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1 Introduction

The objective of this research is to improve the economic competitiveness of advanced reactors
through the optimization of cost and plant performance, which can be achieved by coupling
intelligent online monitoring with asset management decision-making. As advanced reactors are
early in the development life-cycle, online monitoring systems and associated sensor networks can
be incorporated directly into the design without constraints related to retrofitting and system
upgrades.

1.1 Motivation

Economic competitiveness is the greatest barrier facing the U.S. nuclear power sector. The U.S.
operating light water reactor (LWR) fleet is struggling to remain profitable in a challenging market
environment, leading the federal and state governments to provide incentives to ensure that the U.S.
retains its largest source of carbon-free electricity. While these efforts aid in addressing the issue
in the short-term, sustainable changes are needed to improve the long-term economic outlook.

Nuclear power plant operating costs are constrained by many factors, such as security requirements
or fuel costs. However, improvements in asset-management and operational strategies offer one
avenue for cost reduction that is within the control of utilities. For advanced reactor designs, this
includes maintenance activities associated with systems and components, along with potential
changes in operational modes, such as power reductions. The difficulty is optimizing asset-
management and operational decision-making in a complex and interconnected environment. There
are numerous factors that can influence the course of action, including the current status of plant
components, projected revenue, regulatory compliance, etc. A comprehensive assessment of these
factors must be conducted for a truly optimized solution to be found.

1.2 Project Overview

The current research is focused on the optimization of advanced reactor operation and asset
management using online monitoring and diagnostics and intelligent decision-making. To achieve
this goal, the project developed the high-level analysis methodology outlined in Figure 1-1, which
is briefly discussed here.

First, during the reactor design phase, it is necessary to develop a sensor network that can properly
monitor and diagnose important component faults and degradation throughout the lifetime of the
plant. This is a difficult task as there are many unknowns regarding long-term operational reliability
and the associated costs of additional sensors and system penetrations can be prohibitive. Therefore,
development of the sensor network must be optimized based on these criteria while ensuring
necessary system diagnostic capabilities. For the current project, the Ohio State University (OSU)
Integrated System Failure Analysis (ISFA) method it utilized for this assessment.

Once reactor operation begins, the sensor network is utilized by an online monitoring and
diagnostic tool (such as the Argonne PRO-AID tool [1]), which provides a real-time picture of
component and system performance. Specifically, both slow degradation phenomena (wear and
tear of components and sensors) and abrupt events (leakages, valves failures, etc.) are diagnosed.
Based on the analysis performed by the diagnostic tool, the plant risk profile must be updated to
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accordingly to represent the real-time condition of the plant. For an operating plant, the plant risk
profile includes not only safety considerations, which are evaluated through the probabilistic risk
assessment (PRA), but also productivity concerns, which are gauged through the use of a generation
risk assessment (GRA).

Utilizing the real-time plant risk profile, a risk-informed decision-making process then attempts to
optimize plant operations and asset management plans. The challenges of this task include cost-
benefit decision-making in multivariate space while ensuring the plant does not approach risk or
safety limits. Markov Decision Processes (MDPs) are utilized to perform this task in an efficient
and intelligent manner.

Design Stage

Optimized Sensor Network Design
ISFA Methodology

Online Monitoring and Diagnostics

(such as PRO-AID)

Plant Risk Profile Update
Markov Component Models and PRA/GRA

Asset Management Decision-Making

Markov Decision Process

Figure 1-1: Overall Project Methodology and Structure
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1.3 Project Objectives
The project has two main objectives, as detailed below:

e Sensor Network Design:
o Further development of the OSU ISFA methodology capabilities to permit
additional optimization criteria and refine the optimization analysis approach.

e Asset-Management Decision-Making Optimization:

o Creation and development of an approach for asset-management and operational
strategy optimization that comprehensively and seamless incorporates all available
data stream into the optimization analysis, including online plant monitoring,
component models, and the plant risk profile.

In addition to the methodology tasks outlined above, the project seeks to perform a preliminary
demonstration of the approaches as part of the effort to commercialize the developed technologies.

1.4 Report Structure

The following report provides an overview of the research and its findings and is structured based
on the major project initiatives, as outlined in Figure 1-2. The Introduction section gives a brief
overview of the project and its structure. The section is followed by sections on Sensor Network
Optimization, Intelligent Asset-Management Decision-Making, and a Time-to-Market (T2M)
Analysis for the developed technology. The last section provides concluding remarks on the project,
along with the list of accomplishments and the possible next steps towards further enhancing the
proposed methodology.

Section 2: Sensor Network Optimization

¢ 2.1: Methodology
e 2.2: Demonstration

¢ 3.1: Methodology
¢ 3.2: Demonstration

Section 3: Intelligent Asset-Management Decision-Making

Section 4: Time-to-Market Analysis

® 4.1. Findings

Section 5: Conclusions

¢ 5.1: Accomplishments
¢ 5.2: Next Steps
Figure 1-2: Report Outline
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2 Sensor Network Optimization

The first focus of the project was the further refinement of the OSU ISFA methodology [2-4] for
the development of an optimized sensor network design. This section briefly introduces the
methodology and the experiments designed to verify the effectiveness and performance of the
sensor selection method developed to generate optimal sensor deployment configurations for
online monitoring (OLM) systems for advanced nuclear reactors. In the experiments, several
important capabilities of the OLM system, such as the capability of observing various states of the
target system, the capability of fault detection and discrimination, the capability of fault
prognostics, and various other characteristics that sensor systems should fulfill such as
functionality, integrability, reliability, and cost, are taken into account when generating optimal
sensor deployment configurations. A reactor cavity cooling system (RCCS) of the General
Atomics (GA) Modular High-Temperature Gas Reactor (MHTGR) is selected as the case study
system in these experiments. This section proposes a multiple-objective optimization algorithm
which outputs a series of sensor deployment solutions, including the numbers, types, and positions
for deploying the sensors required by the OLM system.

