer needs and value proposition 

• Target Markets – Market size, customer feedback, market drivers 

• Competitive Landscape – Existing competition, alternatives 

• Risk Strategy – Identified risks, mitigation strategies 

• Roadmap – Financial plans, sales strategy, next steps 

 

Details of the assessment are not provided here, given the sensitive nature of the content and 

pending patent submittal for the developed asset-management approach. 

 

4.1 Findings 
 

There were several main findings based on the T2M assessment, outlined below: 

 

1. Patent finalization: 

a. Complete patent submittal to support future licensing of the approach or direct tool 

development 

2. TCF award submittal: 

a. Pursue funding for further approach development (including the following action 

items) through a TCF award 

3. Additional demonstration analyses: 

a. Complete additional demonstration analyses to improve confidence in analysis 

performance, provide use cases for advertising and demonstration of cost savings, 

and to allow development of new visualization techniques. 

b. Discuss potential for industry involvement with demonstration analysis to increase 

realism, advertise approach, and gather customer needs.  

4. Further customer interviews: 

a. Conduct additional customer research with operating LWR fleet and advanced 

reactor vendors concerning operational needs. 

5. Competition review: 

a. Conduct further research regarding the tools/products currently being used by the 

operating LWR fleet for asset-management decision-making. 
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5 Conclusions 
 

The NEET project reviewed here focused on improving the economic competitiveness of advanced 

reactors by reducing operational costs through intelligent asset-management decision-making. To 

achieve this goal, technical efforts centered on the following: 

 

• Sensor Network Design: Optimizing the design of the plant sensor network based on 

multiple criteria, such as fault detection and cost. 

 

• Operational Asset-Management: Optimizing plant operations and maintenance activities 

utilizing online monitoring in conjunction with component models and the plant risk 

profile. 

 

5.1 Accomplishments 
 

Several significant efforts were completed regarding the sensor network design optimization task, 

with a focus on expanding the capabilities of the OSU ISFA approach. First, new optimization 

criteria were added, such as observability and cost. Next, multiple optimization algorithms were 

explored to determine the best approach for the methodology. Lastly, a demonstration analysis of 

the sensor network design process was performed utilizing the MHTGR RCCS.   

 

A major focus of the project was the creation and development of the intelligent asset-management 

decision-making approach. A novel methodology was outlined that utilizes MDPs in conjunction 

with online plant monitoring, component models, and a real-time risk profile of the plant. 

Significant effort established a seamless process of integrating these factors directly into the MDP, 

providing a single, comprehensive analysis structure. A preliminary demonstration of the approach 

was completed utilizing the MHTGR feedwater system. In addition, a T2M analysis was completed, 

with a focus on the developed technology, to outline next steps towards commercialization. 

 

Additional highlights of the project include the following: 

 

• Patents: A patent application is being prepared regarding the integrated MDP approach for 

intelligent asset-management decision-making, with submittal scheduled for mid-2023.  

• Invention Disclosures: An invention disclosure has been submitted regarding the selection 

criteria for optimal sensor placement in online monitoring systems. 

• Publications: In additional to the limited technical reports submitted to DOE as part of the 

project, two conference papers and journal articles were submitted regarding the sensor 

network design approach. Based on guidance from Argonne legal, publications regarding 

the integrated MDP approach for asset-management decision-making are being deferred 

until patent submittal occurs.  

• Student Support: Three post-doctoral students/researchers and one PhD candidate at OSU 

were supported through the research conducted under this NEET award. One of the post-

doctoral students/researchers is now an assistant professor at the University of Maryland. 
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5.2 Next Steps 
 

Regarding the ISFA-based sensor selection and optimization methodology, several future actions 

are planned as outlined below: 

 

• Invention Disclosure: A invention disclosure regarding the selection criteria for optimal 

sensor placement in online monitoring systems has been submitted and is currently being 

reviewed for possible submission as a patent. 

• Further Method Development: Additional sensor selection criteria, such as reliability of 

candidate sensors and uncertainty in sensor measurements, will be developed and 

integrated into the approach for sensor network optimization, and the scalability and 

maintainability of the proposed methodology will be studied so that the proposed method 

can be applied to large-scale and more complex systems. 

Regarding the integrated MDP approach for intelligent asset-management decision-making, several 

future actions are planned, as outlined below: 

 

• Patent Completion: A patent application is being prepared for the integrated MDP 

approach to asset-management decision-making, with submittal scheduled for mid-2023.   

 

• Further Development Toward Commercialization: The T2M analysis identified 

several main tasks requiring completion before commercialization of the technical can be 

achieved. Avenues for funding these activities, such as TCF awards, are currently being 

pursued.  

 

First, in coordination with Argonne and OSU technology commercialization teams, a patent 

application is being prepared for the integrated MDP approach to asset-management decision-

making, with submittal planned for mid-2023. Second, based on the findings of the T2M analysis, 

several funding avenues are being pursued to complete the outstanding tasks necessary for 

commercialization. These tasks include a demonstration of the cost savings potential of the 

approach utilizing a real-world example and further development of the approach regarding 

scalability and usability. A TCF application has been submitted concerning these efforts. 
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