2.1 Methodology

When a safety-critical system is still in the development phase, it is difficult to select a sensor
deployment strategy for designing the OLM system related to such a system due to the shortage
of operational data. This section introduces a model-based method that can determine the best
candidate sensors to be used by an OLM system by utilizing the inferred signal features of the
system in the development phase. These signal features and the corresponding sensor selection
criteria can be derived from the outcomes of a qualitative model-based fault analysis method, the
ISFA method, which infers the impacts of system faults and their evolutions. Six sensor selection
criteria were identified. Table 2-1 displays the sensor selection criteria used by the proposed
methodology.

Table 2-1: Sensor selection criteria used by the proposed methodology

Criteria Description

1. Fault Detection and Evaluate the capability of the OLM system in detecting and

Discrimination (FDD) identifying various types of faults in the target system.

2. Fault Prognostics Evaluate the capability of the OLM system in forecasting
component failures during system operations.

3. Observability Evaluate the capability of the OLM system in observing system
signals and states.

4. Functionality Evaluate whether the functions of a sensor satisfy the requirement
of the OLM system

5. Integrability Evaluate the difficulty in installing a sensor into the monitored
system.

6. Cost Evaluate the expenses for adding a sensor to the OLM system.

Applying the methodology to a safety-critical system includes several steps, which are introduced
below:

1. Create qualitative ISFA models for the target system (i.e., the RCCS in this report). This step
identifies the system components, their functions, and the flows transmitted by these

6
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components (e.g., the airflow delivered by the inlet
pipes) since sensors will be deployed to measure the
physical variables related to these flows (e.g., the
flow rate and the pressure of the airflow).

f OUTLET

—

2. Run ISFA simulations and generate signal features **"=.°
under various failure scenarios. The simulations
utilize the qualitative models of the identified
components, flows, and functions to infer the trends ‘

in the physical variables under various failure I | P i

scenarios and generate signal features based on the \,\\ —— || 3

trends. VAR ||| P11 Qe
3. Apply the sensor selection criteria to evaluate the —oe' ’

effectiveness of the OLM system. These criteria can f —

be used to rank and evaluate the important aspects ey
(e.g., the ability to diagnose faults, etc.) of the OLM
system.

Figure 2-1: Structure of the Reactor
4. Use a Multiple Objective Optimization Algorithm to Cavity Cooling System [5]
select the optimal sensor deployment configuration.
The optimization algorithms leverage the selection criteria as objective functions for evaluating
various sensor selection solutions.

Due to a recent invention disclosure and potential patent submission, a detailed discussion of the
methodology is deferred to future publications.

2.2 Demonstration
2.2.1 Case Study System

An MHTGR RCCS [5] was selected as the case study system for the proposed methodology. The
RCCS removes heat from the reactor cavity in a passive manner by the natural convection of
outside air through cooling panels located in the reactor cavity. The cavity cooling panels form a
cylindrical wall completely external to the primary coolant pressure boundary and surround the
uninsulated reactor vessel. The cooling panels and ducting collect the heat transferred from the
vessel by radiation and natural convection, transporting the heated air to the environs. They protect
the cavity walls from overheating during normal operations and provide an alternate means of
decay heat removal when the reactor is shut-down. The structure of the RCCS is displayed in
Figure 2-1. In the figure, the RCCS includes the inlet pipes, the outlet pipes, the cooling panels,
etc. It is worth noting that the RCCS has four sets of inlet and outlet pipes, but the sketch at the
bottom of Figure 2.1 only displays one of them. The detailed list of components considered in the
case study is displayed in Table 2-2. Four sets of pipelines in the RCCS are numbered as inlet/outlet
pipes 1, 2, 3, and 4, respectively. The labels defined for each component will be reused in the
experiment result sections.
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Table 2-2: The important components and their labels

Labels | Components Labels | Components Labels | Components Labels | Components
Fl1 The filter at FI2 The filter at FI3 The filter at Fl4 The filter at inlet
inlet pipe 1 inlet pipe 2 inlet pipe 3 pipe 4

FO1 The filter at FO2 The filter at FO3 The filter at FO4 The filter at
outlet pipe 1 outlet pipe 2 outlet pipe 3 outlet pipe 4

PIlV The vertical PI2V | The vertical PI3V | The vertical P14V | The vertical part
part of inlet part of inlet part of inlet of inlet pipe 4
pipe 1 pipe 2 pipe 3

PI1H The horizontal PI2H The horizontal PI3H The horizontal P14H The horizontal
part of inlet part of inlet part of inlet part of inlet pipe
pipe 1 pipe 2 pipe 3 4

PO1V | The vertical PO2V | The vertical PO3V | The vertical PO4V | The vertical part
part of outlet part of outlet part of outlet of outlet pipe 4
pipe 1 pipe 2 pipe 3

PO1H | The horizontal PO2H | The horizontal PO3H | The horizontal PO4H | The horizontal
part of outlet part of outlet part of outlet part of outlet
pipe 1 pipe 2 pipe 3 pipe 4

CP1 The cooling CP2 The cooling CP3 The cooling CP4 The cooling
panel connected panel connected panel connected panel connected
to pipe set 1 to pipe set 2 to pipe set 3 to pipe set 4

CP The cooling
panel of the
reactor wall

2.2.2 Candidate Sensors

The physical variables of the RCCS taken into account include the temperature, the flow rate, the
pressure, the particle density, and the radiation density of the airflow transferred through the
RCCS. According to these types of signals, ten candidate sensors were selected for the OLM
system. The sensors are listed in Table 2-3. The labels shown in the table will be reused in the
result section.

Table 2-3: Specification of the candidate sensors

Labels | Measures Range Cost ($) MTTF(h)
TS1 Temperature -200 ~ 1100C 1,500 leb
TS2 Temperature -50 ~ 500C 1,000 le7
FS1 Flow rate, Temperature | 0 ~ 200L/min, 0 ~ | 4,500 1e5
(Multifunctional) 500C
FS2 Flow rate 0 ~ 250L/min 2,500 le6
PS1 Pressure 0~ 10 MPa 3,200 le6
PS2 Pressure 0~1MPa 1,000 le7
DS1 Particle Density 0~ 0.02 kg/m?® 5,000 1e6
DS2 Particle Density 0~ 0.2 kg/m® 1,500 1e6
RS1 Radiation 0.1u ~ 100mSv/h 7,000 1e6
RS2 Radiation 0.1u ~ 10mSv/h 5,000 1le5

2.2.3 Considered Failure Modes

An essential function of the OLM system is to detect and distinguish faults during system
operations. Table 2-4 introduces the failure modes of the system components considered in this
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report. It is worth noting that this report considers single fault scenarios only (i.e., in each fault
scenario used to generate signal features, only one fault was injected). But the proposed method
can be applied to multiple fault scenarios as well.

Table 2-4: Failure modes of components considered

Component Failure Modes Description
Inlet Filters Inner Leakage Some of the dirty air passes the filter since there are
small holes in the filter.
Clog The air cannot pass the filter smoothly since too much
dust is accumulated on the filters.
Inlet Pipes Leak to the Small leakage at the shell of the pipes.
environment
Collapse Large leakage at the shell of the pipes.

Cooling Panels

Degradation due to
rust/scaling

Outlet Pipes (inside

The leakage from the

Some of the air leaks from the inlet pipe into the

the inlet pipe) inlet pipe outlet pipe.
Outlet Pipes (outside | Leak to the Small leakage at the shell of the pipes
the inlet pipe) environment

Collapse Large leakage at the shell of the pipes.

Outlet Filters Inner Leak Some of the dirty air passes the filter since there are
small holes in the filter.

Clog The air cannot pass the filter smoothly since too much
dust is accumulated on the filters.

Sensors Bias There are discrepancies between measured and true
values.

Drift The output of the sensor keeps increasing or
decreasing linearly from the normal state.

Spike Spikes are fast, short-duration electrical transients in
voltage (voltage spikes), current (current spike), or
transferred energy (energy spikes) in an electrical
circuit of sensors.

Stuck The output of a sensor signal becomes constant.

Hardover The output of the sensor increases above the

maximum threshold

2.2.4 Other Constraints
The following constraints/assumptions are introduced when performing sensor selection:

« One sensor can measure physical variables at one location only, i.e., the case in which a
sensor can simultaneously sample data at different locations is not considered
« No more than three sensors can be deployed at one location. This constraint is introduced
because of the limited space available for sensor installation.
2.2.5 Experiment Results
The Non-dominated Sorting Genetic Algorithm (NSGA-II) [6, 7] is selected to implement the
sensor selection methodology discussed in this study to design the OLM system. NSGA-I11 handles

each objective function separately. After crossover and mutation, the NSGA-II algorithm creates
a Non-dominated Pareto Front for all the solutions and the best result is chosen from the Non-
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dominated Pareto Front. The number of optimal solutions obtained in this study are 100 and the
values of each objective function for 5 optimal solutions are presented in Table 2-5.

Table 2-5: Values of objective functions for 5 optimal solutions

Number of Cost Observability | Fault Fault Integrability
solution diagnostics prognostics

1 24700 293682.3 30795.25 270523.2 12.2

2 213000 1209887 121322.9 1100068 22.4

3 30400 325039 33887.72 300701.9 12.2

4 26200 309106.2 30795.25 285103.6 12.4

5 169200 1071693 110270.5 970182.2 22.2

The flowchart describing the application of the NSGA-II algorithm for obtaining the optimal
solutions for the sensor placement optimization problem is shown in Figure 2-2. It can be observed
from Figure 2-2 that, the objective functions and the constraints for sensor selections are defined
for the NSGA-II algorithm based on the sensor selection criteria. Sensors are sampled at each
location and crossover and mutation are applied to sensors to re-evaluate the objective functions
and select the optimal solutions until the predefined maximum number of generations is reached.

T

Define the objective functions based
on the sensors selection criteria

A
Define constraints for sensor
selection at different locations to
measure different variables

Y

Sample sensors at each locations to
measure different variables

Apply NSGA-11 algorithm to obtain
the Non-dominated Pareto front up to

a predetermined maximum
generation number
A

No

Reached to the maximum number of

Apply crossover according to

NSGA-II with a predetermined
Crossover rate

Apply mutation according to
» NSGA-II with a predetermined
mutation rate

generations?

Yes
v

Output the optimal solutions and
Non-dominated Pareto Front

Select the optimal solution [«

Evaluate the objective function

Figure 2-2: Flowchart of the implementation of the Non-dominated Sorting Genetic
Algorithm (NSGA-II) for the sensor placement optimization problem

10
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The Non-dominated Pareto Front found for different sensor selection criteria is presented in Figure
2-3, where each figure provides values for 4 sensor selection criteria. It can be observed that, both
Figure 2-3(a) and Figure 2-3(b) depict a Non-dominate Pareto Front where each of the points of
the Non-dominate Pareto Front corresponds to an optimal solution for sensor placement.

Fault prognostics Integrability
1.IM B
M
0.9M 20
420% 120%
0.8M =
P N8 Q0¥
3 A0® . e ® 18
G 0.7M PR P
8 o 8 %
2 0.6M 2 .
(=] 2QO¢ T 16
& o+ e =3 Q% O.qp,
¢ Oon " 0.5M D g0 [ PR
P % & S, O.61, o ¥
o
Q X o 2
N Z 2z 4
Cost o 4 " S 0.4M Cost ¥ ORI
< 0‘0(7 /'-?,17 O‘O"
0.3M

Figure 2-3: Non-dominated Pareto fronts for sensors placement optimization for
different sensors selection criteria

The number of sensors selected at different locations after optimization is shown in Figure 2-4. It
can be observed from Figure 2-4(a) and Figure 2-4(b) that the flowrate sensor (FS1) is selected at
only a few locations compared to the flowrate sensor (FS2). Therefore, it is concluded that, the
flowrate sensor (FS1) is more location sensitive, and should be used at those few locations to
measure the corresponding variables, while the flowrate sensor (FS2) is more location agnostic.
According to Figure 2-4, a similar behavior can be observed for other sensors too. Some sensors

are very location sensitive and can be used at only a few locations while other sensors are location
agnostic.

Flowrate sensor (FS1)

f
60 L ]
50 ,\
40

A \A...J L\J \

-10<> q\\ &

Flowrate sensor (FS2)
80
70
60
50
40
30
20
10
0

Number of sensors selected
s
=
Number of sensors selected

-10.8 SRS R ,.~2~ . S
S D > \ lo“ FEE I “EE oc?quo,‘.o FeLd
& ISP FI ST @S -0
T TEL O LT L L
Locations for sensors placement Locations for sensors placement

(a) Flowrate sensor (FS1)

(b) Flowrate sensor (FS2)
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Temperature sensor (TS1)

Temperature sensor (TS2)
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The total number of sensors selected for 100 solutions at 38 different locations is presented in
Figure 2-5(a) for different types of sensors. It can be observed that, Temperature sensor (TS2) is
selected the most and Radiation density sensor (RS1), Particle density sensor (DS1) are selected
the least. In Figure 2-5(b), the total number of sensors selected at different locations is presented.
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3 Intelligent Asset-Management Decision-Making

The second focus of the project was the creation and development of an approach for asset-
management and operational strategy decision-making that comprehensively and seamlessly
incorporates all avenues of available data, including online plant monitoring, component models,
and the plant risk profile. An overview of the developed approach and preliminary demonstration
analysis are provided here.

3.1 Methodology

A central aspect of the research project is the utilization of an intelligent decision-making approach
to optimize asset-management strategies. The system of interest (the nuclear power plant) can be
in any of a finite number of states, and the transition between system states follows a Markov
process. At discrete time steps, the decision-maker can take actions to influence system state
transition. So, the transitions between system states depend not only on “nature,” i.e., the inherent
randomness in system state transition, but also on decision-maker actions. At each time step,
different decision-maker actions and different system state transitions lead to varying rewards for
the decision-maker. The decision-maker’s objective is to maximize the sum of the rewards that will
be received from the current time step into the future.

As shown in Figure 3-1, the approach for asset-management decision-making during plant
operation requires multiple steps and tools but fundamentally relies on a Markov decision
processes/partially observable Markov decision processes (MDP/POMDP) optimization
assessment. The steps before the MDP are necessary to supply the MPD calculation with the
information required to form a real-time assessment of plant status.

First, sensor information from the operating plant is provided to the online monitoring and
diagnostic tool (PRO-AID [1] for the approach discussed here), which assesses component status
based on the sensor data and physical system models. To inform this calculation, Markov
component models provide additional insights regarding component behavior (such as estimated
component failure probability). Both PRO-AID and the Markov component models work in tandem
to assess the condition of components within the system.

The output of PRO-AID are real-time probabilities regarding component status (healthy, degraded,
failed, etc.). The output from PRO-AID and the Markov component models are utilized to develop
a real-time plant risk profile, which consists of a PRA and a GRA. The PRA analyzes plant risk
from a safety perspective, while the GRA assesses economic risk.

Lastly, the output from PRO-AID and the real-time plant risk profile are fed to the MDP analysis.
The MDP analyzes different operational strategies to determine the optimal asset-management
strategy to maximize revenue.

Due to a pending patent regarding the developed approach, a detailed discussion of the
methodology is deferred to future publications.
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Figure 3-1: Intelligent Asset-Management Decision-Making Approach
3.2 Demonstration

As the focus of the project was the applicability of the developed approaches to advanced nuclear
reactor designs, a non-light water reactor was selected for the demonstration analysis. The
following sections describe the selected reactor design and system analyzed, in addition to the
process utilized to make the selection.

3.2.1 Reactor Overview

The advanced reactor design selected for the demonstration analysis was the MHTGR, which was
selected for several reasons. First, the general reactor design is similar to the Framatome SC-HTGR
design but there is significant design information available in the public domain (described below),
which alleviated concerns regarding university students who are part of the current project and
unable to access controlled information. Second, as highlighted above, was the availability of
detailed design and licensing documentation, which expedited the development of the
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demonstration problem. This included System and Subsystem Design Description (SDD and
SSDD) documents and a PRA. The MHTGR licensing approach also utilized a risk-informed
performance-based method, similar to that of LMP [8]. Lastly, the multi-module design of the
MHTGR plant, described below, also permits additional operating modes.

Significant work was completed on the MHTGR design and licensing case as part of a DOE-
sponsored effort in the 1980s and early 1990s led by GA Technologies, Combustion Engineering,
Bechtel National, Inc., and Stone and Webster. Although the project was cancelled before
construction began, there was regulatory interaction through submittal and review of the
Preliminary Safety Information Document (PSID) [5] and the NRC’s published draft Preapplication
Safety Evaluation Report (PSER) [9].

The documentation developed as part of the MHTGR project was initially considered under the
Applied Technology (AT) DOE designation. Given the elimination of the AT category by DOE,
the project worked with the DOE Office of Scientific and Technical Information (OSTI) to get the
MHTGR documents listed in Table 3-1 properly cleared for public release. This information was
then utilized for the demonstration analysis and is also now openly available on OSTI.gov for use
as part of other research efforts.

Table 3-1: Cleared MHTGR Documents

Report Number | Title
HTGR-86-024* | Preliminary Safety Information Document for the Standard MHTGR
NUREG-1338* | Preapplication Safety Evaluation Report for the Modular High-Temperature Gas-Cooled
Reactor (MHTGR)
HTGR-86-011* | Probabilistic Risk Assessment for the Modular HTGR Plant
HTGR-87-086 | Modular High Temperature Gas-Cooled Reactor plant capital and busbar generation cost
estimates
HTGR-86-020 | Heat transport system design description
HTGR-86-101 | Shutdown Cooling Circulator SDD
HTGR-87-039 | Circulating Water SSDD
HTGR-87-027 | Feedwater and condensate SDD
HTGR-86-069 | Forced Outage Assessment
HTGR-86-051 | NSSS Control SSDD
HTGR-86-076 | Plant control, data, and instrumentation SDD
HTGR-86-052 | NSSS Analytical Instrumentation SSDD
HTGR-86-047 | Plant protection and instrumentation SDD
HTGR-86-049 | Investment protection SSDD
HTGR-86-048 | Safety protection SSDD
HTGR-87-028 | Steam and water dump SDD
HTGR-87-033 | Heater drains and condensate returns SSDD
HTGR-87-034 | Condensate polishing SSDD
HTGR-87-035 | Steam vents and drains SSDD
HTGR-86-129 | Steam generator SDD
HTGR-86-028 | Shutdown Cooling SDD
HTGR-87-068 | RCCS SDD

* Previously cleared for public release

Within the Vessel System, helium coolant flows to the reactor vessel in the outer annular region of
the crossduct, flows down through the core, returns through the center region of the crossduct, down
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through the steam-generator bundle, then back up the annular region around the steam-generator
back to the inlet of the single helium circulator. On the secondary coolant side, feedwater enters
the separate steam generator vessel at the bottom and flows through a helical coil tube bundle,
exiting as superheated steam at the side of the vessel (see Figure 3-2).

When the reactor is shut down for maintenance or refueling, decay heat can be removed from the
core by the normal Heat Transport System (HTS), or alternatively by an independent Shutdown
Cooling System (SCS). The SCS consists of a motor-driven circulator coupled with a water-cooled
heat exchanger mounted beneath the reactor core within the reactor vessel. The SCS is provided
for investment protection and flexibility of operation. The SCS and HTS are not "safety-related".

As a third means of providing decay heat removal, a "safety-related” RCS is provided within each
reactor cavity. The RCCS cooling is provided by natural circulation of outside air within enclosed
panels along the reactor cavity walls. The panels are designed such that outside air does not
communicate with air within the cavity. The RCCS is capable of removing from the reactor vessel,
decay heat conducted and radiated from the core. The RCCS is always functioning in its natural
circulation mode to provide cooling of the reactor cavity concrete during normal operation and is
therefore always available to remove decay heat under accident conditions without reliance on
active components, power supplies, or operator action. [5]

NUCLEAR ISLAND - % ENERGY CONVERSION AREA

CONTROL ROD DRIVE

REACTOR
VESSEL

REACTOR
CORE

CIRCULATOR TURBINE GENERATOR

STEAM
GENERATOR

o
COOLING
TOWERS

MAIN
CONDENSER

| _-sTeam
o GENERATOR DEAERATOR

SHUTDOWN
CODLING HEAT
EXCHANGER

DEMINERALIZER

SHUTDOWN
COOLING
CIRCULATOR

BOOSTER CONDI
FEED PUMP HEATERS PumP

Figure 3-2: MHTGR Plant Overview (Single Reactor) [5]

Table 3-2 summarizes some of the key design features and parameters associated with the Standard
MHTGR.
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Table 3-2: Features of the Standard MHTGR [5]

Fuel UCO + ThO, Microparticles
Coating Ceramic (PvC/SiC/PyC)
Moderator Graphite

Coolant Helium

Coolant Boundary Steel Pressure Vessel
Power per Module 140 MWe/ 350 MWt
Power Density 5.9 W/cc

Fuel Temperature (Max/Ave) 1060/677 C (1940/1250 F)
Coolant Temperature 259/687 C (497/1268 F)
Coolant Pressure 6.4 MPa (925 psig)

Steam Temperature 541 C (1005 F)

Steam Pressure 2500 psig

3.2.2 Demonstration System Selection

As developing a component and system monitoring and decision-making framework for the entirety
of the multi-reactor MHTGR design was beyond the scope of the current project. A subsystem of
the MHTGR design was selected for analysis. It is important to note that while the component
monitoring aspect of the demonstration analysis focused on a single subsystem, the decision-
making framework accounts for the impact of the operation and availability of the entire plant. To
select the subsystem for that would be the focus of the demonstration analysis, MHTGR subsystems
were compared on the following criteria:

e Relevance to the generation capacity of the plant and interest from the asset-management
perspective

Availability of detailed piping and instrumentation (P&ID) information

Complexity of the subsystem network

Complexity of the boundary conditions to be imposed

Type of PRA analysis used to assess the network (fault tree versus simulation-based)
Necessity of online component monitoring

Complexity of surrogate system model

Availability of PRO-AID models for the system components

The following five MHTGR subsystems were considered as part of this process:

Shutdown Cooling System (SCS)

Reactor Cavity Cooling System (RCCS)

Main Circulator Subsystem (MCS)

Feedwater and Condensate System (FW)

Reactor Plant Cooling Water Subsystem (RPCWS)

The results of the selection analysis are summarized in Table 3-3. Based on this analysis, the FW
system was selected for the following reasons. First, the FW system is central to the generation
capacity of the plant and has multiple components are key to asset-management decisions. Next, a
detailed P&ID was available from the MHTGR Feedwater and Condensate SDD [10]. While
complexity of the system and its boundary conditions are high, that is a positive aspect, as it
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reinforces the need for intelligent decision-making processes given the complexity of the associated
analysis. In addition, the components within the system can be assessed utilizing traditional PRA
fault tree analysis, with preliminary models already developed as part of the MHTGR PRA. The
system requires online monitoring since it is in continuous operation and a key factor in the
generation capacity of the plant and also because the included components, such as feedwater
heaters, can experience degradation. While the complexity of the corresponding surrogate model is
high, the components within the system are fairly standard and also mostly available within the
existing PRO-AID database.

Table 3-3: Demonstration Problem Selection Process Results

Evaluation Criteria SCS RCCS MCS FW RPCWS
Relevance to generation capacity High Low High High High
and asset-management perspective
Availability of a detailed P&ID Yes No P&ID No P&ID Yes Yes

needed needed
Complexity of the subsystem Medium No Network No Network High High
network
Com_pl_exny of the boundary Low Low Low High High
conditions

Yes —

- Yes - - : Yes — Yes — Yes —
Pathway for PRA analysis Traditional S'gﬂ:g:jon' Traditional Traditional Traditional
Necessity of online monitoring No (standby Yes Yes Yes Yes
system)

Complexity of the corresponding High Low High High High
surrogate model
Auvailability of the PRO-AID Most No No Most Most
models for the system components

3.2.3 Analysis Development

Several preparation steps were necessary for the demonstration analysis, as outlined below. The
following subsections provide a brief overview of each aspect:

e FW System Surrogate: Given the lack of an operational facility, a surrogate for the FW
system was developed in Dymola, which required a detailed decomposition of the system.

e Markov Component Models: A Markov model of each component of the FW system was
developed as part of the analysis framework

e Online Monitoring: PRO-AID was utilized to monitoring and diagnose faults for the
surrogate FW system modeled by Dymola.

e PRA Development: The existing MHTGR PRA was recreated and adapted to the needs of
the demonstration analysis.

e GRA Development: A simplified GRA was developed for the analysis based on available
documentation regarding MHTGR performance.
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3.2.3.1 Feedwater System Decomposition

While the MHTGR documentation provided extensive detail regarding the design and operation of
the FW system, the final design was still in development when the project was ultimately canceled.
Therefore, a fully complete system design was not finalized, and certain documentation contains
conflicting information, as the design was evolving. Since the demonstration analysis requires a
plant surrogate to test the framework’s capabilities, it was necessary to further refine the FW system
to permit the development of a system surrogate in Dymola (see Figure 3-3).
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Figure 3-3: Developéd FW System Dymola Model

To complete this task, the available FW system information from the MHTGR documentation was
reviewed and utilized as a starting point. When conflicting information was found, the project
selected the values that were most conducive to the demonstration analysis (while ensuring
consistent system design). If information was not available, the missing values were calculated or
estimated based on existing design information. The output of this approach was developed FW
P&ID shown in Figure 3-4, which formed the basis of the Dymola model of the system. The
assumed sensor set for the system is also noted.
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3.2.3.2 Markov Component Model Development

For the analysis performed, Markov component models were developed for each element of the
FW system to aid in the prediction of future system status (which are updated by the online
monitoring and diagnostic tool using the system sensor network). Figure 3-5 shows a generic
Markov Model created and used in this analysis, along with a generalized form of the analytical
solution derived.

Markov Diagram
Consider a component with § possible states (may range from fully operational/healthy to failed).

Assumptions
1. Attime f = 0 the system 1s in state 1 (aka as “Healthy™)
2. State transition rates are constant (1)
3. No Repair

Analytical Solution
The probability for the component to be in state s, s = I, 2, ..., .§ can be expressed as:
5
B= ) M(k,s)-e b
k=1
where Mk s) 1s the (k5)* element of matrix M-

1 2 3 . 5 s/k
My Myz Mz .o Mygy q
M= Myy Mzs Myz ... Mas |2
May Mzz Maz ... Mag |3
Mgy Mgz Mgz ... Mgs/ S
and defined as
0 y k<s
5
Ps(t=0]—ZMk.i- , k=5
M(k,s) = ik

k-1
(Z A M[-’s) fme—m,), k=s, my = mg, = 0 otherwise
1=

m(k) is ¥ element of vector of exponent coefficients, m is

m = {my, ma, ..., ms}

where mi. is the total out-of-state transition rate for state 5.

Figure 3-5: Generalized form of Analytical Solution for Markov Component Models
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3.2.3.3 On-line Monitoring

As was mentioned in Section 1.2, PRO-AID [1] is the tool to be used for online monitoring and
diagnosis of component faults during plant operations. For the demonstration analysis, PRO-AID
was linked to the Dymola model of the FW system and the Markov component models. PRO-AID
and the Markov component models work in tandem to provide real-time probabilities of system
status.

3.2.3.4 PRA Model

Incorporation of the PRA into the intelligent asset-management decision-making approach is a
necessary step to ensure that plant operations remain within acceptable safety bounds. The insights
from the PRA provide critical insights into the acceptability of proposed asset-management
strategies, including whether such actions would preserve plant operating status within the limits
of the plant license. To accomplish this task, the real-time PRA developed based on the project
approach is utilized in conjunction with the risk-informed performance-based licensing approach
of the Licensing Modernization Project (LMP). [11]

As was mentioned in Section 3.2.1, a preliminary MHTGR PRA model is publicly available [12,
13]. For this analysis, the original MHTGR PRA model of the Feedwater and Condensate System
was used with some modifications (see Table 3-4 for the list of modifications).

Table 3-4: Summary of MHTGR PRA Modifications

Fault Tree Modifications to the MHTGR version
FW Subsystem Fails 1. Removed condensate portion
1. Removed condensate portion
2. Added two simultaneous independent failures
Loss of Pumpin 3. Added CCF Failure
ping 4. Incorporated two 80% capacity varying speed

pumps, thus replacing the 1-out-of-2 100%
capacity pumps logic.

1. Added basic event for heater fouling (for each
FW heater)

2. The BE for FW heater excessive leakage was

LP FW Heater Failure replaced by a OR gate for heater leakage with

two basic events under it, one for the tube-side

leakage and the other for the shell-side

leakage
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The set of input data needed for the PRA model was taken from the MHTGR PRA [13]. The values
were then updated using the current industry average performance for components and initiating
events (IEs) at U.S [14].

3.2.3.5 GRA Model

A GRA is the process of predicting the risk of generation loss during future operation by estimating
the probability and duration of plant trip or derate due to equipment degradation or failure. [15]
GRA is a key activity in assuring productivity and profitability as plants worldwide face
increasingly competitive power markets. Nuclear power plant operators require tools to assist
management in making decisions involving the operation and maintenance of equipment whose
failure can cause reactor trips or down-power events. A GRA model, whether rudimentary or
detailed, is an important element of nuclear asset management risk-informed tools for analyzing
effects of equipment reliability and availability on plant value and resource allocation decision-
making.

Central to the assessment of generation risk is the development of a trip model. A trip model is
similar in function and construction to that used for PRA with the exception that the end-state of
the trip model is the frequency of plant trip as opposed to the frequency of core damage or offsite
dose consequence. The trip model is generally used to estimate the frequency of instantaneous trip
and down-power at the plant based on actual plant configuration and condition.

Another model important for a GRA analysis is a derate power model, a model where the end-state
is the frequency of plant to operate at decreased (derated) power level. The two models, trip and
derate power, when built, help to identify different plant states and the awards (generation)
associated with them which are key input parameters for any asset management decision at the
plant level.

For the demonstration analysis, a simplified MHTGR GRA was developed that considered three
plant states (100% power, 80% power, and 0% power (plant trip)) and two subsystems (the FW
subsystem and Transformer subsystem). Only the FW system is directly considered in the resulting
optimization analysis, but the Transformer subsystem was also provided to demonstrate how
additional systems can be incorporated into the framework.

3.2.4 Demonstration Analysis

The demonstration analysis centered on the operation of the FW system described in Section 3.2.3.
For the preliminary analysis presented here, the goal was to test the integrated analysis framework
for a large, complex problem to ensure that the model produced useful results and that the
calculation could be performed in a reasonable amount of computational time. Therefore, many of
the values utilized in the analysis were either based on preliminary analysis or postulated.

Before proceeding to the complete demonstration, a limited-scope FW system test analysis was
performed. The test analysis permitted a trial run of the data communication pathways and
formatting. In addition, and most importantly, the overall size and complexity of the test analysis
was far less than the full demonstration analysis. Therefore, potential errors in the input preparation
approaches, solution methodology, and output results could be more easily identified. For example,
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the determination of optimal actions is fairly trivial given the size of the problem, so it would
provide a validation of the analysis output result. The results of the test analyses were successful
and matched the optimal actions selected by direct analysis.

The full demonstration analysis focused on the online monitoring and diagnostics of six FW system
components (two FW pumps and four FWHSs). The online diagnostic information for these
components was utilized to develop a real-time risk profile for the plant. Although only these six
components are monitored in real-time for this analysis, the status and behavior of the complete
plant is taken into account within the developed risk profile. The details of the demonstration
analysis are omitted here, given that they include information regarding the approach that is current
undergoing patent submittal preparation.

In conclusion, the preliminary demonstration analysis calculations appeared successful for several
reasons. First, the solution approach was able to perform an assessment of a system that was highly
complex with over 2 billion possible transition pathways. In addition, the program was able to
calculate the result in a reasonable period of time (less than 30 minutes when utilizing a desktop
machine), which is a promising indicator for future cases with further complexity. In addition, the
results for the initial analyses matched intuition for the simple cases assessed, providing a
preliminary level of confidence in the solution scheme and overall framework. This is an important
factor as the purpose of the integrated framework is to assess scenarios where the complexity is too
great for simple calculations or intuition. In such scenarios, it may become difficult to gauge the
accuracy of the suggested actions, without in-depth investigation.
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4 Time-to-Market Analysis

To aid in the further development and commercialization of the developed technology, a T2M
report has been prepared, which identifies and examines remaining steps to deployment. The focus
of the T2M assessment was the commercialization of the intelligent asset-management decision-
making approach utilizing MDPs, as it was a technology developed as part of the project and
includes shared intellectual property amongst the project team.

The purpose of the T2M report is to support the development, commercialization, and deployment
of the technology through an assessment of the following factors:

Technology Motivation — Customer needs and value proposition
Target Markets — Market size, customer feedback, market drivers
Competitive Landscape — Existing competition, alternatives

Risk Strategy — Identified risks, mitigation strategies

Roadmap — Financial plans, sales strategy, next steps

Details of the assessment are not provided here, given the sensitive nature of the content and
pending patent submittal for the developed asset-management approach.

4.1 Findings
There were several main findings based on the T2M assessment, outlined below:

1. Patent finalization:
a. Complete patent submittal to support future licensing of the approach or direct tool
development

2. TCF award submittal:
a. Pursue funding for further approach development (including the following action
items) through a TCF award

3. Additional demonstration analyses:

a. Complete additional demonstration analyses to improve confidence in analysis
performance, provide use cases for advertising and demonstration of cost savings,
and to allow development of new visualization techniques.

b. Discuss potential for industry involvement with demonstration analysis to increase
realism, advertise approach, and gather customer needs.

4. Further customer interviews:
a. Conduct additional customer research with operating LWR fleet and advanced
reactor vendors concerning operational needs.

5. Competition review:
a. Conduct further research regarding the tools/products currently being used by the
operating LWR fleet for asset-management decision-making.
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5 Conclusions

The NEET project reviewed here focused on improving the economic competitiveness of advanced
reactors by reducing operational costs through intelligent asset-management decision-making. To
achieve this goal, technical efforts centered on the following:

e Sensor Network Design: Optimizing the design of the plant sensor network based on
multiple criteria, such as fault detection and cost.

e Operational Asset-Management: Optimizing plant operations and maintenance activities
utilizing online monitoring in conjunction with component models and the plant risk
profile.

5.1 Accomplishments

Several significant efforts were completed regarding the sensor network design optimization task,
with a focus on expanding the capabilities of the OSU ISFA approach. First, new optimization
criteria were added, such as observability and cost. Next, multiple optimization algorithms were
explored to determine the best approach for the methodology. Lastly, a demonstration analysis of
the sensor network design process was performed utilizing the MHTGR RCCS.

A major focus of the project was the creation and development of the intelligent asset-management
decision-making approach. A novel methodology was outlined that utilizes MDPs in conjunction
with online plant monitoring, component models, and a real-time risk profile of the plant.
Significant effort established a seamless process of integrating these factors directly into the MDP,
providing a single, comprehensive analysis structure. A preliminary demonstration of the approach
was completed utilizing the MHTGR feedwater system. In addition, a T2M analysis was completed,
with a focus on the developed technology, to outline next steps towards commercialization.

Additional highlights of the project include the following:

e Patents: A patent application is being prepared regarding the integrated MDP approach for
intelligent asset-management decision-making, with submittal scheduled for mid-2023.

e Invention Disclosures: An invention disclosure has been submitted regarding the selection
criteria for optimal sensor placement in online monitoring systems.

e Publications: In additional to the limited technical reports submitted to DOE as part of the
project, two conference papers and journal articles were submitted regarding the sensor
network design approach. Based on guidance from Argonne legal, publications regarding
the integrated MDP approach for asset-management decision-making are being deferred
until patent submittal occurs.

e Student Support: Three post-doctoral students/researchers and one PhD candidate at OSU
were supported through the research conducted under this NEET award. One of the post-
doctoral students/researchers is now an assistant professor at the University of Maryland.
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5.2 Next Steps

Regarding the ISFA-based sensor selection and optimization methodology, several future actions
are planned as outlined below:

e Invention Disclosure: A invention disclosure regarding the selection criteria for optimal
sensor placement in online monitoring systems has been submitted and is currently being
reviewed for possible submission as a patent.

e Further Method Development: Additional sensor selection criteria, such as reliability of
candidate sensors and uncertainty in sensor measurements, will be developed and
integrated into the approach for sensor network optimization, and the scalability and
maintainability of the proposed methodology will be studied so that the proposed method
can be applied to large-scale and more complex systems.

Regarding the integrated MDP approach for intelligent asset-management decision-making, several
future actions are planned, as outlined below:

e Patent Completion: A patent application is being prepared for the integrated MDP
approach to asset-management decision-making, with submittal scheduled for mid-2023.

e Further Development Toward Commercialization: The T2M analysis identified
several main tasks requiring completion before commercialization of the technical can be
achieved. Avenues for funding these activities, such as TCF awards, are currently being
pursued.

First, in coordination with Argonne and OSU technology commercialization teams, a patent
application is being prepared for the integrated MDP approach to asset-management decision-
making, with submittal planned for mid-2023. Second, based on the findings of the T2M analysis,
several funding avenues are being pursued to complete the outstanding tasks necessary for
commercialization. These tasks include a demonstration of the cost savings potential of the
approach utilizing a real-world example and further development of the approach regarding
scalability and usability. A TCF application has been submitted concerning these efforts.
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